1
|
Li N, Li Y. Lysophosphatidic Acid (LPA) and Its Receptors in Mood Regulation: A Systematic Review of the Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:7440. [PMID: 39000547 PMCID: PMC11242315 DOI: 10.3390/ijms25137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Mood disorders affect over 300 million individuals worldwide, often characterized by their chronic and refractory nature, posing significant threats to patient life. There has been a notable increase in mood disorders among American adolescents and young adults, with a rising number of suicide attempts and fatalities, highlighting a growing association between mood disorders and suicidal outcomes. Dysregulation within the neuroimmune-endocrine system is now recognized as one of the fundamental biological mechanisms underlying mood and mood disorders. Lysophosphatidic acid (LPA), a novel mediator of mood behavior, induces anxiety-like and depression-like phenotypes through its receptors LPA1 and LPA5, regulating synaptic neurotransmission and plasticity. Consequently, LPA has garnered substantial interest in the study of mood regulation. This study aimed to elucidate the molecular mechanisms of lysophosphatidic acid and its receptors, along with LPA receptor ligands, in mood regulation and to explore their potential therapeutic efficacy in treating mood disorders. A comprehensive literature search was conducted using the PubMed and Web of Science databases, identifying 208 articles through keyword searches up to June 2024. After excluding duplicates, irrelevant publications, and those restricted by open access limitations, 21 scientific papers were included in this review. The findings indicate that LPA/LPA receptor modulation could be beneficial in treating mood disorders, suggesting that pharmacological agents or gintonin, an extract from ginseng, may serve as effective therapeutic strategies. This study opens new avenues for future research into how lysophosphatidic acid and its receptors, as well as lysophosphatidic acid receptor ligands, influence emotional behavior in animals and humans.
Collapse
Affiliation(s)
- Nan Li
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Yanchun Li
- China Institute of Sports and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
2
|
Althobaiti YS. Oral self-administration of pregabalin in a mouse model and the resulting drug addiction features. Saudi Pharm J 2024; 32:101935. [PMID: 38292403 PMCID: PMC10825552 DOI: 10.1016/j.jsps.2023.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Prescription drug abuse is an issue that is rapidly growing globally. Pregabalin, an anticonvulsant, analgesic, and anxiolytic medication, is effective in the management of multiple neurological disorders; however, there is increasing concern regarding its widespread illicit use. It has been previously reported in mice that pregabalin can induce conditioned place preference. In this current investigation, the potential of pregabalin to elicit free-choice drinking in a mouse model of drug addiction, and its effect on recognition and withdrawal behaviors after forced abstinence, were studied. Twenty-two male BALB/c mice were randomly divided into three groups (n = 7-8/group); control, pregabalin-30, and pregabalin-60. The study had three phases: habituation (days 1-5) with free water access, free-choice drinking (days 6-13) with pregabalin groups receiving one water and one pregabalin bottle, and forced abstinence (days 14-21) with free water access. On day 13, the first open field test was conducted, followed by the Novel Object Recognition Test. On day 21, the second open field test was performed, followed by the Tail Suspension Test and Forced Swimming Test. Pregabalin elicited voluntary drinking in the higher-dose group, concurrently causing a decline in recognition memory performance in the novel object recognition test. Moreover, pregabalin induced withdrawal behavior after a period of forced abstinence in the forced swimming and tail suspension tests. This is the first report to establish an animal model of free-choice pregabalin drinking that may be used for further molecular studies and targeted therapy for pregabalin addiction.
Collapse
Affiliation(s)
- Yusuf S. Althobaiti
- Address: Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
3
|
Kajitani N, Okada-Tsuchioka M, Inoue A, Miyano K, Masuda T, Boku S, Iwamoto K, Ohtsuki S, Uezono Y, Aoki J, Takebayashi M. G protein-biased LPAR1 agonism of prototypic antidepressants: Implication in the identification of novel therapeutic target for depression. Neuropsychopharmacology 2024; 49:561-572. [PMID: 37673966 PMCID: PMC10789764 DOI: 10.1038/s41386-023-01727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Prototypic antidepressants, such as tricyclic/tetracyclic antidepressants (TCAs), have multiple pharmacological properties and have been considered to be more effective than newer antidepressants, such as selective serotonin reuptake inhibitors, in treating severe depression. However, the clinical contribution of non-monoaminergic effects of TCAs remains elusive. In this study, we discovered that amitriptyline, a typical TCA, directly binds to the lysophosphatidic acid receptor 1 (LPAR1), a G protein-coupled receptor, and activates downstream G protein signaling, while exerting a little effect on β-arrestin recruitment. This suggests that amitriptyline acts as a G protein-biased agonist of LPAR1. This biased agonism was specific to TCAs and was not observed with other antidepressants. LPAR1 was found to be involved in the behavioral effects of amitriptyline. Notably, long-term infusion of mouse hippocampus with the potent G protein-biased LPAR agonist OMPT, but not the non-biased agonist LPA, induced antidepressant-like behavior, indicating that G protein-biased agonism might be necessary for the antidepressant-like effects. Furthermore, RNA-seq analysis revealed that LPA and OMPT have opposite patterns of gene expression changes in the hippocampus. Pathway analysis indicated that long-term treatment with OMPT activated LPAR1 downstream signaling (Rho and MAPK), whereas LPA suppressed LPAR1 signaling. Our findings provide insights into the mechanisms underlying the non-monoaminergic antidepressant effects of TCAs and identify the G protein-biased agonism of LPAR1 as a promising target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan.
