1
|
Kowalczyk M, Kowalczyk E, Talarowska M, Majsterek I, Skrzypek M, Popławski T, Sienkiewicz M, Wiktorowska-Owczarek A, Sokołowska P, Jóźwiak-Bębenista M. Relationship Between the Occurrence of Depression and DROSHA (rs6877842, rs10719) and XPO5 (rs11077) Single-Nucleotide Polymorphisms in the Polish Population: A Case-Control Study. Int J Mol Sci 2024; 25:12204. [PMID: 39596271 PMCID: PMC11594337 DOI: 10.3390/ijms252212204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Although the epidemiology and symptoms of major depressive disorder (MDD) have been well-documented, the etiology and pathophysiology of the disease have not yet been fully explained. Depression arises from intricate interplay among social, psychological, and biological factors. Recently, there has been growing focus on the involvement of miRNAs in depression, with suggestions that abnormal miRNA processing locally at the synapse contributes to MDD. Changes in miRNAs may result from altered expression and/or function of the miRNA biogenesis machinery at the synapse. The aim of our research was to assess the relationship between the occurrence of depression and single-nucleotide polymorphisms (SNP) in the following genes in the Polish population: DROSHA (rs6877842; rs10719) and XPO5 (rs11077). This study involved 200 individuals, including 100 with depressive disorders in the study group (SG) and 100 healthy people without MDD in the control group (CG). All participants were unrelated native Caucasian Poles from central Poland. Blood samples were collected to evaluate the single-nucleotide polymorphism of the genes. Findings indicated that within our patient cohort, the risk of depression is increased by polymorphic variants of the rs10719/DROSHA and rs11077/XPO5 genes and lowered by rs6877842/DROSHA. Our study sheds light on the understanding of the genetic basis of depression, which can be used in the rapid diagnosis of this disease.
Collapse
Affiliation(s)
- Mateusz Kowalczyk
- Babinski Memorial Hospital, ul. Aleksandrowska 159, 91-229 Lodz, Poland;
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, ul. Zeligowskiego 7/9, 90-752 Lodz, Poland; (E.K.); (A.W.-O.); (P.S.)
| | - Monika Talarowska
- Department of Clinical Psychology and Psychopathology, Institute of Psychology, University of Lodz, ul. Scheiblerow 2, 90-128 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, ul. Mazowiecka 5, 92-215 Lodz, Poland; (I.M.); (M.S.)
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, ul. Mazowiecka 5, 92-215 Lodz, Poland; (I.M.); (M.S.)
| | - Tomasz Popławski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, ul. Mazowiecka 5, 92-215 Lodz, Poland;
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, ul. Zeligowskiego 7/9, 90-752 Lodz, Poland; (E.K.); (A.W.-O.); (P.S.)
| | - Paulina Sokołowska
- Department of Pharmacology and Toxicology, Medical University of Lodz, ul. Zeligowskiego 7/9, 90-752 Lodz, Poland; (E.K.); (A.W.-O.); (P.S.)
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, ul. Zeligowskiego 7/9, 90-752 Lodz, Poland; (E.K.); (A.W.-O.); (P.S.)
| |
Collapse
|
2
|
Chen CY, Wang YF, Lei L, Zhang Y. MicroRNA-specific targets for neuronal plasticity, neurotransmitters, neurotrophic factors, and gut microbes in the pathogenesis and therapeutics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111186. [PMID: 39521033 DOI: 10.1016/j.pnpbp.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Depression is of great concern because of the huge burden, and it is impacted by various epigenetic modifications, e.g., histone modification, covalent modifications in DNA, and silencing mechanisms of non-coding protein genes, e.g., microRNAs (miRNAs). MiRNAs are a class of endogenous non-coding RNAs. Alternations in specific miRNAs have been observed both in depressive patients and experimental animals. Also, miRNAs are highly expressed in the central nervous system and can be delivered to different tissues via tissue-specific exosomes. However, the mechanism of miRNAs' involvement in the pathological process of depression is not well understood. Therefore, we summarized and discussed the role of miRNAs in depression. Conclusively, miRNAs are involved in the pathology of depression by causing structural and functional changes in synapses, mediating neuronal regeneration, differentiation, and apoptosis, regulating the gut microbes and the expression of various neurotransmitters and BDNF, and mediating inflammatory and immune responses. Moreover, miRNAs can predict the efficacy of antidepressant medications and explain the mechanism of action of antidepressant drugs and aerobic exercise to prevent and assist in treating depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Chen CY, Wang YF, Lei L, Zhang Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci 2024; 351:122815. [PMID: 38866215 DOI: 10.1016/j.lfs.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Sokolov AV, Schiöth HB. Decoding depression: a comprehensive multi-cohort exploration of blood DNA methylation using machine learning and deep learning approaches. Transl Psychiatry 2024; 14:287. [PMID: 39009577 PMCID: PMC11250806 DOI: 10.1038/s41398-024-02992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The causes of depression are complex, and the current diagnosis methods rely solely on psychiatric evaluations with no incorporation of laboratory biomarkers in clinical practices. We investigated the stability of blood DNA methylation depression signatures in six different populations using six public and two domestic cohorts (n = 1942) conducting mega-analysis and meta-analysis of the individual studies. We evaluated 12 machine learning and deep learning strategies for depression classification both in cross-validation (CV) and in hold-out tests using merged data from 8 separate batches, constructing models with both biased and unbiased feature selection. We found 1987 CpG sites related to depression in both mega- and meta-analysis at the nominal level, and the associated genes were nominally related to axon guidance and immune pathways based on enrichment analysis and eQTM data. Random forest classifiers achieved the highest performance (AUC 0.73 and 0.76) in CV and hold-out tests respectively on the batch-level processed data. In contrast, the methylation showed low predictive power (all AUCs < 0.57) for all classifiers in CV and no predictive power in hold-out tests when used with harmonized data. All models achieved significantly better performance (>14% gain in AUCs) with pre-selected features (selection bias), with some of the models (joint autoencoder-classifier) reaching AUCs of up to 0.91 in the final testing regardless of data preparation. Different algorithmic feature selection approaches may outperform limma, however, random forest models perform well regardless of the strategy. The results provide an overview over potential future biomarkers for depression and highlight many important methodological aspects for DNA methylation-based depression profiling including the use of machine learning strategies.
