1
|
Xia C, Jiang Y, Zhao Y, Chen Z, Sun Y, Sun Z, Cui R, Tao W. Genipin 1-O-β-D-gentiobioside ameliorates CUMS-induced prefrontal cortex neuron neuronal apoptosis by modulating HIPK2 SUMOylation. Int Immunopharmacol 2024; 141:112985. [PMID: 39213873 DOI: 10.1016/j.intimp.2024.112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Depression is a common mental illness with more than 280 million sufferers worldwide. Inflammation, particularly the c-Jun amino-terminal kinase (JNK) pathway, contributes to depression development and neuronal apoptosis. Gardenia is a herb with therapeutic effects on depression that has been shown to inhibit neuronal apoptosis. However, one of the components in gardenia, Genipin 1-O-β-D-gentiobioside(GG), has been less studied for its mechanism on depression. Thus, in the current study, we investigate how Genipin 1-O-β-D-gentiobioside improves depression and elucidate its possible mechanism of action. METHODS In this investigation, we utilize a chronic unpredictable mild stress (CUMS) mouse model and corticosterone-induced primary cortical neurons to examine the role of GG in ameliorating depressive symptoms and neuronal apoptosis. TUNEL staining and flow cytometry assessed the effects of GG on neuronal apoptosis. Western Blot analyses and immunofluorescence assays apoptosis-related proteins in the prefrontal cortex and primary neurons. The site of action of GG in regulating homeodomain interacting protein kinase 2 (HIPK2) SUMOylation was further explored in primary neurons. We constructed siRNA-SUMO1 vectors to transfect primary neuronal cells with intracellular SUMO1 knockdown. Proximity ligation assay (PLA) experiments were performed on primary neurons according to the instructions of the assay kit to observe the physical relationship between HIPK2 and SUMO1. We predicted the HIPK2 SUMOylation modification site by an online database and constructed vectors to target and site-directed mutagenesis, then to transfected primary neuronal cells. RESULTS The results showed that GG effectively alleviated depressive-like behaviours, down-regulated apoptosis-related proteins (p-JNK, Bax, Cleaved-Caspase-3), and inhibited neuronal apoptosis in CUMS-induced depressed mice and corticosterone-induced primary cortical neurons. We reveal a complex mechanism underlying the link between GG, SUMOylation of HIPK2, and complex pathways of neuronal apoptosis regulation. K326 and K1189 are the key SUMOylation sites regulated by GG in intricate interactions of apoptosis-related proteins. CONCLUSION Our study demonstrated that GG exerts antidepressant-like actions through neuroprotective effects by inhibiting the apoptosis of prefrontal cortex neurons, revealing the mechanism of GG inhibition of JNK phosphorylation by enhancing HIPK2 SUMOylation.
Collapse
Affiliation(s)
- Changbo Xia
- Department of Pharmacy, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Yue Jiang
- Department of Pharmacy, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Yan Zhao
- Anqing First People's Hospital of Anhui Medical University, Anqing 246004, Anhui, China
| | - Zhuzi Chen
- Jiangsu Health Vocational College, Nanjing 210000, Jiangsu, China
| | - Ying Sun
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Zhongwen Sun
- College of Medicine, Lishui University, Lishui 323000, Fujian, China
| | - Ruijie Cui
- Department of Pharmacy, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China.
| | - Weiwei Tao
- Department of Pharmacy, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O’Donovan SM. Differentially Altered Metabolic Pathways in the Amygdala of Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305854. [PMID: 38699334 PMCID: PMC11065019 DOI: 10.1101/2024.04.17.24305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background and hypothesis A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). Despite this promise, there is currently limited information regarding brain energy metabolism pathways across these disorders, limiting our understanding of how brain metabolic pathways are altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the hypothesis that amygdala metabolic pathways are differentially altered between these disorders. Study Design We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. Study Results We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. Conclusion Our findings suggest metabolic pathways are differentially altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Michael R. Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH
- Promedica Neuroscience Institute, Toledo, OH
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | |
Collapse
|
3
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
4
|
Ji C, Wei C, Li M, Shen S, Zhang S, Hou Y, Wu Y. Bazi Bushen capsule attenuates cognitive deficits by inhibiting microglia activation and cellular senescence. PHARMACEUTICAL BIOLOGY 2022; 60:2025-2039. [PMID: 36263579 PMCID: PMC9590440 DOI: 10.1080/13880209.2022.2131839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Bazi Bushen capsule (BZBS) has anti-ageing properties and is effective in enhancing memory. OBJECTIVE To find evidence supporting the mechanisms and biomarkers by which BZBS functions. MATERIALS AND METHODS Male C57BL/6J mice were randomly divided into five groups: normal, ageing, β-nicotinamide mononucleotide capsule (NMN), BZBS low-dose (LD-BZ) and BZBS high-dose (HD-BZ). The last four groups were subcutaneously injected with d-galactose (d-gal, 100 mg/kg/d) to induce the ageing process. At the same time, the LD-BZ, HD-BZ and NMN groups were intragastrically injected with BZBS (1 and 2 g/kg/d) and NMN (100 mg/kg/d) for treatment, respectively. After 60 days, the changes in overall ageing status, brain neuron morphology, expression of p16INK4a, proliferating cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba1), postsynaptic density protein 95 (PSD95), CD11b, Arg1, CD206, Trem2, Ym1 and Fizz1, and the senescence-associated secretory phenotype (SASP) factors were observed. RESULTS Compared with the mice in the ageing group, the HD-BZ mice exhibited obvious improvements in strength, endurance, motor coordination, cognitive function and neuron injury. The results showed a decrease in p16INK4a, Iba1 and the upregulation of PCNA, PSD95 among brain proteins. The brain mRNA exhibited downregulation of Iba1 (p < 0.001), CD11b (p < 0.001), and upregulation of Arg1 (p < 0.01), CD206 (p < 0.05), Trem2 (p < 0.001), Ym1 (p < 0.01), Fizz1 (p < 0.05) and PSD95 (p < 0.01), as well as improvement of SASP factors. CONCLUSIONS BZBS improves cognitive deficits via inhibition of cellular senescence and microglia activation. This study provides experimental evidence for the wide application of BZBS in clinical practice for cognitive deficits.