| |
Collapse
|
4
|
Kim JH, Lee RM, Oh HB, Kim TY, Rhim H, Choi YK, Kim JH, Oh S, Kim DG, Cho IH, Nah SY. Atypical formations of gintonin lysophosphatidic acids as new materials and their beneficial effects on degenerative diseases. J Ginseng Res 2024; 48:1-11. [PMID: 38223830 PMCID: PMC10785247 DOI: 10.1016/j.jgr.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and anti-arthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.
Collapse
Affiliation(s)
- Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyo-Bin Oh
- Department of Efficacy Study, Institute of Jinan Red Ginseng, Jeollabuk-do, Republic of Korea
| | - Tae-Young Kim
- Department of Efficacy Study, Institute of Jinan Red Ginseng, Jeollabuk-do, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Bio/Molecular Informatics Center, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeollabuk-do, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yoon J, Park B, Hong KW, Jung DH. The effects of Korean Red Ginseng on stress-related neurotransmitters and gene expression: A randomized, double-blind, placebo-controlled trial. J Ginseng Res 2023; 47:766-772. [PMID: 38107397 PMCID: PMC10721478 DOI: 10.1016/j.jgr.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Korean Red Ginseng (KRG) is an effective anti-stress treatment. In this study, we investigated the therapeutic potential effects of KRG on relieving stress in a general population using transcriptome analysis. Methods We conducted an 8-week clinical pilot study on 90 healthy men who reported stress. The study was completed by 43 participants in the KRG group and 44 participants in the placebo group. Participants were randomized 1:1 to the KRG and placebo groups. We evaluated the stress by stress response inventory (SRI) at baseline and 8 weeks. The main outcomes were changes in the levels of neurotransmitters (NTs) and NT-related gene expression. NTs were analyzed using automated (GC) content, and levels of gene expression were measured by reads per kilobase of transcript per million mapped reads (RPKM). Results The KRG group showed significantly preserved epinephrine decrease compared with placebo group at 8 weeks (changes in epinephrine, KRG vs. placebo; -1623.2 ± 46101.5 vs. -35116.3 ± 86288.2, p = 0012). Among subjects who higher SRI score, meaning stress increased compared to baseline, the KRG group showed a smaller decrease in serotonin than the placebo group (changes in serotonin, KRG vs. placebo; -2627.5 ± 5859.1 vs, -8087.4 ± 7162.4, p = 0.005) and a smaller increase in cortisol than the placebo group (changes in cortisol, KRG vs. placebo; 1912.7 ± 10097.75 vs. 8046.2 ± 8050.6 , p = 0.019) in subgroup analysis. Transcriptome findings indicated that KRG intake affects gene expression related with metabolism of choline, adrenalin, and monoamine. Conclusion These findings suggest that KRG has beneficial effects on the amelioration of stress response in NTs, and this effect is more prominent in stressful situations. Further clinical studies are required to confirm the anti-stress effect of KRG.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Family Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Won Hong
- R&D Division, Theragen Health Co., Ltd., Gyeonggi do, Republic of Korea
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY) 2023; 15:5917-5950. [PMID: 37387537 PMCID: PMC10333059 DOI: 10.18632/aging.204847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Depression and obesity are both common disorders currently affecting public health, frequently occurring simultaneously within individuals, and the relationship between these disorders is bidirectional. The association between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future treatments for obesity and depression and raises several questions that need to be answered in future research. This review will provide a comprehensive description and localization of the biological connection between obesity and depression to better understand the co-morbidity of obesity and depression.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yicun Wang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
7
|
Kim SJ, Nah SY, Park IH, Shin MS, Kang KS. Gintonin Isolated from Ginseng Inhibits the Epithelial-Mesenchymal Transition Induced by TGF-β in A549 Lung Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:2013. [PMID: 37653930 PMCID: PMC10221604 DOI: 10.3390/plants12102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Epithelial-to-mesenchymal transition (EM transition) is a process wherein epithelial cells lose their intrinsic characteristics and cell-cell junctions and differentiate into a mesenchymal phenotype. EM transition is an important feature of cancer invasion and metastasis. In this study, we aimed to investigate the inhibitory effect of gintonin (GT), an ingredient of ginseng, on EM transition using A549 cells. The proliferation of A549 cells was enhanced following treatment with 50, 75, and 100 μg/mL of GT. GT affected EM transition-induced gene and protein expression, specifically that of vimentin (Vim), N-cadherin (N-cad), zinc finger E-box-binding homeobox 1, and Twist in A549 cells. Furthermore, the transforming growth factor beta 1 (TGF-β1)-induced phosphorylation of Smad2 and Smad3 was suppressed by GT treatment. Immunofluorescence staining also showed that GT treatment decreased the TGF-β1-induced expression of Vim and N-cad in A549 cells. Therefore, GT may be used to suppress cancer cell metastasis via maintenance of the cell-cell junction's integrity. However, further studies are required to pave the way for its translation into clinical application in cancer therapeutics.