Collapse
Affiliation(s)
- Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Front Psychiatry 2024; 15:1422939. [PMID: 38938457 PMCID: PMC11210496 DOI: 10.3389/fpsyt.2024.1422939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Major depressive disorder (MDD) is a recurrent episodic mood disorder that represents the third leading cause of disability worldwide. In MDD, several factors can simultaneously contribute to its development, which complicates its diagnosis. According to practical guidelines, antidepressants are the first-line treatment for moderate to severe major depressive episodes. Traditional treatment strategies often follow a one-size-fits-all approach, resulting in suboptimal outcomes for many patients who fail to experience a response or recovery and develop the so-called "therapy-resistant depression". The high biological and clinical inter-variability within patients and the lack of robust biomarkers hinder the finding of specific therapeutic targets, contributing to the high treatment failure rates. In this frame, precision medicine, a paradigm that tailors medical interventions to individual characteristics, would help allocate the most adequate and effective treatment for each patient while minimizing its side effects. In particular, multi-omic studies may unveil the intricate interplays between genetic predispositions and exposure to environmental factors through the study of epigenomics, transcriptomics, proteomics, metabolomics, gut microbiomics, and immunomics. The integration of the flow of multi-omic information into molecular pathways may produce better outcomes than the current psychopharmacological approach, which targets singular molecular factors mainly related to the monoamine systems, disregarding the complex network of our organism. The concept of system biomedicine involves the integration and analysis of enormous datasets generated with different technologies, creating a "patient fingerprint", which defines the underlying biological mechanisms of every patient. This review, centered on precision medicine, explores the integration of multi-omic approaches as clinical tools for prediction in MDD at a single-patient level. It investigates how combining the existing technologies used for diagnostic, stratification, prognostic, and treatment-response biomarkers discovery with artificial intelligence can improve the assessment and treatment of MDD.
Collapse
Affiliation(s)
- Fabiola Stolfi
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Sinella
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Nembrini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Virginia Landra
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
6
|
Ogata H, Higasa K, Kageyama Y, Tahara H, Shimamoto A, Takekita Y, Koshikawa Y, Nonen S, Kato T, Kinoshita T, Kato M. Relationship between circulating mitochondrial DNA and microRNA in patients with major depression. J Affect Disord 2023; 339:538-546. [PMID: 37467797 DOI: 10.1016/j.jad.2023.07.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) and circulating cell-free mitochondrial DNA (ccf-mtDNA) have attracted interest as biological markers of affective disorders. In response to stress, it is known that miRNAs in mitochondria diffuse out of the cytoplasm alongside mtDNA; however, this process has not yet been identified. We hypothesized that miRNAs derived from specific cell nuclei cause mitochondrial damage and mtDNA fragmentation under MDD-associated stress conditions. METHODS A comprehensive analysis of the plasma miRNA levels and quantification of the plasma ccf-mtDNA copy number were performed in 69 patients with depression to determine correlations and identify genes and pathways interacting with miRNAs. The patients were randomly assigned to receive either selective serotonin reuptake inhibitors (SSRI) or mirtazapine. Their therapeutic efficacy over four weeks was evaluated in relation to miRNAs correlated with ccf-mtDNA copy number. RESULTS The expression levels of the five miRNAs showed a significant positive correlation with the ccf-mtDNA copy number after correcting for multiple testing. These miRNAs are involved in gene expression related to thyroid hormone synthesis, the Hippo signaling pathway, vasopressin-regulated water reabsorption, and lysine degradation. Of these five miRNAs, miR-6068 and miR-4708-3p were significantly associated with the SSRI and mirtazapine treatment outcomes, respectively. LIMITATIONS This study did not show comparison with a healthy group. CONCLUSIONS The expression levels of specific miRNAs were associated with ccf-mtDNA copy number in untreated depressed patients; moreover, these miRNAs were linked to antidepressant treatment outcomes. These findings are expected to lead to the elucidation of new pathological mechanism of depression.
Collapse
Affiliation(s)
- Haruhiko Ogata
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Koichiro Higasa
- Institute of Biomedical Science, Department of Genome Analysis, Kansai Medical University, Osaka, Japan
| | - Yuki Kageyama
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hidetoshi Tahara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Yamaguchi, Japan
| | | | - Yosuke Koshikawa
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Shinpei Nonen
- Department of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Tadafumi Kato
- Department of Psychiatry & Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
7
|
Wan Z, Rasheed M, Li Y, Li Q, Wang P, Li J, Chen Z, Du J, Deng Y. miR-218-5p and miR-320a-5p as Biomarkers for Brain Disorders: Focus on the Major Depressive Disorder and Parkinson's Disease. Mol Neurobiol 2023; 60:5642-5654. [PMID: 37329382 DOI: 10.1007/s12035-023-03391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
Depression is one of the early and most persistent non-motor symptoms of Parkinson's disease (PD), which remains ignored, resulting in the underdiagnosis of PD. Unfortunately, scarce studies and the non-availability of diagnostic strategies cause countless complications, highlighting the need for appropriate diagnostic biomarkers. Recently, brain-enriched miRNAs regulating vital neurological functions have been proposed as potent biomarkers for therapeutic strategies. Therefore, the present study is aimed to identify the brain-enriched miR-218-5p and miR-320-5p in the serum of the Chinese depressed PD patients (n = 51) than healthy controls (n = 51) to identify their potency as biomarkers. For this purpose, depressive PD patients were recruited based on HAMA and HAMD scores and miR-218-5p and miR-320-5p and IL-6, and S100B levels were analyzed using real-time PCR (qRT-PCR) and ELISA assay, respectively. In silico analysis was performed to identify key biological pathways and hub genes involved in the psychopathology of depression in PD. Here, we found significantly downregulated miR-218-5p and miR-320-5p following higher levels of IL-6 and S100B in depressed PD patients than in control (p < 0.05). The correlation analysis revealed that both miRNAs were negatively correlated with HAMA and HAMD, and IL-6 scores, along with a positive correlation with PD duration and LEDD medication. ROC analysis showed AUC above 75% in both miRNAs in depressed PD patients, and in silico analysis revealed that both miRNA's targets regulate key neurological pathways such as axon guidance, dopaminergic synapse, and circadian rhythm. Additional analysis revealed PIK3R1, ATRX, BM1, PCDHA10, XRCC5, PPP1CB, MLLT3, CBL, PCDHA4, PLCG1, YWHAZ, CDH2, AGO3, PCDHA3, and PCDHA11 as hub-genes in PPI network. In summary, our findings show that miR-218-5p and miR-320-5p can be utilized as future biomarkers for depression in PD patients, which may aid in the early diagnosis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Zhirong Wan
- Department of Neurology, Aerospace Central Hospital, Beijing, 100049, People's Republic of China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yumeng Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qin Li
- Department of Neurology, Aerospace Central Hospital, Beijing, 100049, People's Republic of China
| | - Peifu Wang
- Department of Neurology, Aerospace Central Hospital, Beijing, 100049, People's Republic of China
| | - Jilai Li
- Department of Neurology, Aerospace Central Hospital, Beijing, 100049, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jichen Du
- Department of Neurology, Aerospace Central Hospital, Beijing, 100049, People's Republic of China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
8
|
Seki I, Izumi H, Okamoto N, Ikenouchi A, Morimoto Y, Horie S, Yoshimura R. Serum Extracellular Vesicle-Derived hsa-miR-2277-3p and hsa-miR-6813-3p Are Potential Biomarkers for Major Depression: A Preliminary Study. Int J Mol Sci 2023; 24:13902. [PMID: 37762202 PMCID: PMC10531403 DOI: 10.3390/ijms241813902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of the present study was to examine the association between miRNA levels in extracellular vesicles (EVs) from serum and the severity of Major Depression (MD). Patient sera from 16 MD cases were collected at our university hospital. The miRNAs contained in EVs were extracted using a nanofiltration method, and their expression levels were analyzed using miRNA microarrays. Intergroup comparisons were performed to validate the diagnostic performance of miRNAs in EVs. Furthermore, candidate miRNAs in EVs were added to neural progenitor cells, astrocytes, and microglial cells in vitro, and the predicted target genes of the candidate miRNAs were extracted. The predicted target genes underwent enrichment analysis. The expression levels of hsa-miR-6813-3p and hsa-miR-2277-3p were significantly downregulated with increasing depression severity of MD. The pathway enrichment analysis suggests that hsa-miR-6813-3p may be involved in glucocorticoid receptor and gamma-aminobutyric acid receptor signaling. Additionally, hsa-miR-2277-3p was found to be involved in the dopaminergic neural pathway. The analysis of serum miRNAs in EVs suggests that hsa-miR-6813-3p and hsa-miR-2277-3p could serve as novel biomarkers for MD, reflecting its severity. Moreover, these miRNAs in EVs could help understand MD pathophysiology.