Collapse
Affiliation(s)
- Chuanyuan Ji
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Mengnan Li
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Shuang Shen
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shixiong Zhang
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yunlong Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Yiling Wu
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
5
|
Unal GO, Demirdas A, Nazıroglu M, Ovey IS. Agomelatine attenuates calcium signaling and apoptosis via the inhibition of TRPV1 channel in the hippocampal neurons of rats with chronic mild stress depression model. Behav Brain Res 2022; 434:114033. [DOI: 10.1016/j.bbr.2022.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
|
6
|
Lirong W, Mingliang Z, Mengci L, Qihao G, Zhenxing R, Xiaojiao Z, Tianlu C. The clinical and mechanistic roles of bile acids in depression, Alzheimer's disease, and stroke. Proteomics 2022; 22:e2100324. [PMID: 35731901 DOI: 10.1002/pmic.202100324] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
The burden of neurological and neuropsychiatric disorders continues to grow with significant impacts on human health and social economy worldwide. Increasing clinical and preclinical evidences have implicated that bile acids (BAs) are involved in the onset and progression of neurological and neuropsychiatric diseases. Here, we summarized recent studies of BAs in three types of highly prevalent brain disorders, depression, Alzheimer's disease, and stroke. The shared and specific BA profiles were explored and potential markers associated with disease development and progression were summarized. The mechanistic roles of BAs were reviewed with focuses on inflammation, gut-brain-microbiota axis, cellular apoptosis. We also discussed future perspectives for the prevention and treatment of neurological and neuropsychiatric disorders by targeting BAs and related molecules and gut microbiota. Our understanding of BAs and their roles in brain disorders is still evolving. A large number of questions still need to be addressed on the emerging crosstalk among central, peripheral, intestine and their contribution to brain and mental health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wu Lirong
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhao Mingliang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li Mengci
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guo Qihao
- Department of gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ren Zhenxing
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zheng Xiaojiao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chen Tianlu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
7
|
From dried bear bile to molecular investigation: A systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Brain Behav Immun 2022; 99:132-146. [PMID: 34601012 DOI: 10.1016/j.bbi.2021.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids, mainly ursodeoxycholic acid (UDCA) and its conjugated species glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) have long been known to have anti-apoptotic, anti-oxidant and anti-inflammatory properties. Due to their beneficial actions, recent studies have started to investigate the effect of UDCA, GUDCA, TUDCA on the same mechanisms in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders, where increased cell apoptosis, oxidative stress and inflammation in the brain are often observed. A total of thirty-five pre-clinical studies were identified through PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the UDCA, GUDCA and TUDCA in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Findings show that UDCA reduces apoptosis, reactive oxygen species (ROS) and tumour necrosis factor (TNF)-α production in neurodegenerative models, and reduces nitric oxide (NO) and interleukin (IL)-1β production in neuropsychiatric models; GUDCA decreases lactate dehydrogenase, TNF-α and IL-1β production in neurological models, and also reduces cytochrome c peroxidase production in neurodegenerative models; TUDCA decreases apoptosis in neurological models, reduces ROS and IL-1β production in neurodegenerative models, and decreases apoptosis and TNF-α production, and increases glutathione production in neuropsychiatric models. In addition, findings suggest that all the three bile acids would be equally beneficial in models of Huntington's disease, whereas UDCA and TUDCA would be more beneficial in models of Parkinson's disease and Alzheimer's disease, while GUDCA in models of bilirubin encephalopathy and TUDCA in models of depression. Overall, this review confirms the therapeutic potential of UDCA, GUDCA and TUDCA in neurological, neurodegenerative and neuropsychiatric disorders, proposing bile acids as potential alternative therapeutic approaches for patients suffering from these disorders.
Collapse
|
8
|
Wu G, Zhou J, Yang M, Xu C, Pang H, Qin X, Lin S, Yang J, Hu J. The Regulatory Effects of Taurine on Neurogenesis and Apoptosis of Neural Stem Cells in the Hippocampus of Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:351-367. [DOI: 10.1007/978-3-030-93337-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Huang F. Ursodeoxycholic acid as a potential alternative therapeutic approach for neurodegenerative disorders: Effects on cell apoptosis, oxidative stress and inflammation in the brain. Brain Behav Immun Health 2021; 18:100348. [PMID: 34632427 PMCID: PMC7611783 DOI: 10.1016/j.bbih.2021.100348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is a bile acid component with anti-apoptotic, anti-oxidant and anti-inflammatory properties. It has been used in clinical medicine for liver diseases for centuries. In neurodegenerative diseases, increased cell apoptosis, oxidative stress and inflammation are frequently observed as well. Due to those beneficial effects of UDCA, recent studies have started to investigate the effects of UDCA in pre-clinical models of neurodegeneration. On this account, I review the data reported so far to investigate the role of UDCA in regulating apoptosis, oxidative stress and inflammation in pre-clinical models of neurodegeneration, as well as in homeostatic state. Evidence have shown that UDCA can reduce apoptosis, inhibit reactive oxygen species and tumor necrosis factor - α production in neurodegenerative models. In addition, UDCA is able to induce apoptosis of brain blastoma cells in homeostatic conditions. Overall, this review suggests the therapeutic potential of UDCA in neurodegenerative disorders, proposing UDCA as a potential alternative therapeutic approach for patients suffering from these diseases.
Collapse
Affiliation(s)
- Fei Huang
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, PR China
| |
Collapse
|
10
|
Ong SK, Husain SF, Wee HN, Ching J, Kovalik JP, Cheng MS, Schwarz H, Tang TB, Ho CS. Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics (Basel) 2021; 11:1978. [PMID: 34829325 PMCID: PMC8617819 DOI: 10.3390/diagnostics11111978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a debilitating condition with a high disease burden and medical comorbidities. There are currently few to no validated biomarkers to guide the diagnosis and treatment of MDD. In the present study, we evaluated the differences between MDD patients and healthy controls (HCs) in terms of cortical haemodynamic responses during a verbal fluency test (VFT) using functional near-infrared spectroscopy (fNIRS) and serum amino acid profiles, and ascertained if these parameters were correlated with clinical characteristics. METHODS Twenty-five (25) patients with MDD and 25 age-, gender-, and ethnicity-matched HCs were recruited for the study. Real-time monitoring of the haemodynamic response during completion of a VFT was quantified using a 52-channel NIRS system. Serum samples were analysed and quantified by liquid chromatography-mass spectrometry for amino acid profiling. Receiver-operating characteristic (ROC) curves were used to classify potential candidate biomarkers. RESULTS The MDD patients had lower prefrontal and temporal activation during completion of the VFT than HCs. The MDD patients had lower mean concentrations of oxy-Hb in the left orbitofrontal cortex (OFC), and lower serum histidine levels. When the oxy-haemoglobin response was combined with the histidine concentration, the sensitivity and specificity of results improved significantly from 66.7% to 73.3% and from 65.0% to 90.0% respectively, as compared to results based only on the NIRS response. CONCLUSIONS These findings demonstrate the use of combination biomarkers to aid in the diagnosis of MDD. This technique could be a useful approach to detect MDD with greater precision, but additional studies are required to validate the methodology.
Collapse
Affiliation(s)
- Samantha K. Ong
- Department of Psychological Medicine, National University Health System, Singapore 119228, Singapore;
| | - Syeda F. Husain
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119276, Singapore;
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Man Si Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.C.); (H.S.)
