1
|
Xiao W, Moncy JC, Ghazi-Noori AR, Woodham RD, Rezaei H, Bramon E, Ritter P, Bauer M, Young AH, Fu CHY. Enhanced network synchronization connectivity following transcranial direct current stimulation (tDCS) in bipolar depression: Effects on EEG oscillations and deep learning-based predictors of clinical remission. J Affect Disord 2024; 369:576-587. [PMID: 39293596 DOI: 10.1016/j.jad.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
AIM To investigate oscillatory networks in bipolar depression, effects of a home-based tDCS treatment protocol, and potential predictors of clinical response. METHODS 20 participants (14 women) with bipolar disorder, mean age 50.75 ± 10.46 years, in a depressive episode of severe severity (mean Montgomery-Åsberg Rating Scale (MADRS) score 24.60 ± 2.87) received home-based transcranial direct current stimulation (tDCS) treatment for 6 weeks. Clinical remission defined as MADRS score < 10. Resting-state EEG data were acquired at baseline, prior to the start of treatment, and at the end of treatment, using a portable 4-channel EEG device (electrode positions: AF7, AF8, TP9, TP10). EEG band power was extracted for each electrode and phase locking value (PLV) was computed as a functional connectivity measure of phase synchronization. Deep learning was applied to pre-treatment PLV features to examine potential predictors of clinical remission. RESULTS Following treatment, 11 participants (9 women) attained clinical remission. A significant positive correlation was observed with improvements in depressive symptoms and delta band PLV in frontal and temporoparietal regional channel pairs. An interaction effect in network synchronization was observed in beta band PLV in temporoparietal regions, in which participants who attained clinical remission showed increased synchronization following tDCS treatment, which was decreased in participants who did not achieve clinical remission. Main effects of clinical remission status were observed in several PLV bands: clinical remission following tDCS treatment was associated with increased PLV in frontal and temporal regions and in several frequency bands, including delta, theta, alpha and beta, as compared to participants who did not achieve clinical remission. The highest deep learning prediction accuracy 69.45 % (sensitivity 71.68 %, specificity 66.72 %) was obtained from PLV features combined from theta, beta, and gamma bands. CONCLUSIONS tDCS treatment enhances network synchronization, potentially increasing inhibitory control, which underscores improvement in depressive symptoms. Baseline EEG-based measures might aid predicting clinical response.
Collapse
Affiliation(s)
- Wenyi Xiao
- School of Psychology, University of East London, London, UK.
| | | | | | | | - Hakimeh Rezaei
- School of Psychology, University of East London, London, UK; Technische Universität Dresden, Dresden, Germany; Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elvira Bramon
- Department of Psychiatry, University College London, London, UK
| | | | | | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK; Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK.
| |
Collapse
|
2
|
Zhu M, Xu Y, Zhang Q, Cheng X, Zhang L, Tao F, Shi J, Zhu X, Wang Z, Zhao X, Liu W. Reduction of intracortical inhibition (ICI) correlates with cognitive performance and psychopathology symptoms in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:78. [PMID: 39277614 PMCID: PMC11401854 DOI: 10.1038/s41537-024-00491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 09/17/2024]
Abstract
Cognitive impairment is a core symptom of schizophrenia (SZ), with GABAergic dysfunction in the brain potentially serving as a critical pathological mechanism underlying this condition. Intracortical inhibition (ICI), which includes short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI), can be used to assess the inhibitory function of cortical GABAergic neurons. The aim of this study was to investigate the relationship between ICI and cognitive function, as well as psychopathological symptoms, in SZ patients. We recruited 130 SZ patients and 105 healthy controls (HCs). All subjects underwent paired-pulse transcranial magnetic stimulation (ppTMS) measurements, which included resting motor threshold (RMT), SICI and LICI. The cognitive function of all subjects was assessed using the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB). The psychopathological symptoms of the SZ group were assessed using the Positive and Negative Syndrome Scale (PANSS). We examined group differences in MCCB scores, RMT, SICI, and LICI. Within the SZ group, we assessed the relationship between ICI and cognitive function, as well as psychopathological symptoms. Two-way ANOVA, Mann-Whitney U test, Receiver operating characteristic (ROC) curves, and partial Spearman correlation analysis were performed. The SZ group showed a worse cognitive score in all 6 cognitive dimensions of the MCCB compared to the HC group (all p < 0.05). The SZ group had lower degree of SICI and LICI compared to the HC group (both p < 0.05). ROC curves analysis showed that SICI and LICI all displayed good performance in differentiating SZ patients and HCs (both p < 0.05), and SICI exhibited a better performance, yielding an area under the curve (AUC) of 0.856 (95% CI 0.807-0.904). Furthermore, in the SZ group, SICI demonstrated a significant negative correlation with PANSS positive score, negative score, general psychopathology score, and total score (all pBonferroni < 0.05), and LICI demonstrated a significant negative correlation with PANSS positive score, general psychopathology score and total score (all pBonferroni < 0.05). Additionally, in the SZ group, SICI demonstrated a significant positive correlation with speed of processing score, working memory score, verbal learning score, visual learning score, and reasoning and problem-solving score of the MCCB (all pBonferroni < 0.05), while LICI was only weakly positive correlated with speed of processing score of the MCCB (r = 0.247, p = 0.005, pBonferroni = 0.03). Our results demonstrate that the reduction of ICI could serve as a trait-dependent in-vivo biomarker of GABAergic deficits for SZ and related cognitive impairments.
Collapse
Affiliation(s)
- Minghuan Zhu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Yifan Xu
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qi Zhang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Xiaoyan Cheng
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Lei Zhang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Fengzhi Tao
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Jiali Shi
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Xingjia Zhu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Zhihui Wang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Xudong Zhao
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China.
| | - Weiqing Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China.