Collapse
Affiliation(s)
- Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Il-Ho Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
8
|
He H, Xie X, Zhang J, Mo L, Kang X, Zhang Y, Wang L, Hu N, Xie L, Peng C, You Z. Patchouli alcohol ameliorates depression-like behaviors through inhibiting NLRP3-mediated neuroinflammation in male stress-exposed mice. J Affect Disord 2023; 326:120-131. [PMID: 36682696 DOI: 10.1016/j.jad.2023.01.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Microglia-mediated neuroinflammation contributes to major depressive disorder (MDD). Targeting microglia is a promising strategy for treating MDD. Patchouli alcohol (PA), an active component of Pogostemon cablin, has anti-inflammatory and neuroprotective effects. PURPOSE In this study, we investigate the microglia-mediated neurogenesis pathway in which PA ameliorates depressive-like behaviors in stress-induced animal model of depression. METHODS C57BL/6J male mice were exposed to chronic mild stress (CMS) for 4 weeks, then administered PA intraperitoneally at 10, 20 or 40 mg/kg once per day for 3 weeks. The antidepressant effects of PA were evaluated in the sucrose preference test, forced swimming test, and tail suspension test. Microglial phenotypes and activation of the NLRP3 inflammation were analyzed using RT-PCR, western blotting and immunofluorescence staining. Effects of PA on neurogenesis were analyzed in vitro and in vivo using immunofluorescence staining. RESULTS Behavioral assessments showed that PA alleviated depressive-like behaviors in CMS-exposed mice. CMS induced microglial activation and pro-inflammatory profiles, which were blocked by PA treatment. PA attenuated the activation of NLRP3 inflammasome, leading to decreases in the levels of caspase-1, ASC, IL-1β, and IL-18 in the hippocampus of CMS-exposed mice. In primary microglia cultures, PA inhibited LPS-induced NLRP3 inflammasome activation. PA rescued inflammation-inhibited neurogenesis in vivo and in vitro. CONCLUSIONS Our results suggest that PA inhibits the NLRP3 inflammasome and ameliorates microglia-mediated neurogenesis impairment, contributing to antidepressant effects. Thus, PA may be a novel treatment for inflammation-driven mental disorders.
Collapse
Affiliation(s)
- Hui He
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Li Mo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xixi Kang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lu Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu 610036, China
| | - Nan Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Xie
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu 610036, China.
| |
Collapse
|
9
|
Neuroprotective effect of fucoidan by regulating gut-microbiota-brain axis in alcohol withdrawal mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Effect of the Gintonin-Enriched Fraction on Glucagon-Like-Protein-1 Release. Molecules 2021; 26:molecules26206298. [PMID: 34684879 PMCID: PMC8539011 DOI: 10.3390/molecules26206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology.
Collapse
|
11
|
Choi SH, Lee R, Nam SM, Kim DG, Cho IH, Kim HC, Cho Y, Rhim H, Nah SY. Ginseng gintonin, aging societies, and geriatric brain diseases. Integr Med Res 2021; 10:100450. [PMID: 32817818 PMCID: PMC7426447 DOI: 10.1016/j.imr.2020.100450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A dramatic increase in aging populations and low birth rates rapidly drive aging societies and increase aging-associated neurodegenerative diseases. However, functional food or medicinal formulations to prevent geriatric brain disorders are not readily available. Panax ginseng is a candidate, since ginseng has long-been consumed as a rejuvenating agent. However, the underlying molecular mechanisms and the components of ginseng that are responsible for brain rejuvenation and human longevity are unknown. Accumulating evidence shows that gintonin is a candidate for the anti-aging ingredient of ginseng, especially in brain senescence. METHODS Gintonin, a glycolipoprotein complex, contains three lipid-derived G protein-coupled receptor ligands: lysophosphatidic acids (LPAs), lysophosphatidylinositols (LPIs), and linoleic acid (LA). LPA, LPI, and LA act on six LPA receptor subtypes, GPR55, and GPR40, respectively. These G protein-coupled receptors are distributed within the nervous and non-nervous systems of the human body. RESULTS Gintonin-enriched fraction (GEF) exhibits anti-brain senescence and effects against disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Oral administration of gintonin in animal models of d-galactose-induced brain aging, AD, HD, and PD restored cognitive and motor functions. The underlying molecular mechanisms of gintonin-mediated anti-brain aging and anti-neurodegenerative diseases include neurogenesis, autophagy stimulation, anti-apoptosis, anti-oxidative stress, and anti-inflammatory activities. This review describes the characteristics of gintonin and GEF, and how gintonin exerts its effects on brain aging and brain associated-neurodegenerative diseases. CONCLUSION Finally, we describe how GEF can be applied to improve the quality of life of senior citizens in aging societies.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Do-Geun Kim
- Neurovascular Biology Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Yoonjeong Cho