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.C.); (H.S.)
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Cyrus S. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
11
|
Husain SF, Ong SK, Cuizhen L, Tran B, Ho RC, Ho CS. Functional near-infrared spectroscopy during a decision-making task in patients with major depressive disorder. Aust N Z J Psychiatry 2021; 55:485-493. [PMID: 33300367 DOI: 10.1177/0004867420976856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Patients with major depressive disorder tend to exhibit poorer decision-making capacity than the general population, but neurobiological evidence is lacking. Functional near-infrared spectroscopy monitors changes in oxy-haemoglobin concentration in the cerebral cortex. It may provide an objective assessment of neurophysiological responses during decision-making processes. Thus, this study investigated the effect of major depressive disorder diagnosis and severity on prefrontal cortex activity during the Iowa gambling task. METHODS Right-handed healthy controls (n = 25) and patients with major depressive disorder (n = 25) were matched for age, gender, ethnicity and years of education in this cross-sectional study. Functional near-infrared spectroscopy signals and the responses made during a computerised Iowa gambling task were recorded. In addition, demographics, clinical history and symptom severity were noted. RESULTS Compared to healthy controls, patients with major depressive disorder had reduced haemodynamic response in several cortical regions of the frontal lobe (Hedge's g range from 0.71 to 1.52; p values range from ⩽0.001 to 0.041). Among patients, mean oxy-haemoglobin declined with major depressive disorder severity in the right orbitofrontal cortex (Pearson's r = -0.423; p = 0.024). CONCLUSION Haemodynamic dysfunction of the prefrontal cortex during decision-making processes is associated with major depressive disorder diagnosis and severity. These neurophysiological alterations may have a role in the decision-making capacity of patients with major depressive disorder.
Collapse
Affiliation(s)
- Syeda F Husain
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Samantha K Ong
- Department of Psychological Medicine, National University Health System, Singapore
| | - Liu Cuizhen
- Department of Psychology, Faculty of Arts and Social Science, National University of Singapore, Singapore
| | - Bach Tran
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam.,Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Roger C Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cyrus S Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
12
|
Fang D, Lin Q, Wang C, Zheng C, Li Y, Huang T, Ni F, Wu Z, Chen B, Sun L. Effects of sildenafil on inflammatory injury of the lung in sodium taurocholate-induced severe acute pancreatitis rats. Int Immunopharmacol 2020; 80:106151. [PMID: 31931368 DOI: 10.1016/j.intimp.2019.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/22/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Inflammatory response and acute lung injury (ALI) occur in sodium taurocholate-induced severe acute pancreatitis (SAP). Because sildenafil has anti-inflammatory, anti-oxidant and immune-modulating effects, we investigated its effect on inflammatory and lung injury in sodium taurocholate-induced SAP-associated ALI rat lung. METHODS Sodium taurocholate-induced SAP rats received sildenafil (100 mg/kg) or not and were compared to age-matched normal control animals. We evaluated inflammatory response by detecting the expression of inflammatory factors including IL-1β, IL-6 and TNF-α, and detected the level of lung injury through histopathological evaluation. Moreover, we also tested the protein expression of PCNA, P21, Bcl-2 and Bax in the lung. RESULTS Sildenafil administration rats had a low level of lung injury and inflammation. In addition, sildenafil significantly increased the expression of proliferation-related markers and decreased the expression of apoptosis-related markers in lung tissue. CONCLUSIONS Sildenafil administration may attenuate inflammation and lung injury by promoting proliferation and suppressing apoptosis in SAP rats.
Collapse
Affiliation(s)
- Dazhang Fang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yonglin Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fubiao Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhigang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
13
|
Ramly B, Afiqah-Aleng N, Mohamed-Hussein ZA. Protein-Protein Interaction Network Analysis Reveals Several Diseases Highly Associated with Polycystic Ovarian Syndrome. Int J Mol Sci 2019; 20:E2959. [PMID: 31216618 PMCID: PMC6627153 DOI: 10.3390/ijms20122959] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 12/11/2022] Open
Abstract
Based on clinical observations, women with polycystic ovarian syndrome (PCOS) are prone to developing several other diseases, such as metabolic and cardiovascular diseases. However, the molecular association between PCOS and these diseases remains poorly understood. Recent studies showed that the information from protein-protein interaction (PPI) network analysis are useful in understanding the disease association in detail. This study utilized this approach to deepen the knowledge on the association between PCOS and other diseases. A PPI network for PCOS was constructed using PCOS-related proteins (PCOSrp) obtained from PCOSBase. MCODE was used to identify highly connected regions in the PCOS network, known as subnetworks. These subnetworks represent protein families, where their molecular information is used to explain the association between PCOS and other diseases. Fisher's exact test and comorbidity data were used to identify PCOS-disease subnetworks. Pathway enrichment analysis was performed on the PCOS-disease subnetworks to identify significant pathways that are highly involved in the PCOS-disease associations. Migraine, schizophrenia, depressive disorder, obesity, and hypertension, along with twelve other diseases, were identified to be highly associated with PCOS. The identification of significant pathways, such as ribosome biogenesis, antigen processing and presentation, and mitophagy, suggest their involvement in the association between PCOS and migraine, schizophrenia, and hypertension.
Collapse
Affiliation(s)
- Balqis Ramly
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia.
| | - Nor Afiqah-Aleng
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia.
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia.