| |
Collapse
|
3
|
Jiao X, Hu Q, Tang Y, Zhang T, Zhang J, Wang X, Sun J, Wang J. Abnormal Global Cortical Responses in Drug-Naïve Patients With Schizophrenia Following Orbitofrontal Cortex Stimulation: A Concurrent Transcranial Magnetic Stimulation-Electroencephalography Study. Biol Psychiatry 2024; 96:342-351. [PMID: 38852897 DOI: 10.1016/j.biopsych.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Abnormalities in cortical excitability and plasticity have been considered to underlie the pathophysiology of schizophrenia. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) can provide a direct evaluation of cortical responses to TMS. Here, we employed TMS-EEG to investigate cortical responses to orbitofrontal cortex (OFC) stimulation in schizophrenia. METHODS In total, we recruited 92 drug-naïve patients with first-episode schizophrenia and 51 age- and sex-matched healthy individuals. For each participant, one session of 1-Hz repetitive TMS (rTMS) was delivered to the right OFC, and TMS-EEG data were obtained to explore the change in cortical-evoked activities before and immediately after rTMS during the eyes-closed state. The MATRICS Consensus Cognitive Battery was used to assess neurocognitive performance. RESULTS The cortical responses indexed by global mean field amplitudes (i.e., P30, N45, and P60) were larger in patients with schizophrenia than in healthy control participants at baseline. Furthermore, after one session of 1-Hz rTMS over the right OFC, the N100 amplitude was significantly reduced in the healthy control group but not in the schizophrenia group. In the healthy control participants, there was a significant correlation between modulation of P60 amplitude by rTMS and working memory; however, this correlation was absent in patients with schizophrenia. CONCLUSIONS Aberrant global cortical responses following right OFC stimulation were found in patients with drug-naïve first-episode schizophrenia, supporting its significance in the primary pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Xiong Jiao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Zhenjiang Mental Health Center, Jiangsu, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Junfeng Sun
- Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Donati FL, Mayeli A, Nascimento Couto BA, Sharma K, Janssen S, Krafty RJ, Casali AG, Ferrarelli F. Prefrontal Oscillatory Slowing in Early-Course Schizophrenia Is Associated With Worse Cognitive Performance and Negative Symptoms: A Transcranial Magnetic Stimulation-Electroencephalography Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00201-5. [PMID: 39059465 DOI: 10.1016/j.bpsc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Abnormalities in dorsolateral prefrontal cortex (DLPFC) oscillations are neurophysiological signatures of schizophrenia thought to underlie its cognitive deficits. Transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a measure of cortical oscillations unaffected by sensory relay functionality and/or patients' level of engagement, which are important confounding factors in schizophrenia. Previous TMS-EEG work showed reduced fast, gamma-range oscillations and a slowing of the main DLPFC oscillatory frequency, or natural frequency, in chronic schizophrenia. However, it is unclear whether this DLPFC natural frequency slowing is present in early-course schizophrenia (EC-SCZ) and is associated with symptom severity and cognitive dysfunction. METHODS We applied TMS-EEG to the left DLPFC in 30 individuals with EC-SCZ and 28 healthy control participants. Goal-directed working memory performance was assessed using the AX-Continuous Performance Task. The EEG frequency with the highest cumulative power at the stimulation site, or natural frequency, was extracted. We also calculated the local relative spectral power as the average power in each frequency band divided by the broadband power. RESULTS Compared with the healthy control group, the EC-SCZ group had reduced DLPFC natural frequency (p = .0000002, Cohen's d = -2.32) and higher DLPFC beta-range relative spectral power (p = .0003, Cohen's d = 0.77). In the EC-SCZ group, the DLPFC natural frequency was inversely associated with negative symptoms. Across all participants, the beta band relative spectral power negatively correlated with AX-Continuous Performance Task performance. CONCLUSIONS DLPFC oscillatory slowing is an early pathophysiological biomarker of schizophrenia that is associated with its symptom severity and cognitive impairments. Future work should assess whether noninvasive neurostimulation, including repetitive TMS, can ameliorate prefrontal oscillatory deficits and related clinical functions in patients with EC-SCZ.
Collapse
Affiliation(s)
- Francesco L Donati
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Health Science, University of Milan, Milan, Italy
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kamakashi Sharma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sabine Janssen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert J Krafty
- Department of Biostatistics & Bioinformatics, Emory University, Atlanta, Georgia
| | - Adenauer G Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
5
|
Taniguchi K, Kaneko N, Wada M, Moriyama S, Nakajima S, Mimura M, Noda Y. Neurophysiological profiles of patients with bipolar disorders as probed with transcranial magnetic stimulation: A systematic review. Neuropsychopharmacol Rep 2024. [PMID: 38932486 DOI: 10.1002/npr2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
AIM Bipolar disorder (BD) has a significant impact on global health, yet its neurophysiological basis remains poorly understood. Conventional treatments have limitations, highlighting the need for a better understanding of the neurophysiology of BD for early diagnosis and novel therapeutic strategies. DESIGN Employing a systematic review approach of the PRISMA guidelines, this study assessed the usefulness and validity of transcranial magnetic stimulation (TMS) neurophysiology in patients with BD. METHODS Databases searched included PubMed, MEDLINE, Embase, and PsycINFO, covering studies from January 1985 to January 2024. RESULTS Out of 6597 articles screened, nine studies met the inclusion criteria, providing neurophysiological insights into the pathophysiological basis of BD using TMS-electromyography and TMS-electroencephalography methods. Findings revealed significant neurophysiological impairments in patients with BD compared to healthy controls, specifically in cortical inhibition and excitability. In particular, short-interval cortical inhibition (SICI) was consistently diminished in BD across the studies, which suggests a fundamental impairment of cortical inhibitory function in BD. This systematic review corroborates the potential utility of TMS neurophysiology in elucidating the pathophysiological basis of BD. Specifically, the reduced cortical inhibition in the SICI paradigm observed in patients with BD suggests gamma-aminobutyric acid (GABA)-A receptor-mediated dysfunction, but results from other TMS paradigms have been inconsistent. Thus, complex neurophysiological processes may be involved in the pathological basis underlying BD. This study demonstrated that BD has a neural basis involving impaired GABAergic function, and it is highly expected that further research on TMS neurophysiology will further elucidate the pathophysiological basis of BD.
Collapse
Affiliation(s)
- Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Naotsugu Kaneko
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sotaro Moriyama
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Xue R, Li X, Deng W, Liang C, Chen M, Chen J, Liang S, Wei W, Zhang Y, Yu H, Xu Y, Guo W, Li T. Shared and distinct electroencephalogram microstate abnormalities across schizophrenia, bipolar disorder, and depression. Psychol Med 2024:1-8. [PMID: 38738283 DOI: 10.1017/s0033291724001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
BACKGROUND Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear. METHODS This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design. RESULTS Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups. CONCLUSIONS Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.
Collapse
Affiliation(s)
- Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chengqian Liang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingxia Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Sugai Liang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yamin Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yan Xu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
8
|
Farzan F. Transcranial Magnetic Stimulation-Electroencephalography for Biomarker Discovery in Psychiatry. Biol Psychiatry 2024; 95:564-580. [PMID: 38142721 DOI: 10.1016/j.biopsych.2023.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Current diagnosis and treatment of psychiatric illnesses are still based on behavioral observations and self-reports, commonly leading to prolonged untreated illness. Biological markers (biomarkers) may offer an opportunity to revolutionize clinical psychiatry practice by helping provide faster and potentially more effective therapies. Transcranial magnetic stimulation concurrent with electroencephalography (TMS-EEG) is a noninvasive brain mapping methodology that can assess the functions and dynamics of specific brain circuitries in awake humans and aid in biomarker discovery. This article provides an overview of TMS-EEG-based biomarkers that may hold potential in psychiatry. The methodological readiness of the TMS-EEG approach and steps in the validation of TMS-EEG biomarkers for clinical utility are discussed. Biomarker discovery with TMS-EEG is in the early stages, and several validation steps are still required before clinical implementations are realized. Thus far, TMS-EEG predictors of response to magnetic brain stimulation treatments in particular have shown promise for translation to clinical practice. Larger-scale studies can confirm validation followed by biomarker-informed trials to assess added value compared to existing practice.