- Center for Neuroscience Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Hartmann MC, Haney MM, Smith CG, Kumar V, Rosenwasser AM. Affective Disruption During Forced Ethanol Abstinence in C57BL/6J and C57BL/6NJ Mice. Alcohol Clin Exp Res 2020; 44:2019-2030. [PMID: 32862442 PMCID: PMC11060412 DOI: 10.1111/acer.14443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND In alcohol-dependent individuals, acute alcohol withdrawal results in severe physiological disruption, including potentially lethal central nervous system hyperexcitability. Although benzodiazepines successfully mitigate such symptoms, this treatment does not significantly reduce recidivism rates in postdependent individuals. Instead, persistent affective disturbances that often emerge weeks to months after initial detoxification appear to play a significant role in relapse risk; however, it remains unclear whether genetic predispositions contribute to their emergence, severity, and/or duration. Interestingly, significant genotypic and phenotypic differences have been observed among distinct C57BL/6 (B6) substrains, and, in particular, C57BL/6J (B6J) mice have been found to reliably exhibit higher voluntary ethanol (EtOH) intake and EtOH preference compared to several C57BL/6N (B6N)-derived substrains. To date, however, B6 substrains have not been directly compared on measures of acute withdrawal severity or affective-behavioral disruption during extended abstinence. METHODS Male and female B6J and B6NJ mice were exposed to either a 7-day chronic intermittent EtOH vapor (CIE) protocol or to ordinary room air in inhalation chambers. Subsequently, blood EtOH concentrations and handling-induced convulsions were evaluated during acute withdrawal, and mice were then tested weekly for affective behavior on the sucrose preference test, light-dark box test, and forced swim test throughout 4 weeks of (forced) abstinence. RESULTS Despite documented differences in voluntary EtOH intake between these substrains, we found little evidence for substrain differences in either acute withdrawal or long-term abstinence between B6J and B6NJ mice. CONCLUSIONS In B6J and B6NJ mice, both the acute and long-term sequelae of EtOH withdrawal are dependent on largely nonoverlapping gene networks relative to those underlying voluntary EtOH drinking.
Collapse
Affiliation(s)
- Matthew C. Hartmann
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
- Department of Psychology, University of Maine, Orono, ME, 04469, USA
| | - Megan M. Haney
- Department of Psychology, University of Maine, Orono, ME, 04469, USA
| | - Caitlin G. Smith
- Department of Psychology, University of Maine, Orono, ME, 04469, USA
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Vivek Kumar
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Alan M. Rosenwasser
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
- Department of Psychology, University of Maine, Orono, ME, 04469, USA
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
13
|
Biological evidence of gintonin efficacy in memory disorders. Pharmacol Res 2020; 163:105221. [PMID: 33007419 DOI: 10.1016/j.phrs.2020.105221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Gintonin is a novel glycolipoprotein, which has been abundantly found in the root of Korean ginseng. It holds lysophosphatidic acids (LPAs), primarily identified LPA C18:2, and is an exogenous agonist of LPA receptors (LPARs). Gintonin maintains blood-brain barrier integrity, and it has recently been studied in several models of neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Gintonin demonstrated neuroprotective activity by providing action against neuroinflammation-, apoptosis- and oxidative stress-mediated neurodegeneration. Gintonin showed an emerging role as a modulator of synaptic transmission and neurogenesis and also potentially regulated autophagy in primary cortical astrocytes. It also ameliorated the toxic agent-induced and genetic models of cognitive deficits in experimental NDDs. As a novel agonist of LPARs, gintonin regulated several G protein-coupled receptors (GPCRs) including GPR40 and GPR55. However, further study needs to be investigated to understand the underlying mechanism of action of gintonin in memory disorders.
Collapse
|
14
|
Lee R, Lee NE, Choi SH, Nam SM, Kim HC, Rhim H, Cho IH, Hwang SH, Nah SY. Effects of gintonin-enriched fraction on hippocampal gene expressions. Integr Med Res 2020; 10:100475. [PMID: 33134079 PMCID: PMC7588706 DOI: 10.1016/j.imr.2020.100475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background Recently, gintonin and gintonin-enriched fraction (GEF) have been isolated from ginseng, a herbal medicine. Gintonin induces [Ca2+]i transition in cultured hippocampal neurons and stimulates acetylcholine release through LPA receptor activation. Oral administration of GEF is linked to hippocampus-dependent cognitive enhancement and other neuroprotective effects; however, effects of its long-term administration on hippocampal gene expression remains unknown. Here, we used next-generation sequence (NGS) analysis to examine changes in hippocampal gene expressions after long-term oral administration of GEF. Methods C57BL/6 mice were divided into three groups: control group, GEF50 (GEF 50 mg/kg, p.o.), and GEF100 (GEF 100 mg/kg, p.o.). After 22 days, total RNA was extracted from mouse hippocampal tissues. NGS was used for gene expression profiling; quantitative-real-time PCR and western blot were performed to quantify the changes in specific genes and to confirm the protein expression levels in treatment groups. Results NGS analysis screened a total of 23,282 genes, analyzing 11-related categories. We focused on the neurogenesis category, which includes four genes for candidate markers: choline acetyltransferase (ChAT) gene, β3-adrenergic receptor (Adrb3) gene, and corticotrophin-releasing hormone (Crh) gene, and tryptophan 2,3-dioxygenase (Tdo2) gene. Real-time PCR showed a marked overexpression of ChAT, Adrb3, and Crh genes, while reduced expression of Tdo2. Western blot analysis also confirmed increased ChAT and decreased Tdo2 protein levels. Conclusion We found that GEF affects mouse hippocampal gene expressions, associated with memory, cognitive, anti-stress and anti-anxiety functions, and neurodegeneration at differential degree, that might explain the genetic bases of GEF-mediated neuroprotective effects.