- Centre for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
14
|
Bar-Yosef T, Damri O, Agam G. Dual Role of Autophagy in Diseases of the Central Nervous System. Front Cell Neurosci 2019; 13:196. [PMID: 31191249 PMCID: PMC6548059 DOI: 10.3389/fncel.2019.00196] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital lysosomal degradation and recycling pathway in the eukaryotic cell, responsible for maintaining an intricate balance between cell survival and cell death, necessary for neuronal survival and function. This dual role played by autophagy raises the question whether this process is a protective or a destructive pathway, the contributor of neuronal cell death or a failed attempt to repair aberrant processes? Deregulated autophagy at different steps of the pathway, whether excessive or downregulated, has been proposed to be associated with neurodegenerative disorders such as Alzheimer's-, Huntington's-, and Parkinson's-disease, known for their intracellular accumulation of protein aggregates. Recent observations of impaired autophagy also appeared in psychiatric disorders such as schizophrenia and bipolar disorder suggesting an additional contribution to the pathophysiology of mental illness. Here we review the current understanding of autophagy's role in various neuropsychiatric disorders and, hitherto, the prevailing new potential autophagy-related therapeutic strategies for their treatment.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| |
Collapse
|
15
|
Jin M, Ji X, Zhang B, Sheng W, Wang R, Liu K. Synergistic effects of Pb and repeated heat pulse on developmental neurotoxicity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:460-470. [PMID: 30738228 DOI: 10.1016/j.ecoenv.2019.01.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Pollutant discharges to the aquatic environment often contain multiple environmental stressors, affecting aquatic organisms. To mimic the discharges from nuclear and industry facilities, the combined effects of two independent types of stressors, heavy metal Pb and repeated heat pulse were addressed in this study. We investigated the developmental toxicity of combined treatment, especially its toxic effects on zebrafish neurodevelopment. The normal embryos at 4 hpf were exposed to 0.2 mM of Pb dissolved in the bathing medium with different temperatures (30, 32, and 34 °C) and then maintained in an incubator at 28 °C. After performing above treatment once every 24 h for 6 days, we found that combined treatment significantly affected neural development, including loss of dopaminergic (DA) neurons and brain vasculature, disruption of locomotor activity and neurodevelopmental genes expression in a temperature-dependent manner as compared to the Pb alone exposure group, indicating that repeated heat pulse enhances these negative impacts induced by Pb. In contrast, no apparent toxicity was observed in repeated heat pulse alone groups, suggesting that Pb treatment reduces thermal tolerance in zebrafish, which emphasized the importance to evaluate synergistic effects of Pb and repeated heat pulse. Moreover, repeated heat pulse aggravated Pb-induced apoptosis in the zebrafish brain. Further study of the underlying mechanism suggested that Caspase 3 regulated apoptosis was involved in this process. Taken together, our findings shed light on the full understanding of toxic effects of discharges from industrial applications on living organisms and its environmental impact.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China.
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Baoyue Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
16
|
Plasma microRNA expression levels and their targeted pathways in patients with major depressive disorder who are responsive to duloxetine treatment. J Psychiatr Res 2019; 110:38-44. [PMID: 30580082 DOI: 10.1016/j.jpsychires.2018.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
Major depressive disorder (MDD) is a complex disorder with many pathways known to contribute to its pathogenesis, such as apoptotic signaling, with antidepressants having been shown to target these pathways. In this study, we explored microRNAs as predictive markers of drug response to duloxetine, a serotonin-norepinephrine reuptake inhibiter, using peripheral blood samples from 3 independent clinical trials (NCT00635219; NCT0059991; NCT01140906) comparing 6-8 weeks of treatment with duloxetine to placebo treatment in patients with MDD. Plasma microRNA was extracted and sequenced using the Ion Proton Sequencer. Rank feature selection analysis was used to identify microRNAs in the top 10th percentile for their differentiating ability between patients who remitted and did not remit with duloxetine treatment. The results were then compared between the 3 trials to see their replicability. To further validate our findings, we reasoned that the pathways targeted by these microRNAs would be those shown to be altered in MDD in pathway enrichment analysis. Hsa-miR-23a-3p, hsa-miR-16-5p, hsa-miR-146a-5p and hsa-miR-21-5p were identified in 2 or more trials as being able to differentiate patients who would remit with duloxetine treatment using samples collected before treatment initiation, suggesting that they may be good candidates for identification of predictive biomarkers of duloxetine response. Pathway enrichment analysis further showed that microRNAs identified as differentiating for duloxetine response target the apoptosis signaling pathway. Future studies examining these microRNAs outside of a clinical trial setting and exploring their role in MDD may further our understanding of MDD and antidepressant response.
Collapse
|
17
|
Fullana MN, Ruiz-Bronchal E, Ferrés-Coy A, Juárez-Escoto E, Artigas F, Bortolozzi A. Regionally selective knockdown of astroglial glutamate transporters in infralimbic cortex induces a depressive phenotype in mice. Glia 2019; 67:1122-1137. [PMID: 30635928 DOI: 10.1002/glia.23593] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022]
Abstract
Elevation of energy metabolism and disturbance of astrocyte number/function in the ventral anterior cingulate cortex (vACC) contributes to the pathophysiology of major depressive disorder (MDD). Functional hyperactivity of vACC may result from reduced astrocytic glutamate uptake and increased neuronal excitation. Here we tested this hypothesis by knocking-down astrocytic glutamate transporter GLAST/GLT-1 expression in mouse infralimbic (IL, rodent equivalent of vACC) or prelimbic (PrL) cortices using RNAi strategies. Unilateral siRNA (small interfering RNA) microinfusion targeting GLAST or GLT-1 in mouse IL induced a moderate (20-30%) and long-lasting (7 days) decrease in their expression. Intra-IL GLAST-/GLT-1 siRNA microinfusion reduced the number of glial fibrillary acidic protein (GFAP)-positive and glutamine synthetase (GS)-positive astrocytes and evoked a depressive-like phenotype reversed by citalopram and ketamine. Intra-IL GLAST or GLT-1 knockdown markedly reduced serotonin (5-HT) release in the dorsal raphe nucleus (DR) and induced an overall reduction of brain-derived neurotrophic factor (BDNF) expression in ipsilateral and contralateral hemispheres. Egr-1 (early growth response protein-1) labeling suggests that both siRNAs enhance the GABAergic tone onto DR 5-HT neurons, leading to an overall decrease of 5-HT function, likely related to the widespread reduction on BDNF expression. Conversely, similar reductions of GLAST and GLT-1 expression in PrL did not induce a depressive-like phenotype. These results suggest that a focal glial change in IL translates into global change of brain activity by virtue of the descending projections from IL to DR and the subsequent attenuation of serotonergic function in forebrain, an effect perhaps related to the varied symptomatology of MDD.
Collapse
Affiliation(s)
- M Neus Fullana
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB - CSIC), Barcelona, Spain.,Systems Neuropharmacology Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Esther Ruiz-Bronchal
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB - CSIC), Barcelona, Spain.,Systems Neuropharmacology Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Albert Ferrés-Coy
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB - CSIC), Barcelona, Spain.,Systems Neuropharmacology Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Elena Juárez-Escoto
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB - CSIC), Barcelona, Spain
| | - Francesc Artigas
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB - CSIC), Barcelona, Spain.,Systems Neuropharmacology Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Analia Bortolozzi
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB - CSIC), Barcelona, Spain.,Systems Neuropharmacology Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| |
Collapse
|
18
|
Yang M, Dang R, Xu P, Guo Y, Han W, Liao D, Jiang P. Dl-3-n-Butylphthalide improves lipopolysaccharide-induced depressive-like behavior in rats: involvement of Nrf2 and NF-κB pathways. Psychopharmacology (Berl) 2018; 235:2573-2585. [PMID: 29943092 DOI: 10.1007/s00213-018-4949-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/11/2018] [Indexed: 12/29/2022]
Abstract
RATIONALE AND OBJECTIVES Dl-3-n-Butylphthalide (NBP), a small molecule compound extracted from the seeds of Apium graveolens, possesses a large range of biological effects. Here, we attempted to explore the therapeutic effects of NBP on lipopolysaccharide (LPS)-induced major depressive disorder (MDD) and gain further insight into the underlying mechanisms of the antidepressant effects of NBP. METHODS We evaluated the effect of NBP against LPS-induced behavioral changes in rats. We also examined the inflammation, oxidative stress, and apoptosis markers and analyzed the Nrf2 and NF-κB pathways in the hippocampus of rats following repeated peripheral immune challenge by LPS for 2 weeks (500 μg/kg every other day). RESULTS Our results indicated that repeated LPS administration induced the rats to a depressive-like state and activated inflammatory response, oxidative stress, and apoptosis reactions in the hippocampus. NBP treatment attenuated the LPS-induced abnormal behavior and ameliorated pathogenic processes in rats with MDD. NBP reduced the inflammatory response with inhibited expression of pro-inflammatory cytokines including IL-1β and IL-6 and downregulated the NF-κB signal pathway. Concurrent with the anti-inflammation action, NBP reduced LPS-induced oxidative reactions in the hippocampus and enhanced Nrf2-targeted signals, as evidenced by increased transcription of antioxidant enzymes and decreased malondialdehyde (MDA) production. In addition, NBP inhibited LPS-induced neuronal apoptosis in the rat brain, as evidenced by decreased apoptosis marker Caspase-3 production and TUNEL assay. CONCLUSIONS These results provide more insight into pathogenesis of MDD and firstly demonstrated the potential antidepressant actions of NBP.