Collapse
Affiliation(s)
- Faranak Farzan
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Xue R, Li X, Chen J, Liang S, Yu H, Zhang Y, Wei W, Xu Y, Deng W, Guo W, Li T. Shared and Distinct Topographic Alterations of Alpha-Range Resting EEG Activity in Schizophrenia, Bipolar Disorder, and Depression. Neurosci Bull 2023; 39:1887-1890. [PMID: 37610645 PMCID: PMC10661671 DOI: 10.1007/s12264-023-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/07/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Rui Xue
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Jianning Chen
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Sugai Liang
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yamin Zhang
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Xu
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Parmigiani S, Ross JM, Cline CC, Minasi CB, Gogulski J, Keller CJ. Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:805-814. [PMID: 36894435 PMCID: PMC10276171 DOI: 10.1016/j.bpsc.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Noninvasive brain stimulation and neuroimaging have revolutionized human neuroscience with a multitude of applications, including diagnostic subtyping, treatment optimization, and relapse prediction. It is therefore particularly relevant to identify robust and clinically valuable brain biomarkers linking symptoms to their underlying neural mechanisms. Brain biomarkers must be reproducible (i.e., have internal reliability) across similar experiments within a laboratory and be generalizable (i.e., have external reliability) across experimental setups, laboratories, brain regions, and disease states. However, reliability (internal and external) is not alone sufficient; biomarkers also must have validity. Validity describes closeness to a true measure of the underlying neural signal or disease state. We propose that these metrics, reliability and validity, should be evaluated and optimized before any biomarker is used to inform treatment decisions. Here, we discuss these metrics with respect to causal brain connectivity biomarkers from coupling transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We discuss controversies around TMS-EEG stemming from the multiple large off-target components (noise) and relatively weak genuine brain responses (signal), as is unfortunately often the case in noninvasive human neuroscience. We review the current state of TMS-EEG recordings, which consist of a mix of reliable noise and unreliable signal. We describe methods for evaluating TMS-EEG biomarkers, including how to assess internal and external reliability across facilities, cognitive states, brain networks, and disorders and how to validate these biomarkers using invasive neural recordings or treatment response. We provide recommendations to increase reliability and validity, discuss lessons learned, and suggest future directions for the field.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher B Minasi
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California.
| |
Collapse
|
11
|
Ehlers CL, Wills D, Karriker-Jaffe KJ, Phillips E, Kim C, Gilder DA. Event-related Oscillations to Emotional Faces are Related to a History of Internalizing Disorders. Clin EEG Neurosci 2023; 54:420-433. [PMID: 35379012 PMCID: PMC9681067 DOI: 10.1177/15500594221088258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Event-related oscillations (EROs) may represent sensitive biomarkers or endophenotypes for disorders that underlie risk behaviors such as suicidal thoughts and actions. In this study, young adults of American Indian (AI) (n = 821) and Mexican American (MA) (n = 721) ancestry (age 18-30 yrs) were clinically assessed for internalizing and externalizing disorders, and an internalizing scale was generated by extracting core diagnostic items from 6 lifetime DSM5-compatible diagnoses (social phobia, panic disorder, agoraphobia, obsessive compulsive disorder, post-traumatic stress disorder, major depressive episode) and symptoms of suicidality. EROs were generated to sad, happy and neutral faces, and energy and phase locking of delta ERO oscillations were assessed in frontal areas. An increase in delta ERO energy was found in the frontal lead (FZ) following presentation of the sad facial expressions in those with a history of 10 or more internalizing symptoms compared to those with no symptoms. Increases in delta ERO energy in FZ were also associated with a diagnosis of major depressive disorder (MDD), but not with anxiety disorders or antisocial personality disorder/conduct disorders (ASP). Major depression was also associated with increases in cross-cortical phase-locking (FZ-PZ). A decrease in the percentage of correctly identified neutral faces also was seen among those with 10 or more internalizing symptoms compared to those without internalizing symptoms, and in those with anxiety disorders, but not in those with ASP or MDD as compared to their controls. These findings suggest ERO measures may represent important potential biomarkers of depressive disorders as well as risk indicators for suicidal behaviors.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Derek Wills
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Evelyn Phillips
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Corrine Kim
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David A Gilder
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Gallina J, Marsicano G, Romei V, Bertini C. Electrophysiological and Behavioral Effects of Alpha-Band Sensory Entrainment: Neural Mechanisms and Clinical Applications. Biomedicines 2023; 11:biomedicines11051399. [PMID: 37239069 DOI: 10.3390/biomedicines11051399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Alpha-band (7-13 Hz) activity has been linked to visuo-attentional performance in healthy participants and to impaired functionality of the visual system in a variety of clinical populations including patients with acquired posterior brain lesion and neurodevelopmental and psychiatric disorders. Crucially, several studies suggested that short uni- and multi-sensory rhythmic stimulation (i.e., visual, auditory and audio-visual) administered in the alpha-band effectively induces transient changes in alpha oscillatory activity and improvements in visuo-attentional performance by synchronizing the intrinsic brain oscillations to the external stimulation (neural entrainment). The present review aims to address the current state of the art on the alpha-band sensory entrainment, outlining its potential functional effects and current limitations. Indeed, the results of the alpha-band entrainment studies are currently mixed, possibly due to the different stimulation modalities, task features and behavioral and physiological measures employed in the various paradigms. Furthermore, it is still unknown whether prolonged alpha-band sensory entrainment might lead to long-lasting effects at a neural and behavioral level. Overall, despite the limitations emerging from the current literature, alpha-band sensory entrainment may represent a promising and valuable tool, inducing functionally relevant changes in oscillatory activity, with potential rehabilitative applications in individuals characterized by impaired alpha activity.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Vincenzo Romei
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| |
Collapse
|
13
|
Donati FL, Mayeli A, Sharma K, Janssen SA, Lagoy AD, Casali AG, Ferrarelli F. Natural Oscillatory Frequency Slowing in the Premotor Cortex of Early-Course Schizophrenia Patients: A TMS-EEG Study. Brain Sci 2023; 13:534. [PMID: 37190501 PMCID: PMC10136843 DOI: 10.3390/brainsci13040534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Despite the heavy burden of schizophrenia, research on biomarkers associated with its early course is still ongoing. Single-pulse Transcranial Magnetic Stimulation coupled with electroencephalography (TMS-EEG) has revealed that the main oscillatory frequency (or "natural frequency") is reduced in several frontal brain areas, including the premotor cortex, of chronic patients with schizophrenia. However, no study has explored the natural frequency at the beginning of illness. Here, we used TMS-EEG to probe the intrinsic oscillatory properties of the left premotor cortex in early-course schizophrenia patients (<2 years from onset) and age/gender-matched healthy comparison subjects (HCs). State-of-the-art real-time monitoring of EEG responses to TMS and noise-masking procedures were employed to ensure data quality. We found that the natural frequency of the premotor cortex was significantly reduced in early-course schizophrenia compared to HCs. No correlation was found between the natural frequency and age, clinical symptom severity, or dose of antipsychotic medications at the time of TMS-EEG. This finding extends to early-course schizophrenia previous evidence in chronic patients and supports the hypothesis of a deficit in frontal cortical synchronization as a core mechanism underlying this disorder. Future work should further explore the putative role of frontal natural frequencies as early pathophysiological biomarkers for schizophrenia.
