1
|
Wu Y, Su YA, Zhu L, Li J, Si T. Advances in functional MRI research in bipolar disorder: from the perspective of mood states. Gen Psychiatr 2024; 37:e101398. [PMID: 38292862 PMCID: PMC10826570 DOI: 10.1136/gpsych-2023-101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bipolar disorder is characterised by recurrent and alternating episodes of mania/hypomania and depression. Current breakthroughs in functional MRI techniques have uncovered the functional neuroanatomy of bipolar disorder. However, the pathophysiology underlying mood instability, mood switching and the development of extreme mood states is less well understood. This review presents a comprehensive overview of current evidence from functional MRI studies from the perspective of mood states. We first summarise the disrupted brain activation patterns and functional connectivity that have been reported in bipolar disorder, irrespective of the mood state. We next focus on research that solely included patients in a single mood state for a better understanding of the pathophysiology of bipolar disorder and research comparing patients with different mood states to dissect mood state-related effects. Finally, we briefly summarise current theoretical models and conclude this review by proposing potential avenues for future research. A comprehensive understanding of the pathophysiology with consideration of mood states could not only deepen our understanding of how acute mood episodes develop at a neurophysiological level but could also facilitate the identification of biological targets for personalised treatment and the development of new interventions for bipolar disorder.
Collapse
Affiliation(s)
- Yankun Wu
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yun-Ai Su
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Linlin Zhu
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jitao Li
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tianmei Si
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
2
|
Harmata GIS, Barsotti EJ, Casten LG, Fiedorowicz JG, Williams A, Shaffer JJ, Richards JG, Sathyaputri L, Schmitz SL, Christensen GE, Long JD, Gaine ME, Xu J, Michaelson JJ, Wemmie JA, Magnotta VA. Cerebellar morphological differences and associations with extrinsic factors in bipolar disorder type I. J Affect Disord 2023; 340:269-279. [PMID: 37562560 PMCID: PMC10529949 DOI: 10.1016/j.jad.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The neural underpinnings of bipolar disorder (BD) remain poorly understood. The cerebellum is ideally positioned to modulate emotional regulation circuitry yet has been understudied in BD. Literature suggests differences in cerebellar activity and metabolism in BD, however findings on structural differences remain contradictory. Potential reasons include combining BD subtypes, small sample sizes, and potential moderators such as genetics, adverse childhood experiences (ACEs), and pharmacotherapy. METHODS We collected 3 T MRI scans from participants with (N = 131) and without (N = 81) BD type I, as well as blood and questionnaires. We assessed differences in cerebellar volumes and explored potentially influential factors. RESULTS The cerebellar cortex was smaller bilaterally in participants with BD. Polygenic propensity score did not predict any cerebellar volumes, suggesting that non-genetic factors may have greater influence on the cerebellar volume difference we observed in BD. Proportionate cerebellar white matter volumes appeared larger with more ACEs, but this may result from reduced ICV. Time from onset and symptom burden were not associated with cerebellar volumes. Finally, taking sedatives was associated with larger cerebellar white matter and non-significantly larger cortical volume. LIMITATIONS This study was cross-sectional, limiting interpretation of possible mechanisms. Most of our participants were White, which could limit the generalizability. Additionally, we did not account for potential polypharmacy interactions. CONCLUSIONS These findings suggest that external factors, such as sedatives and childhood experiences, may influence cerebellum structure in BD and may mask underlying differences. Accounting for such variables may be critical for consistent findings in future studies.
Collapse
Affiliation(s)
- Gail I S Harmata
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Radiology, The University of Iowa, United States
| | - Ercole John Barsotti
- Department of Psychiatry, The University of Iowa, United States; Department of Epidemiology, The University of Iowa, United States
| | - Lucas G Casten
- Department of Psychiatry, The University of Iowa, United States; Interdisciplinary Graduate Program in Genetics, The University of Iowa, United States
| | - Jess G Fiedorowicz
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Psychiatry, University of Ottawa, Canada
| | - Aislinn Williams
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States
| | - Joseph J Shaffer
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Radiology, The University of Iowa, United States; Department of Biosciences, Kansas City University, United States
| | | | | | | | - Gary E Christensen
- Department of Electrical and Computer Engineering, The University of Iowa, United States; Department of Radiation Oncology, The University of Iowa, United States
| | - Jeffrey D Long
- Department of Psychiatry, The University of Iowa, United States; Department of Biostatistics, The University of Iowa, United States
| | - Marie E Gaine
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, The University of Iowa, United States
| | - Jia Xu
- Department of Radiology, The University of Iowa, United States
| | - Jake J Michaelson
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Interdisciplinary Graduate Program in Genetics, The University of Iowa, United States
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Molecular Physiology and Biophysics, The University of Iowa, United States; Department of Neurosurgery, The University of Iowa, United States; Veterans Affairs Medical Center, Iowa City, United States
| | - Vincent A Magnotta
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Radiology, The University of Iowa, United States; Department of Biomedical Engineering, The University of Iowa, United States.