Collapse
Affiliation(s)
- Mengqi Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Wenxiu Han
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Central South University, Changsha, 410011, China.
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China.
| |
Collapse
|
19
|
Differential exosomal microRNA profile in the serum of a patient with depression. THE EUROPEAN JOURNAL OF PSYCHIATRY 2018. [DOI: 10.1016/j.ejpsy.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Liu S, Zhou B, Wang L, Hu H, Yao C, Cai Z, Cui X. Therapeutic Antidepressant Potential of NONHSAG045500 in Regulating Serotonin Transporter in Major Depressive Disorder. Med Sci Monit 2018; 24:4465-4473. [PMID: 29955033 PMCID: PMC6055515 DOI: 10.12659/msm.908543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Major depressive disorder (MDD) is a chronic, life-threatening, highly disabling disease. Standardized treatment with fewer adverse effects, quick onset, and long-term maintenance of the effects of brief treatment for MDD is always being pursued. Long non-coding RNAs (lncRNAs) are highly expressed in the central nervous system and are involved in the occurrence and development of neurodegenerative and psychiatric diseases. This study aimed to investigate whether the overexpression and interference of 3 differentially down-regulated lncRNAs (NONHSAT142707, NONHSAG045500, and ENST00000517573) in MDD can affect the expression of central neurotransmitter serotonin (5-hydroxytryptamine) transporter (SERT) in vitro. Material/Methods First, we synthesized and validated the effect of 3 lncRNA plasmids and small interfering RNAs (siRNAs); next, we transfected the plasmids and siRNAs that caused significant overexpression or interference in SK-N-SH cells, and tested the expression of SERT by qRT-PCR. Results The results showed that 3 lncRNA plasmids and siRNAs2 caused overexpression and interference, respectively. Only the overexpression of NONHSAG045500 could significantly inhibit the expression of SERT; interference with NONHSAG045500 could significantly strengthen the expression of SERT. Conclusions This study indicated that the expression of SERT could be regulated by up-regulating or down-regulating NONHSAG045500 expression and suggested that NONHSAG045500 could potentially be established as a new therapeutic target of MDD. Future work may be needed to definitively determine the correlation between NONHSAG045500 and SERT in vivo.
Collapse
Affiliation(s)
- Song Liu
- College of Economy and Management, Changzhou Institute of Technology, Changzhou, Jiangsu, China (mainland)
| | - Beibei Zhou
- Department of Health, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Li Wang
- Department of Medical Section, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Huiwen Hu
- Department of Health, Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Chanjuan Yao
- Department of Health, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Zhengmao Cai
- Department of Administration, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Xuelian Cui
- Department of Health, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| |
Collapse
|
21
|
Mahajan GJ, Vallender EJ, Garrett MR, Challagundla L, Overholser JC, Jurjus G, Dieter L, Syed M, Romero DG, Benghuzzi H, Stockmeier CA. Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:177-186. [PMID: 29175309 PMCID: PMC5801125 DOI: 10.1016/j.pnpbp.2017.11.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/07/2017] [Accepted: 11/18/2017] [Indexed: 12/28/2022]
Abstract
Major Depressive Disorder (MDD) is a common psychiatric disorder for which available medications are often not effective. The high prevalence of MDD and modest response to existing therapies compels efforts to better understand and treat the disorder. Decreased hippocampal volume with increasing duration of depression suggests altered gene expression or even a decrease in neurogenesis. Tissue punches from the dentate gyrus were collected postmortem from 23 subjects with MDD and 23 psychiatrically-normal control subjects. Total RNA was isolated and whole transcriptome paired-end RNA-sequencing was performed using an Illumina NextSeq 500. For each sample, raw RNA-seq reads were aligned to the Ensembl GRCh38 human reference genome. Analysis revealed 30 genes differentially expressed in MDD compared to controls (FDR<0.05). Down-regulated genes included several with inflammatory function (ISG15, IFI44L, IFI6, NR4A1/Nur-77) and GABBR1 while up-regulated genes included several with cytokine function (CCL2/MCP-1), inhibitors of angiogenesis (ADM, ADAMTS9), and the KANSL1 gene, a histone acetyltransferase. Similar analyses of specific subsets of MDD subjects (suicide vs. non-suicide, single vs. multiple episodes) yielded similar, though not identical, results. Enrichment analysis identified an over-representation of inflammatory and neurogenesis-related (ERK/MAPK) signaling pathways significantly altered in the hippocampal dentate gyrus in MDD. Together, these data implicate neuro-inflammation as playing a crucial role in MDD. These findings support continued efforts to identify adjunctive approaches towards the treatment of MDD with drugs including anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Gouri J Mahajan
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eric J Vallender
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael R Garrett
- Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | - George Jurjus
- Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Lesa Dieter
- Psychology, Case Western Reserve University, Cleveland, OH, USA
| | - Maryam Syed
- Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Damian G Romero
- Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hamed Benghuzzi
- Diagnostic and Clinical Health Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
22
|
Wang F, Wang J, An J, Yuan G, Hao X, Zhang Y. Resveratrol ameliorates depressive disorder through the NETRIN1-mediated extracellular signal-regulated kinase/cAMP signal transduction pathway. Mol Med Rep 2018; 17:4611-4618. [PMID: 29328454 DOI: 10.3892/mmr.2018.8379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/06/2017] [Indexed: 11/06/2022] Open
Abstract
Depressive disorder is a mental health disorder caused by the dysfunction of nerve regeneration, neuroendocrine and neurobiochemistry, which frequently results in cognitive impairments and disorder. Evidence has shown that resveratrol offers benefits for the treatment of depressive disorder. In the present study, the therapeutic effects of resveratrol were investigated and the potential mechanisms mediated by resveratrol were analyzed in hippocampal neuron cells. The anti‑oxidative stress and anti‑inflammatory properties of resveratrol were also examined in vitro and in vivo. The results revealed that resveratrol administration inhibited the inflammation in hippocampal neuron cells induced by ouabain. Oxidative stress in the hippocampal neuron cells was ameliorated by resveratrol treatment in vitro and in vivo. In addition, the apoptosis of hippocampal neuron cells was inhibited by the upregulation of anti‑apoptotic genes, including P53, B‑cell lymphoma‑2 (Bcl‑2) and Bcl‑2‑associated death promoter, and the downregulation of the cleaved caspase‑3 and caspase‑9. The analysis of the mechanism revealed that that resveratrol treatment suppressed the apoptosis of hippocampal neuron cells through the NETRIN1‑mediated extracellular signal‑regulated kinase/cAMP signal transduction pathway. The results of the in vivo assay showed that resveratrol treatment led to improvements in cognitive competence, learning memory ability and anxiety in a mouse model of depressive disorder induced by ouabain. In conclusion, these results indicated that resveratrol treatment had protective effects against oxidative stress and neuroinflammatory pathogenesis through the NETRIN1‑mediated extracellular signal‑regulated kinase/cAMP signal transduction pathway, suggesting that resveratrol treatment may be a potential antidepressant agent for the treatment of depressive disorder.