Collapse
Affiliation(s)
- Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuro Psychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Hou W, Wang Y, Zheng P, Cui R. Effects of Ginseng on Neurological Disorders. Front Cell Neurosci 2020; 14:55. [PMID: 32265659 PMCID: PMC7099600 DOI: 10.3389/fncel.2020.00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ginseng (Panax ginseng Meyer), a famous traditional medicinal herb, has been widely used for many centuries. Numerous studies have shown that ginseng has a positive effect on the prevention and treatment of neurological disorders. In this review, we summarized the effects of ginseng in treating neurological diseases, particularly the anti-depressant effects of ginseng. Furthermore, its potential mechanism was also outlined. Therefore, this review may provide new insight into the treatment of ginseng on neurological diseases.
Collapse
Affiliation(s)
- Wei Hou
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peihe Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Cho YJ, Choi SH, Lee R, Hwang H, Rhim H, Cho IH, Kim HC, Lee JI, Hwang SH, Nah SY. Ginseng Gintonin Contains Ligands for GPR40 and GPR55. Molecules 2020; 25:molecules25051102. [PMID: 32121640 PMCID: PMC7179172 DOI: 10.3390/molecules25051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Gintonin, a novel ginseng-derived glycolipoprotein complex, has an exogenous ligand for lysophosphatidic acid (LPA) receptors. However, recent lipid analysis of gintonin has shown that gintonin also contains other bioactive lipids besides LPAs, including linoleic acid and lysophosphatidylinositol (LPI). Linoleic acid, a free fatty acid, and LPI are known as ligands for the G-protein coupled receptors (GPCR), GPR40, and GPR55, respectively. We, herein, investigated whether gintonin could serve as a ligand for GPR40 and GPR55, using the insulin-secreting beta cell-derived cell line INS-1 and the human prostate cancer cell line PC-3, respectively. Gintonin dose-dependently enhanced insulin secretion from INS-1 cells. Gintonin-stimulated insulin secretion was partially inhibited by a GPR40 receptor antagonist but not an LPA1/3 receptor antagonist and was down-regulated by small interfering RNA (siRNA) against GPR40. Gintonin dose-dependently induced [Ca2+]i transients and Ca2+-dependent cell migration in PC-3 cells. Gintonin actions in PC-3 cells were attenuated by pretreatment with a GPR55 antagonist and an LPA1/3 receptor antagonist or by down-regulating GPR55 with siRNA. Taken together, these results demonstrated that gintonin-mediated insulin secretion by INS-1 cells and PC-3 cell migration were regulated by the respective activation of GPR40 and GPR55 receptors. These findings indicated that gintonin could function as a ligand for both receptors. Finally, we demonstrated that gintonin contained two more GPCR ligands, in addition to that for LPA receptors. Gintonin, with its multiple GPCR ligands, might provide the molecular basis for the multiple pharmacological actions of ginseng.
Collapse
Affiliation(s)
- Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Hongik Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.H.); (H.R.)
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.H.); (H.R.)
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea;
| | - Jeong-Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
- Correspondence: (S.-H.H.); (S.-Y.N.); Tel.: +82-33-738-7922 (S.-H.H.); +82-2-450-4154 (S.-Y.N.)
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
- Correspondence: (S.-H.H.); (S.-Y.N.); Tel.: +82-33-738-7922 (S.-H.H.); +82-2-450-4154 (S.-Y.N.)
