1
|
Che R, Miao M, Ding G, Zhao S. A rare case of late-onset immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome confused with IgA vasculitis nephropathy. Pediatr Nephrol 2025; 40:89-93. [PMID: 39190146 DOI: 10.1007/s00467-024-06482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
A 3-year-old boy initially presented with purpura-like rashes and nephrotic syndrome, suspected to be IgA vasculitis nephritis (IgAVN). The suggestion of kidney biopsy was rejected. Although the patient responded well to glucocorticoids, they later developed recurrent proteinuria, refractory diarrhea, and subsequent metabolic acidosis. Kidney biopsy showed membranous nephropathy with positive semaphorin 3B expression, indicative of other kidney diseases rather than IgAVN. Although his kidney responded well to glucocorticoid combined with cyclosporine A treatment regimen, enteropathy and severe food allergy still progressed afterwards as evidenced by villous atrophy on gastrointestinal endoscopy examination. Whole exome sequencing identified a heterozygous missense variant in exon 11 of FOXP3: c.1121 T > G, confirming the diagnosis of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. The case expanded the phenotypic spectrum of IPEX syndrome, suggesting high phenotypic heterogeneity despite similar genotypes. It also put emphasis on the significance of kidney biopsy to differentiate IgA vasculitis nephropathy from other immune disorders.
Collapse
MESH Headings
- Humans
- Male
- IgA Vasculitis/genetics
- IgA Vasculitis/diagnosis
- IgA Vasculitis/complications
- IgA Vasculitis/immunology
- Child, Preschool
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/complications
- Forkhead Transcription Factors/genetics
- Immune System Diseases/genetics
- Immune System Diseases/congenital
- Immune System Diseases/diagnosis
- Diagnosis, Differential
- Glomerulonephritis, IGA/genetics
- Glomerulonephritis, IGA/diagnosis
- Glomerulonephritis, IGA/immunology
- Glomerulonephritis, IGA/complications
- Intestinal Diseases/genetics
- Intestinal Diseases/diagnosis
- Intestinal Diseases/immunology
- Mutation, Missense
- Biopsy
- Kidney/pathology
- Failure to Thrive/genetics
- Failure to Thrive/etiology
- Failure to Thrive/diagnosis
- Glucocorticoids/therapeutic use
- Exome Sequencing
- Endocrine System Diseases/genetics
- Endocrine System Diseases/diagnosis
- Endocrine System Diseases/complications
- Diabetes Mellitus, Type 1/congenital
- Diarrhea
Collapse
Affiliation(s)
- Ruochen Che
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Sanlong Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
2
|
Arnau-Soler A, Tremblay BL, Sun Y, Madore AM, Simard M, Kersten ETG, Ghauri A, Marenholz I, Eiwegger T, Simons E, Chan ES, Nadeau K, Sampath V, Mazer BD, Elliott S, Hampson C, Soller L, Sandford A, Begin P, Hui J, Wilken BF, Gerdts J, Bourkas A, Ellis AK, Vasileva D, Clarke A, Eslami A, Ben-Shoshan M, Martino D, Daley D, Koppelman GH, Laprise C, Lee YA, Asai Y. Food Allergy Genetics and Epigenetics: A Review of Genome-Wide Association Studies. Allergy 2024. [PMID: 39698764 DOI: 10.1111/all.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In this review, we provide an overview of food allergy genetics and epigenetics aimed at clinicians and researchers. This includes a brief review of the current understanding of genetic and epigenetic mechanisms, inheritance of food allergy, as well as a discussion of advantages and limitations of the different types of studies in genetic research. We specifically focus on the results of genome-wide association studies in food allergy, which have identified 16 genetic variants that reach genome-wide significance, many of which overlap with other allergic diseases, including asthma, atopic dermatitis, and allergic rhinitis. Identified genes for food allergy are mainly involved in epithelial barrier function (e.g., FLG, SERPINB7) and immune function (e.g., HLA, IL4). Epigenome-wide significant findings at 32 loci are also summarized as well as 14 additional loci with significance at a false discovery of < 1 × 10-4. Integration of epigenetic and genetic data is discussed in the context of disease mechanisms, many of which are shared with other allergic diseases. The potential utility of genetic and epigenetic discoveries is deliberated. In the future, genetic and epigenetic markers may offer ways to predict the presence or absence of clinical IgE-mediated food allergy among sensitized individuals, likelihood of development of natural tolerance, and response to immunotherapy.
