1
|
Kataoka Y, Funabashi S, Doi T, Harada-Shiba M. How Can We Identify Very High-Risk Heterozygous Familial Hypercholesterolemia? J Atheroscler Thromb 2022; 29:795-807. [PMID: 35022364 PMCID: PMC9174089 DOI: 10.5551/jat.rv17063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022] Open
Abstract
Heterozygous familial hypercholesterolemia (HeFH) is a genetic disorder that elevates low-density lipoprotein cholesterol and increases the risk of premature atherosclerotic cardiovascular disease (ASCVD). However, despite their atherogenic lipid profiles, the cardiovascular risk of HeFH varies in each individual. Their variety of phenotypic features suggests the need for better risk stratification to optimize their therapeutic management. The current review summarizes three potential approaches, including (1) definition of familial hypercholesterolemia (FH)-related risk scores, (2) genetic analysis, and (3) biomarkers. The International Atherosclerosis Society has recently proposed a definition of severe FH to identify very high-risk HeFH subjects according to their clinical characteristics. Furthermore, published studies have shown the association of FH-related genetic phenotypes with ASCVD, which indicates the genetic analysis's potential to evaluate individual cardiovascular risks. Biomarkers reflecting disease activity have been considered to predict the formation of atherosclerosis and the occurrence of ASCVD in HeFH subjects. Incorporating these risk stratifications will be expected to allocate adequate intensity of lipid-lowering therapies in HeFH subjects, which ultimately improves cardiovascular outcomes.
Collapse
Affiliation(s)
- Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Osaka, Japan
| | - Sayaka Funabashi
- Department of Cardiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Takahito Doi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Osaka, Japan
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Centre, Osaka, Japan
| |
Collapse
|
2
|
Ghaleb Y, Elbitar S, Philippi A, El Khoury P, Azar Y, Andrianirina M, Loste A, Abou-Khalil Y, Nicolas G, Le Borgne M, Moulin P, Di-Filippo M, Charrière S, Farnier M, Yelnick C, Carreau V, Ferrières J, Lecerf JM, Derksen A, Bernard G, Gauthier MS, Coulombe B, Lütjohann D, Fin B, Boland A, Olaso R, Deleuze JF, Rabès JP, Boileau C, Abifadel M, Varret M. Whole Exome/Genome Sequencing Joint Analysis of a Family with Oligogenic Familial Hypercholesterolemia. Metabolites 2022; 12:metabo12030262. [PMID: 35323704 PMCID: PMC8955453 DOI: 10.3390/metabo12030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Autosomal Dominant Hypercholesterolemia (ADH) is a genetic disorder caused by pathogenic variants in LDLR, APOB, PCSK9 and APOE genes. We sought to identify new candidate genes responsible for the ADH phenotype in patients without pathogenic variants in the known ADH-causing genes by focusing on a French family with affected and non-affected members who presented a high ADH polygenic risk score (wPRS). Linkage analysis, whole exome and whole genome sequencing resulted in the identification of variants p.(Pro398Ala) in CYP7A1, p.(Val1382Phe) in LRP6 and p.(Ser202His) in LDLRAP1. A total of 6 other variants were identified in 6 of 160 unrelated ADH probands: p.(Ala13Val) and p.(Aps347Asn) in CYP7A1; p.(Tyr972Cys), p.(Thr1479Ile) and p.(Ser1612Phe) in LRP6; and p.(Ser202LeufsTer19) in LDLRAP1. All six probands presented a moderate wPRS. Serum analyses of carriers of the p.(Pro398Ala) variant in CYP7A1 showed no differences in the synthesis of bile acids compared to the serums of non-carriers. Functional studies of the four LRP6 mutants in HEK293T cells resulted in contradictory results excluding a major effect of each variant alone. Within the family, none of the heterozygous for only the LDLRAP1 p.(Ser202His) variant presented ADH. Altogether, each variant individually does not result in elevated LDL-C; however, the oligogenic combination of two or three variants reveals the ADH phenotype.
Collapse
Affiliation(s)
- Youmna Ghaleb
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Sandy Elbitar
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Anne Philippi
- Institut Cochin, Bâtiment Faculté Inserm U1016, Cnrs UMR8104, Université de Paris Faculté de Médecine, F-75014 Paris, France;
| | - Petra El Khoury
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Yara Azar
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Miangaly Andrianirina
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
| | - Alexia Loste
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Yara Abou-Khalil
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Gaël Nicolas
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
| | - Marie Le Borgne
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Philippe Moulin
- Department of Endocrinology, Nutrition and Metabolic Diseases, Hospices Civils de Lyon, Louis Pradel Cardiovascular Hospital, F-69500 Bron, France; (P.M.); (S.C.)
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
| | - Mathilde Di-Filippo
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
- Hospices Civils de Lyon, Department of Biochemistry and Molecular Biology, F-69500 Bron, France
| | - Sybil Charrière
- Department of Endocrinology, Nutrition and Metabolic Diseases, Hospices Civils de Lyon, Louis Pradel Cardiovascular Hospital, F-69500 Bron, France; (P.M.); (S.C.)
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
| | - Michel Farnier
- EA 7460 Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, F-21078 Dijon, France;
| | - Cécile Yelnick
- Département de Médecine Interne et Immunologie Clinique Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO) CHU de Lille, F-59037 Lille, France;
- U1167 Risk Factors and Molecular Determinants of Aging-Related Diseases, Inserm CHU de Lille, Lille University, F-59000 Lille, France
| | - Valérie Carreau
- Department of Endocrinology and Prevention of Cardiovascular Disease, Institute of Cardio Metabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, F-75005 Paris, France;
| | - Jean Ferrières
- Department of Cardiology, Toulouse Rangueil University Hospital, UMR 1295 INSERM, F-31400 Toulouse, France;
| | - Jean-Michel Lecerf
- Nutrition Department, Institut Pasteur de Lille, CEDEX, F-59019 Lille, France;
| | - Alexa Derksen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H3A 0G4, Canada; (A.D.); (G.B.)