| |
Collapse
|
17
|
Jin Y, Cui R, Zhao L, Fan J, Li B. Mechanisms of Panax ginseng action as an antidepressant. Cell Prolif 2019; 52:e12696. [PMID: 31599060 PMCID: PMC6869450 DOI: 10.1111/cpr.12696] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Panax ginseng, a well-known traditional Chinese medicine with multiple pharmacological activities, plays a crucial role in modulating mood disorders. Several recent studies have identified an underlying role of Panax ginseng in the prevention and treatment of depression. However, the cellular and molecular mechanisms remain unclear. MATERIALS AND METHODS In this review, we summarized the recent progress of antidepressant effects and underlying mechanisms of Panax ginseng and its representative herbal formulae. RESULTS The molecular and cellular mechanisms of Panax ginseng and its herbal formulae include modulating monoamine neurotransmitter system, upregulating the expression of neurotrophic factors, regulating the function of HPA axis, and anti-inflammatory action. CONCLUSIONS Therefore, this review may provide theoretical bases and clinical applications for the treatment of depression by Panax ginseng and its representative herbal formulae.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Tabbai S, Moreno-Fernández RD, Zambrana-Infantes E, Nieto-Quero A, Chun J, García-Fernández M, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Oliveira TG, Pérez-Martín M, Pedraza C. Effects of the LPA 1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice. Front Mol Neurosci 2019; 12:146. [PMID: 31244601 PMCID: PMC6580287 DOI: 10.3389/fnmol.2019.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in response to stress and induces anxiety and several behavioral and neurobiological changes that are strongly correlated with mood disorders. In fact, our group proposes that maLPA1-null mice represent an animal model of anxious depression. However, despite the key role of the LPA-LPA1-pathway in emotion and stress coping behaviors, the available information describing the mechanisms by which the LPA-LPA1-pathway regulates emotion is currently insufficient. Because activation of LPA1 requires LPA, here, we used a Matrix-Assisted Laser Desorption/ Ionization mass spectrometry-based approach to evaluate the effects of an LPA1 receptor deficiency on the hippocampal levels of LPA species. Additionally, the impact of stress on the LPA profile was also examined in both wild-type (WT) and the Malaga variant of LPA1-null mice (maLPA1-null mice). Mice lacking LPA1 did not exhibit gross perturbations in the hippocampal LPA species, but the LPA profile was modified, showing an altered relative abundance of 18:0 LPA. Regardless of the genotype, restraint stress produced profound changes in all LPA species examined, revealing that hippocampal LPA species are a key target of stress. Finally, the relationship between the hippocampal levels of LPA species and performance in the elevated plus maze was established. To our knowledge, this study is the first to detect, identify and profile LPA species in the hippocampus of both LPA1-receptor null mice and WT mice at baseline and after acute stress, as well as to link these LPA species with anxiety-like behaviors. In conclusion, the hippocampal LPA species are a key target of stress and may be involved in psychopathological conditions.
Collapse
Affiliation(s)
- Sara Tabbai
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Román Dario Moreno-Fernández
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Maria García-Fernández
- Departamento de Fisiología y Medicina Deportiva, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
19
|
Jo MG, Ikram M, Jo MH, Yoo L, Chung KC, Nah SY, Hwang H, Rhim H, Kim MO. Gintonin Mitigates MPTP-Induced Loss of Nigrostriatal Dopaminergic Neurons and Accumulation of α-Synuclein via the Nrf2/HO-1 Pathway. Mol Neurobiol 2019; 56:39-55. [PMID: 29675576 DOI: 10.1007/s12035-018-1020-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023]
Abstract
Gintonin, a ginseng-derived glycolipoprotein isolated from ginseng, has been shown to be neuroprotective in several neurological disorders such as Alzheimer's disease models and depressive-like behaviors. In this study, we sought to investigate the potential protective mechanisms of gintonin in an in vivo MPTP and in vitro MPP+-mediated Parkinson's disease (PD) model. We hypothesized that activation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1, potential therapeutic targets for neurodegeneration) with gintonin could abrogate PD-associated neurotoxicity by modulating the accumulation of α-synuclein, neuroinflammation, and apoptotic cell death in an MPTP/MPP+ models of PD. Our in vivo and in vitro findings suggest that the neuroprotective effects of gintonin were associated with the regulation of the Nrf2/HO-1 pathway, which regulated the expression of proinflammatory cytokines and nitric oxide synthase and apoptotic markers in the substantia nigra and striatum of the mice. Moreover, the neuroprotective effects of gintonin were also associated with a reduction in α-synuclein accumulation in the mouse substantia nigra and striatum. The neuroprotective effects of gintonin were further validated by analyzing the effects of gintonin on MPP+-treated SH-SY5Y cells, which confirmed the protective effects of gintonin. It remains for future basic and clinical research to determine the potential use of gintonin in Parkinson's disease. However, to the best of our knowledge, marked alterations in biochemical and morphological setup of midbrain dopaminergic pathways by gintonin in MPTP mice model have not been previously reported. We believe that gintonin might be explored as an important therapeutic agent in the treatment of PD.
Collapse
Affiliation(s)
- Min Gi Jo
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, 52802, Republic of Korea
| | - Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, 52802, Republic of Korea
| | - Myeung Hoon Jo
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, 52802, Republic of Korea
| | - Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hongik Hwang
- Center for Neuroscience, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, 52802, Republic of Korea.
- Division of Life Science and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
20
|
Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer's disease. J Ginseng Res 2018; 42:401-411. [PMID: 30337800 PMCID: PMC6190533 DOI: 10.1016/j.jgr.2017.12.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 01/22/2023] Open
Abstract
Longevity in medicine can be defined as a long life without mental or physical deficits. This can be prevented by Alzheimer's disease (AD). Current conventional AD treatments only alleviate the symptoms without reversing AD progression. Recent studies demonstrated that Panax ginseng extract improves AD symptoms in patients with AD, and the two main components of ginseng might contribute to AD amelioration. Ginsenosides show various AD-related neuroprotective effects. Gintonin is a newly identified ginseng constituent that contains lysophosphatidic acids and attenuates AD-related brain neuropathies. Ginsenosides decrease amyloid β-protein (Aβ) formation by inhibiting β- and γ-secretase activity or by activating the nonamyloidogenic pathway, inhibit acetylcholinesterase activity and Aβ-induced neurotoxicity, and decrease Aβ-induced production of reactive oxygen species and neuroinflammatory reactions. Oral administration of ginsenosides increases the expression levels of enzymes involved in acetylcholine synthesis in the brain and alleviates Aβ-induced cholinergic deficits in AD models. Similarly, gintonin inhibits Aβ-induced neurotoxicity and activates the nonamyloidogenic pathway to reduce Aβ formation and to increase acetylcholine and choline acetyltransferase expression in the brain through lysophosphatidic acid receptors. Oral administration of gintonin attenuates brain amyloid plaque deposits, boosting hippocampal cholinergic systems and neurogenesis, thereby ameliorating learning and memory impairments. It also improves cognitive functions in patients with AD. Ginsenosides and gintonin attenuate AD-related neuropathology through multiple routes. This review focuses research demonstrating that ginseng constituents could be a candidate as an adjuvant for AD treatment. However, clinical investigations including efficacy and tolerability analyses may be necessary for the clinical acceptance of ginseng components in combination with conventional AD drugs.