Collapse
Affiliation(s)
- Francesco L. Donati
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 456, Pittsburgh, PA 15213, USA
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 456, Pittsburgh, PA 15213, USA
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Kamakashi Sharma
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sabine A. Janssen
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Alice D. Lagoy
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 456, Pittsburgh, PA 15213, USA
| | - Adenauer G. Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 456, Pittsburgh, PA 15213, USA
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
15
|
Ippolito G, Bertaccini R, Tarasi L, Di Gregorio F, Trajkovic J, Battaglia S, Romei V. The Role of Alpha Oscillations among the Main Neuropsychiatric Disorders in the Adult and Developing Human Brain: Evidence from the Last 10 Years of Research. Biomedicines 2022; 10:biomedicines10123189. [PMID: 36551945 PMCID: PMC9775381 DOI: 10.3390/biomedicines10123189] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha oscillations (7-13 Hz) are the dominant rhythm in both the resting and active brain. Accordingly, translational research has provided evidence for the involvement of aberrant alpha activity in the onset of symptomatological features underlying syndromes such as autism, schizophrenia, major depression, and Attention Deficit and Hyperactivity Disorder (ADHD). However, findings on the matter are difficult to reconcile due to the variety of paradigms, analyses, and clinical phenotypes at play, not to mention recent technical and methodological advances in this domain. Herein, we seek to address this issue by reviewing the literature gathered on this topic over the last ten years. For each neuropsychiatric disorder, a dedicated section will be provided, containing a concise account of the current models proposing characteristic alterations of alpha rhythms as a core mechanism to trigger the associated symptomatology, as well as a summary of the most relevant studies and scientific contributions issued throughout the last decade. We conclude with some advice and recommendations that might improve future inquiries within this field.
Collapse
Affiliation(s)
- Giuseppe Ippolito
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Francesco Di Gregorio
- UO Medicina Riabilitativa e Neuroriabilitazione, Azienda Unità Sanitaria Locale, 40133 Bologna, Italy
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Università di Torino, 10124 Torino, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
16
|
Rostami M, Zomorrodi R, Rostami R, Hosseinzadeh GA. Impact of methodological variability on EEG responses evoked by transcranial magnetic stimulation: a meta-analysis. Clin Neurophysiol 2022; 142:154-180. [DOI: 10.1016/j.clinph.2022.07.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
|
17
|
Rossi S, Santarnecchi E, Feurra M. Noninvasive brain stimulation and brain oscillations. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:239-247. [PMID: 35034738 DOI: 10.1016/b978-0-12-819410-2.00013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent technological advances in the field of noninvasive brain stimulation (NIBS) have allowed to interact with endogenous brain oscillatory activity, the main neural communication code of our brain, opening new scenarios for transient modifications of cognitive and behavioral performances: such a possibility can be capitalized both for research purposes in healthy subjects, as well as in the context of therapeutic and rehabilitative settings. Among NiBS methodologies, transcranial magnetic stimulation (TMS) has been the first used to this purpose, and also thanks to the technical development of TMS-EEG co-registering systems, the mechanistic knowledge regarding the role of brain oscillations has been improved. Another approach to brain oscillations considers electric stimulation methods, such as transcranial direct current stimulation (tDCS), and especially transcranial alternating current stimulation (tACS), for which -however- some technical and conceptual caveats have emerged. In this chapter, we briefly review the uses of NiBS in this field up to now, by providing an update on the current status of research applications as well as of its attempts of exploitation in translational clinical applications, especially regarding motor disorders and for understanding and reducing some psychiatric symptoms.
Collapse
Affiliation(s)
- Simone Rossi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Emiliano Santarnecchi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
18
|
The rt-TEP tool: real-time visualization of TMS-Evoked Potential to maximize cortical activation and minimize artifacts. J Neurosci Methods 2022; 370:109486. [DOI: 10.1016/j.jneumeth.2022.109486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
|
19
|
di Hou M, Santoro V, Biondi A, Shergill SS, Premoli I. A systematic review of TMS and neurophysiological biometrics in patients with schizophrenia. J Psychiatry Neurosci 2021; 46:E675-E701. [PMID: 34933940 PMCID: PMC8695525 DOI: 10.1503/jpn.210006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation can be combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) to evaluate the excitatory and inhibitory functions of the cerebral cortex in a standardized manner. It has been postulated that schizophrenia is a disorder of functional neural connectivity underpinned by a relative imbalance of excitation and inhibition. The aim of this review was to provide a comprehensive overview of TMS-EMG and TMS-EEG research in schizophrenia, focused on excitation or inhibition, connectivity, motor cortical plasticity and the effect of antipsychotic medications, symptom severity and illness duration on TMS-EMG and TMS-EEG indices. METHODS We searched PsycINFO, Embase and Medline, from database inception to April 2020, for studies that included TMS outcomes in patients with schizophrenia. We used the following combination of search terms: transcranial magnetic stimulation OR tms AND interneurons OR glutamic acid OR gamma aminobutyric acid OR neural inhibition OR pyramidal neurons OR excita* OR inhibit* OR GABA* OR glutam* OR E-I balance OR excitation-inhibition balance AND schizoaffective disorder* OR Schizophrenia OR schizophreni*. RESULTS TMS-EMG and TMS-EEG measurements revealed deficits in excitation or inhibition, functional connectivity and motor cortical plasticity in patients with schizophrenia. Increased duration of the cortical silent period (a TMS-EMG marker of γ-aminobutyric acid B receptor activity) with clozapine was a relatively consistent finding. LIMITATIONS Most of the studies used patients with chronic schizophrenia and medicated patients, employed cross-sectional group comparisons and had small sample sizes. CONCLUSION TMS-EMG and TMS-EEG offer an opportunity to develop a novel and improved understanding of the physiologic processes that underlie schizophrenia and to assess the therapeutic effect of antipsychotic medications. In the future, these techniques may also help predict disease progression and further our understanding of the excitatory/inhibitory balance and its implications for mechanisms that underlie treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Meng di Hou
- From the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Hou, Shergill); the Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Santoro, Biondi, Premoli); and the Kent and Medway Medical School, Canterbury, UK (Shergill)
| | | | | | | | | |
Collapse
|
20
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
21
|
TMS-EEG Research to Elucidate the Pathophysiological Neural Bases in Patients with Schizophrenia: A Systematic Review. J Pers Med 2021; 11:jpm11050388. [PMID: 34068580 PMCID: PMC8150818 DOI: 10.3390/jpm11050388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental disorder, and its pathogenesis is complex. Recently, the glutamate hypothesis and the excitatory/inhibitory (E/I) imbalance hypothesis have been proposed as new pathological hypotheses for SCZ. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a non-invasive novel method that enables us to investigate the cortical activity in humans, and this modality is a suitable approach to evaluate these hypotheses. In this study, we systematically reviewed TMS-EEG studies that investigated the cortical dysfunction of SCZ to examine the emerging hypotheses for SCZ. The following search terms were set in this systematic review: (TMS or ‘transcranial magnetic stimulation’) and (EEG or electroencephalog*) and (schizophrenia). We inspected the articles written in English that examined humans and were published by March 2020 via MEDLINE, Embase, PsycINFO, and PubMed. The initial search generated 379 studies, and 14 articles were finally identified. The current review noted that patients with SCZ demonstrated the E/I deficits in the prefrontal cortex, whose dysfunctions were also associated with cognitive impairment and clinical severity. Moreover, TMS-induced gamma activity in the prefrontal cortex was related to positive symptoms, while theta/delta band activities were associated with negative symptoms in SCZ. Thus, this systematic review discusses aspects of the pathophysiological neural basis of SCZ that are not explained by the traditional dopamine hypothesis exclusively, based on the findings of previous TMS-EEG research, mainly in terms of the E/I imbalance hypothesis. In conclusion, TMS-EEG neurophysiology can be applied to establish objective biomarkers for better diagnosis as well as to develop new therapeutic strategies for patients with SCZ.