Collapse
Affiliation(s)
- Issei Seki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (I.S.); (N.O.); (A.I.)
| | - Hiroto Izumi
- Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (H.I.); (Y.M.)
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (I.S.); (N.O.); (A.I.)
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (I.S.); (N.O.); (A.I.)
| | - Yasuo Morimoto
- Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (H.I.); (Y.M.)
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan
| | - Seichi Horie
- Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (H.I.); (Y.M.)
- Department of Health Policy and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (I.S.); (N.O.); (A.I.)
| |
Collapse
|
9
|
Funatsuki T, Ogata H, Tahara H, Shimamoto A, Takekita Y, Koshikawa Y, Nonen S, Higasa K, Kinoshita T, Kato M. Changes in Multiple microRNA Levels with Antidepressant Treatment Are Associated with Remission and Interact with Key Pathways: A Comprehensive microRNA Analysis. Int J Mol Sci 2023; 24:12199. [PMID: 37569574 PMCID: PMC10418406 DOI: 10.3390/ijms241512199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Individual treatment outcomes to antidepressants varies widely, yet the determinants to this difference remain elusive. MicroRNA (miRNA) gene expression regulation in major depressive disorder (MDD) has attracted interest as a biomarker. This 4-week randomized controlled trial examined changes in the plasma miRNAs that correlated with the treatment outcomes of mirtazapine (MIR) and selective serotonin reuptake inhibitor (SSRI) monotherapy. Pre- and post- treatment, we comprehensively analyzed the miRNA levels in MDD patients, and identified the gene pathways linked to these miRNAs in 46 patients. Overall, 141 miRNA levels significantly demonstrated correlations with treatment remission after 4 weeks of MIR, with miR-1237-5p showing the most robust and significant correlation after Bonferroni correction. These 141 miRNAs displayed a negative correlation with remission, indicating a decreasing trend. These miRNAs were associated with 15 pathways, including TGF-β and MAPK. Through database searches, the genes targeted by these miRNAs with the identified pathways were compared, and it was found that MAPK1, IGF1, IGF1R, and BRAF matched. Alterations in specific miRNAs levels before and after MIR treatment correlated with remission. The miRNAs mentioned in this study have not been previously reported. No other studies have investigated treatment with MIR. The identified miRNAs also correlated with depression-related genes and pathways.
Collapse
Affiliation(s)
- Toshiya Funatsuki
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Haruhiko Ogata
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Hidetoshi Tahara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan;
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan;
| | - Yoshiteru Takekita
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Yosuke Koshikawa
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Shinpei Nonen
- Department of Pharmacy, Hyogo Medical University, Nishinomiya 650-8530, Japan;
| | - Koichiro Higasa
- Institute of Biomedical Science, Department of Genome Analysis, Kansai Medical University, Osaka 573-1191, Japan;
| | - Toshihiko Kinoshita
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| |
Collapse
|
10
|
Kazantseva A, Davydova Y, Enikeeva R, Mustafin R, Malykh S, Lobaskova M, Kanapin A, Prokopenko I, Khusnutdinova E. A Combined Effect of Polygenic Scores and Environmental Factors on Individual Differences in Depression Level. Genes (Basel) 2023; 14:1355. [PMID: 37510260 PMCID: PMC10379734 DOI: 10.3390/genes14071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The risk of depression could be evaluated through its multifactorial nature using the polygenic score (PGS) approach. Assuming a "clinical continuum" hypothesis of mental diseases, a preliminary assessment of individuals with elevated risk for developing depression in a non-clinical group is of high relevance. In turn, epidemiological studies suggest including social/lifestyle factors together with PGS to address the "missing heritability" problem. We designed regression models, which included PGS using 27 SNPs and social/lifestyle factors to explain individual differences in depression levels in high-education students from the Volga-Ural region (VUR) of Eurasia. Since issues related to population stratification in PGS scores may lead to imprecise variant effect estimates, we aimed to examine a sensitivity of PGS calculated on summary statistics of depression and neuroticism GWAS from Western Europeans to assess individual proneness to depression levels in the examined sample of Eastern Europeans. A depression score was assessed using the revised version of the Beck Depression Inventory (BDI) in 1065 young adults (age 18-25 years, 79% women, Eastern European ancestry). The models based on weighted PGS demonstrated higher sensitivity to evaluate depression level in the full dataset, explaining up to 2.4% of the variance (p = 3.42 × 10-7); the addition of social parameters enhanced the strength of the model (adjusted r2 = 15%, p < 2.2 × 10-16). A higher effect was observed in models based on weighted PGS in the women group, explaining up to 3.9% (p = 6.03 × 10-9) of variance in depression level assuming a combined SNPs effect and 17% (p < 2.2 × 10-16)-with the addition of social factors in the model. We failed to estimate BDI-measured depression based on summary statistics from Western Europeans GWAS of clinical depression. Although regression models based on PGS from neuroticism (depression-related trait) GWAS in Europeans were associated with a depression level in our sample (adjusted r2 = 0.43%, p = 0.019-for unweighted model), the effect was mainly attributed to the inclusion of social/lifestyle factors as predictors in these models (adjusted r2 = 15%, p < 2.2 × 10-16-for unweighted model). In conclusion, constructed PGS models contribute to a proportion of interindividual variability in BDI-measured depression in high-education students, especially women, from the VUR of Eurasia. External factors, including the specificity of rearing in childhood, used as predictors, improve the predictive ability of these models. Implementation of ethnicity-specific effect estimates in such modeling is important for individual risk assessment.