Collapse
Affiliation(s)
- Aleix Arnau-Soler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany
| | - Bénédicte L Tremblay
- Département Des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Anne-Marie Madore
- Département Des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Mathieu Simard
- Département Des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Elin T G Kersten
- Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany
| | - Ingo Marenholz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
- Department of Paediatrics, Division of Clinical Immunology and Allergy, Food Allergy and Anaphylaxis Program, the Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | - Elinor Simons
- Section of Allergy & Clinical Immunology, Department of Pediatrics & Child Health, University of Manitoba, Children's Hospital Research Institute, Winnipeg, Manitoba, Canada
| | - Edmond S Chan
- Division of Allergy, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kari Nadeau
- Department of Environmental Studies, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Vanitha Sampath
- Department of Environmental Studies, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bruce D Mazer
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Susan Elliott
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Lianne Soller
- Division of Allergy, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Sandford
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Department of Medicine, Service of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jennie Hui
- School of Population Health, University of Western Australia, Perth, Western Australia, Australia
| | - Bethany F Wilken
- School of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Adrienn Bourkas
- School of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Anne K Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Denitsa Vasileva
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Ann Clarke
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aida Eslami
- Département de médecine Sociale et préventive, Faculté de médecine, Université Laval, Quebec, Canada
| | - Moshe Ben-Shoshan
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montréal Children's Hospital, McGill University Health Centre, Montréal, Quebec, Canada
| | - David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
| | - Denise Daley
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Catherine Laprise
- Département Des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany
| | - Yuka Asai
- Division of Dermatology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Voarino M, Consonni F, Gambineri E. Expanding the spectrum of IPEX: from new clinical findings to novel treatments. Curr Opin Allergy Clin Immunol 2024; 24:457-463. [PMID: 39475830 PMCID: PMC11537464 DOI: 10.1097/aci.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of recent research findings regarding immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, focusing on clinical and immunological novelties, as well as emerging treatment strategies, based on the published literature of the last few years. RECENT FINDINGS While it is well known that IPEX can present with a wide range of atypical clinical manifestations, new and unique phenotypes continue to emerge, making it essential to maintain a high level of clinical suspicion both at the time of diagnosis and during follow-up. This unpredictability in clinical presentation is further compounded by the lack of a clear genotype-phenotype correlation. A valuable tool for monitoring comes from recent discoveries regarding the epigenetic signature of Tregs, which, by correlating with disease severity, could prove to be a useful biomarker for diagnosis and ongoing management. The use of biological agents is emerging as an alternative to traditional immunosuppression. Additionally, ongoing studies are exploring the feasibility of gene therapy through the introduction of the wild-type FOXP3 into peripheral CD4 + T cells. SUMMARY Further research is needed to fully understand the variable clinical presentations of IPEX and optimize tailored therapies, ensuring better management and outcomes for affected individuals.
Collapse
Affiliation(s)
| | - Filippo Consonni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
4
|
Bekis Bozkurt H, Bayram Catak F, Sahin A, Yalcin Gungoren E, Gemici Karaarslan B, Yakici N, Yorgun Altunbas M, Catak MC, Can S, Amirov R, Bozkurt S, Ozturk N, Bilgic Eltan S, Kasap N, Bal Cetinkaya F, Orhan F, Arga M, Cavkaytar O, Kiykim A, Karakoc-Aydiner E, Ozen A, Baris S. Diverse Clinical and Immunological Profiles in Patients with IPEX Syndrome: a Multicenter Analysis from Turkey. J Clin Immunol 2024; 45:9. [PMID: 39283523 DOI: 10.1007/s10875-024-01791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 12/06/2024]
Abstract