Collapse
|
22
|
Ferrarelli F, Phillips M. Examining and Modulating Neural Circuits in Psychiatric Disorders With Transcranial Magnetic Stimulation and Electroencephalography: Present Practices and Future Developments. Am J Psychiatry 2021; 178:400-413. [PMID: 33653120 PMCID: PMC8119323 DOI: 10.1176/appi.ajp.2020.20071050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique uniquely equipped to both examine and modulate neural systems and related cognitive and behavioral functions in humans. As an examination tool, TMS can be used in combination with EEG (TMS-EEG) to elucidate directly, objectively, and noninvasively the intrinsic properties of a specific cortical region, including excitation, inhibition, reactivity, and oscillatory activity, irrespective of the individual's conscious effort. Additionally, when applied in repetitive patterns, TMS has been shown to modulate brain networks in healthy individuals, as well as ameliorate symptoms in individuals with psychiatric disorders. The key role of TMS in assessing and modulating neural dysfunctions and associated clinical and cognitive deficits in psychiatric populations is therefore becoming increasingly evident. In this article, the authors review TMS-EEG studies in schizophrenia and mood disorders, as most TMS-EEG studies to date have focused on individuals with these disorders. The authors present the evidence on the efficacy of repetitive TMS (rTMS) and theta burst stimulation (TBS), when targeting specific cortical areas, in modulating neural circuits and ameliorating symptoms and abnormal behaviors in individuals with psychiatric disorders, especially when informed by resting-state and task-related neuroimaging measures. Examples of how the combination of TMS-EEG assessments and rTMS and TBS paradigms can be utilized to both characterize and modulate neural circuit alterations in individuals with psychiatric disorders are also provided. This approach, along with the evaluation of the behavioral effects of TMS-related neuromodulation, has the potential to lead to the development of more effective and personalized interventions for individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Mary Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
23
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
24
|
Zhang R, Zhang L, Wei S, Wang P, Jiang X, Tang Y, Wang F. Increased Amygdala-Paracentral Lobule/Precuneus Functional Connectivity Associated With Patients With Mood Disorder and Suicidal Behavior. Front Hum Neurosci 2021; 14:585664. [PMID: 33519398 PMCID: PMC7843440 DOI: 10.3389/fnhum.2020.585664] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Mood disorder patients have greater suicide risk than members of the general population, but how suicidal behavior relates to brain functions has not been fully elucidated. This study investigated how functional connectivity (FC) values between the right/left amygdala and the whole brain relate to suicidal behavior in patients with mood disorder. The participants in this study were 100 mood disorder patients with suicidal behavior (SB group), 120 mood disorder patients with non-suicidal behavior (NSB group), and 138 age- and gender-matched healthy controls (HC group). Whole-brain FC values among the three groups were compared using an analysis of covariance (ANCOVA). Compared to the NSB and HC groups, increased FC values in the right amygdala-bilateral paracentral lobule/precuneus circuit were observed in the SB group (Bonferroni-corrected, p < 0.017). The FC values in the NSB group did not differ significantly from those in the HC group (Bonferroni-corrected, p > 0.017). Moreover, there were no significant differences in FC values between mood disorder patients with suicide attempt (SA group) and mood disorder patients with suicidal ideation (SI group), while the FC values between the right amygdala and bilateral paracentral lobule/precuneus in the SA group were higher than the mean in the SI group. These findings suggest that right amygdala-paracentral lobule/precuneus dysfunction has an important role in patients with mood disorder and suicidal behavior.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Luheng Zhang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shengnan Wei
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Pengshuo Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China.,Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China.,Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
25
|
Vallesi A, Del Felice A, Capizzi M, Tafuro A, Formaggio E, Bisiacchi P, Masiero S, Ambrosini E. Natural oscillation frequencies in the two lateral prefrontal cortices induced by Transcranial Magnetic Stimulation. Neuroimage 2020; 227:117655. [PMID: 33333318 DOI: 10.1016/j.neuroimage.2020.117655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022] Open
Abstract
Different cortical regions respond with distinct rhythmic patterns of neural oscillations to Transcranial Magnetic Stimulation (TMS). We investigated natural frequencies induced by TMS in left and right homologous dorsolateral prefrontal cortices (DLPFC) and related hemispheric differences. In 12 healthy young adults, single-pulse TMS was delivered in different blocks close to F3 and F4 channels to target left and right DLPFC. An occipital site near PO3 was stimulated as control. TMS-related spectral perturbation analyses were performed on recorded EEG data. A widespread unspecific increase in theta power was observed for all stimulation sites. However, occipital TMS induced greater alpha activity and a 10.58 Hz natural frequency, while TMS over the left and right DLPFC resulted in similar beta band modulations and a natural frequency of 18.77 and 18.5 Hz, respectively. In particular, TMS-related specific increase in beta activity was stronger for the right than the left DLPFC. The right DLPFC is more specifically tuned to its natural beta frequency when it is directly stimulated by TMS than with TMS over the left counterpart (or a posterior region), while the left DLPFC increases its beta activity more similarly irrespective of whether it is directly stimulated or through right homologous stimulation. These results yield important implications for both basic neuroscience research on inter-hemispheric prefrontal interactions and clinical applications.