| |
Collapse
|
3
|
Chan CC, Alter S, Hazlett EA, Shafritz KM, Yehuda R, Goodman M, Haznedar MM, Szeszko PR. Neural correlates of impulsivity in bipolar disorder: A systematic review and clinical implications. Neurosci Biobehav Rev 2023; 147:105109. [PMID: 36813146 PMCID: PMC11073484 DOI: 10.1016/j.neubiorev.2023.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Impulsivity is a common feature of bipolar disorder (BD) with ramifications for functional impairment and premature mortality. This PRISMA-guided systematic review aims to integrate findings on the neurocircuitry associated with impulsivity in BD. We searched for functional neuroimaging studies that examined rapid-response impulsivity and choice impulsivity using the Go/No-Go Task, Stop-Signal Task, and Delay Discounting Task. Findings from 33 studies were synthesized with an emphasis on the effect of mood state of the sample and affective salience of the task. Results suggest trait-like brain activation abnormalities in regions implicated in impulsivity that persist across mood states. During rapid-response inhibition, BD exhibit under-activation of key frontal, insular, parietal, cingulate, and thalamic regions, but over-activation of these regions when the task involves emotional stimuli. Delay discounting tasks with functional neuroimaging in BD are lacking, but hyperactivity of orbitofrontal and striatal regions associated with reward hypersensitivity may be related to difficulty delaying gratification. We propose a working model of neurocircuitry dysfunction underlying behavioral impulsivity in BD. Clinical implications and future directions are discussed.
Collapse
Affiliation(s)
- Chi C Chan
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sharon Alter
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Erin A Hazlett
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith M Shafritz
- Department of Psychology, Hofstra University, Hempstead, NY, USA; Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Marianne Goodman
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
4
|
Zhang L, Li Q, Du Y, Gao Y, Bai T, Ji GJ, Tian Y, Wang K. Effect of high-definition transcranial direct current stimulation on improving depression and modulating functional activity in emotion-related cortical-subcortical regions in bipolar depression. J Affect Disord 2023; 323:570-580. [PMID: 36503046 DOI: 10.1016/j.jad.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Preliminary studies have suggested that transcranial direct current stimulation (tDCS) is effective for bipolar depression, However, brain correlates of the depression alleviating are unclear. To determine the efficacy and safety of tDCS as an add-on treatment for patients with bipolar depression and further to identify the effect of tDCS on the resting-state brain activities, we recruited fifty patients with bipolar depression to complete the double-blind, sham-controlled and randomized clinical trial. Fourteen sessions of tDCS were performed once a day for 14 days. The anode was placed over F3 with return electrodes placed at FP1, FZ, C3 and F7. Regional homogeneity (ReHo) was examined on 50 patients with bipolar depression before and after 14-day active or sham tDCS. Patients in the active group showed significantly superior alleviating the depression symptoms compared with those receiving sham. The active group after 14-day active tDCS showed increased ReHo values in the orbitofrontal cortex and middle frontal gyrus and decreased ReHo values in subcortical structures including hippocampus, parahippocampa gyrus, amygdala, putamen and lentiform nucleus. The reduction of depression severity showed positive correlation of increased ReHo values in the orbitofrontal cortex and middle frontal gyrus and negative correlation of altered ReHo values in the putamen and lentiform. TDCS was an effective and safe add-on intervention for this small bipolar depression sample. The reduction of depression induced by tDCS is associated with a modulation of neural synchronization in the cortical and subcortical structures (ReHo values) within an emotion-related brain network.
Collapse
Affiliation(s)
- Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
| | - Qun Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Yuan Du
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Yue Gao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanghua Tian
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Neurology, First Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Neurology, First Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
| |
Collapse
|
5
|
Distinct patterns of altered quantitative T1ρ and functional BOLD response associated with history of suicide attempts in bipolar disorder. Brain Imaging Behav 2022; 16:820-833. [PMID: 34601647 PMCID: PMC8975910 DOI: 10.1007/s11682-021-00552-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Despite the high risk for suicide, relatively few studies have explored the relationship between suicide and brain imaging measures in bipolar disorder. In addition, fewer studies have explored the possibility that altered brain metabolism may be associated with suicide attempt. To begin to fill in these gaps, we evaluated functional (task based fMRI) and metabolic (quantitative T1ρ) differences associated with suicide attempt in participants with bipolar disorder. Thirty-nine participants with bipolar disorder underwent fMRI during a flashing checkerboard task and 27 also underwent quantitative T1ρ. The relationship between neuroimaging and history of suicide attempt was tested using multiple regression while adjusting for age, sex, and current mood state. Differences between two measures of suicide attempt (binary: yes/no and continuous: number of attempts) were quantified using the corrected Akaike Information Criterion. Participants who had attempted suicide had greater fMRI task-related activation in visual areas and the cerebellum. The number of suicide attempts was associated with a difference in BOLD response in the amygdala, prefrontal cortex, and cerebellum. Increased quantitative T1ρ was associated with number of suicide attempts in limbic, basal ganglia, and prefrontal cortex regions. This study is a secondary analysis with a modest sample size. Differences between measures of suicide history may be due to differences in statistical power. History of suicide was associated with limbic, prefrontal, and cerebellar alterations. Results comparing those with and without suicide attempts differed from results using number of suicide attempts, suggesting that these variables have different neurobiological underpinnings.