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4, Canada
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H3A 0G4, Canada; (A.D.); (G.B.)
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Pediatrics, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 0G4, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Marie-Soleil Gauthier
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, F-53127 Bonn, Germany;
| | - Bertrand Fin
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
- Centre d’Etude du Polymorphisme Humain, Fondation Jean Dausset, F-75019 Paris, France
| | - Jean-Pierre Rabès
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Department of Biochemistry and Molecular Genetics, Ambroise Paré University Hospital (APHP), Université Paris-Saclay, F-92104 Boulogne-Billancourt, France
- UFR (Unite de Formation et de Recherche) Simone Veil-Santé, Versailles-Saint-Quentin-en-Yvelines University, F-78180 Montigny-le-Bretonneux, France
| | - Catherine Boileau
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- Genetic Department, AP-HP, Hôpital Bichat, F-75018 Paris, France
| | - Marianne Abifadel
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Mathilde Varret
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- Correspondence: ; Tel.: +33-1402-57521
| |
Collapse
|
3
|
Mulder JW, Kranenburg LW, Treling WJ, Hovingh GK, Rutten JH, Busschbach JJ, Roeters van Lennep JE. Quality of life and coping in Dutch homozygous familial hypercholesterolemia patients: A qualitative study. Atherosclerosis 2022; 348:75-81. [DOI: 10.1016/j.atherosclerosis.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
|
4
|
Hu H, Shu T, Ma J, Chen R, Wang J, Wang S, Lin S, Chen X. Two Novel Disease-Causing Mutations in the LDLR of Familial Hypercholesterolemia. Front Genet 2022; 12:762587. [PMID: 34970301 PMCID: PMC8712701 DOI: 10.3389/fgene.2021.762587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022] Open
Abstract
As an autosomal dominant disorder, familial hypercholesterolemia (FH) is mainly caused by pathogenic mutations in lipid metabolism-related genes. The aim of this study is to investigate the genetic mutations in FH patients and verify their pathogenicity. First of all, a pedigree investigation was conducted in one family diagnosed with FH using the Dutch Lipid Clinic Network criteria. The high-throughput sequencing was performed on three family members to explore genetic mutations. The effects of low-density lipoprotein receptor (LDLR) variants on their expression levels and activity were further validated by silico analysis and functional studies. The results revealed that LDLC levels of the proband and his daughter were abnormally elevated. The whole-exome sequencing and Sanger sequencing were used to confirm that there were two LDLR missense mutations (LDLR c.226 G > C, c.1003 G > T) in this family. Bioinformatic analysis (Mutationtaster) indicated that these two mutations might be disease-causing variants. In vitro experiments suggested that LDLR c.226 G > C and c.1003 G > T could attenuate the uptake of Dil-LDL by LDLR. In conclusion, the LDLR c.226 G > C and c.1003 G > T variants might be pathogenic for FH by causing uptake dysfunction of the LDLR.
Collapse
Affiliation(s)
- Haochang Hu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Tian Shu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Jun Ma
- Department of Medical Ultrasonics, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruoyu Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Jian Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | | | - Shaoyi Lin
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
5
|
Doi T, Hori M, Harada-Shiba M, Kataoka Y, Onozuka D, Nishimura K, Nishikawa R, Tsuda K, Ogura M, Son C, Miyamoto Y, Noguchi T, Shimokawa H, Yasuda S. Patients With LDLR and PCSK9 Gene Variants Experienced Higher Incidence of Cardiovascular Outcomes in Heterozygous Familial Hypercholesterolemia. J Am Heart Assoc 2021; 10:e018263. [PMID: 33533259 PMCID: PMC7955325 DOI: 10.1161/jaha.120.018263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Patients with familial hypercholesterolemia who harbored both low‐density lipoprotein receptor (LDLR) and PCSK9 (proprotein convertase subtilisin/kexin type 9) gene variants exhibit severe phenotype associated with substantially high levels of low‐density lipoprotein cholesterol. In this study, we investigated the cardiovascular outcomes in patients with both LDLR and PCSK9 gene variants. Methods and Results A total of 232 unrelated patients with LDLR and/or PCSK9 gene variants were stratified as follows: patients with LDLR and PCSK9 (LDLR/PCSK9) gene variants, patients with LDLR gene variant, and patients with PCSK9 gene variant. Clinical demographics and the occurrence of primary outcome (nonfatal myocardial infarction) were compared. The observation period of primary outcome started at the time of birth and ended at the time of the first cardiac event or the last visit. Patients with LDLR/PCSK9 gene variants were identified in 6% of study patients. They had higher levels of low‐density lipoprotein cholesterol (P=0.04) than those with LDLR gene variants. On multivariate Cox regression model, they experienced a higher incidence of nonfatal myocardial infarction (hazard ratio, 4.62; 95% CI, 1.66–11.0; P=0.003 versus patients with LDLR gene variant). Of note, risk for nonfatal myocardial infarction was greatest in male patients with LDLR/PCSK9 gene variants compared with those with LDLR gene variant (86% versus 24%; P<0.001). Conclusions Patients with LDLR/PCSK9 gene variants were high‐risk genotype associated with atherogenic lipid profiles and worse cardiovascular outcomes. These findings underscore the importance of genetic testing to identify patients with LDLR/PCSK9 gene variants, who require more stringent antiatherosclerotic management.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan.,Department of Advanced Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital Herlev Denmark