Collapse
Affiliation(s)
- Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padua, Padua, Italy; Brain Imaging and Neural Dynamics Research Group, IRCCS, San Camillo Hospital, Venice Italy.
| | - Alessandra Del Felice
- Section of Rehabilitation Department of Neuroscience, University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Mariagrazia Capizzi
- Section of Rehabilitation Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Emanuela Formaggio
- Section of Rehabilitation Department of Neuroscience, University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Patrizia Bisiacchi
- Padova Neuroscience Center, University of Padua, Padua, Italy; EA 4556 EPSYLON, Université Paul Valéry, Montpellier 3, France
| | - Stefano Masiero
- Section of Rehabilitation Department of Neuroscience, University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Ettore Ambrosini
- Padova Neuroscience Center, University of Padua, Padua, Italy; Department of Neuroscience, University of Padua, Padua, Italy; Department of General Psychology, University of Padua, Padua, Italy.
| |
Collapse
|
26
|
Vittala A, Murphy N, Maheshwari A, Krishnan V. Understanding Cortical Dysfunction in Schizophrenia With TMS/EEG. Front Neurosci 2020; 14:554. [PMID: 32547362 PMCID: PMC7270174 DOI: 10.3389/fnins.2020.00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
In schizophrenia and related disorders, a deeper mechanistic understanding of neocortical dysfunction will be essential to developing new diagnostic and therapeutic techniques. To this end, combined transcranial magnetic stimulation and electroencephalography (TMS/EEG) provides a non-invasive tool to simultaneously perturb and measure neurophysiological correlates of cortical function, including oscillatory activity, cortical inhibition, connectivity, and synchronization. In this review, we summarize the findings from a variety of studies that apply TMS/EEG to understand the fundamental features of cortical dysfunction in schizophrenia. These results lend to future applications of TMS/EEG in understanding the pathophysiological mechanisms underlying cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Aadith Vittala
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Nicholas Murphy
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
27
|
Pomytkin AN, Kaleda VG, Klochkova IV, Lebedeva IS. [The effectiveness of high-frequency rhythmic transcranial magnetic stimulation in endogenous depressive disorders in youth]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:38-45. [PMID: 31994512 DOI: 10.17116/jnevro201911912138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM To search for neurophysiological predictors of the effectiveness of rhythmic transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex in patients with depressive disorder of various nosology. MATERIAL AND METHODS Thirty-four young male patients with protracted treatment resistant depression were studied using psychopathological, psychometric methods and encephalography. A search for predictors of therapeutic efficacy was carried out in a wide range of neurophysiological indicators using different high-frequency rTMS protocols (10 Hz and 20 Hz).. RESULTS AND CONCLUSION The most significant changes were obtained using rTMS with a frequency of 20 Hz. A favorable effect of treatment was correlated with higher spectral power of the alpha- and beta 1-rhythm bands in EEG.
Collapse
Affiliation(s)
| | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| | | | | |
Collapse
|
28
|
Vlcek P, Bares M, Novak T, Brunovsky M. Baseline Difference in Quantitative Electroencephalography Variables Between Responders and Non-Responders to Low-Frequency Repetitive Transcranial Magnetic Stimulation in Depression. Front Psychiatry 2020; 11:83. [PMID: 32174854 PMCID: PMC7057228 DOI: 10.3389/fpsyt.2020.00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depressive disorder, with outcomes approaching 45-55% response and 30-40% remission. Eligible predictors of treatment outcome, however, are still lacking. Few studies have investigated quantitative electroencephalography (QEEG) parameters as predictors of rTMS treatment outcome and none of them have addressed the source localization techniques to predict the response to low-frequency rTMS (LF rTMS). We investigated electrophysiological differences based on scalp EEG data and inverse solution method, exact low-resolution brain electromagnetic tomography (eLORETA), between responders and non-responders to LF rTMS in resting brain activity recorded prior to the treatment. Twenty-five unmedicated depressive patients (mean age of 45.7 years, 20 females) received a 4-week treatment of LF rTMS (1 Hz; 20 sessions per 600 pulses; 100% of the motor threshold) over the right dorsolateral prefrontal cortex. Comparisons between responders (≥50% reduction in Montgomery-Åsberg Depression Rating Scale score) and non-responders were made at baseline for measures of eLORETA current density, spectral absolute power, and inter-hemispheric and intra-hemispheric EEG asymmetry. Responders were found to have lower current source densities in the alpha-2 and beta-1 frequency bands bilaterally (with predominance on the left side) in the inferior, medial, and middle frontal gyrus, precentral gyrus, cingulate gyrus, anterior cingulate, and insula. The most pronounced difference was found in the left middle frontal gyrus for alpha-2 and beta-1 bands (p < 0.05). Using a spectral absolute power analysis, we found a negative correlation between the absolute power in beta and theta frequency bands on the left frontal electrode F7 and the change in depressive symptomatology. None of the selected asymmetries significantly differentiated responders from non-responders in any frequency band. Pre-treatment reduction of alpha-2 and beta-1 sources, but not QEEG asymmetry, was found in patients with major depressive disorder who responded to LF rTMS treatment. Prospective trials with larger groups of subjects are needed to further validate these findings.
Collapse
Affiliation(s)
- Premysl Vlcek
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Bares
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomas Novak
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Brunovsky
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
29
|
Noda Y. Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: A systematic review. Psychiatry Clin Neurosci 2020; 74:12-34. [PMID: 31587446 DOI: 10.1111/pcn.12936] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/14/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
Transcranial magnetic stimulation (TMS) can depolarize the neurons directly under the coil when applied to the cerebral cortex, and modulate the neural circuit associated with the stimulation site, which makes it possible to measure the neurophysiological index to evaluate excitability and inhibitory functions. Concurrent TMS and electroencephalography (TMS-EEG) has been developed to assess the neurophysiological characteristics of cortical regions other than the motor cortical region noninvasively. The aim of this review is to comprehensively discuss TMS-EEG research in the healthy brain focused on excitability, inhibition, and plasticity following neuromodulatory TMS paradigms from a neurophysiological perspective. A search was conducted in PubMed to identify articles that examined humans and that were written in English and published by September 2018. The search terms were as follows: (TMS OR 'transcranial magnetic stimulation') AND (EEG OR electroencephalog*) NOT (rTMS OR 'repetitive transcranial magnetic stimulation' OR TBS OR 'theta burst stimulation') AND (healthy). The study presents an overview of TMS-EEG methodology and neurophysiological indices and reviews previous findings from TMS-EEG in healthy individuals. Furthermore, this review discusses the potential application of TMS-EEG neurophysiology in the clinical setting to study healthy and diseased brain conditions in the future. Combined TMS-EEG is a powerful tool to probe and map neural circuits in the human brain noninvasively and represents a promising approach for determining the underlying pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Multidisciplinary Translational Research Lab, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Rossini P, Di Iorio R, Bentivoglio M, Bertini G, Ferreri F, Gerloff C, Ilmoniemi R, Miraglia F, Nitsche M, Pestilli F, Rosanova M, Shirota Y, Tesoriero C, Ugawa Y, Vecchio F, Ziemann U, Hallett M. Methods for analysis of brain connectivity: An IFCN-sponsored review. Clin Neurophysiol 2019; 130:1833-1858. [DOI: 10.1016/j.clinph.2019.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