Collapse
Affiliation(s)
- Feifei Wang
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150000, P.R. China
| | - Jinhui Wang
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150000, P.R. China
| | - Jinghong An
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150000, P.R. China
| | - Guoming Yuan
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150000, P.R. China
| | - Xiaolei Hao
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150000, P.R. China
| | - Yi Zhang
- Department of Psychiatry and Psychology, The First Hospital of Harbin, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
23
|
Miguel-Hidalgo JJ, Hall KO, Bonner H, Roller AM, Syed M, Park CJ, Ball JP, Rothenberg ME, Stockmeier CA, Romero DG. MicroRNA-21: Expression in oligodendrocytes and correlation with low myelin mRNAs in depression and alcoholism. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:503-514. [PMID: 28802862 PMCID: PMC5610939 DOI: 10.1016/j.pnpbp.2017.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023]
Abstract
MiR-21 is a microRNA implicated in cancer, development, and cardiovascular diseases and expressed in the central nervous system (CNS), especially after injury. However, the cellular expression of miR-21 in the adult CNS has not been clearly established either in mice or human subjects, while its alteration in psychiatric disorders is unknown. MiR-21 expression was characterized in reporter mice expressing β-galactosidase (LacZ) under the endogenous miR-21 promoter (miR-21/LacZ). Brain co-localization of miR-21/LacZ with specific neural markers was examined by double immunofluorescence in reporter mice, while extent of immunostaining for myelin basic protein and PDGFRα was determined in miR-21 knockout and wild-type mice. Levels of miR-21, and mRNAs of selected miR-21 targets, miR-21 regulator STAT3 and myelin-related proteins were measured by qRT-PCR in the white matter (WM) adjacent to the left postmortem orbitofrontal cortex (OFC) of human subjects with major depressive disorder (MDD), alcoholism, comorbid MDD plus alcoholism (MDA) and non-psychiatric control subjects. MiR-21/LacZ was highly expressed in cell bodies of WM and myelinated portions of gray matter (GM). Labeled cell bodies were identified as oligodendrocytes, while miR-21/LacZ was barely detectable in other cell types. MiR-21, as well as the mRNAs of several myelin-related proteins, were reduced in the WM of subjects with MDD and alcoholism. MiR-21 positively correlated with mRNA of myelin-related proteins and astrocytic GFAP. High expression of miR-21 in adult oligodendrocytes and the correlation of miR-21 decrease with mRNA of some myelin proteins, regulator STAT3, and oligodendrocyte-related transcription factors suggest an involvement of miR-21 in WM alterations in depression and alcoholism.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Katherine O. Hall
- Department of Psychiatry and Human Behavior at the University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hannah Bonner
- Department of Psychiatry and Human Behavior at the University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna M. Roller
- Department of Psychiatry and Human Behavior at the University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Maryam Syed
- Department of Biochemistry at the University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Casey J. Park
- Department of Biochemistry at the University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jana P. Ball
- Department of Biochemistry at the University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior at the University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Damian G. Romero
- Department of Biochemistry at the University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
24
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 2017; 125:53-66. [PMID: 28293733 DOI: 10.1007/s00702-017-1709-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/12/2017] [Indexed: 12/30/2022]
Abstract
Type A monoamine oxidase (MAOA) catabolizes monoamine transmitters, serotonin, norepinephrine and dopamine, and plays a major role in the onset, progression and therapy of neuropsychiatric disorders. In depressive disorders, increase in MAOA expression and decrease in brain levels of serotonin and norepinephrine are proposed as the major pathogenic factors. The functional polymorphism of MAOA gene and genes in serotonin signal pathway are associated with depression. This review presents recent advance in studies on the role of MAOA in major depressive disorder and related emotional disorders. MAOA and serotonin regulate the prenatal development and postnatal maintenance of brain architecture and neurocircuit, as shown by MAOA-deficient humans and MAO knockout animal models. Impaired neurogenesis in the mature hippocampus has been proposed as "adult neurogenesis" hypothesis of depression. MAOA modulates the sensitivity to stress in the stages of brain development and maturation, and the interaction of gene-environmental factors in the early stage regulates the onset of depressive behaviors in adulthood. Vice versa environmental factors affect MAOA expression by epigenetic regulation. MAO inhibitors not only restore compromised neurotransmitters, but also protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors, especially brain-derived neurotrophic factor, the deficiency of which is detected in depression. This review discusses novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|
25
|
Huang X, Luo YL, Mao YS, Ji JL. The link between long noncoding RNAs and depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:73-78. [PMID: 27318257 DOI: 10.1016/j.pnpbp.2016.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
The major depressive disorder (MDD) is a relatively common mental disorder from which that hundreds of million people have suffered, leading to displeasing life quality, which is characterized by health damage and even suicidal thoughts. The complicated development and functioning of MDD is still under exploration. Long noncoding RNA (lncRNAs) are highly expressed in the brain, could affect neural stem cell maintenance, neurogenesis and gliogenesis, brain patterning, synaptic and stress responses, and neural plasticity. The dysregulation of certain lncRNAs induces in neurodevelopmental, neurodegenerative and neuroimmunological disorders, primary brain tumors, and psychiatric diseases. Although advances have been made, no fully satisfactory treatments for major depression are available, further investigation is requested. And recently data showed that the expression level of the majority of lncRNAs demonstrated a clear tendency of upregulation, and the certain dysregulated miRNAs and lncRNAs in the MDD have been proved to have a co-synergism mechanism, that is why we speculate lncRNA might get the capability to regulate MDD. Few identified lncRNAs have been deeply studied in detailed experiments up until now, little predictions of their function have been raised, and further researches is calling for discover their signal pathway and related regulatory networks.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Li Luo
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Yue-Shi Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Lin Ji
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Varga Z, Csabai D, Miseta A, Wiborg O, Czéh B. Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats. Behav Brain Res 2016; 316:104-114. [PMID: 27555539 DOI: 10.1016/j.bbr.2016.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 12/27/2022]
Abstract
Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals. GABAergic interneurons were identified by immunohistochemistry and systematically quantified. We analyzed calbindin-(CB), calretinin-(CR), cholecystokinin-(CCK), parvalbumin-(PV), neuropeptide Y-(NPY) and somatostatin-positive (SST+) neurons in the following specific subareas of the OFC: medial orbital (MO), ventral orbital (VO), lateral orbital (LO) and dorsolateral orbital (DLO) cortex. For comparison, we also analyzed the primary motor cortex (M1) as a non-limbic cortical area. Stress had a pronounced effect on CB+ neurons and reduced their densities by 40-50% in the MO, VO and DLO. Stress had no effect on CCK+, CR+, PV+, NPY+ and SST+ neurons in any cortical areas. None of the investigated GABAergic neurons were affected by stress in the primary motor cortex. Interestingly, in the stress-resilient animals, we observed a significantly increased density of CCK+ neurons in the VO. NPY+ neuron densities were also significantly different between the anhedonic and stress-resilient rats, but only in the LO. Our present data demonstrate that chronic stress can specifically reduce the density of calbindin-positive GABAergic neurons in the orbitofrontal cortex and suggest that NPY and CCK expression in the OFC may relate to the stress resilience of the animals.