| | - Mika Hori
- Department of Molecular Innovation in Lipidology National Cerebral and Cardiovascular Center Suita Osaka Japan.,Department of Endocrinology Research Institute of Environmental Medicine, Nagoya University Nagoya Aichi Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Yu Kataoka
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Daisuke Onozuka
- Department of Statistics and Data Analysis Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Kunihiro Nishimura
- Department of Statistics and Data Analysis Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Ryo Nishikawa
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Kosuke Tsuda
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Cheol Son
- Division of Endocrinology and Metabolism National Cerebral and Cardiovascular Center Suita Osaka Japan.,Omics Research Center National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Yoshihiro Miyamoto
- Preventive Medicine and Epidemiologic Informatics, Center for Cerebral and Cardiovascular Disease Information National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Hiroaki Shimokawa
- Department of Medicine International University of Health and Welfare Graduate School of Medicine Narita Chiba Japan.,Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan.,Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| |
Collapse
|
6
|
Kamar A, Khalil A, Nemer G. The Digenic Causality in Familial Hypercholesterolemia: Revising the Genotype-Phenotype Correlations of the Disease. Front Genet 2021; 11:572045. [PMID: 33519890 PMCID: PMC7844333 DOI: 10.3389/fgene.2020.572045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Genetically inherited defects in lipoprotein metabolism affect more than 10 million individuals around the globe with preponderance in some parts where consanguinity played a major role in establishing founder mutations. Mutations in four genes have been so far linked to the dominant and recessive form of the disease. Those players encode major proteins implicated in cholesterol regulation, namely, the low-density lipoprotein receptor (LDLR) and its associate protein 1 (LDLRAP1), the proprotein convertase substilin/kexin type 9 (PCSK9), and the apolipoprotein B (APOB). Single mutations or compound mutations in one of these genes are enough to account for a spectrum of mild to severe phenotypes. However, recently several reports have identified digenic mutations in familial cases that do not necessarily reflect a much severe phenotype. Yet, data in the literature supporting this notion are still lacking. Herein, we review all the reported cases of digenic mutations focusing on the biological impact of gene dosage and the potential protective effects of single-nucleotide polymorphisms linked to hypolipidemia. We also highlight the difficulty of establishing phenotype-genotype correlations in digenic familial hypercholesterolemia cases due to the complexity and heterogeneity of the phenotypes and the still faulty in silico pathogenicity scoring system. We finally emphasize the importance of having a whole exome/genome sequencing approach for all familial cases of familial hyperlipidemia to better understand the genetic and clinical course of the disease.
Collapse
Affiliation(s)
- Amina Kamar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Athar Khalil
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
7
|
Juhász L, Balogh I, Madar L, Kovács B, Harangi M. A Rare Double Heterozygous Mutation in Low-Density Lipoprotein Receptor and Apolipoprotein B-100 Genes in a Severely Affected Familial Hypercholesterolaemia Patient. Cureus 2020; 12:e12184. [PMID: 33489595 PMCID: PMC7814514 DOI: 10.7759/cureus.12184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2020] [Indexed: 01/08/2023] Open
Abstract
Familial hypercholesterolaemia (FH) is characterized by high plasma low-density lipoprotein cholesterol (LDL-C) levels and premature cardiovascular disease risk. Mutations in the genes that encode proteins involved in LDL uptake and catabolism, including LDL-receptor (LDLR) and apolipoprotein-B (APOB), are known to cause FH. We present the case of a severely affected FH proband with two mutations in two different causing genes and characterize her first-degree blood relatives. The proband was a 54-year-old woman with a severe FH phenotype with treated LDL-C of 8.3 mmol/L, total cholesterol (TC) level of 11.6 mmol/L, peripheral artery disease, early myocardial infarction, aortic stenosis, and carotid artery disease. Exons of the LDLR and APOB genes were amplified by polymerase chain reactions (PCR). PCR products were examined by pyrosequencing and proven by bidirectional DNA sequencing. The proband was heterozygous for both the LDLR c.420G>C (p.Glu140Asp) mutation known to be pathogenic and a rare APOB c.10708C>T (p.His3570Tyr) mutation with unproven pathogenicity. Cascade testing has been performed in her 15 first-degree blood relatives. Her daughter carries only the LDLR c.420 G>C mutation with a TC of 8.4 mmol/L. Her two sisters carry only the APOB c.10708C>T with a TC of 5.7 and 6.2 mmol/L. This case provides evidence that the rare APOB c.10708C>T mutation alone is not pathogenic, but has a synergic effect on LDLR mutation. The finding is important for understanding the genotype-phenotype correlation and highlights the need to consider the presence of additional mutations in FH families where relatives have varying phenotypes.