PURPOSE Immunodysregulation, Polyendocrinopathy, Enteropathy, and X-linked syndrome (IPEX), caused by pathogenic FOXP3 variants, is a rare autoimmune disorder with diverse clinical features, including early-onset diabetes, eczema, and enteropathy. Atypical cases show milder symptoms and unique signs, requiring different treatments. Therefore, there are ambiguities in the accurate diagnosis and management of IPEX. We sought to present clinical, genetic, and immunological assessments of 12 IPEX patients with long-term follow-up to facilitate the diagnosis and management of the disease. METHODS Clinical findings and treatment options of the patients were collected over time. Lymphocyte subpopulations, protein expressions, regulatory T (Treg) and circulating T follicular helper (cTFH) cells, and T-cell proliferation were analyzed. RESULTS Predominant presentations included autoimmunity (91.6%), failure to thrive (66.7%), and eczema (58.3%). There were four classical and eight atypical IPEX individuals. Allergic manifestations were more common in atypical patients. Notably, chronic diarrhea demonstrated heightened severity compared to other manifestations. Four patients (33.3%) demonstrated eosinophilia, and nine (75%) showed high serum IgE levels. Most patients exhibited normal percentages of Treg cells with reduced CD25, FOXP3, and CTLA-4 expressions, corrected after hematopoietic stem cell transplantation (HSCT). Compared to healthy controls, the TH2-like skewing accompanied by reduced TH17-like responses was observed in cTFH and Treg cells of patients. Overall, nine patients (75%) received immunosuppressants (ISs), and six (50%) underwent HSCT, which was the only treatment revealing sustained control. Sirolimus was used in six patients and showed better control than other ISs. CONCLUSIONS The first cohort from Turkey with long-term follow-up results, comparing typical and atypical cases, provides insights into the outcomes of different therapeutic modalities and T- cell subtype changes in IPEX syndrome.
Collapse
MESH Headings
- Humans
- Turkey
- Male
- Child, Preschool
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/therapy
- T-Lymphocytes, Regulatory/immunology
- Infant
- Female
- Child
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/congenital
- Immune System Diseases/diagnosis
- Immune System Diseases/genetics
- Immune System Diseases/therapy
- Immune System Diseases/congenital
- Autoimmunity
- Adolescent
- Diarrhea
Collapse
Affiliation(s)
- Hayrunnisa Bekis Bozkurt
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Feyza Bayram Catak
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ali Sahin
- Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ezgi Yalcin Gungoren
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Betul Gemici Karaarslan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nalan Yakici
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Karadeniz Technical University, Trabzon, Turkey
| | - Melek Yorgun Altunbas
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mehmet Cihangir Catak
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Salim Can
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Razin Amirov
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Selcen Bozkurt
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Necmiye Ozturk
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Fatma Bal Cetinkaya
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Fazil Orhan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Arga
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ozlem Cavkaytar
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Jamee M, Sharafian S, Eslami N, Bayegi SN, Keramatipour M, Nabavi M, Shokri S, Shakiba M, Shamsian BS, Abolghasemi H, Vahidshahi K, Khanbabaee G, Armin S, Chavoshzadeh Z, Mesdaghi M. Revisiting double-negative T cells in autoimmune lymphoproliferative immunodeficiencies: a case series. Allergol Immunopathol (Madr) 2024; 52:6-14. [PMID: 39278845 DOI: 10.15586/aei.v52i5.1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Elevated level of double-negative T (DNT) cells is a historical hallmark of autoimmune lymphoproliferative syndrome (ALPS) diagnosis. However, the peripheral blood level of DNT cells might also be compromised in autoimmune lymphoproliferative immunodeficiencies (ALPID) other than ALPS, inattention to which would increase the delay in diagnosis of the underlying genetic defect and hinder disease-specific treatment. MATERIALS AND METHODS This cross-sectional study recruited patients suffering from ALPID (exclusion of ALPS) with established genetic diagnosis. Following thorough history taking, immunophenotyping for lymphocyte subsets was performed using BD FACS CaliburTM flowcytometry. RESULTS Fifteen non-ALPS ALPID patients (60% male and 40% female) at a median (interquartile range: IQR) age of 14.0 (7.6-21.8) years were enrolled. Parental consanguinity and family history of immunodeficiency were present in 8 (53.3%) patients. The median (IQR) age at first presentation, clinical and molecular diagnosis were 18 (4-36) months, 8.0 (4.0-17.0) years, and 9.5 (5.0-20.9) years, respectively. Molecular defects were observed in these genes: LRBA (3, 20%), CTLA-4 (2, 13.3%), BACH2 (2, 13.3%), AIRE (2, 13.3%), and FOXP3, IL2Rβ, DEF6, RASGRP1, PIK3CD, and PIK3R1 each in one patient (6.7%). The most common manifestations were infections (14, 93.3%), autoimmunity (12, 80%), and lymphoproliferation (10, 66.7%). The median (IQR) count of white blood cells (WBCs) and lymphocytes were 7160 (3690-12,600) and 3266 (2257-5370) cells/mm3, respectively. The median (IQR) absolute counts of CD3+ T lymphocytes and DNTs were 2085 (1487-4222) and 18 (11-36) cells/mm3, respectively. Low lymphocytes and low CD3+ T cells were observed in 3 (20%) patients compared to normal age ranges. Only one patient with FOXP3 mutation had DNT cells higher than the normal range for age. CONCLUSIONS Most non-ALPS ALPID patients manifested normal DNT cell count. For a small subgroup of patients with high DNT cells, defects in other IEI genes may explain the phenotype and should be included in the diagnostic genetic panel.