Collapse
Affiliation(s)
- Anastasiya Kazantseva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Yuliya Davydova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Renata Enikeeva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Rustam Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Sergey Malykh
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia
- Department of Psychology, Lomonosov Moscow State University, 125009 Moscow, Russia
| | - Marina Lobaskova
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia
| | - Alexander Kanapin
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
- Department of Psychology, Lomonosov Moscow State University, 125009 Moscow, Russia
| |
Collapse
|
11
|
Dadkhah M, Jafarzadehgharehziaaddin M, Molaei S, Akbari M, Gholizadeh N, Fathi F. Major depressive disorder: biomarkers and biosensors. Clin Chim Acta 2023:117437. [PMID: 37315724 DOI: 10.1016/j.cca.2023.117437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Depressive disorders belong to highly heterogeneous psychiatric diseases. Loss of in interest in previously enjoyed activities and a depressed mood are the main characteristics of major depressive disorder (MDD). Moreover, due to significant heterogeneity in clinical presentation and lack of applicable biomarkers, diagnosis and treatment remains challenging. Identification of relevant biomarkers would allow for improved disease classification and more personalized treatment strategies. Herein, we review the current state of these biomarkers and then discuss diagnostic techniques of aimed to specifically target these analytes using state of the art biosensor technology.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Morteza Akbari
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neghin Gholizadeh
- Students Research Committee, Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
12
|
Treble-Barna A, Heinsberg LW, Stec Z, Breazeale S, Davis TS, Kesbhat AA, Chattopadhyay A, VonVille HM, Ketchum AM, Yeates KO, Kochanek PM, Weeks DE, Conley YP. Brain-derived neurotrophic factor (BDNF) epigenomic modifications and brain-related phenotypes in humans: A systematic review. Neurosci Biobehav Rev 2023; 147:105078. [PMID: 36764636 PMCID: PMC10164361 DOI: 10.1016/j.neubiorev.2023.105078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Epigenomic modifications of the brain-derived neurotrophic factor (BDNF) gene have been postulated to underlie the pathogenesis of neurodevelopmental, psychiatric, and neurological conditions. This systematic review summarizes current evidence investigating the association of BDNF epigenomic modifications (DNA methylation, non-coding RNA, histone modifications) with brain-related phenotypes in humans. A novel contribution is our creation of an open access web-based application, the BDNF DNA Methylation Map, to interactively visualize specific positions of CpG sites investigated across all studies for which relevant data were available. Our literature search of four databases through September 27, 2021 returned 1701 articles, of which 153 met inclusion criteria. Our review revealed exceptional heterogeneity in methodological approaches, hindering the identification of clear patterns of robust and/or replicated results. We summarize key findings and provide recommendations for future epigenomic research. The existing literature appears to remain in its infancy and requires additional rigorous research to fulfill its potential to explain BDNF-linked risk for brain-related conditions and improve our understanding of the molecular mechanisms underlying their pathogenesis.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Lacey W Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Stephen Breazeale
- Department of Health and Human Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Tara S Davis
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, PA 15261, USA.
| | | | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System, University of Pittsburgh, USA
| | - Helena M VonVille
- Health Sciences Library System, University of Pittsburgh, PA 15261, USA.
| | - Andrea M Ketchum
- Emeritus Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N1N4, Canada.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Daniel E Weeks
- Department of Human Genetics and Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yvette P Conley
- Department of Human Genetics, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Kong X, Wang J, Lv S, Wang C, Hong H, Xie P, Guo Y, Zhu N, Qin P, Sun Y, Xu J. Bidirectional motivated bimodal isothermal strand displacement amplifier with a table tennis-like movement for the ultrasensitive fluorescent and colorimetric detection of depression-related microRNA. Anal Chim Acta 2023; 1247:340894. [PMID: 36781251 DOI: 10.1016/j.aca.2023.340894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
An increasing number of studies have highlighted the potential of microRNAs (miRNAs) as physiological indicators of major depressive disorder (MDD). Herein, we developed a bidirectional-motivated bimodal isothermal strand displacement amplifier (BB-ISDA) for the ultrasensitive fluorescent and colorimetric detection of MDD-related miRNA-132. In the BB-ISDA system, a pair of functionalized hairpin probes (HP1 and HP2) with nicking recognition sites are designed to recognize target miRNA. The recognition of target miRNA by HP1 (or HP2) generates copious numbers of nicked triggers by HP1 (or HP2)-based ISDA to recognize HP2 (or HP1) by autonomous strand polymerization, cleavage, and displacement, which in turn induces the subsequent generation of copious numbers of nicked G-quadruplex triggers by HP2 (or HP1)-based ISDA to recognize HP1 (or HP2) along a same line. After many cycles, this bidirectional motivated table-tennis-like movement amplifies the fluorescent signal from HP1 and the colorimetric signal from HP2, simultaneously. The dual-signal output pattern was cross-validated for sensing miRNA-132. Each of the detection modal shows the capability for qualitative and quantitative detection of miRNA-132 with high sensitivity and specificity. The adaptability of the bimodal mechanism was verified via the detection of target miRNA-132 from clinical human blood samples. We envision that this BB-ISDA with dual-signal output for accurate and reliable analysis of miRNA is promising for the molecular diagnosis of human mental diseases.
Collapse
Affiliation(s)
- Xiaoming Kong
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230022, PR China
| | - Junfeng Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Siwen Lv
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230022, PR China
| | - Chen Wang
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230022, PR China
| | - Hong Hong
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230022, PR China
| | - Pengyv Xie
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230022, PR China
| | - Yv Guo
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230022, PR China
| | - Nannan Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230022, PR China
| | - Panzhu Qin
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China.
| | - Yan Sun
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, PR China.
| | - Jianguo Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China.