Collapse
Affiliation(s)
- Lilla Juhász
- Division of Metabolism, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, HUN
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, University of Debrecen Faculty of Medicine, Debrecen, HUN
| | - László Madar
- Division of Clinical Genetics, Department of Laboratory Medicine, University of Debrecen Faculty of Medicine, Debrecen, HUN
| | - Beáta Kovács
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, HUN
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, HUN
| |
Collapse
|
8
|
Pamplona-Cunha H, Medeiros MF, Sincero TCM, Back IDC, Silva ELD. Compound Heterozygous Familial Hypercholesterolemia Caused by LDLR Variants. Arq Bras Cardiol 2020; 115:587-589. [PMID: 33027386 PMCID: PMC9363081 DOI: 10.36660/abc.20190582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 11/18/2022] Open
Abstract
A hipercolesterolemia familiar (HF) é uma doença genética causada por um defeito primário no gene que codifica o receptor da LDL. Mutações diferentes no mesmo gene caracterizam um heterozigoto composto, mas pouco se sabe sobre o fenótipo dos portadores. Portanto, neste estudo, descrevemos o rastreamento em cascata de uma família brasileira com essa característica. O caso-índice é um homem de 36 anos, com colesterol total (CT) de 360 mg/dL (9,3 mmol/L) e concentração de LDL-c de 259 mg/dL (6,7 mmol/L), além de xantomas de tendão de Aquiles, obesidade e pré-hipertensão. A genotipagem identificou as mutações 661G>A, 670G>A e 682G>A, no exon 4, e 919G>A, no exon 6. A mesma mutação no exon 4 foi observada no filho do caso-índice (7 anos), que também tem hipercolesterolemia e xantomas tendinosos, ao passo que a filha do caso-índice (9 anos) apresenta mutação no exon 6 e hiperlipidemia, sem xantomas. Em suma, este relato permite uma melhor compreensão acerca da base molecular da HF no Brasil, um país multirracial, onde é esperada uma população heterogênea.
Collapse
|
9
|
Bertolini S, Calandra S, Arca M, Averna M, Catapano AL, Tarugi P, Bartuli A, Bucci M, Buonuomo PS, Calabrò P, Casula M, Cefalù AB, Cicero A, D'Addato S, D'Erasmo L, Fasano T, Iannuzzo G, Ibba A, Negri EA, Pasta A, Pavanello C, Pisciotta L, Rabacchi C, Ripoli C, Sampietro T, Sbrana F, Sileo F, Suppressa P, Trenti C, Zenti MG. Homozygous familial hypercholesterolemia in Italy: Clinical and molecular features. Atherosclerosis 2020; 312:72-78. [DOI: 10.1016/j.atherosclerosis.2020.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
|
10
|
Raal FJ, Bahassi EM, Stevens B, Turner TA, Stein EA. Cascade Screening for Familial Hypercholesterolemia in South Africa: The Wits FIND-FH Program. Arterioscler Thromb Vasc Biol 2020; 40:2747-2755. [PMID: 32878475 DOI: 10.1161/atvbaha.120.315040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Due to gene founder effects, familial hypercholesterolemia (FH) has a prevalence of ≈1:80 in populations of Afrikaner ancestry and is a major contributor to premature atherosclerotic cardiovascular disease in South Africans of Jewish and Indian descent. No systematic program exists to identify these families. Furthermore, information regarding FH prevalence in Black Africans is sparse. The Wits FIND-FH program was initiated in late 2016 to address these issues. Approach and Results: Based on index subjects with definite or probable FH, first-degree relatives were contacted, informed consent obtained, and targeted medical history, physical examination, and blood samples collected. In patients with likely FH using the Simon Broome criteria, DNA analysis for LDLR (low-density lipoprotein receptor), APOB (apolipoprotein B), PCSK9 (proprotein convertase subtilisin/kexin type 9), and LDLRAP1 (LDLR adaptor protein 1) variants was analyzed by next-generation sequencing. Of the initial 700 subjects screened of whom 295 (42%) were index cases, 479 (68.4%) were clinically diagnosed with probable or definite FH. Genetic analysis confirmed 285 of 479 (59.5%) as having variants consistent with FH. Three subjects met the clinical diagnosis for homozygous FH, but DNA analysis revealed a further 34 patients, including 4 Black African subjects, with ≥2 FH-causing variants. CONCLUSIONS Using phenotype cascade screening, the Wits FIND-FH program has screened an average of 30 subjects monthly of whom 68% had a clinical diagnosis of FH with ≈60% genetically confirmed. The program is identifying a small but growing number of Black South Africans with FH. Interestingly, 37 subjects (7.7%) who underwent DNA testing were found to have ≥2 FH-causing variants.
Collapse
Affiliation(s)
- Frederick J Raal
- Department of Medicine, Stein Center for FH, Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R., B.S.)
| | - El Mustapha Bahassi
- Medpace and Medpace Reference Laboratories, Cincinnati, OH (E.M.B., T.A.T., E.A.S.)
| | - Belinda Stevens
- Department of Medicine, Stein Center for FH, Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R., B.S.)
| | - Traci A Turner
- Medpace and Medpace Reference Laboratories, Cincinnati, OH (E.M.B., T.A.T., E.A.S.)
| | - Evan A Stein
- Medpace and Medpace Reference Laboratories, Cincinnati, OH (E.M.B., T.A.T., E.A.S.)