Collapse
Key Words
- AChE, acetylcholinesterase
- AD, Alzheimer's disease
- APP, amyloid precursor protein
- Adjuvant
- Alzheimer's disease
- Aβ, amyloid β-protein
- BDNF, brain-derived neurotrophic factor
- EGF, Epidermal growth factor
- GLP151, ginseng major latex-like protein 151
- Ginsenoside
- Gintonin
- LPA, Lysophosphatidic acid
- NGF, nerve growth factor
- NMDA, n-methyl-d-aspartic acid
- PI3K, phosphoinositide-3 kinase
- PPARγ, peroxisome proliferator-activated receptor-γ
- Panax ginseng
- ROS, reactive oxygen species
- sAPPα, soluble amyloid precursor protein α
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seog-Young Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Institute of Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and toxicology program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Manho Kim
- Department of Neurology, Neuroscience Research Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Moreno-Fernández RD, Nieto-Quero A, Gómez-Salas FJ, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Pérez-Martín M, Pedraza C. Effects of genetic deletion versus pharmacological blockade of the LPA 1 receptor on depression-like behaviour and related brain functional activity. Dis Model Mech 2018; 11:dmm.035519. [PMID: 30061118 PMCID: PMC6177006 DOI: 10.1242/dmm.035519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
Animal models of psychopathology are particularly useful for studying the neurobiology of depression and characterising the subtypes. Recently, our group was the first to identify a possible relationship between the LPA1 receptor and a mixed anxiety-depression phenotype. Specifically, maLPA1-null mice exhibited a phenotype characterised by depressive and anxious features. However, the constitutive lack of the gene encoding the LPA1 receptor (Lpar1) can induce compensatory mechanisms that might have resulted in the observed deficits. Therefore, in the present study, we have compared the impact of permanent loss and acute pharmacological inhibition of the LPA1 receptor on despair-like behaviours and on the functional brain map associated with these behaviours, as well as on the degree of functional connectivity among structures. Although the antagonist (intracerebroventricularly administered Ki16425) mimicked some, but not all, effects of genetic deletion of the LPA1 receptor on the results of behavioural tests and engaged different brain circuits, both treatments induced depression-like behaviours with an agitation component that was linked to functional changes in key brain regions involved in the stress response and emotional regulation. In addition, both Ki16425 treatment and LPA1 receptor deletion modified the functional brain maps in a way similar to the changes observed in depressed patients. In summary, the pharmacological and genetic approaches could ultimately assist in dissecting the function of the LPA1 receptor in emotional regulation and brain responses, and a combination of those approaches might provide researchers with an opportunity to develop useful drugs that target the LPA1 receptor as treatments for depression, mainly the anxious subtype. This article has an associated First Person interview with the first author of the paper. Summary: Animal models of psychopathology are useful for studying the neurobiology of depression. Here, we have assessed by pharmacological approach and knockout models the contribution of the LPA-LPA1 signalling pathway to anxious depression.
Collapse
Affiliation(s)
- Román Darío Moreno-Fernández
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Francisco Javier Gómez-Salas
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga 29010, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga 29010, Spain
| | - Luis Javier Santín
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología. Facultad de Ciencias. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Carmen Pedraza
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
22
|
Dario MFR, Sara T, Estela CO, Margarita PM, Guillermo ET, Fernando RDF, Javier SL, Carmen P. Stress, Depression, Resilience and Ageing: A Role for the LPA-LPA1 Pathway. Curr Neuropharmacol 2018; 16:271-283. [PMID: 28699486 PMCID: PMC5843979 DOI: 10.2174/1570159x15666170710200352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic stress affects health and the quality of life, with its effects being particularly relevant in ageing due to the psychobiological characteristics of this population. However, while some people develop psychiatric disorders, especially depression, others seem very capable of dealing with adversity. There is no doubt that along with the identification of neurobiological mechanisms involved in developing depression, discovering which factors are involved in positive adaptation under circumstances of extreme difficulty will be crucial for promoting resilience. METHODS Here, we review recent work in our laboratory, using an animal model lacking the LPA1 receptor, together with pharmacological studies and clinical evidence for the possible participation of the LPA1 receptor in mood and resilience to stress. RESULTS Substantial evidence has shown that the LPA1 receptor is involved in emotional regulation and in coping responses to chronic stress, which, if dysfunctional, may induce vulnerability to stress and predisposition to the development of depression. Given that there is commonality of mechanisms between those involved in negative consequences of stress and in ageing, this is not surprising, considering that the LPA1 receptor may be involved in coping with adversity during ageing. CONCLUSION Alterations in this receptor may be a susceptibility factor for the presence of depression and cognitive deficits in the elderly population. However, because this is only a promising hypothesis based on previous data, future studies should focus on the involvement of the LPA-LPA1 pathway in coping with stress and resilience in ageing.