Collapse
Affiliation(s)
- Zsófia Varga
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary
| | - Dávid Csabai
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Hungary
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Boldizsár Czéh
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary; Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Hungary; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark.
| |
Collapse
|
27
|
García-Fuster MJ, García-Sevilla JA. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology (Berl) 2016; 233:2955-71. [PMID: 27259485 DOI: 10.1007/s00213-016-4342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Fas-associated death domain (FADD) is an adaptor of death receptors that can also induce anti-apoptotic actions through its phosphorylated form (p-FADD). Activation of monoamine receptors, indirect targets of classic anti-depressant drugs (ADs), reduced FADD and increased p-FADD and p-FADD/FADD ratio in brain. OBJECTIVES To ascertain whether ADs, which indirectly regulate monoamine receptors, modulate FADD protein forms to promote anti-apoptotic actions. METHODS The effects of selected norepinephrine transporter (NET), serotonin transporter (SERT), monoamine oxidase (MAO) inhibitors, atypical ADs, and electroconvulsive shock (ECS) or behavioral procedures (forced swim test, FST) on FADD forms and pro-survival FADD-like interleukin-1β-converting enzyme-inhibitory protein (FLIP-L) and phosphoprotein enriched in astrocytes of 15 kDa (p-PEA-15) contents were assessed in rat brain cortex by western blot analysis. RESULTS Acute NET (e.g., nisoxetine) but not SERT (e.g., fluoxetine) inhibitors decreased cortical FADD (up to 37 %) and increased p-FADD/FADD ratio (up to 1.9-fold). Nisoxetine effects were prevented by α2-antagonist RX-821002, suggesting the involvement of presynaptic α2-autoreceptors. Immobility time in the FST correlated with increases of pro-apoptotic FADD and decreases of anti-apoptotic p-FADD. The MAO-A/B inhibitor phenelzine decreased FADD (up to 33 %) and increased p-FADD (up to 65 %) and p-FADD/FADD (up to 2.4-fold). Other MAO inhibitors (clorgyline, Ro 41-1049, rasagiline), atypical ADs (ketamine and mirtazapine), or ECS did not modulate cortical FADD. Chronic (14 days) desipramine and fluoxetine, but not phenelzine, increased p-FADD (up to 59 %), p-FADD/FADD ratio (up to 1.8-fold), and pro-survival p-PEA-15 (up to 46 %) in rat brain cortex. CONCLUSIONS Multifunctional FADD protein, through an increased p-FADD/FADD ratio, could participate in the mechanisms of anti-apoptotic actions induced by ADs.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|
28
|
Kim HK, Nunes PV, Oliveira KC, Young LT, Lafer B. Neuropathological relationship between major depression and dementia: A hypothetical model and review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:51-7. [PMID: 26780170 DOI: 10.1016/j.pnpbp.2016.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 01/18/2023]
Abstract
Major depression (MDD) is a chronic psychiatric condition in which patients often show increasing cognitive impairment with recurring episodes. Neurodegeneration may play an important component in the pathogenesis of MDD associated with cognitive complaints. In agreement with this, patients with MDD show decreased brain volumes in areas implicated in emotional regulation and cognition, neuronal and glial cell death as well as activation of various pathways that can contribute to cell death. Therefore, the aim of this review is to provide an integrative overview of potential contributing factors to neurodegeneration in MDD. Studies have reported increased neuronal and glial cell death in the frontal cortex, amygdala, and hippocampus of patients with MDD. This may be due to decreased neurogenesis from lower levels of brain-derived neurotrophic factor (BDNF), excitotoxicity from increased glutamate signaling, and lower levels of gamma-aminobutyric acid (GABA) signaling. In addition, mitochondrial dysfunction and oxidative stress are found in similar brain areas where evidence of excitotoxicity has been reported. Also, levels of antioxidant enzymes were reported to be increased in patients with MDD. Inflammation may also be a contributing factor, as levels of inflammatory cytokines were reported to be increased in the prefrontal cortex of patients with MDD. While preliminary, studies have also reported neuropathological alterations in patients with MDD. Together, these studies suggest that lower BDNF levels, mitochondrial dysfunction, oxidative stress, inflammation and excitotoxicity may be contributing to neuronal and glial cell death in MDD, leading to decreased brain volume and cognitive dysfunction with multiple recurrent episodes. This highlights the need to identify specific pathways involved in neurodegeneration in MDD, which may elucidate targets that can be treated to ameliorate the effects of disease progression in this disorder.