Collapse
Affiliation(s)
- Mahnaz Jamee
- Clinical Research Development Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shideh Namazi Bayegi
- Department of Allergy and Immunodeficiency, Massoud Medical Laboratory, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Nabavi
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Shakiba
- Department of Pediatric Endocrinology and Metabolism, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kurosh Vahidshahi
- Department of Pediatric Cardiology, Modarres Teaching Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghamartaj Khanbabaee
- Pediatric Respiratory Ward, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnaz Armin
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
| | - Mehrnaz Mesdaghi
- Clinical Research Development Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Allergy and Immunodeficiency, Massoud Medical Laboratory, Tehran, Iran;
| |
Collapse
|
6
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
8
|
Bacchetta R, Roncarolo MG. IPEX syndrome from diagnosis to cure, learning along the way. J Allergy Clin Immunol 2024; 153:595-605. [PMID: 38040040 DOI: 10.1016/j.jaci.2023.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
In the past 2 decades, a significant number of studies have been published describing the molecular and clinical aspects of immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome. These studies have refined our knowledge of this rare yet prototypic genetic autoimmune disease, advancing the diagnosis, broadening the clinical spectrum, and improving our understanding of the underlying immunologic mechanisms. Despite these advances, Forkhead box P3 mutations have devastating consequences, and treating patients with IPEX syndrome remains a challenge, even with safer strategies for hematopoietic stem cell transplantation and gene therapy becoming a promising reality. The aim of this review was to highlight novel features of the disease to further advance awareness and improve the diagnosis and treatment of patients with IPEX syndrome.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, Calif.
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, Calif; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
9
|
Borna S, Meffre E, Bacchetta R. FOXP3 deficiency, from the mechanisms of the disease to curative strategies. Immunol Rev 2024; 322:244-258. [PMID: 37994657 DOI: 10.1111/imr.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
FOXP3 gene is a key transcription factor driving immune tolerance and its deficiency causes immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome (IPEX), a prototypic primary immune regulatory disorder (PIRD) with defective regulatory T (Treg) cells. Although life-threatening, the increased awareness and early diagnosis have contributed to improved control of the disease. IPEX currently comprises a broad spectrum of clinical autoimmune manifestations from severe early onset organ involvement to moderate, recurrent manifestations. This review focuses on the mechanistic advancements that, since the IPEX discovery in early 2000, have informed the role of the human FOXP3+ Treg cells in controlling peripheral tolerance and shaping the overall immune landscape of IPEX patients and carrier mothers, contributing to defining new treatments.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Borna Š, Lee E, Nideffer J, Ramachandran A, Wang B, Baker J, Mavers M, Lakshmanan U, Narula M, Garrett AKH, Schulze J, Olek S, Marois L, Gernez Y, Bhatia M, Chong HJ, Walter J, Kitcharoensakkul M, Lang A, Cooper MA, Bertaina A, Roncarolo MG, Meffre E, Bacchetta R. Identification of unstable regulatory and autoreactive effector T cells that are expanded in patients with FOXP3 mutations. Sci Transl Med 2023; 15:eadg6822. [PMID: 38117899 PMCID: PMC11070150 DOI: 10.1126/scitranslmed.adg6822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Studies of the monogenic autoimmune disease immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) have elucidated the essential function of the transcription factor FOXP3 and thymic-derived regulatory T cells (Tregs) in controlling peripheral tolerance. However, the presence and the source of autoreactive T cells in IPEX remain undetermined. Here, we investigated how FOXP3 deficiency affects the T cell receptor (TCR) repertoire and Treg stability in vivo and compared T cell abnormalities in patients with IPEX with those in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED). To study Tregs independently of their phenotype and to analyze T cell autoreactivity, we combined Treg-specific demethylation region analyses, single-cell multiomic profiling, and bulk TCR sequencing. We found that patients with IPEX, unlike patients with APECED, have expanded autoreactive T cells originating from both autoreactive effector T cells (Teffs) and Tregs. In addition, a fraction of the expanded Tregs from patients with IPEX lost their phenotypic and functional markers, including CD25 and FOXP3. Functional experiments with CRISPR-Cas9-mediated FOXP3 knockout Tregs and Tregs from patients with IPEX indicated that the patients' Tregs gain a TH2-skewed Teff-like function, which is consistent with immune dysregulation observed in these patients. Analyses of FOXP3 mutation-carrier mothers and a patient with IPEX after hematopoietic stem cell transplantation indicated that Tregs expressing nonmutated FOXP3 prevent the accumulation of autoreactive Teffs and unstable Tregs. These findings could be directly used for diagnostic and prognostic purposes and for monitoring the effects of immunomodulatory treatments.