| |
Collapse
|
14
|
Foley HB, Howe CG, Eckel SP, Chavez T, Gevorkian L, Reyes EG, Kapanke B, Martinez D, Xue S, Suglia SF, Bastain TM, Marsit C, Breton CV. Depression, perceived stress, and distress during pregnancy and EV-associated miRNA profiles in MADRES. J Affect Disord 2023; 323:799-808. [PMID: 36563790 PMCID: PMC9844263 DOI: 10.1016/j.jad.2022.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/17/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNA (miRNA) circulating in plasma has been proposed as biomarkers for a variety of diseases and stress measures, including depression, stress, and trauma. However, few studies have examined the relationship between stress and miRNA during pregnancy. METHODS In this study, we examined associations between measures of stress and depression during pregnancy with miRNA in early and late pregnancy from the MADRES cohort of primarily low-income Hispanic women based in Los Angeles, California. Extracellular-vesicle- (EV-) associated miRNA were isolated from maternal plasma and quantified using the Nanostring nCounter platform. Correlations for stress-associated miRNA were also calculated for 89 matching cord blood samples. RESULTS Fifty miRNA were nominally associated with depression, perceived stress, and prenatal distress (raw p < 0.05) with 17 miRNA shared between two or more stress measures. Two miRNA (miR-150-5p and miR-148b-3p) remained marginally significant after FDR adjustment (p < 0.10). Fifteen PANTHER pathways were enriched for predicted gene targets of the 50 miRNA associated with stress. Clusters of maternal and neonate miRNA expression suggest a link between maternal and child profiles. LIMITATIONS The study evaluated 142 miRNA and was not an exhaustive analysis of all discovered miRNA. Evaluations for stress, depression and trauma were based on self-reported instruments, rather than diagnostic tools. CONCLUSIONS Depression and stress during pregnancy are associated with some circulating EV miRNA. Given that EV miRNA play important roles in maternal-fetal communication, this may have downstream consequences for maternal and child health, and underscore the importance of addressing mental health during pregnancy, especially in health disparities populations.
Collapse
Affiliation(s)
- Helen Bermudez Foley
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States of America
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Thomas Chavez
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Lili Gevorkian
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Interface Team, Fulgent Genetics, Inc., Temple City, CA, United States of America
| | - Eileen Granada Reyes
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Bethany Kapanke
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Danilo Martinez
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Shanyan Xue
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Theresa M Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
15
|
Ning S, Zhang S, Guo Z. MicroRNA-494 regulates high glucose-induced cardiomyocyte apoptosis and autophagy by PI3K/AKT/mTOR signalling pathway. ESC Heart Fail 2023; 10:1401-1411. [PMID: 36772911 PMCID: PMC10053280 DOI: 10.1002/ehf2.14311] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is one of the major cardiovascular complications of diabetes. However, the mechanism of DCM is not fully understood. Studies have confirmed that certain microRNAs (miRNAs/miRs) are key regulators of DCM. The aim of this study was to investigate the role and mechanism of microRNA (miR)-494 in cardiomyocyte apoptosis and autophagy induced by high glucose (HG). METHODS AND RESULTS By establishing a rat DCM model and an HG-treated H9c2 cells injury model, cardiac function was detected by echocardiography, myocardial tissue was stained by immunohistochemistry, and Cell Counting Kit-8 assay and lactate dehydrogenase assay were used to detect the cardiomyocyte injury. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling staining, and western blotting was used to detect death and autophagy. The results showed that the expression level of miR-494 was higher in the myocardial tissue of DCM rats and the myocardial cells of H9c2 treated with HG. Compared with the corresponding negative control groups, miR-494 mimics enhanced HG-induced apoptosis and autophagy, whereas miR-494 inhibitors showed the opposite effect, corresponding PI3K, AKT, and mTOR phosphorylation level has changed. CONCLUSIONS These findings identify that miR-494 could regulate cell apoptosis and autophagy through PI3K/AKT/mTOR signalling pathway, participating in the regulation of cardiomyocyte cell damage after HG. These findings provide new insights for the further study of the molecular mechanism and treatment of DCM.
Collapse
Affiliation(s)
- Shuwei Ning
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China
| | - Siqi Zhang
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
17
|
Chen HM, Chung YCE, Chen HC, Liu YW, Chen IM, Lu ML, Hsiao FSH, Chen CH, Huang MC, Shih WL, Kuo PH. Exploration of the relationship between gut microbiota and fecal microRNAs in patients with major depressive disorder. Sci Rep 2022; 12:20977. [PMID: 36470908 PMCID: PMC9722658 DOI: 10.1038/s41598-022-24773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbiota-gut-brain axis signaling plays a pivotal role in mood disorders. The communication between the host and the gut microbiota may involve complex regulatory networks. Previous evidence showed that host-fecal microRNAs (miRNAs) interactions partly shaped gut microbiota composition. We hypothesized that some miRNAs are correlated with specific bacteria in the fecal samples in patients with major depressive disorder (MDD), and these miRNAs would show enrichment in pathways associated with MDD. MDD patients and healthy controls were recruited to collect fecal samples. We performed 16S ribosome RNA sequence using the Illumina MiSeq sequencers and analysis of 798 fecal miRNAs using the nCounter Human-v2 miRNA Panel in 20 subjects. We calculated the Spearman correlation coefficient for bacteria abundance and miRNA expressions, and analyzed the predicted miRNA pathways by enrichment analysis with false-discovery correction (FDR). A total of 270 genera and 798 miRNAs were detected in the fecal samples. Seven genera (Anaerostipes, Bacteroides, Bifidobacterium, Clostridium, Collinsella, Dialister, and Roseburia) had fold changes greater than one and were present in over 90% of all fecal samples. In particular, Bacteroides and Dialister significantly differed between the MDD and control groups (p-value < 0.05). The correlation coefficients between the seven genera and miRNAs in patients with MDD showed 48 pairs of positive correlations and 36 negative correlations (p-value < 0.01). For miRNA predicted functions, there were 57 predicted pathways with a p-value < 0.001, including MDD-associated pathways, axon guidance, circadian rhythm, dopaminergic synapse, focal adhesion, long-term potentiation, and neurotrophin signaling pathway. In the current pilot study, our findings suggest specific genera highly correlated with the predicted miRNA functions, which might provide clues for the interaction between host factors and gut microbiota via the microbiota-gut-brain axis. Follow-up studies with larger sample sizes and refined experimental design are essential to dissect the roles between gut microbiota and miRNAs for depression.