Collapse
|
6
|
Jiang X, Wu F, Zhang Y, Li H, Kang J, Kong L, Wang F, Tang Y. Gender differences of amplitude of low-frequency fluctuations in bipolar disorder: A resting state fMRI study. J Affect Disord 2021; 280:189-196. [PMID: 33217701 DOI: 10.1016/j.jad.2020.11.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/27/2020] [Accepted: 11/08/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The clinical and epidemiological features of bipolar disorder (BD) between females and males have many differences. The association between brain function and gender in BD is unknown. This research aimed to investigate the association between brain function and gender in BD by using amplitude of low-frequency fluctuations (ALFFs). METHODS Ninety-eight patients (49 females and 49 males) with BD and 171 matched healthy controls (HCs, 89 females and 82 males) were recruited for resting-state functional magnetic resonance imaging. ALFF was used to estimate brain function. RESULTS A main effect of diagnosis in ALFF was observed in the dorsal lateral prefrontal cortex (DLPFC), ventral prefrontal cortex (VPFC), caudate and occipital lobe. A main effect of gender in ALFF was found in the right VPFC, DLPFC, thalamus, and occipital lobe. A main effect of diagnosis gender interaction in ALFF was observed in the left DLPFC. Analyses of two-sample t-test indicated that male patients with BD had increased ALFF in the right hippocampus, right amygdala, left caudate, and left DLPFC, and decreased ALFF in the occipital lobe compared with male HC. Female patients with BD demonstrated increased ALFF in the right VPFC and right DLPFC compared with female HC. Male patients with BD exhibited increased ALFF in the right VPFC and left DLPFC and decreased ALFF in the occipital lobe compared with female patients with BD. LIMITATIONS This study did not consider the effect of medications and emotional states on brain activity. CONCLUSIONS Results suggested gender differences in the dysfunctions of the cortico-limbic neural system in BD.
Collapse
Affiliation(s)
- Xuejun Jiang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Wu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifan Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huizi Li
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiahui Kang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lingtao Kong
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Rauer L, Trost S, Petrovic A, Gruber O. Cortical activation abnormalities in bipolar and schizophrenia patients in a combined oddball-incongruence paradigm. Eur Arch Psychiatry Clin Neurosci 2021; 271:1487-1499. [PMID: 32710172 PMCID: PMC8563619 DOI: 10.1007/s00406-020-01168-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/13/2020] [Indexed: 11/14/2022]
Abstract
Patients with bipolar disorder and schizophrenia often suffer from severe cognitive impairment even during times of remission. This study investigated the pathomechanisms underlying their deficits in cognitive control. A combined oddball-incongruence fMRI task was applied to examine similarities and differences of neural activation patterns between patients and healthy controls. Bipolar and schizophrenia patients demonstrated hyperactivations in the intraparietal cortex during the oddball condition. Furthermore, bipolar patients revealed diagnosis-specific hyperactivation in the left middle frontal gyrus, precentral gyrus, anteroventral prefrontal cortex and orbitofrontal cortex regions compared to schizophrenia patients and healthy individuals. In comparison to healthy controls the patients showed hypoactivations in the inferior frontal junction and ventral pathway during the cognitively more demanding incongruence. Taken together, bipolar patients seem to recruit frontal and parietal areas during the oddball condition to compensate for potential deficits in their attentional network. During more challenging tasks, i.e., the incongruence condition, their compensatory mechanisms seem to collapse leading to hypoactivations in the same frontal areas as well as the ventral pathway.
Collapse
Affiliation(s)
- Lisa Rauer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University Hospital Heidelberg, 69115, Heidelberg, Germany.
| | - Sarah Trost
- grid.411984.10000 0001 0482 5331Department of Psychiatry and Psychotherapy, Center for Translational Research in Systems Neuroscience and Clinical Psychiatry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Aleksandra Petrovic
- grid.411984.10000 0001 0482 5331Department of Psychiatry and Psychotherapy, Center for Translational Research in Systems Neuroscience and Clinical Psychiatry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Oliver Gruber
- grid.5253.10000 0001 0328 4908Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University Hospital Heidelberg, 69115 Heidelberg, Germany
| |
Collapse
|
8
|
Ramírez-Martín A, Ramos-Martín J, Mayoral-Cleries F, Moreno-Küstner B, Guzman-Parra J. Impulsivity, decision-making and risk-taking behaviour in bipolar disorder: a systematic review and meta-analysis. Psychol Med 2020; 50:2141-2153. [PMID: 32878660 DOI: 10.1017/s0033291720003086] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the robust body of work on cognitive aspects of bipolar disorder (BD), a clear profile of associated impairments in impulsivity, decision-making and risk-taking from studies that use behavioural measures has yet to be established. A systematic review, across four electronic databases (PsycINFO, MEDLINE/PubMed, ScienceDirect and Scopus), of literature published between January 1999 and December 2018 was carried out in accordance with the PRISMA statement. The protocol was registered on PROSPERO (CRD42018114684). A fixed-effect and random-effects meta-analysis using the Hedges' g (ES) estimate was performed. The analysis revealed significant impairment in BD individuals with medium effect sizes in various aspects of impulsivity - response inhibition (ES = 0.49; p < 0.0001), delay of gratification (ES = 0.54; p < 0.0001) and inattention (ES = 0.49; p < 0.0001) - and in decision-making (ES = 0.61, p = 0.0002), but no significant impairment in risk-taking behaviour (ES = 0.41; p = 0.0598). Furthermore, we found significant heterogeneity between studies for decision-making and risk-taking behaviour but not for impulsivity. Impaired risk-taking behaviour was significant in a subgroup of BD-I and euthymic individuals (ES = 0.92; p < 0.0001) with no significant heterogeneity. A stratification analysis revealed comparable results in euthymic and non-euthymic individuals for impulsivity. Our findings suggest that behaviour impulsivity is elevated in all phases of BD, representing a core and clinically relevant feature that persists beyond mood symptoms. More studies about decision-making and risk-taking are necessary to establish if they are impaired in BD and to analyze the role of mood state.