Collapse
Affiliation(s)
- Šimon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason Nideffer
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akshaya Ramachandran
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Wang
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeanette Baker
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa Mavers
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Uma Lakshmanan
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mansi Narula
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy Kang-hee Garrett
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sven Olek
- Ivana Turbachova Laboratory for Epigenetics, Precision for Medicine GmbH, Berlin, 12489, Germany
| | - Louis Marois
- Department of Medicine, Immunology and Allergy Service, CHU de Québec – Laval University, Quebec, G1V 4G2, Canada
| | - Yael Gernez
- Department of Pediatrics, Division of Allergy, Rheumatology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Monica Bhatia
- Columbia University Irving Medical Center, NY, NY 10032, USA
| | - Hey Jin Chong
- Division of Allergy and Immunology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, 15224, Pa, USA
| | - Jolan Walter
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, University of South Florida, St. Petersburg, 33701, FL, USA
| | - Maleewan Kitcharoensakkul
- Divisions of Rheumatology/Immunology, and Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Abigail Lang
- Department of Pediatrics, Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, 60611, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Megan A. Cooper
- Department of pediatrics, division of Rheumatology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, 63110, USA
| | - Alice Bertaina
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, 269 Campus Drive West, Stanford, CA 94305, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Wobma H, Janssen E. Expanding IPEX: Inborn Errors of Regulatory T Cells. Rheum Dis Clin North Am 2023; 49:825-840. [PMID: 37821198 DOI: 10.1016/j.rdc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Regulatory T cells (Tregs) are critical for enforcing peripheral tolerance. Monogenic "Tregopathies" affecting Treg development, stability, and/or function commonly present with polyautoimmunity, atopic disease, and infection. While autoimmune manifestations may present in early childhood, as more disorders are characterized, conditions with later onset have been identified. Treg numbers in the blood may be decreased in Tregopathies, but this is not always the case, and genetic testing should be pursued when there is high clinical suspicion. Currently, hematopoietic cell transplantation is the only curative treatment, but gene therapies are in development, and small molecule inhibitors/biologics may also be used.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erin Janssen
- Department of Pediatrics, Division of Pediatric Rheumatology, Michigan Medicine, C.S. Mott Children's Hospital, 1500 East Medical Center Drive, SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Wyatt RC, Olek S, De Franco E, Samans B, Patel K, Houghton J, Walter S, Schulze J, Bacchetta R, Hattersley AT, Flanagan SE, Johnson MB. FOXP3 TSDR Measurement Could Assist Variant Classification and Diagnosis of IPEX Syndrome. J Clin Immunol 2023; 43:662-669. [PMID: 36600150 PMCID: PMC9957900 DOI: 10.1007/s10875-022-01428-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Pathogenic FOXP3 variants cause immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a progressive autoimmune disease resulting from disruption of the regulatory T cell (Treg) compartment. Assigning pathogenicity to novel variants in FOXP3 is challenging due to the heterogeneous phenotype and variable immunological abnormalities. The number of cells with demethylation at the Treg cell-specific demethylated region (TSDR) is an independent biomarker of IPEX. We aimed to investigate if diagnosing IPEX at presentation with isolated diabetes could allow for effective monitoring of disease progression and assess whether TSDR analysis can aid FOXP3 variant classification and predict disease course. We describe a large genetically diagnosed IPEX cohort (n = 65) and 13 individuals with other monogenic autoimmunity subtypes in whom we quantified the proportion of cells with FOXP3 TSDR demethylation, normalized to the number with CD4 demethylation (%TSDR/CD4) and compare them to 29 unaffected controls. IPEX patients presenting with isolated diabetes (50/65, 77%) often later developed enteropathy (20/50, 40%) with a median interval of 23.5 weeks. %TSDR/CD4 was a good discriminator of IPEX vs. unaffected controls (ROC-AUC 0.81, median 13.6% vs. 8.5%, p < 0.0001) with higher levels of demethylation associated with more severe disease. Patients with other monogenic autoimmunity had a similar %TSDR/CD4 to controls (median 8.7%, p = 1.0). Identifying increased %TSDR/CD4 in patients with novel FOXP3 mutations presenting with isolated diabetes facilitates diagnosis and could offer an opportunity to monitor patients and begin immune modulatory treatment before onset of severe enteropathy.