Collapse
Affiliation(s)
- Hui-Mei Chen
- grid.19188.390000 0004 0546 0241Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100 Taiwan
| | - Yu-Chu Ella Chung
- grid.19188.390000 0004 0546 0241Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100 Taiwan ,grid.59784.370000000406229172Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 350 Taiwan
| | - Hsi-Chung Chen
- grid.412094.a0000 0004 0572 7815Department of Psychiatry, National Taiwan University Hospital, Taipei, 100 Taiwan ,grid.412094.a0000 0004 0572 7815Center of Sleep Disorders, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Yen-Wenn Liu
- grid.260539.b0000 0001 2059 7017Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - I-Ming Chen
- grid.412094.a0000 0004 0572 7815Department of Psychiatry, National Taiwan University Hospital, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, 100 Taiwan
| | - Mong-Liang Lu
- grid.416930.90000 0004 0639 4389Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, 116 Taiwan ,grid.412896.00000 0000 9337 0481Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110 Taiwan
| | - Felix Shih-Hsiang Hsiao
- grid.412063.20000 0004 0639 3626Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City, Yilan County, 260007 Taiwan
| | - Chun-Hsin Chen
- grid.416930.90000 0004 0639 4389Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, 116 Taiwan ,grid.412896.00000 0000 9337 0481Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110 Taiwan
| | - Ming-Chyi Huang
- grid.412896.00000 0000 9337 0481Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110 Taiwan ,Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, 110 Taiwan
| | - Wei-Liang Shih
- grid.19188.390000 0004 0546 0241Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100 Taiwan ,grid.454740.6Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, 100 Taiwan
| | - Po-Hsiu Kuo
- grid.19188.390000 0004 0546 0241Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100 Taiwan ,grid.412094.a0000 0004 0572 7815Department of Psychiatry, National Taiwan University Hospital, Taipei, 100 Taiwan ,grid.416930.90000 0004 0639 4389Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Kowalczyk M, Kowalczyk E, Gogolewska M, Skrzypek M, Talarowska M, Majsterek I, Poplawski T, Kwiatkowski P, Sienkiewicz M. Association of polymorphic variants in GEMIN genes with the risk of depression in a Polish population. PeerJ 2022; 10:e14317. [PMID: 36405016 PMCID: PMC9673762 DOI: 10.7717/peerj.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background The role of miRNA in depression is widely described by many researchers. miRNA is a final product of many genes involved in its formation (maturation). One of the final steps in the formation of miRNAs is the formation of the RISC complex, called the RNA-induced silencing complex, which includes, among others, GEMIN proteins. Single-nucleotide polymorphisms (SNPs) may lead to disturbance of miRNA biogenesis and function. The objective of our research was to assess the relationship between the appearance of depression and single nucleotide polymorphisms in the GEMIN3 (rs197388) and GEMIN4 (rs7813; rs3744741) genes. Our research provides new knowledge on the genetic factors that influence the risk of depression. They can be used as an element of diagnostics helpful in identifying people at increased risk, as well as indicating people not at risk of depression. Methods A total of 218 participants were examined, including individuals with depressive disorders (n = 102; study group) and healthy people (n = 116, control group). All the patients in the study group and the people in the control group were non-related native Caucasian Poles from central Poland. Blood was collected from study and control groups in order to assess the SNPs of GEMIN genes. Results An analysis of the results obtained showed that in patient population, the risk of depression is almost doubled by polymorphic variants of the genes: rs197388/GEMIN3 genotype A/A in the recessive model and rs3744741/GEMIN4 genotype T/T, codominant and recessive model. The dual role of rs7813/GEMIN4 is noteworthy, where the G/A genotype in the codominant and over dominant model protects against depression.
Collapse
Affiliation(s)
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | - Monika Gogolewska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Monika Talarowska
- Department of Clinical Psychology and Psychopathology, University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Poplawski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Nadar PM, Merrill MA, Austin K, Strakowski SM, Halpern JM. The emergence of psychoanalytical electrochemistry: the translation of MDD biomarker discovery to diagnosis with electrochemical sensing. Transl Psychiatry 2022; 12:372. [PMID: 36075922 PMCID: PMC9452859 DOI: 10.1038/s41398-022-02138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 01/30/2023] Open
Abstract
The disease burden and healthcare costs of psychiatric diseases along with the pursuit to understand their underlying biochemical mechanisms have led to psychiatric biomarker investigations. Current advances in evaluating candidate biomarkers for psychiatric diseases, such as major depressive disorder (MDD), focus on determining a specific biomarker signature or profile. The origins of candidate biomarkers are heterogenous, ranging from genomics, proteomics, and metabolomics, while incorporating associations with clinical characterization. Prior to clinical use, candidate biomarkers must be validated by large multi-site clinical studies, which can be used to determine the ideal MDD biomarker signature. Therefore, identifying valid biomarkers has been challenging, suggesting the need for alternative approaches. Following validation studies, new technology must be employed to transition from biomarker discovery to diagnostic biomolecular profiling. Current technologies used in discovery and validation, such as mass spectroscopy, are currently limited to clinical research due to the cost or complexity of equipment, sample preparation, or measurement analysis. Thus, other technologies such as electrochemical detection must be considered for point-of-care (POC) testing with the needed characteristics for physicians' offices. This review evaluates the advantages of using electrochemical sensing as a primary diagnostic platform due to its rapidity, accuracy, low cost, biomolecular detection diversity, multiplexed capacity, and instrument flexibility. We evaluate the capabilities of electrochemical methods in evaluating current candidate MDD biomarkers, individually and through multiplexed sensing, for promising applications in detecting MDD biosignatures in the POC setting.
Collapse
Affiliation(s)
- Priyanka M Nadar
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Mckenna A Merrill
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Katherine Austin
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Stephen M Strakowski
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
20
|
Differential expression of serum extracellular vesicle microRNAs and analysis of target-gene pathways in major depressive disorder. Biomark Neuropsychiatry 2022. [DOI: 10.1016/j.bionps.2022.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
21
|
An X, Guo W, Wu H, Fu X, Li M, Zhang Y, Li Y, Cui R, Yang W, Zhang Z, Zhao G. Sex Differences in Depression Caused by Early Life Stress and Related Mechanisms. Front Neurosci 2022; 16:797755. [PMID: 35663561 PMCID: PMC9157793 DOI: 10.3389/fnins.2022.797755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Depression is a common psychiatric disease caused by various factors, manifesting with continuous low spirits, with its precise mechanism being unclear. Early life stress (ELS) is receiving more attention as a possible cause of depression. Many studies focused on the mechanisms underlying how ELS leads to changes in sex hormones, neurotransmitters, hypothalamic pituitary adrenocortical (HPA) axis function, and epigenetics. The adverse effects of ELS on adulthood are mainly dependent on the time window when stress occurs, sex and the developmental stage when evaluating the impacts. Therefore, with regard to the exact sex differences of adult depression, we found that ELS could lead to sex-differentiated depression through multiple mechanisms, including 5-HT, sex hormone, HPA axis, and epigenetics.
Collapse
Affiliation(s)
- Xianquan An
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, China
| | - Wanxu Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Huiying Wu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ming Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yizhi Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yanlin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Zhuo Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhuo Zhang,
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Guoqing Zhao,
| |
Collapse
|
22
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
23
|
Circulating hsa-let-7e-5p and hsa-miR-125a-5p as Possible Biomarkers in the Diagnosis of Major Depression and Bipolar Disorders. DISEASE MARKERS 2022; 2022:3004338. [PMID: 35178127 PMCID: PMC8844308 DOI: 10.1155/2022/3004338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Background. Evidence shows that microRNAs (miRNAs) could play a key role in the homeostasis and development of major depressive disorder and bipolar disorder. The present study is aimed at investigating the changes in circulating miRNA expression profiles in a plasma of patients suffering from major depressive disorder (MDD) and bipolar disorder (BD) to distinguish and evaluate these molecules as biomarkers for mood disorders. Methods. A study enrolled a total of 184 subjects: 74 controls, 84 MDD patients, and 26 BD patients. Small RNA sequencing revealed 11 deregulated circulating miRNAs in MDD and BD plasma, of which expression of 5, hsa-miR-139-3p, miRNAs hsa-let-7e-5p, hsa-let-7f-5p, hsa-miR-125a-5p, and hsa-miR-483-5p, were further verified using qPCR. miRNA gene expression data was evaluated alongside the data from clinical assessment questionnaires. Results. hsa-let-7e-5p and hsa-miR-125a-5p were both confirmed upregulated: 0.75-fold and 0.25-fold, respectively, in the MDD group as well as 1.36-fold and 0.68-fold in the BD group. Receiver operating curve (ROC) analysis showed mediocre diagnostic sensitivity and specificity of both hsa-let-7e-5p and hsa-miR-125a-5p with approximate area under the curve (AOC) of 0.66. ROC analysis of combined miRNA and clinical assessment data showed that hsa-let-7e-5p and hsa-miR-125a-5p testing could improve MDD and BD diagnostic accuracy by approximately 10%. Conclusions. Circulating hsa-let-7e-5 and hsa-miR-125a-5p could serve as additional peripheral biomarkers for mood disorders; however, suicidal ideation remains the major diagnostic factor for MDD and BD.