|
31
|
Hui J, Tremblay S, Daskalakis ZJ. The Current and Future Potential of Transcranial Magnetic Stimulation With Electroencephalography in Psychiatry. Clin Pharmacol Ther 2019; 106:734-746. [DOI: 10.1002/cpt.1541] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jeanette Hui
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Sara Tremblay
- Royal's Institute of Mental Health Research Ottawa Ontario Canada
- School of Psychology University of Ottawa Ottawa Ontario Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| |
Collapse
|
32
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
33
|
Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat Rev Neurol 2019; 15:343-352. [DOI: 10.1038/s41582-019-0166-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Ferrarelli F, Kaskie RE, Graziano B, Reis CC, Casali AG. Abnormalities in the evoked frontal oscillatory activity of first-episode psychosis: A TMS/EEG study. Schizophr Res 2019; 206:436-439. [PMID: 30473213 DOI: 10.1016/j.schres.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
Abstract
TMS with simultaneous EEG allows assessing the intrinsic oscillatory activity of cortical neurons. We recently showed reduced frontal cortical oscillations in chronic schizophrenia (SCZ). Here we investigated the oscillatory activity of first-episode psychosis (FEP) patients after TMS of a frontal area, the motor cortex. Compared to healthy controls, FEP patients had significantly reduced beta/low gamma oscillations, which were associated to worse clinical symptoms. Altogether, this study demonstrates that TMS/EEG recordings: 1) are feasible in acute, early-course psychotic patients; and 2) reveal intrinsic oscillatory deficits at illness onset, which may help design more effective, early interventions in SCZ.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Rachel E Kaskie
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bianca Graziano
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catarina Cardoso Reis
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Adenauer G Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| |
Collapse
|
35
|
Jia L, Sun Z, Shi D, Wang M, Jia J, He Y, Xue F, Ren Y, Yang J, Ma X. Effects of different patterns of electric stimulation of the ventromedial prefrontal cortex on hippocampal–prefrontal coherence in a rat model of depression. Behav Brain Res 2019; 356:179-188. [DOI: 10.1016/j.bbr.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022]
|
36
|
Pivik R, Andres A, Tennal KB, Gu Y, Downs H, Bellando BJ, Jarratt K, Cleves MA, Badger TM. Resting gamma power during the postnatal critical period for GABAergic system development is modulated by infant diet and sex. Int J Psychophysiol 2019; 135:73-94. [DOI: 10.1016/j.ijpsycho.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
|
37
|
A Homer 1 gene variant influences brain structure and function, lithium effects on white matter, and antidepressant response in bipolar disorder: A multimodal genetic imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:88-95. [PMID: 29079138 DOI: 10.1016/j.pnpbp.2017.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND The Homer family of postsynaptic scaffolding proteins plays a crucial role in glutamate-mediated synaptic plasticity, a phenotype associated with Bipolar Disorder (BD). Homer is a target for antidepressants and mood stabilizers. The AA risk genotype of the Homer rs7713917 A>G SNP has been associated with mood disorders and suicide, and in healthy humans with brain function. Despite the evidence linking Homer 1 gene and function to mood disorder, as well as its involvement in animal models of depression, no study has yet investigated the role of Homer in bipolar depression and treatment response. METHODS We studied 199 inpatients, affected by a major depressive episode in course of BD. 147 patients were studied with structural MRI of grey and white matter, and 50 with BOLD functional MRI of emotional processing. 158 patients were treated with combined total sleep deprivation and light therapy. RESULTS At neuroimaging, patients with the AA genotype showed lower grey matter volumes in medial prefrontal cortex, higher BOLD fMRI neural responses to emotional stimuli in anterior cingulate cortex, and lower fractional anisotropy in bilateral frontal WM tracts. Lithium treatment increased axial diffusivity more in AA patients than in G*carriers. At clinical evaluation, the same AA homozygotes showed a worse antidepressant response to combined SD and LT. CONCLUSIONS rs7713917 influenced brain grey and white matter structure and function in BD, long term effects of lithium on white matter structure, and antidepressant response to chronotherapeutics, thus suggesting that glutamatergic neuroplasticity and Homer 1 function might play a role in BD psychopathology and response to treatment.
Collapse
|
38
|
Kaskie RE, Ferrarelli F. Investigating the neurobiology of schizophrenia and other major psychiatric disorders with Transcranial Magnetic Stimulation. Schizophr Res 2018; 192:30-38. [PMID: 28478887 DOI: 10.1016/j.schres.2017.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
Characterizing the neurobiology of schizophrenia and other major psychiatric disorders is one of the main challenges of the current research in psychiatry. The availability of Transcranial Magnetic Stimulation (TMS) allows to directly probe virtually any cortical areas, thus providing a unique way to assess the neurophysiological properties of cortical neurons. This article presents a review of studies employing TMS in combination with Motor Evoked Potentials (TMS/MEPs) and high density Electroencephalogram (TMS/hd-EEG) in schizophrenia and other major psychiatric disorders. Studies were identified by conducting a PubMed search using the following search item: "transcranial magnetic stimulation and (Schizophrenia or OCD or MDD or ADHD)". Studies that utilized TMS/MEP and/or TMS/hd-EEG measures to characterize cortical excitability, inhibition, oscillatory activity, and/or connectivity in psychiatric patients were selected. Across disorders, patients displayed a pattern of reduced cortical inhibition, and to a lesser extent increased excitability, in the motor cortex, which was most consistently established in Schizophrenia. Furthermore, psychiatric patients showed abnormalities in a number of TMS-evoked EEG oscillations, which was most prominent in the prefrontal cortex of Schizophrenia relative to healthy comparison subjects. Overall, results from this review point to significant impairments in cortical excitability, inhibition, and oscillatory activity, especially in frontal areas, in several major psychiatric disorders. Building on these findings, future studies employing TMS-based experimental paradigms may help elucidating the neurobiology of these psychiatric disorders, and may assess the contribution of TMS-related measures in monitoring and possibly maximizing the effectiveness of treatment interventions in psychiatric populations.
Collapse
|
39
|
Fecchio M, Pigorini A, Comanducci A, Sarasso S, Casarotto S, Premoli I, Derchi CC, Mazza A, Russo S, Resta F, Ferrarelli F, Mariotti M, Ziemann U, Massimini M, Rosanova M. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials. PLoS One 2017; 12:e0184910. [PMID: 28910407 PMCID: PMC5599017 DOI: 10.1371/journal.pone.0184910] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/01/2017] [Indexed: 01/05/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late event-related desynchronization (ERD-peaking at ~300 ms after TMS), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation.