Collapse
Affiliation(s)
- Almudena Ramírez-Martín
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Grupo GAP, Facultad de Psicología, Universidad de Málaga, Malaga, Spain
| | - Javier Ramos-Martín
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Grupo GAP, Facultad de Psicología, Universidad de Málaga, Malaga, Spain
| | - Fermin Mayoral-Cleries
- Department of Mental Health, University General Hospital of Malaga. Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Berta Moreno-Küstner
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Grupo GAP, Facultad de Psicología, Universidad de Málaga, Malaga, Spain
| | - Jose Guzman-Parra
- Department of Mental Health, University General Hospital of Malaga. Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
9
|
Abstract
Mixed affective states occur in approximately 40% of patients with mood disorders and are burdened with a significant rate of comorbidities, including addictive disorders (AD). The co-occurrence of mixed features and AD represents a challenge for clinicians because the reciprocal, negative influence of these conditions leads to a worse course of illness, treatment resistance, unfavorable outcome, and higher suicide risk. This article discusses clinical presentation, possible common pathogenetic pathways, and treatment options. Further investigations are required to clarify the determinants and the implications of this co-occurrence, and to detect suitable approaches in clinical management.
Collapse
|
10
|
Abstract
Interest in the coexistence of manic and depressive symptoms fostered hypotheses on neurobiological underpinnings of mixed states. Neurobiological properties of mixed states, however, have not been comprehensively described. The authors searched databases for articles on neurobiological markers related to mixed states. Results showed that mixed states are characterized by elevated central and peripheral monoamine levels, greater alterations in hypothalamic-pituitary-adrenal axis, increased inflammation, and greater circadian rhythms dysfunction than nonmixed forms. Furthermore, the magnitude of pathophysiologic alterations in mixed states exceeds those associated with nonmixed mania or depression and suggest that hyperactivation and hyperarousal are core features of mixed states.
Collapse
Affiliation(s)
- Alessio Simonetti
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Boulevard, Houston, TX 77030, USA; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Centro Lucio Bini, Rome, Italy.
| | - Marijn Lijffijt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Boulevard, Houston, TX 77030, USA; Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Alan C Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Boulevard, Houston, TX 77030, USA; Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
11
|
Kopf J, Glöckner S, Schecklmann M, Dresler T, Plichta MM, Veeh J, Kittel-Schneider S, Reif A. Neural correlates of response inhibition in patients with bipolar disorder during acute versus remitted phase. World J Biol Psychiatry 2019; 20:637-646. [PMID: 29338494 DOI: 10.1080/15622975.2018.1428356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Elevated behavioural impulsivity has been shown to be a core feature of bipolar disorder. However, no study has so far investigated impulsivity-related brain activation in patients with BD during acute versus remitted phase. To address the question whether elevated behavioural impulsivity and its differential neural pathways is a state or trait marker of BD, we employed a combined stop signal-go/no-go task in 30 controls, and 37 depressed and 15 remitted patients who were retested.Methods: Frontal brain activation was recorded using near-infrared spectroscopy.Results: Behaviourally, we found increased impulsivity as indexed by higher stop signal reaction time for patients in their depressed phase while remitted patients did not differ from controls in any measure. In contrast, brain activation measurements revealed an opposite pattern: compared to controls, depressed patients did not show significant differences, while the remitted group displayed significantly decreased activation in bilateral prefrontal cortex during successful inhibition. Analysis of the remaining conditions (go, no-go, unsuccessful inhibition) did not reveal significant differences.Conclusions: Therefore, behavioural impulsivity and prefrontal hypoactivation do not seem to be a trait marker of BD. As only successful inhibition differentiated between groups, a specific dysfunction of this inhibitory process and its neural pathway may be postulated in BD.
Collapse
Affiliation(s)
- Juliane Kopf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Stefan Glöckner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Regensburg, Regensburg, Germany
| | - Thomas Dresler
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany.,LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Michael M Plichta
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Julia Veeh
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
12
|
Schwartz F, Tahmasian M, Maier F, Rochhausen L, Schnorrenberg KL, Samea F, Seemiller J, Zarei M, Sorg C, Drzezga A, Timmermann L, Meyer TD, van Eimeren T, Eggers C. Overlapping and distinct neural metabolic patterns related to impulsivity and hypomania in Parkinson's disease. Brain Imaging Behav 2019; 13:241-254. [PMID: 29322397 DOI: 10.1007/s11682-017-9812-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impulsivity and hypomania are common non-motor features in Parkinson's disease (PD). The aim of this study was to find the overlapping and distinct neural correlates of these symptoms in PD. Symptoms of impulsivity and hypomania were assessed in 24 PD patients using the Barratt Impulsiveness Scale (BIS-11) and Self-Report Manic Inventory (SRMI), respectively. In addition, fluorodeoxyglucose positron emission tomography (FDG-PET) imaging for each individual was performed. We conducted two separate multiple regression analyses for BIS-11 and SRMI scores with FDG-PET data to identify the brain regions that are associated with both impulsivity and hypomania scores, as well as those exclusive to each symptom. Then, seed-based functional connectivity analyses on healthy subjects identified the areas connected to each of the exclusive regions and the overlapping region, used as seeds. We observed a positive association between BIS-11 and SRMI scores and neural metabolism only in the prefrontal areas. Conjunction analysis revealed an overlapping region in the middle frontal gyrus. Regions exclusive to impulsivity were found in the medial part of the right superior frontal gyrus and regions exclusive to hypomania were in the right superior frontal gyrus, right precentral gyrus and right paracentral lobule. Connectivity patterns of seeds exclusively related to impulsivity were different from those for hypomania in healthy brains. These results provide evidence of both overlapping and distinct regions linked with impulsivity and hypomania scores in PD. The exclusive regions for each characteristic are connected to specific intrinsic functional networks.