| |
Collapse
|
11
|
Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, Wijngaard PLJ, Curcio D, Jaros MJ, Leiter LA, Kastelein JJP. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N Engl J Med 2020; 382:1520-1530. [PMID: 32197277 DOI: 10.1056/nejmoa1913805] [Citation(s) in RCA: 439] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Familial hypercholesterolemia is characterized by an elevated level of low-density lipoprotein (LDL) cholesterol and an increased risk of premature atherosclerotic cardiovascular disease. Monoclonal antibodies directed against proprotein convertase subtilisin-kexin type 9 (PCSK9) have been shown to reduce LDL cholesterol levels by more than 50% but require administration every 2 to 4 weeks. In a phase 2 trial, a twice-yearly injection of inclisiran, a small interfering RNA, was shown to inhibit hepatic synthesis of PCSK9 in adults with heterozygous familial hypercholesterolemia. METHODS In this phase 3, double-blind trial, we randomly assigned, in a 1:1 ratio, 482 adults who had heterozygous familial hypercholesterolemia to receive subcutaneous injections of inclisiran sodium (at a dose of 300 mg) or matching placebo on days 1, 90, 270, and 450. The two primary end points were the percent change from baseline in the LDL cholesterol level on day 510 and the time-adjusted percent change from baseline in the LDL cholesterol level between day 90 and day 540. RESULTS The median age of the patients was 56 years, and 47% were men; the mean baseline level of LDL cholesterol was 153 mg per deciliter. At day 510, the percent change in the LDL cholesterol level was a reduction of 39.7% (95% confidence interval [CI], -43.7 to -35.7) in the inclisiran group and an increase of 8.2% (95% CI, 4.3 to 12.2) in the placebo group, for a between-group difference of -47.9 percentage points (95% CI, -53.5 to -42.3; P<0.001). The time-averaged percent change in the LDL cholesterol level between day 90 and day 540 was a reduction of 38.1% (95% CI, -41.1 to -35.1) in the inclisiran group and an increase of 6.2% (95% CI, 3.3 to 9.2) in the placebo group, for a between-group difference of -44.3 percentage points (95% CI, -48.5 to -40.1; P<0.001). There were robust reductions in LDL cholesterol levels in all genotypes of familial hypercholesterolemia. Adverse events and serious adverse events were similar in the two groups. CONCLUSIONS Among adults with heterozygous familial hypercholesterolemia, those who received inclisiran had significantly lower levels of LDL cholesterol than those who received placebo, with an infrequent dosing regimen and an acceptable safety profile. (Funded by the Medicines Company; ORION-9 ClinicalTrials.gov number, NCT03397121.).
Collapse
Affiliation(s)
- Frederick J Raal
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - David Kallend
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - Kausik K Ray
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - Traci Turner
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - Wolfgang Koenig
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - R Scott Wright
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - Peter L J Wijngaard
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - Danielle Curcio
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - Mark J Jaros
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - Lawrence A Leiter
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| | - John J P Kastelein
- From the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (F.J.R.); the Medicines Company, Zurich, Switzerland (D.K.); the Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London (K.K.R.); Medpace Reference Laboratories, Cincinnati (T.T.); Deutsches Herzzentrum München, Technische Universität München, and German Center for Cardiovascular Research, Munich Heart Alliance, Munich (W.K.), and the Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.) - all in Germany; the Division of Preventive Cardiology and the Department of Cardiology, Mayo Clinic, Rochester, MN (R.S.W.); the Medicines Company, Parsippany, NJ (P.L.J.W., D.C.); Summit Analytical, Denver (M.J.J.); Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.); and the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.)
| |
Collapse
|
12
|
Perrone S, Perrone G, Brunelli R, Di Giacomo S, Galoppi P, Flammini G, Morozzi C, Stefanutti C. A complicated pregnancy in homozygous familial hypercholesterolaemia treated with lipoprotein apheresis: A case report. ATHEROSCLEROSIS SUPP 2019; 40:113-116. [PMID: 31818440 DOI: 10.1016/j.atherosclerosissup.2019.08.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS During pregnancy total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels increase significantly and lipoprotein apheresis (LA) is considered the most effective therapy in homozygous familial hypercholesterolaemia (HoFH) for modulating lipid and lipoprotein levels and reducing maternal and foetal complications. CLINICAL CASE A primigravida 28 years old Caucasian female patient, previously diagnosed as to be HoFH, was admitted at our outpatient service at the beginning of pregnancy. METHODS The patient was continuously submitted to LA every two weeks without foetal complication. During pregnancy two methods have been utilised: selective apheresis, and later plasma exchange. At 33 weeks gestational age the patient developed progressively hypertension, associated to LDL-C levels increase. Weekly LA was favoured. RESULTS At 34 weeks +5 days patient suddenly experienced acute chest pain and abnormal electrocardiogram heart tracing and cardiac enzymes increase. An emergency caesarean section was performed without complications and the foetus was healthy. The patient was immediately transferred to Coronary Intensive Care Unit, where she was diagnosed non-ST elevation myocardial infarction (NSTEMI). Notwithstanding the patient improved in few days and was quickly discharged in fair clinical condition. CONCLUSIONS LA is a safe and effective tool in HoFH subjects even in pregnancy. Evidence based guidelines for the management of these patients during pregnancy are still lacking.
Collapse
Affiliation(s)
- Seila Perrone
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Giuseppina Perrone
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy.
| | - Roberto Brunelli
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Serafina Di Giacomo
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Immunohaematology and Transfusion Medicine, Department of Molecular Medicine, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Paola Galoppi
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Guendalina Flammini
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Claudia Morozzi
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Immunohaematology and Transfusion Medicine, Department of Molecular Medicine, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Claudia Stefanutti
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Immunohaematology and Transfusion Medicine, Department of Molecular Medicine, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| |
Collapse
|
13
|
Cao YX, Zhou BY, Sun D, Li S, Guo YL, Zhu CG, Wu NQ, Gao Y, Xu RX, Liu G, Dong Q, Li JJ. Differences in phenotype, genotype and cardiovascular events between patients with probable and definite heterozygous familial hypercholesterolemia. Per Med 2019; 16:467-478. [PMID: 31691639 DOI: 10.2217/pme-2018-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigated the potential differences between probable and definite heterozygous familial hypercholesterolemia (HeFH) patients diagnosed by Dutch Lipid Clinic Network criteria. Methods: Clinical characteristics, lipid profile, severity of coronary artery stenosis and gene mutations were compared. Kaplan-Meier curve was performed to evaluate the cardiovascular events. Results: Overall, 325 participants were included and divided into two groups: probable (n = 233) and definite HeFH (n = 92). Definite HeFH patients had higher low-density lipoprotein cholesterol (LDL-C), oxidized-LDL and proprotein convertase subtilisin/kexin 9 levels, and higher prevalence of tendon xanthomas. The incidence of genetic mutations was statistically higher in definite HeFH than probable HeFH patients. The coronary stenosis calculated by Gensini score was statistically severer in definite HeFH patients. The best LDL-C threshold for predicting mutations was 5.14 mmol/l. Definite HeFH had lower event-free survival rates. Conclusion: Definite HeFH patients had higher severity of phenotype and genotype, and higher risk of cardiovascular events.