Collapse
Affiliation(s)
- Moreno-Fernández Román Dario
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Tabbai Sara
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Castilla-Ortega Estela
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Pérez-Martín Margarita
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de
Málaga; Málaga 29071, Spain
| | - Estivill-Torrús Guillermo
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitarios de Málaga, Málaga, Spain
| | - Rodríguez de Fonseca Fernando
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Santin Luis Javier
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Pedraza Carmen
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| |
Collapse
|
23
|
Sánchez-Marín L, Ladrón de Guevara-Miranda D, Mañas-Padilla MC, Alén F, Moreno-Fernández RD, Díaz-Navarro C, Pérez-Del Palacio J, García-Fernández M, Pedraza C, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Serrano A, Castilla-Ortega E. Systemic blockade of LPA 1/3 lysophosphatidic acid receptors by ki16425 modulates the effects of ethanol on the brain and behavior. Neuropharmacology 2018; 133:189-201. [PMID: 29378212 DOI: 10.1016/j.neuropharm.2018.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/24/2018] [Indexed: 01/08/2023]
Abstract
The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - M Carmen Mañas-Padilla
- Centro de Experimentación Animal, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Francisco Alén
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Román D Moreno-Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Caridad Díaz-Navarro
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - José Pérez-Del Palacio
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - María García-Fernández
- Departamento de Fisiología Humana, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| |
Collapse
|
24
|
Cho HJ, Choi SH, Kim HJ, Lee BH, Rhim H, Kim HC, Hwang SH, Nah SY. Bioactive lipids in gintonin-enriched fraction from ginseng. J Ginseng Res 2017; 43:209-217. [PMID: 30962735 PMCID: PMC6437394 DOI: 10.1016/j.jgr.2017.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 02/08/2023] Open
Abstract
Background Ginseng is a traditional herbal medicine for human health. Ginseng contains a bioactive ligand named gintonin. The active ingredient of gintonin is lysophosphatidic acid C18:2 (LPA C18:2). We previously developed a method for gintonin-enriched fraction (GEF) preparation to mass-produce gintonin from ginseng. However, previous studies did not show the presence of other bioactive lipids besides LPAs. The aim of this study was to quantify the fatty acids, lysophospholipids (LPLs), and phospholipids (PLs) besides LPAs in GEF. Methods We prepared GEF from white ginseng. We used gas chromatography-mass spectrometry for fatty acid analysis and liquid chromatography-tandem mass spectrometry for PL analysis, and quantified the fatty acids, LPLs, and PLs in GEF using respective standards. We examined the effect of GEF on insulin secretion in INS-1 cells. Results GEF contains about 7.5% linoleic (C18:2), 2.8% palmitic (C16:0), and 1.5% oleic acids (C18:1). GEF contains about 0.2% LPA C18:2, 0.06% LPA C16:0, and 0.02% LPA C18:1. GEF contains 0.08% lysophosphatidylcholine, 0.03% lysophosphatidylethanolamine, and 0.13% lysophosphatidylinositols. GEF also contains about 1% phosphatidic acid (PA) 16:0-18:2, 0.5% PA 18:2-18:2, and 0.2% PA 16:0-18:1. GEF-mediated insulin secretion was not blocked by LPA receptor antagonist. Conclusion We determined four characteristics of GEF through lipid analysis and insulin secretion. First, GEF contains a large amount of linoleic acid (C18:2), PA 16:0-18:2, and LPA C18:2 compared with other lipids. Second, the main fatty acid component of LPLs and PLs is linoleic acid (C18:2). Third, GEF stimulates insulin secretion not through LPA receptors. Finally, GEF contains bioactive lipids besides LPAs.
Collapse
Affiliation(s)
- Hee-Jung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Gong MF, Wen RT, Xu Y, Pan JC, Fei N, Zhou YM, Xu JP, Liang JH, Zhang HT. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents. Psychopharmacology (Berl) 2017; 234:3143-3151. [PMID: 28748375 DOI: 10.1007/s00213-017-4697-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/10/2017] [Indexed: 12/29/2022]
Abstract
RATIONALE Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. OBJECTIVE The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. METHODS Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. RESULTS Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. CONCLUSIONS These results provide the first demonstration for that PDE4 plays a role in modulating the development of negative emotional reactions associated with ethanol abstinence, including anxiety and depression. PDE4 inhibitors may be a novel class of drugs for treatment of alcoholism.
Collapse
Affiliation(s)
- Mei-Fang Gong
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Rui-Ting Wen
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Ying Xu
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jian-Chun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Fei
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yan-Meng Zhou
- Institute of Pharmacology, Taishan Medical University, Taian, Shandong, 271016, China
| | - Jiang-Ping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, Shandong, 271016, China.
| |
Collapse
|