Collapse
Affiliation(s)
- Frank Schwartz
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
| | - Franziska Maier
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Luisa Rochhausen
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Fateme Samea
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Christian Sorg
- Departments of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany.,Department of Psychiatry, Technische Universität München, Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Thomas D Meyer
- McGovern Medical School, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Thilo van Eimeren
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| |
Collapse
|
13
|
Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A. A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front Behav Neurosci 2019; 13:99. [PMID: 31133834 PMCID: PMC6513968 DOI: 10.3389/fnbeh.2019.00099] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Growing evidence associates cerebellar abnormalities with several neuropsychiatric disorders in which compulsive symptomatology and impulsivity are part of the disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD), and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor dysfunction and essentially entails integrative processes under control of prefrontal-thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically, lesions of the posterior cerebellar vermis cause affective dysregulation and deficits in executive function. These deficits may be due to impairment of one of the main functions of the cerebellum, implementation of forward internal models of the environment. Actions that are independent of internal models may not be guided by predictive relationships or a mental representation of the goal. In this review article, we explain how this deficit might affect executive functions. Additionally, regionalized cerebellar lesions have been demonstrated to impair other brain functions such as the emergence of habits and behavioral inhibition, which are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical studies and research in animal models suggest that the cerebellum is not required for learning goal-directed behaviors, but it is critical for habit formation. Despite this accumulating data, the role of the cerebellum in compulsive symptomatology and impulsivity is still a matter of discussion. Overall, findings point to a modulatory function of the cerebellum in terminating or initiating actions through regulation of the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining ongoing actions when environmental conditions change by adjusting prefrontal activity in response to the new external and internal stimuli, thereby promoting flexible behavioral control. We elaborate on this explanatory framework and propose a working hypothesis for the involvement of the cerebellum in compulsive and impulsive endophenotypes.
Collapse
Affiliation(s)
- Marta Miquel
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Saleem M Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Isis Gil-Miravet
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
14
|
Abstract
Neuropsychiatric illnesses including mood disorders are accompanied by cognitive impairment, which impairs work capacity and quality of life. However, there is a lack of treatment options that would lead to solid and lasting improvement of cognition. This is partially due to the absence of valid and reliable neurocircuitry-based biomarkers for pro-cognitive effects. This systematic review therefore examined the most consistent neural underpinnings of cognitive impairment and cognitive improvement in unipolar and bipolar disorders. We identified 100 studies of the neuronal underpinnings of working memory and executive skills, learning and memory, attention, and implicit learning and 9 studies of the neuronal basis for cognitive improvements. Impairments across several cognitive domains were consistently accompanied by abnormal activity in dorsal prefrontal (PFC) cognitive control regions-with the direction of this activity depending on patients' performance levels-and failure to suppress default mode network (DMN) activity. Candidate cognition treatments seemed to enhance task-related dorsal PFC and temporo-parietal activity when performance increases were observed, and to reduce their activity when performance levels were unchanged. These treatments also attenuated DMN hyper-activity. In contrast, nonspecific cognitive improvement following symptom reduction was typically accompanied by decreased limbic reactivity and reversal of pre-treatment fronto-parietal hyper-activity. Together, the findings highlight some common neural correlates of cognitive impairments and cognitive improvements. Based on this evidence, studies are warranted to examine the reliability and predictive validity of target engagement in the identified neurocircuitries as a biomarker model of pro-cognitive effects.
Collapse
|
15
|
Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 95:315-335. [PMID: 30236781 DOI: 10.1016/j.neubiorev.2018.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Although genuine motor abnormalities (GMA) are frequently found in schizophrenia, they are also considered as an intrinsic feature of bipolar, obsessive-compulsive, and neurodevelopmental disorders with early onset such as autism, ADHD, and Tourette syndrome. Such transnosological observations strongly suggest a common neural pathophysiology. This systematic review highlights the evidence on GMA and their neuroanatomical substrates in bipolar, obsessive-compulsive, and neurodevelopmental disorders. The data lends support for a common pattern contributing to GMA expression in these diseases that seems to be related to cerebello-thalamo-cortical, fronto-parietal, and cortico-subcortical motor circuit dysfunction. The identified studies provide first evidence for a motor network dysfunction as a correlate of early neurodevelopmental deviance prior to clinical symptom expression. There are also first hints for a developmental risk factor model of these mental disorders. An in-depth analysis of motor networks and related patho-(physiological) mechanisms will not only help promoting Research Domain Criteria (RDoC) Motor System construct, but also facilitate the development of novel psychopharmacological models, as well as the identification of neurobiologically plausible target sites for non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Littman R, Takács Á. Do all inhibitions act alike? A study of go/no-go and stop-signal paradigms. PLoS One 2017; 12:e0186774. [PMID: 29065184 PMCID: PMC5655479 DOI: 10.1371/journal.pone.0186774] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Response inhibition is frequently measured by the Go/no-go and Stop-signal tasks. These two are often used indiscriminately under the assumption that both measure similar inhibitory control abilities. However, accumulating evidence show differences in both tasks' modulations, raising the question of whether they tap into equivalent cognitive mechanisms. In the current study, a comparison of the performance in both tasks took place under the influence of negative stimuli, following the assumption that ''controlled inhibition'', as measured by Stop-signal, but not ''automatic inhibition'', as measured by Go/no-go, will be affected. 54 young adults performed a task in which negative pictures, neutral pictures or no-pictures preceded go trials, no-go trials, and stop-trials. While the exposure to negative pictures impaired performance on go trials and improved the inhibitory capacity in Stop-signal task, the inhibitory performance in Go/no-go task was generally unaffected. The results support the conceptualization of different mechanisms operated by both tasks, thus emphasizing the necessity to thoroughly fathom both inhibitory processes and identify their corresponding cognitive measures. Implications regarding the usage of cognitive tasks for strengthening inhibitory capacity among individuals struggling with inhibitory impairments are discussed.