Collapse
Affiliation(s)
- Ye-Xuan Cao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Bing-Yang Zhou
- Department of Cardiology, Tianjin Chest Hospital, Tianjin Institute of Cardiovascular Diseases, Tianjin 300222, China
| | - Di Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Geng Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| |
Collapse
|
14
|
Sturm AC, Knowles JW, Gidding SS, Ahmad ZS, Ahmed CD, Ballantyne CM, Baum SJ, Bourbon M, Carrié A, Cuchel M, de Ferranti SD, Defesche JC, Freiberger T, Hershberger RE, Hovingh GK, Karayan L, Kastelein JJP, Kindt I, Lane SR, Leigh SE, Linton MF, Mata P, Neal WA, Nordestgaard BG, Santos RD, Harada-Shiba M, Sijbrands EJ, Stitziel NO, Yamashita S, Wilemon KA, Ledbetter DH, Rader DJ. Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. J Am Coll Cardiol 2019; 72:662-680. [PMID: 30071997 DOI: 10.1016/j.jacc.2018.05.044] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 01/01/2023]
Abstract
Although awareness of familial hypercholesterolemia (FH) is increasing, this common, potentially fatal, treatable condition remains underdiagnosed. Despite FH being a genetic disorder, genetic testing is rarely used. The Familial Hypercholesterolemia Foundation convened an international expert panel to assess the utility of FH genetic testing. The rationale includes the following: 1) facilitation of definitive diagnosis; 2) pathogenic variants indicate higher cardiovascular risk, which indicates the potential need for more aggressive lipid lowering; 3) increase in initiation of and adherence to therapy; and 4) cascade testing of at-risk relatives. The Expert Consensus Panel recommends that FH genetic testing become the standard of care for patients with definite or probable FH, as well as for their at-risk relatives. Testing should include the genes encoding the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9); other genes may also need to be considered for analysis based on patient phenotype. Expected outcomes include greater diagnoses, more effective cascade testing, initiation of therapies at earlier ages, and more accurate risk stratification.
Collapse
Affiliation(s)
- Amy C Sturm
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University, Stanford California; The Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Samuel S Gidding
- Nemours Cardiac Center, A.I. DuPont Hospital for Children, Wilmington, Delaware
| | - Zahid S Ahmad
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Seth J Baum
- The Familial Hypercholesterolemia Foundation, Pasadena, California; Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Mafalda Bourbon
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Alain Carrié
- Sorbonne Université and Centre de Génétique Moléculaire et Chromosomique, unité de Génétique de l'Obésitéet des dyslipidémies, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah D de Ferranti
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joep C Defesche
- Department of Clinical Genetics, Academic Medical Center at the University of Amsterdam, Amsterdam, the Netherlands
| | - Tomas Freiberger
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Ray E Hershberger
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Lala Karayan
- The Familial Hypercholesterolemia Foundation, Pasadena, California
| | | | - Iris Kindt
- The Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Stacey R Lane
- The Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Sarah E Leigh
- Bioinformatics, Genomics England, Queen Mary University of London, London, United Kingdom
| | - MacRae F Linton
- Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - William A Neal
- The Familial Hypercholesterolemia Foundation, Pasadena, California; Department of Pediatrics (Cardiology), West Virginia University, Morgantown, West Virginia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor) University of São Paulo Medical School Hospital and Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Eric J Sijbrands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nathan O Stitziel
- Department of Medicine, Division of Cardiology, Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Rinku General Medical Center, Osaka, Japan; Departments of Community Medicine and Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | - Daniel J Rader
- The Familial Hypercholesterolemia Foundation, Pasadena, California; Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
15
|
Evaluation of the role of STAP1 in Familial Hypercholesterolemia. Sci Rep 2019; 9:11995. [PMID: 31427613 PMCID: PMC6700100 DOI: 10.1038/s41598-019-48402-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/02/2019] [Indexed: 02/02/2023] Open
Abstract
Familial hypercholesterolemia (FH) is characterised by elevated serum levels of low-density lipoprotein cholesterol (LDL-C) and a substantial risk for cardiovascular disease. The autosomal-dominant FH is mostly caused by mutations in LDLR (low density lipoprotein receptor), APOB (apolipoprotein B), and PCSK9 (proprotein convertase subtilisin/kexin). Recently, STAP1 has been suggested as a fourth causative gene. We analyzed STAP1 in 75 hypercholesterolemic patients from Berlin, Germany, who are negative for mutations in canonical FH genes. In 10 patients with negative family history, we additionally screened for disease causing variants in LDLRAP1 (low density lipoprotein receptor adaptor protein 1), associated with autosomal-recessive hypercholesterolemia. We identified one STAP1 variant predicted to be disease causing. To evaluate association of serum lipid levels and STAP1 carrier status, we analyzed 20 individuals from a population based cohort, the Cooperative Health Research in South Tyrol (CHRIS) study, carrying rare STAP1 variants. Out of the same cohort we randomly selected 100 non-carriers as control. In the Berlin FH cohort STAP1 variants were rare. In the CHRIS cohort, we obtained no statistically significant differences between carriers and non-carriers of STAP1 variants with respect to lipid traits. Until such an association has been verified in more individuals with genetic variants in STAP1, we cannot estimate whether STAP1 generally is a causative gene for FH.