Collapse
|
24
|
Rasheed M, Asghar R, Firdoos S, Ahmad N, Nazir A, Ullah KM, Li N, Zhuang F, Chen Z, Deng Y. A Systematic Review of Circulatory microRNAs in Major Depressive Disorder: Potential Biomarkers for Disease Prognosis. Int J Mol Sci 2022; 23:1294. [PMID: 35163214 PMCID: PMC8835958 DOI: 10.3390/ijms23031294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Major depressive disorder (MDD) is a neuropsychiatric disorder, which remains challenging to diagnose and manage due to its complex endophenotype. In this aspect, circulatory microRNAs (cimiRNAs) offer great potential as biomarkers and may provide new insights for MDD diagnosis. Therefore, we systemically reviewed the literature to explore various cimiRNAs contributing to MDD diagnosis and underlying molecular pathways. A comprehensive literature survey was conducted, employing four databases from 2012 to January 2021. Out of 1004 records, 157 reports were accessed for eligibility criteria, and 32 reports meeting our inclusion criteria were considered for in-silico analysis. This study identified 99 dysregulated cimiRNAs in MDD patients, out of which 20 cimiRNAs found in multiple reports were selected for in-silico analysis. KEGG pathway analysis indicated activation of ALS, MAPK, p53, and P13K-Akt signaling pathways, while gene ontology analysis demonstrated that most protein targets were associated with transcription. In addition, chromosomal location analysis showed clustering of dysregulated cimiRNAs at proximity 3p22-p21, 9q22.32, and 17q11.2, proposing their coregulation with specific transcription factors primarily involved in MDD physiology. Further analysis of transcription factor sites revealed the existence of HIF-1, REST, and TAL1 in most cimiRNAs. These transcription factors are proposed to target genes linked with MDD, hypothesizing that first-wave cimiRNA dysregulation may trigger the second wave of transcription-wide changes, altering the protein expressions of MDD-affected cells. Overall, this systematic review presented a list of dysregulated cimiRNAs in MDD, notably miR-24-3p, let 7a-5p, miR-26a-5p, miR135a, miR-425-3p, miR-132, miR-124 and miR-16-5p as the most prominent cimiRNAs. However, various constraints did not permit us to make firm conclusions on the clinical significance of these cimiRNAs, suggesting the need for more research on single blood compartment to identify the biomarker potential of consistently dysregulated cimiRNAs in MDD, as well as the therapeutic implications of these in-silico insights.
Collapse
Affiliation(s)
- Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Sundas Firdoos
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Nadeem Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Jinan 250100, China;
| | - Kakar Mohib Ullah
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Noumin Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Fengyuan Zhuang
- School of Biology and Medical Engineering, Beihang University, Beijing 100191, China;
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| |
Collapse
|
25
|
Cuomo-Haymour N, Sigrist H, Ineichen C, Russo G, Nüesch U, Gantenbein F, Kulic L, Knuesel I, Bergamini G, Pryce CR. Evidence for Effects of Extracellular Vesicles on Physical, Inflammatory, Transcriptome and Reward Behaviour Status in Mice. Int J Mol Sci 2022; 23:ijms23031028. [PMID: 35162951 PMCID: PMC8835024 DOI: 10.3390/ijms23031028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immune-inflammatory activation impacts extracellular vesicles (EVs), including their miRNA cargo. There is evidence for changes in the EV miRNome in inflammation-associated neuropsychiatric disorders. This mouse study investigated: (1) effects of systemic lipopolysaccharide (LPS) and chronic social stress (CSS) on plasma EV miRNome; and (2) physiological, transcriptional, and behavioural effects of peripheral or central delivered LPS-activated EVs in recipient mice. LPS or CSS effects on the plasma EV miRNome were assessed by using microRNA sequencing. Recipient mice received plasma EVs isolated from LPS-treated or SAL-treated donor mice or vehicle only, either intravenously or into the nucleus accumbens (NAc), on three consecutive days. Bodyweight, spleen or NAc transcriptome and reward (sucrose) motivation were assessed. LPS and CSS increased the expression of 122 and decreased expression of 20 plasma EV miRNAs, respectively. Peripheral LPS-EVs reduced bodyweight, and both LPS-EVs and SAL-EVs increased spleen expression of immune-relevant genes. NAc-infused LPS-EVs increased the expression of 10 immune-inflammatory genes. Whereas motivation increased similarly across test days in all groups, the effect of test days was more pronounced in mice that received peripheral or central LPS-EVs compared with other groups. This study provides causal evidence that increased EV levels impact physiological and behavioural processes and are of potential relevance to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nagiua Cuomo-Haymour
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
| | - Christian Ineichen
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
| | - Giancarlo Russo
- Functional Genomics Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland;
| | - Ursina Nüesch
- Paediatric Immunology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
| | - Felix Gantenbein
- Zurich Integrative Rodent Physiology, University of Zurich, 8057 Zurich, Switzerland;
| | - Luka Kulic
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland; (L.K.); (I.K.)
| | - Irene Knuesel
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland; (L.K.); (I.K.)