Collapse
Affiliation(s)
- Matteo Fecchio
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Andrea Pigorini
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Angela Comanducci
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Isabella Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Chiara-Camilla Derchi
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Alice Mazza
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Simone Russo
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Federico Resta
- Division of Radiology, Hospital Luigi Sacco, Milan, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, United States of America
| | - Maurizio Mariotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
- IRCCS Fondazione Don Gnocchi Onlus, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
- Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
- * E-mail:
| |
Collapse
|
40
|
Pellicciari MC, Veniero D, Miniussi C. Characterizing the Cortical Oscillatory Response to TMS Pulse. Front Cell Neurosci 2017; 11:38. [PMID: 28289376 PMCID: PMC5326778 DOI: 10.3389/fncel.2017.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgow, UK
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio FatebenefratelliBrescia, Italy
- Center for Mind/Brain Sciences - CIMeC, University of TrentoRovereto, Italy
| |
Collapse
|
41
|
Abnormal brain oscillations persist after recovery from bipolar depression. Eur Psychiatry 2017; 41:10-15. [DOI: 10.1016/j.eurpsy.2016.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 02/08/2023] Open
Abstract
AbstractWhen directly perturbed in healthy subjects, premotor cortical areas generate electrical oscillations in the beta range (20–40 Hz). In schizophrenia, major depressive disorder and bipolar disorder (BD), these oscillations are markedly reduced, in terms of amplitude and frequency. However, it still remains unclear whether these abnormalities can be modulated over time, or if they can be still observed after treatment. Here, we employed transcranial magnetic stimulation (TMS) combined with EEG to assess the frontal oscillatory activity in eighteen BD patients before/after antidepressant treatments (sleep deprivation and light therapy), relative to nine healthy controls. In order to detect dominant frequencies, event related spectral perturbations (ERSP) were computed for each TMS/EEG session in all participants, using wavelet decomposition. The natural frequency at which the cortical circuit oscillates was calculated as the frequency value with the largest power across 300 ms post-stimulus time interval. Severity of depression markedly decreased after treatment with 12 patients achieving response and nine patients achieving remission. TMS/EEG resulted in a significant activation of the beta/gamma band response (21–50 Hz) in healthy controls. In patients, the main frequencies of premotor EEG responses to TMS did not significantly change before/after treatment and were always significantly lower than those of controls (11–27 Hz) and comparable in patients achieving remission and in those not responding to treatment. These results suggest that the reduction of natural frequencies is a trait marker of BD, independent from the clinical status of the patients. The present findings shed light on the neurobiological underpinning of severe psychiatric disorders and demonstrate that TMS/EEG represents a unique tool to develop biomarkers in psychiatry.
Collapse
|
42
|
Restored Asymmetry of Prefrontal Cortical Oscillatory Activity after Bilateral Theta Burst Stimulation Treatment in a Patient with Major Depressive Disorder: A TMS-EEG Study. Brain Stimul 2017; 10:147-149. [DOI: 10.1016/j.brs.2016.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
|
43
|
Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation. SPANISH JOURNAL OF PSYCHOLOGY 2016; 19:E94. [PMID: 27919314 DOI: 10.1017/sjp.2016.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our view is that intelligence, as expression of the complexity of the human brain and of its evolutionary path, represents an intriguing example of "system level brain plasticity": tangible proofs of this assertion lie in the strong links intelligence has with vital brain capacities as information processing (i.e., pure, rough capacity to transfer information in an efficient way), resilience (i.e., the ability to cope with loss of efficiency and/or loss of physical elements in a network) and adaptability (i.e., being able to efficiently rearrange its dynamics in response to environmental demands). Current evidence supporting this view move from theoretical models correlating intelligence and individual response to systematic "lesions" of brain connectivity, as well as from the field of Noninvasive Brain Stimulation (NiBS). Perturbation-based approaches based on techniques as transcranial magnetic stimulation (TMS) and transcranial alternating current stimulation (tACS), are opening new in vivo scenarios which could allow to disclose more causal relationship between intelligence and brain plasticity, overcoming the limitations of brain-behavior correlational evidence.
Collapse
|
44
|
Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 2016; 10:73. [PMID: 27713691 PMCID: PMC5031704 DOI: 10.3389/fncir.2016.00073] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Marine Vernet
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Mouhsin M D Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
45
|
Harquel S, Bacle T, Beynel L, Marendaz C, Chauvin A, David O. Mapping dynamical properties of cortical microcircuits using robotized TMS and EEG: Towards functional cytoarchitectonics. Neuroimage 2016; 135:115-24. [PMID: 27153976 DOI: 10.1016/j.neuroimage.2016.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/11/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022] Open
Abstract
Brain dynamics at rest depend on the large-scale interactions between oscillating cortical microcircuits arranged into macrocolumns. Cytoarchitectonic studies have shown that the structure of those microcircuits differs between cortical regions, but very little is known about interregional differences of their intrinsic dynamics at a macro-scale in human. We developed here a new method aiming at mapping the dynamical properties of cortical microcircuits non-invasively using the coupling between robotized transcranial magnetic stimulation and electroencephalography. We recorded the responses evoked by the stimulation of 18 cortical targets largely covering the accessible neocortex in 22 healthy volunteers. Specific data processing methods were developed to map the local source activity of each cortical target, which showed inter-regional differences with very good interhemispheric reproducibility. Functional signatures of cortical microcircuits were further studied using spatio-temporal decomposition of local source activities in order to highlight principal brain modes. The identified brain modes revealed that cortical areas with similar intrinsic dynamical properties could be distributed either locally or not, with a spatial signature that was somewhat reminiscent of resting state networks. Our results provide the proof of concept of "functional cytoarchitectonics", that would guide the parcellation of the human cortex using not only its cytoarchitecture but also its intrinsic responses to local perturbations. This opens new avenues for brain modelling and physiopathology readouts.
Collapse
Affiliation(s)
- Sylvain Harquel
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; CNRS, INSERM, Univ. Grenoble Alpes, CHU Grenoble, IRMaGe, F-38000 Grenoble, France
| | - Thibault Bacle
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Lysianne Beynel
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Christian Marendaz
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Alan Chauvin
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, F-38000 Grenoble, France; Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France.
| |
Collapse
|
46
|
Poletti S, Vai B, Smeraldi E, Cavallaro R, Colombo C, Benedetti F. Adverse childhood experiences influence the detrimental effect of bipolar disorder and schizophrenia on cortico-limbic grey matter volumes. J Affect Disord 2016; 189:290-7. [PMID: 26454335 DOI: 10.1016/j.jad.2015.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/09/2015] [Accepted: 09/26/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adverse childhood experiences (ACE) can lead to several negative consequences in adult life, are highly prevalent in psychiatric disorders where they associate with clinical and brain morphological features. Grey matter volume loss is a central characteristic of bipolar disorder (BD) and schizophrenia (SCZ). The aim of this study is to measure the effect of diagnosis and ACE on GM volume in a sample of patients with BD or SCZ compared with healthy controls (HC). METHODS We studied 206 depressed BD patients, 96 SCZ patients and 136 healthy subjects. GM volumes were estimated with 3.0 Tesla MRI and analyzed with VBM technique. The effect of diagnosis was investigated in the whole sample and separately exposed to high and low ACE subjects. RESULTS An effect of diagnosis was observed in orbitofrontal cortex encompassing BA 47 and insula, and in the thalamus. HC had the highest volume and SCZ patients the lowest with BD patients showing an intermediate volume. This pattern persisted only in subjects with high ACE. No differences were observed for low ACE subjects. LIMITATIONS The three diagnostic groups differ for age and education, previous and current medications, and treatment periods. CONCLUSIONS Our results underline the importance of ACE on the neural underpinnings of psychiatric psychopathology and suggest a major role of exposure to ACE for the GM deficits to reveal in clinical populations. Exposure to early stress is a crucial factor that must be taken in to account when searching for biomarkers of BD and SCZ.
Collapse
Affiliation(s)
- Sara Poletti
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy.
| | - Benedetta Vai
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Enrico Smeraldi
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Cavallaro
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Cristina Colombo
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Francesco Benedetti
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|