Collapse
Affiliation(s)
- Ran Littman
- Department of Clinical Psychology and Addictology, Institute of Psychology, Eötvös Loránd University, Budapest, Izabella utca 46., Hungary
| | - Ádám Takács
- Department of Cognitive Psychology, Institute of Psychology, Eötvös Loránd University, Budapest, Izabella utca 46., Hungary
| |
Collapse
|
17
|
Jones SAH, Butler BC, Kintzel F, Johnson A, Klein RM, Eskes GA. Measuring the Performance of Attention Networks with the Dalhousie Computerized Attention Battery (DalCAB): Methodology and Reliability in Healthy Adults. Front Psychol 2016; 7:823. [PMID: 27375517 PMCID: PMC4894888 DOI: 10.3389/fpsyg.2016.00823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
Attention is an important, multifaceted cognitive domain that has been linked to three distinct, yet interacting, networks: alerting, orienting, and executive control. The measurement of attention and deficits of attention within these networks is critical to the assessment of many neurological and psychiatric conditions in both research and clinical settings. The Dalhousie Computerized Attention Battery (DalCAB) was created to assess attentional functions related to the three attention networks using a range of tasks including: simple reaction time, go/no-go, choice reaction time, dual task, flanker, item and location working memory, and visual search. The current study provides preliminary normative data, test-retest reliability (intraclass correlations) and practice effects in DalCAB performance 24-h after baseline for healthy young adults (n = 96, 18-31 years). Performance on the DalCAB tasks demonstrated Good to Very Good test-retest reliability for mean reaction time, while accuracy and difference measures (e.g., switch costs, interference effects, and working memory load effects) were most reliable for tasks that require more extensive cognitive processing (e.g., choice reaction time, flanker, dual task, and conjunction search). Practice effects were common and pronounced at the 24-h interval. In addition, performance related to specific within-task parameters of the DalCAB sub-tests provides preliminary support for future formal assessment of the convergent validity of our interpretation of the DalCAB as a potential clinical and research assessment tool for measuring aspects of attention related to the alerting, orienting, and executive control networks.
Collapse
Affiliation(s)
- Stephanie A H Jones
- Cognitive Health and Recovery Research Laboratory, Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Beverly C Butler
- Cognitive Health and Recovery Research Laboratory, Department of Psychiatry, Dalhousie UniversityHalifax, NS, Canada; Research Services, Nova Scotia Health AuthorityHalifax, NS, Canada
| | - Franziska Kintzel
- Cognitive Health and Recovery Research Laboratory, Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Anne Johnson
- Cognitive Health and Recovery Research Laboratory, Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Raymond M Klein
- Cognitive Science Laboratory, Department of Psychology and Neuroscience, Dalhousie University Halifax, NS, Canada
| | - Gail A Eskes
- Cognitive Health and Recovery Research Laboratory, Department of Psychiatry, Dalhousie UniversityHalifax, NS, Canada; Affiliated Scientist, Medical Staff, Nova Scotia Health AuthorityHalifax, NS, Canada
| |
Collapse
|
18
|
Bitter SM, Adler CM, Eliassen JC, Weber WA, Welge JA, Burciaga J, Shear PK, Strakowski SM, DelBello MP. Neurofunctional changes in adolescent cannabis users with and without bipolar disorder. Addiction 2014; 109:1901-9. [PMID: 24962329 DOI: 10.1111/add.12668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/04/2014] [Accepted: 06/16/2014] [Indexed: 11/30/2022]
Abstract
AIMS To compare regional brain activation among adolescents with bipolar disorder and co-occurring cannabis use disorder. DESIGN Cross-sectional study. SETTING Cincinnati, OH, USA. PARTICIPANTS Adolescents with bipolar disorder (BP, n = 14), adolescents with cannabis use disorder (MJ, n = 13), adolescents with co-occurring cannabis use and bipolar disorders (BPMJ, n = 25) and healthy adolescents (HC, n = 15). MEASUREMENTS Cannabis craving, substance use, Blood Oxygenation Level Dependent (BOLD) signal assessed by the Marijuana Craving Questionnaire (MCQ), Teen-Addiction Severity Index (T-ASI) and a cannabis cue-reactivity task during a functional magnetic resonance imaging (fMRI) session, respectively. FINDINGS The BP group exhibited significantly greater brain activation than the BPMJ group in the right amygdala (F = 4.14, P = 0.046), left nucleus accumbens (F = 3.8, P = 0.02), left thalamus (F = 3.8, P < 0.05) and the right thalamus (F = 6.2, P = 0.02). The BP group exhibited significantly greater activation than the HC group in the left nucleus accumbens (F = 11.5, P = 0.0001), right thalamus (F = 4.9, P = 0.03) and the left striatum (F = 3.6, P = 0.04). Left amygdala activation of the BPMJ group trended towards being significantly negatively correlated with the number of joints smoked (R = -0.4, P = 0.06). CONCLUSIONS Bipolar adolescents with comorbid cannabis use do not exhibit the same over-activation of the regions involved in emotional processing as seen in adolescents with bipolar disorder alone. The absence of these findings in patients with comorbid bipolar and cannabis use disorders suggests that these individuals may have a unique endophenotype of bipolar disorder or that cannabis use may alter brain activation uniquely in bipolar disorder patients who use cannabis.