Collapse
|
16
|
Luirink IK, Braamskamp MJ, Wiegman A, Hartgers ML, Sjouke B, Defesche JC, Hovingh GK. The clinical and molecular diversity of homozygous familial hypercholesterolemia in children: Results from the GeneTics of clinical homozygous hypercholesterolemia (GoTCHA) study. J Clin Lipidol 2019; 13:272-278. [DOI: 10.1016/j.jacl.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
17
|
Pamplona-Cunha H, Campos E, de Oliveira MV, Back IC, Sincero TC, da Silva EL. Genetic polymorphisms and variants in the LDL receptor associated with familial hypercholesterolemia: cascade screening and identification of the variants 666C>A, 862G>A, 901G>A, and 919G>A of a Brazilian family. Clin Chem Lab Med 2018; 57:e23-e26. [DOI: 10.1515/cclm-2018-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/17/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Heloisa Pamplona-Cunha
- Post-Graduate Program in Pharmacy, Federal University of Santa Catarina, Centro de Ciências da Saúde , Departamento de Análises Clínicas , Florianópolis, Santa Catarina , Brazil
| | - Elizandra Campos
- Graduate Course in Pharmacy, Federal University of Santa Catarina, Centro de Ciências da Saúde, Departamento de Análises Clínicas , Florianópolis, Santa Catarina , Brazil
| | - Marina V. de Oliveira
- Graduate Course in Pharmacy, Federal University of Santa Catarina, Centro de Ciências da Saúde, Departamento de Análises Clínicas , Florianópolis, Santa Catarina , Brazil
| | - Isabela C. Back
- Post-Graduate Program in Collective Health, Federal University of Santa Catarina, Centro de Ciências da Saúde, Departamento de Pediatria , Florianópolis, Santa Catarina , Brazil
| | - Thaís C.M. Sincero
- Post-Graduate Program in Pharmacy, Federal University of Santa Catarina, Centro de Ciências da Saúde , Departamento de Análises Clínicas , Florianópolis, Santa Catarina , Brazil
| | - Edson L. da Silva
- Post-Graduate Program in Pharmacy, Federal University of Santa Catarina, Centro de Ciências da Saúde , Departamento de Análises Clínicas , Bloco J/K. Rua Delfino Conti, s/n – Campus Universitário – Trindade, 88.040-370 , Florianópolis, Santa Catarina , Brazil
| |
Collapse
|
18
|
Sun D, Zhou BY, Li S, Sun NL, Hua Q, Wu SL, Cao YS, Guo YL, Wu NQ, Zhu CG, Gao Y, Cui CJ, Liu G, Li JJ. Genetic basis of index patients with familial hypercholesterolemia in Chinese population: mutation spectrum and genotype-phenotype correlation. Lipids Health Dis 2018; 17:252. [PMID: 30400955 PMCID: PMC6220500 DOI: 10.1186/s12944-018-0900-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Background Although there have been many reports in the genetics of familial hypercholesterolemia (FH) worldwide, studies in regard of Chinese population are lacking. In this multi-center study, we aim to characterize the genetic spectrum of FH in Chinese population, and examine the genotype-phenotype correlations in detail. Methods A total of 285 unrelated index cases from China with clinical FH were consecutively recruited. Next-generation sequencing and bioinformatics tools were used for mutation detection of LDLR, APOB and PCSK9 genes and genetic analysis. Results Overall, the detection rate is 51.9% (148/285) in the unrelated index cases with a total of 119 risk variants identified including 84 in the LDLR gene, 31 in APOB and 4 in PCSK9 gene. Twenty-eight variants were found in more than one individual and LDLR c.1448G > A (p. W483X) was most frequent one detected in 9 patients. Besides, we found 8 (7 LDLR and 1 APOB) novel variants referred as “pathogenic (or likely pathogenic) variants” according to in silico analysis. In the phenotype analysis, patients with LDLR null mutation had significantly higher LDL cholesterol level than LDLR defective and APOB/PCSK9 mutation carriers and those with no mutations (p < 0.001). Furthermore, 13 double heterozygotes, 16 compound heterozygotes and 5 true LDLR homozygotes were identified and the true LDLR homozygotes had the most severe phenotypes. Conclusions The present study confirmed the heterogeneity of FH genetics in the largest Chinese cohort, which could replenish the knowledge of mutation spectrum and contribute to early screening and disease management.
Collapse
Affiliation(s)
- Di Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bing-Yang Zhou
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Ning-Ling Sun
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China
| | - Qi Hua
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, 510080, China
| | - Yun-Shan Cao
- Department of Cardiology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Geng Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
19
|
New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia. Sci Rep 2018; 8:1943. [PMID: 29386597 PMCID: PMC5792649 DOI: 10.1038/s41598-018-20281-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 01/25/2023] Open
Abstract
Autosomal dominant hypercholesterolemia (ADH) is characterized by elevated LDL-C levels leading to coronary heart disease. Four genes are implicated in ADH: LDLR, APOB, PCSK9 and APOE. Our aim was to identify new mutations in known genes, or in new genes implicated in ADH. Thirteen French families with ADH were recruited and studied by exome sequencing after exclusion, in their probands, of mutations in the LDLR, PCSK9 and APOE genes and fragments of exons 26 and 29 of APOB gene. We identified in one family a p.Arg50Gln mutation in the APOB gene, which occurs in a region not usually associated with ADH. Segregation and in-silico analysis suggested that this mutation is disease causing in the family. We identified in another family with the p.Ala3396Thr mutation of APOB, one patient with a severe phenotype carrying also a mutation in PCSK9: p.Arg96Cys. This is the first compound heterozygote reported with a mutation in APOB and PCSK9. Functional studies proved that the p.Arg96Cys mutation leads to increased LDL receptor degradation. This work shows that Next-Generation Sequencing (exome, genome or targeted sequencing) are powerful tools to find new mutations and identify compound heterozygotes, which will lead to better diagnosis and treatment of ADH.