Collapse
Affiliation(s)
- Helena Kyunghee Kim
- Departments of Psychiatry and Pharmacology, University of Toronto, RM4204, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Paula Villela Nunes
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, São Paulo, 3671, Brazil.
| | - Katia C Oliveira
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, São Paulo, 3671, Brazil.
| | - L Trevor Young
- Departments of Psychiatry and Pharmacology, University of Toronto, RM4204, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Beny Lafer
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, São Paulo, 3671, Brazil.
| |
Collapse
|
29
|
Elevated Monoamine Oxidase-A Distribution Volume in Borderline Personality Disorder Is Associated With Severity Across Mood Symptoms, Suicidality, and Cognition. Biol Psychiatry 2016; 79:117-26. [PMID: 25698585 PMCID: PMC4942262 DOI: 10.1016/j.biopsych.2014.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Monoamine oxidase-A (MAO-A) is a treatment target in neurodegenerative illness and mood disorders that increases oxidative stress and predisposition toward apoptosis. Increased MAO-A levels in prefrontal cortex (PFC) and anterior cingulate cortex (ACC) occur in rodent models of depressive behavior and human studies of depressed moods. Extreme dysphoria is common in borderline personality disorder (BPD), especially when severe, and the molecular underpinnings of severe BPD are largely unknown. We hypothesized that MAO-A levels in PFC and ACC would be highest in severe BPD and would correlate with symptom magnitude. METHODS [(11)C] Harmine positron emission tomography measured MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in severe BPD subjects (n = 14), moderate BPD subjects (n = 14), subjects with a major depressive episode (MDE) only (n = 14), and healthy control subjects (n = 14). All subjects were female. RESULTS Severe BPD was associated with greater PFC and ACC MAO-A VT compared with moderate BPD, MDE, and healthy control subjects (multivariate analysis of variance group effect: F6,102 = 5.6, p < .001). In BPD, PFC and ACC MAO-A VT were positively correlated with mood symptoms (PFC: r = .52, p = .005; ACC: r = .53, p = .004) and suicidality (PFC: r = .40, p = .037; ACC: r = .38, p = .046), while hippocampus MAO-A VT was negatively correlated with verbal memory (r = -.44, p = .023). CONCLUSIONS These results suggest that elevated MAO-A VT is associated with multiple indicators of BPD severity, including BPD symptomatology, mood symptoms, suicidality, and neurocognitive impairment.
Collapse
|
30
|
Jia J, Le W. Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Neurosci Bull 2015; 31:427-34. [PMID: 26254058 PMCID: PMC5563719 DOI: 10.1007/s12264-015-1548-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/17/2015] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a complicated multifactorial induced disease, characterized by depressed mood, anhedonia, fatigue, and altered cognitive function. Recently, many studies have shown that antidepressants regulate autophagy. In fact, autophagy, a conserved lysosomal degradation pathway, is essential for the central nervous system. Dysregulation of autophagic pathways, such as the mammalian target of rapamycin (mTOR) signaling pathway and the beclin pathway, has been studied in neurodegenerative diseases. However, autophagy in MDD has not been fully studied. Here, we discuss whether the dysregulation of autophagy contributes to the pathophysiology and treatment of MDD and summarize the current evidence that shows the involvement of autophagy in MDD.
Collapse
Affiliation(s)
- Jack Jia
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA USA
- New Jersey Medical Institute, Trenton, NJ USA
| | - Weidong Le
- Center for Translational Research on Neurological Disease, First Affiliated Hospital, Dalian, 116011 China
| |
Collapse
|
31
|
Whittom A, Villarreal A, Soni M, Owusu-Duku B, Meshram A, Rajkowska G, Stockmeier CA, Miguel-Hidalgo JJ. Markers of apoptosis induction and proliferation in the orbitofrontal cortex in alcohol dependence. Alcohol Clin Exp Res 2015; 38:2790-9. [PMID: 25421516 DOI: 10.1111/acer.12559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol-dependent (ALC) subjects exhibit glial and neuronal pathology in the prefrontal cortex (PFC). However, in many patients, neurophysiological disturbances are not associated with catastrophic cell depletion despite prolonged alcohol abuse. It is still unclear how some relevant markers of a cell's propensity to degenerate or proliferate are changed in the PFC of ALC subjects without major neurological disorders. METHODS Levels of pro-apoptotic caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA), and density of cells immunoreactive for proliferation marker Ki-67 (Ki-67-IR) were measured postmortem in the left orbitofrontal cortex (OFC) of 29 subjects with alcohol dependence and 23 nonpsychiatric comparison subjects. RESULTS Alcohol subjects had significantly higher levels of the 14 kDa C8 fragment (C8-14), an indicator of C8 activation. However, there was no change in the levels of DIABLO, XIAP, or in the DIABLO/XIAP ratio. PCNA protein level and density of Ki-67-IR cells were not significantly changed in alcoholics, although PCNA levels were increased in older ALC subjects as compared to controls. CONCLUSIONS Significant increase of a C8 activation indicator was found in alcoholism, but without significant changes in XIAP level, DIABLO/XIAP ratio, or Ki-67 labeling. These results would help to explain the absence of catastrophic cell loss in the PFC of many Brigman subjects, while still being consistent with an alcoholism-related vulnerability to slow decline in glial cells and neurons in the OFC of alcoholics.
Collapse
Affiliation(s)
- Angela Whittom
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Baicalin reverse AMPA receptor expression and neuron apoptosis in chronic unpredictable mild stress rats. Biochem Biophys Res Commun 2014; 451:467-72. [DOI: 10.1016/j.bbrc.2014.07.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022]
|
33
|
Holmes PV. Trophic Mechanisms for Exercise-Induced Stress Resilience: Potential Role of Interactions between BDNF and Galanin. Front Psychiatry 2014; 5:90. [PMID: 25120496 PMCID: PMC4112800 DOI: 10.3389/fpsyt.2014.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Current concepts of the neurobiology of stress-related disorders, such as anxiety and depression emphasize disruptions in neural plasticity and neurotrophins. The potent trophic actions of exercise, therefore, represent not only an effective means for prevention and treatment of these disorders, they also afford the opportunity to employ exercise paradigms as a basic research tool to uncover the neurobiological mechanisms underlying these disorders. Novel approaches to studying stress-related disorders focus increasingly on trophic factor signaling in corticolimbic circuits that both mediate and regulate cognitive, behavioral, and physiological responses to deleterious stress. Recent evidence demonstrates that the neural plasticity supported by these trophic mechanisms is vital for establishing and maintaining resilience to stress. Therapeutic interventions that promote these mechanisms, be they pharmacological, behavioral, or environmental, may therefore prevent or reverse stress-related mental illness by enhancing resilience. The present paper will provide an overview of trophic mechanisms responsible for the enhancement of resilience by voluntary exercise with an emphasis on brain-derived neurotrophic factor, galanin, and interactions between these two trophic factors.
Collapse
Affiliation(s)
- Philip V Holmes
- Neuroscience Program, Psychology Department, Biomedical and Health Sciences Institute, The University of Georgia , Athens, GA , USA
| |
Collapse
|