Collapse
Affiliation(s)
- Samantha M Bitter
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorder Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA; University Research Council's (URC) Undergraduate Student Research Fellowship, University of Cincinnati, Cincinnati, OH, USA; School of Energy, Environmental, Biological and Medical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kaladjian A, Belzeaux R, Micoulaud-Franchi JA, Cermolacce M, Fakra E, Azorin JM. [Mixed states and neuroimaging]. Encephale 2014; 39 Suppl 3:S162-6. [PMID: 24359855 DOI: 10.1016/s0013-7006(13)70116-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite the growing number of neuroimaging studies in bipolar disorder over the past years, the brain regions involved in mood dysregulation in this disease are still poorly understood. If some neurofunctional abnormalities seem to be independent of mood state, others were preferentially associated with mania or depression, involving the amygdala and other limbic regions as well as ventral frontal regions, with a likely hemispheric lateralization of these abnormalities according to the thymic state that was examined. Very few imaging studies became interested in bipolar patients in a mixed state, making it harder to connect brain malfunction to a given mood state. However, data obtained so far support the hypothesis of a lateralization of brain abnormalities in relation to bipolar symptomatology, suggesting that neurofonctional abnormalities preferentially located in the right ventral frontal and limbic areas may underlie the depressive component, associated with abnormalities of the left similar regions for the manic component. Identification of brain dysfunctions that may explain the emergence of mixed symptoms will likely provide useful information to better understand the respective roles of each hemisphere in the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- A Kaladjian
- Pôle de psychiatrie des adultes, CHU Robert-Debré, Avenue du Général-Koenig, 51092 Reims cedex, France.
| | - R Belzeaux
- Pôle universitaire de psychiatrie, Hôpital Sainte-Marguerite, 270, boulevard Sainte-Marguerite, 13274 Marseille cedex 09, France
| | - J A Micoulaud-Franchi
- Pôle universitaire de psychiatrie, Hôpital Sainte-Marguerite, 270, boulevard Sainte-Marguerite, 13274 Marseille cedex 09, France
| | - M Cermolacce
- Pôle universitaire de psychiatrie, Hôpital Sainte-Marguerite, 270, boulevard Sainte-Marguerite, 13274 Marseille cedex 09, France
| | - E Fakra
- Pôle universitaire de psychiatrie, Hôpital Sainte-Marguerite, 270, boulevard Sainte-Marguerite, 13274 Marseille cedex 09, France
| | - J-M Azorin
- Pôle universitaire de psychiatrie, Hôpital Sainte-Marguerite, 270, boulevard Sainte-Marguerite, 13274 Marseille cedex 09, France
| |
Collapse
|
20
|
Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry 2014; 171:829-43. [PMID: 24626773 PMCID: PMC4119497 DOI: 10.1176/appi.ajp.2014.13081008] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE In this critical review, the authors appraise neuroimaging findings in bipolar disorder in emotion-processing, emotion-regulation, and reward-processing neural circuitry in order to synthesize the current knowledge of the neural underpinnings of bipolar disorder and provide a neuroimaging research road map for future studies. METHOD The authors examined findings from all major studies in bipolar disorder that used functional MRI, volumetric analysis, diffusion imaging, and resting-state techniques, integrating findings to provide a better understanding of larger-scale neural circuitry abnormalities in bipolar disorder. RESULTS Bipolar disorder can be conceptualized, in neural circuitry terms, as parallel dysfunction in prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion-processing and emotion-regulation circuits bilaterally, together with an "overactive" left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward-processing circuitry, resulting in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation, and heightened reward sensitivity. A potential structural basis for these functional abnormalities is gray matter volume decreases in the prefrontal and temporal cortices, the amygdala, and the hippocampus and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. CONCLUSIONS Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuits supporting emotion processing, emotion regulation, and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in youths with bipolar disorder or at risk for bipolar disorder; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful individual-level data. Such studies will help identify clinically relevant biomarkers to guide diagnosis and treatment decision making for individuals with bipolar disorder.