Collapse
|
20
|
van Schie MC, Jainandunsing S, van Lennep JER. Monogenetic disorders of the cholesterol metabolism and premature cardiovascular disease. Eur J Pharmacol 2017; 816:146-153. [DOI: 10.1016/j.ejphar.2017.09.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
|
21
|
Ajufo E, Cuchel M. Recognition, diagnosis and treatment of homozygous familial hypercholesterolemia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1394841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ezim Ajufo
- Departments of Medicine, Division of Translational Medicine & Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Cuchel
- Departments of Medicine, Division of Translational Medicine & Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Kohli M, Patel K, MacMahon Z, Ramachandran R, Crook MA, Reynolds TM, Wierzbicki AS. Pro-protein subtilisin kexin-9 (PCSK9) inhibition in practice: lipid clinic experience in 2 contrasting UK centres. Int J Clin Pract 2017; 71. [PMID: 28994502 DOI: 10.1111/ijcp.13032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prescribing criteria have been suggested for proprotein convertase subtilisin kexin-9 (PCSK-9) inhibitors but few studies exist of their real-world effectiveness. METHODS This study audited PCSK-9 inhibitor therapy in 105 consecutive patients from two hospital centres-a university hospital (UH; n = 70) and a district general hospital (DGH; n = 35). Baseline characteristics including cardiovascular disease risk factors, NICE qualification criteria, efficacy and side effects were assessed. RESULTS Baseline LDL-C levels were similar in both centres. NICE criteria were met for 2.05 items in the whole study (UH patients 1.7 and DGH patients 2.7). District general hospital patients were more likely to have familial hypercholesterolaemia (89 vs 69%; P = .02); intolerance to statins (94 vs 52%; P < .001) and polyvascular disease (42% vs 17%; P = .005). Prescriptions (evolocumab 73%; alirocumab 23%) were collected by 76% of patients (UH 64% vs DGH 100%). Therapy was discontinued by time of review in 15% of patients (UH 7% vs DGH 25%; P = .02). In adherent patients PCSK-9 inhibitor treatment reduced TC by 28% (2.24 ± 2.39 mmol/L; P < .001) and LDL-C by 49% (2.10 ± 1.33 mmol/L; P < .001). A LDL-C < 2.5 mmol/L was achieved in 30% of patients and <2.0 mmol/L in 20%. PCSK-9 therapy was effective and safe in patients with increased lipoprotein (a), diagnosed muscle diseases (including myopathies and muscular dystrophy) or poststatin rhabdomyolysis, nephrotic syndrome or HIV disease. Mixed results were obtained in patients with significant mixed hyperlipidaemia. CONCLUSIONS This study suggests that PCSK-9 inhibitors are effective but that prescriptions should not be changed to long-term delivery until patients have been reviewed and shown to be adherent.
Collapse
Affiliation(s)
- Monika Kohli
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| | - Kinjal Patel
- Department of Metabolic Medicine/Chemical Pathology, Queen's Hospital, Burton-on-Trent, UK
| | - Zofia MacMahon
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| | - Radha Ramachandran
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| | - Martin A Crook
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| | - Timothy M Reynolds
- Department of Metabolic Medicine/Chemical Pathology, Queen's Hospital, Burton-on-Trent, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| |
Collapse
|
23
|
Calandra S, Tarugi P, Bertolini S. Impact of rare variants in autosomal dominant hypercholesterolemia causing genes. Curr Opin Lipidol 2017; 28:267-272. [PMID: 28323660 DOI: 10.1097/mol.0000000000000414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The systematic analysis of the major candidate genes in autosomal dominant hypercholesterolemia (ADH) and the use of next-generation sequencing (NGS) technology have made possible the discovery of several rare gene variants whose pathogenic effect in most cases remains poorly defined. RECENT FINDINGS One major advance in the field has been the adoption of a set of international guidelines for the assignment of pathogenicity to low-density lipoprotein receptor (LDLR) gene variants based on the use of softwares, complemented with data available from literature and public databases. The clinical impact of several novel rare variants in LDLR, APOB, PCSK9, APOE genes have been reported in large studies describing patients with ADH found to be homozygotes/compound heterozygotes, double heterozygotes, or simple heterozygotes. In-vitro functional studies have been conducted to clarify the effect of some rare ApoB variants on LDL binding to LDLR and the impact of a rare ApoE variant on the uptake of VLDL and LDL by hepatocytes. SUMMARY The update of the ADH gene variants database and the classification of variants in categories of pathogenicity is a major advance in the understanding the pathophysiology of ADH and in the management of this disorder. The studies of molecularly characterized patients with ADH have emphasized the impact of a specific variant and the variable clinical expression of different genotypes. The functional studies of some variants have increased our understanding of the molecular bases of some forms of ADH.
Collapse
Affiliation(s)
- Sebastiano Calandra
- aDepartment of Biomedical, Metabolic and Neural Sciences bDepartment of Life Sciences, University of Modena and Reggio Emilia, Modena cDepartment of Internal Medicine, University of Genova, Genova, Italy
| | | | | |
Collapse
|
24
|
Managing the challenging homozygous familial hypercholesterolemia patient: Academic insights and practical approaches for a severe dyslipidemia, a National Lipid Association Masters Summit. J Clin Lipidol 2017; 11:602-616. [DOI: 10.1016/j.jacl.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
|