Collapse
Affiliation(s)
- Rebecca C Wyatt
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sven Olek
- Ivana Türbachova Laboratory of Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | - Elisa De Franco
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Bjoern Samans
- Ivana Türbachova Laboratory of Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | - Kashyap Patel
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jayne Houghton
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Steffi Walter
- Research & Development, Epimune Diagnostics, Berlin, Germany
| | - Janika Schulze
- Research & Development, Epimune Diagnostics, Berlin, Germany
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University, Stanford, USA
| | - Andrew T Hattersley
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sarah E Flanagan
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Matthew B Johnson
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
13
|
Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
14
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Vazquez SE, Mann SA, Bodansky A, Kung AF, Quandt Z, Ferré EMN, Landegren N, Eriksson D, Bastard P, Zhang SY, Liu J, Mitchell A, Proekt I, Yu D, Mandel-Brehm C, Wang CY, Miao B, Sowa G, Zorn K, Chan AY, Tagi VM, Shimizu C, Tremoulet A, Lynch K, Wilson MR, Kämpe O, Dobbs K, Delmonte OM, Bacchetta R, Notarangelo LD, Burns JC, Casanova JL, Lionakis MS, Torgerson TR, Anderson MS, DeRisi JL. Autoantibody discovery across monogenic, acquired, and COVID-19-associated autoimmunity with scalable PhIP-seq. eLife 2022; 11:e78550. [PMID: 36300623 PMCID: PMC9711525 DOI: 10.7554/elife.78550] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-seq for autoantigen discovery, including our previous work (Vazquez et al., 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), and finally, mild and severe forms of COVID-19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as prodynorphin (PDYN) in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in two patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID-19, including the endosomal protein EEA1. Together, scaled PhIP-seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.
Collapse
Affiliation(s)
- Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- School of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Aaron Bodansky
- Department of Pediatric Critical Care Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Zoe Quandt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Elise MN Ferré
- Fungal Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Nils Landegren
- Department of Medicine, Karolinska University Hospital, Karolinska InstituteStockholmSweden
- Science for life Laboratory, Department of Medical Sciences, Uppsala UniversityUppsalaSweden
| | - Daniel Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
- Centre for Molecular Medicine, Department of Medicine, Karolinska InstitutetStockholmSweden
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San FranciscoSan FranciscoUnited States
| | - Anthea Mitchell
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Irina Proekt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - David Yu
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Chung-Yu Wang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Brenda Miao
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Gavin Sowa
- School of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Alice Y Chan
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, Bone and Marrow Transplantation, Division of Pediatric Rheumatology, University of California, San FranciscoSan FranciscoUnited States
| | - Veronica M Tagi
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Adriana Tremoulet
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Kara Lynch
- Department of Laboratory Medicine, University of California, San FranciscoSan FranciscoUnited States
- Zuckerberg San Francisco GeneralSan FranciscoUnited States
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Olle Kämpe
- Department of Medicine, Karolinska University Hospital, Karolinska InstituteStockholmSweden
- Department of Clinical Science and KG Jebsen Center for Autoimmune Disorders, University of BergenBergenNorway
- Center of Molecular Medicine, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University HospitalStockholmSweden
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Jane C Burns
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Troy R Torgerson
- Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|