Collapse
|
21
|
Kuiper S, McLean L, Malhi GS. To BD or not to BD: functional neuroimaging and the boundaries of bipolarity. Expert Rev Neurother 2014; 13:75-86; quiz 87. [DOI: 10.1586/ern.12.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Hajek T, Alda M, Hajek E, Ivanoff J. Functional neuroanatomy of response inhibition in bipolar disorders--combined voxel based and cognitive performance meta-analysis. J Psychiatr Res 2013; 47:1955-66. [PMID: 24070910 DOI: 10.1016/j.jpsychires.2013.08.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Impaired response inhibition underlies symptoms and altered functioning in patients with bipolar disorders (BD). The interpretation of fMRI studies requires an accurate estimation of neurocognitive performance, for which individual studies are typically underpowered. Thus, we performed the first combined meta-analysis of fMRI activations and neurocognitive performance in studies investigating response inhibition in BD. METHODS We used signed differential mapping to combine anatomical coordinates of activation and standardized differences between means to evaluate neurocognitive performance in 30 fMRI studies of response inhibition comparing controls (n = 667) and patients with BD (n = 635). RESULTS Relative to controls, BD patients underactivated the right inferior frontal gyrus (rIFG) regardless of current mood state and behavioral performance. Unique to euthymia were cortical hyperactivations (left superior temporal, right middle frontal gyri) combined with subcortical hypoactivations (basal ganglia), whereas unique to mania were subcortical hyperactivations (bilateral basal ganglia), combined with cortical hypoactivations (right inferior and medial frontal gyri). The fMRI changes in euthymia were associated with normal cognitive performance, whereas manic patients committed more errors during response inhibition. CONCLUSIONS The rIFG hypoactivations were congruent with a BD trait, which may underlie the impaired response inhibition in mania. Euthymic BD subjects may compensate for the rIFG hypoactivations by hyperactivations of adjacent cortical areas, yielding comparable performance in inhibitory functions and suggesting possibilities for neuromodulation treatment of these cognitive impairments. The reversal of the activation pattern between mania and euthymia has implications for monitoring of treatment response and identification of imminent relapse.
Collapse
Affiliation(s)
- Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Canada; Prague Psychiatric Centre, Department of Psychiatry and Medical Psychology, 3rd School of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
23
|
Atakan Z, Bhattacharyya S, Allen P, Martín-Santos R, Crippa JA, Borgwardt SJ, Fusar-Poli P, Seal M, Sallis H, Stahl D, Zuardi AW, Rubia K, McGuire P. Cannabis affects people differently: inter-subject variation in the psychotogenic effects of Δ9-tetrahydrocannabinol: a functional magnetic resonance imaging study with healthy volunteers. Psychol Med 2013; 43:1255-1267. [PMID: 23020923 DOI: 10.1017/s0033291712001924] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cannabis can induce transient psychotic symptoms, but not all users experience these adverse effects. We compared the neural response to Δ9-tetrahydrocannabinol (THC) in healthy volunteers in whom the drug did or did not induce acute psychotic symptoms. Method In a double-blind, placebo-controlled, pseudorandomized design, 21 healthy men with minimal experience of cannabis were given either 10 mg THC or placebo, orally. Behavioural and functional magnetic resonance imaging measures were then recorded whilst they performed a go/no-go task. RESULTS The sample was subdivided on the basis of the Positive and Negative Syndrome Scale positive score following administration of THC into transiently psychotic (TP; n = 11) and non-psychotic (NP; n = 10) groups. During the THC condition, TP subjects made more frequent inhibition errors than the NP group and showed differential activation relative to the NP group in the left parahippocampal gyrus, the left and right middle temporal gyri and in the right cerebellum. In these regions, THC had opposite effects on activation relative to placebo in the two groups. The TP group also showed less activation than the NP group in the right middle temporal gyrus and cerebellum, independent of the effects of THC. CONCLUSIONS In this first demonstration of inter-subject variability in sensitivity to the psychotogenic effects of THC, we found that the presence of acute psychotic symptoms was associated with a differential effect of THC on activation in the ventral and medial temporal cortex and cerebellum, suggesting that these regions mediate the effects of the drug on psychotic symptoms.
Collapse
Affiliation(s)
- Z Atakan
- Section of Neuroimaging, Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Aichert DS, Wöstmann NM, Costa A, Macare C, Wenig JR, Möller HJ, Rubia K, Ettinger U. Associations between trait impulsivity and prepotent response inhibition. J Clin Exp Neuropsychol 2012; 34:1016-32. [DOI: 10.1080/13803395.2012.706261] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Maalouf FT, Clark L, Tavitian L, Sahakian BJ, Brent D, Phillips ML. Bias to negative emotions: a depression state-dependent marker in adolescent major depressive disorder. Psychiatry Res 2012; 198:28-33. [PMID: 22460133 DOI: 10.1016/j.psychres.2012.01.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/22/2012] [Accepted: 01/26/2012] [Indexed: 10/28/2022]
Abstract
The aim of the current research was to examine for the first time the extent to which bias to negative emotions in an inhibitory control paradigm is a state or trait marker in major depressive disorder (MDD) in adolescents. We administered the affective go/no go task which measures the ability to switch attention to or away from positive or negative emotional stimuli to 40 adolescents with MDD (20 in acute episode (MDDa) and 20 in remission (MDDr)) and 17 healthy controls (HC). MDDa were significantly faster on the shift to negative target blocks as compared to shift to positive target blocks while HC and MDDr displayed the opposite pattern as measured by an "emotional bias index" (EBI=latency (shift to negative targets)-latency (shift to positive targets)). There was also a trend for an effect of group on commission errors, suggesting more impulsive responding by MDDa than both MDDr and HC independently of stimulus valence throughout the task. Negative bias was not associated with depression severity or medication status. In conclusion, bias to negative emotional stimuli appears to be present in the acute stage of MDD and absent in remission suggesting that it is a depression state-specific marker of MDD in adolescents. Latency emerges as a better proxy of negative bias than commission errors and accuracy on this inhibitory control task in adolescents with MDD.
Collapse
Affiliation(s)
- Fadi T Maalouf
- Department of Psychiatry, American University of Beirut Medical Center, Lebanon.
| | | | | | | | | | | |
Collapse
|