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
| | - Christopher Robert Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-(0)44-634-89-21
| |
Collapse
|
26
|
Stapel B, Xiao K, Gorinski N, Schmidt K, Pfanne A, Fiedler J, Richter I, Vollbrecht AL, Thum T, Kahl KG, Ponimaskin E. MicroRNAs as novel peripheral markers for suicidality in patients with major depressive disorder. Front Psychiatry 2022; 13:1020530. [PMID: 36506422 PMCID: PMC9729747 DOI: 10.3389/fpsyt.2022.1020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Major depressive disorder (MDD) constitutes a main risk factor for suicide. Suicide risk in psychiatric patients is primarily determined by often unreliable, self-reported information. We assessed serum levels of three microRNAs (miRNAs), previously demonstrated to be dysregulated in post-mortem brain samples of suicide victims, as potential peripheral biomarkers for suicidality. METHODS All study participants were diagnosed with MDD according to Diagnostic and Statistical Manual of Mental Disorders, 5th edition criteria. Suicidality, defined as acute suicide risk or suicide attempt within one week prior to study entry, was assessed by clinical interview. Relative serum levels of miR-30a, miR-30e, and miR-200a, normalized to U6, were measured by quantitative real-time PCR in MDD inpatients with (MDD/SI, N = 19) and without (MDD, N = 31) acute suicide risk. Median age and gender distribution were comparable in both groups. RESULTS Levels of miR-30a, miR-30e, and miR-200a were significantly elevated in MDD/SI compared to MDD. Subgroup analysis of the MDD/SI group showed that levels of miR-30e and miR-200a were significantly higher and miR-30a was increased by trend in patients admitted following a suicide attempt (N = 7) compared to patients with acute suicide risk but without recent suicide attempt (N = 12). Additionally, use of two databases for in silico transcription factor-miRNA interaction prediction indicated early growth response protein (EGR) 1 as potential transcriptional regulator for all three miRNAs. CONCLUSION This study demonstrates suicide risk in MDD patients to be associated with increased levels of miR-30a, miR-30e, and miR-200a. Thus, these miRNAs might constitute potential biomarkers to predict suicidal behavior in MDD patients.
Collapse
Affiliation(s)
- Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ke Xiao
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
| | | | - Kevin Schmidt
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Angelika Pfanne
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Jan Fiedler
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
| | - Imke Richter
- Cellular Neurophysiology, Hannover Medical School, Hanover, Germany
| | | | - Thomas Thum
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany.,Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | | |
Collapse
|
27
|
Li QS, Galbraith D, Morrison RL, Trivedi MH, Drevets WC. Circulating microRNA associated with future relapse status in major depressive disorder. Front Psychiatry 2022; 13:937360. [PMID: 36061300 PMCID: PMC9428445 DOI: 10.3389/fpsyt.2022.937360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is an episodic condition with relapsing and remitting disease course. Elucidating biomarkers that can predict future relapse in individuals responding to an antidepressant treatment holds the potential to identify those patients who are prone to illness recurrence. The current study explored relationships between relapse risk in recurrent MDD and circulating microRNAs (miRNAs) that participate in RNA silencing and post-transcriptional regulation of gene expression. Serum samples were acquired from individuals with a history of recurrent MDD who were followed longitudinally in the observational study, OBSERVEMDD0001 (ClinicalTrials.gov Identifier: NCT02489305). Circulating miRNA data were obtained in 63 participants who relapsed ("relapsers") and 154 participants who did not relapse ("non-relapsers") during follow-up. The miRNA was quantified using the ID3EAL™ miRNA Discovery Platform from MiRXES measuring 575 circulating miRNAs using a patented qPCR technology and normalized with a standard curve from spike-in controls in each plate. The association between miRNAs and subsequent relapse was tested using a linear model, adjusting for age, gender, and plate. Four miRNAs were nominally associated with relapse status during the observational follow-up phase with a false discover rate adjusted p-value < 0.1. Enrichment analysis of experimentally validated targets revealed 112 significantly enriched pathways, including neurogenesis, response to cytokine, neurotrophin signaling, vascular endothelial growth factor signaling, relaxin signaling, and cellular senescence pathways. These data suggest these miRNAs putatively associated with relapse status may have the potential to regulate genes involved in multiple signaling pathways that have previously been associated with MDD. If shown to be significant in a larger, independent sample, these data may hold potential for developing a miRNA signature to identify patients likely to relapse, allowing for earlier intervention.
Collapse
Affiliation(s)
- Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, United States.,JRD Data Science, Janssen Research and Development, LLC, Titusville, NJ, United States
| | | | - Randall L Morrison
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, United States
| | - Madhukar H Trivedi
- Department of Psychiatry, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States
| | - Wayne C Drevets
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
28
|
The miRNome of Depression. Int J Mol Sci 2021; 22:ijms222111312. [PMID: 34768740 PMCID: PMC8582693 DOI: 10.3390/ijms222111312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Depression is an effect of complex interactions between genetic, epigenetic and environmental factors. It is well established that stress responses are associated with multiple modest and often dynamic molecular changes in the homeostatic balance, rather than with a single genetic factor that has a strong phenotypic penetration. As depression is a multifaceted phenotype, it is important to study biochemical pathways that can regulate the overall allostasis of the brain. One such biological system that has the potential to fine-tune a multitude of diverse molecular processes is RNA interference (RNAi). RNAi is an epigenetic process showing a very low level of evolutionary diversity, and relies on the posttranscriptional regulation of gene expression using, in the case of mammals, primarily short (17–23 nucleotides) noncoding RNA transcripts called microRNAs (miRNA). In this review, our objective was to examine, summarize and discuss recent advances in the field of biomedical and clinical research on the role of miRNA-mediated regulation of gene expression in the development of depression. We focused on studies investigating post-mortem brain tissue of individuals with depression, as well as research aiming to elucidate the biomarker potential of miRNAs in depression and antidepressant response.
Collapse
|
29
|
Lee SY, Wang TY, Lu RB, Wang LJ, Chang CH, Chiang YC, Tsai KW. Peripheral BDNF correlated with miRNA in BD-II patients. J Psychiatr Res 2021; 136:184-189. [PMID: 33610945 DOI: 10.1016/j.jpsychires.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We have identified the association between peripheral levels of candidate miRNAs (miR-7-5p, miR-142-3p, miR-221-5p, and miR-370-3p) for BD-II in previous study. Most of these miRNAs are associated with regulation of expression of peripheral brain derived neurotrophic factor (BDNF) levels. In order to clarify the underlying mechanism of BDNF and miRNAs in the pathogenesis of BD-II, it is of interest to investigate the relation between the peripheral levels of miR-7-5p, miR-142-3p, miR-221-5p, miR-370-3p with BDNF levels. Because the BDNF Val66Met polymorphism influence the secretion of BDNF, we further stratified the above correlations by this polymorphism. METHODS We have recruited 98 BD-II patients. Beside analyzing peripheral levels of miR-7-5p, miR-142-3p, miR-221-5p, miR-370-3p, and BDNF, the genetic distribution of the BDNF Val66Met polymorphism was also analyzed. RESULTS We found that the miR7-5p, miR221-5p, and miR370-3p significantly correlated with the BDNF levels for all patients. If stratified by the BDNF Val66Met polymorphism, the significant correlation between miR221-5p and miR370-3p with BDNF only remained in the Val/Met genotype. However, the correlation between miR7-5p and BDNF level is significant in all 3 genotypes. CONCLUSION Our result supported that these miRNAs may be involved in the pathomechanism of BD-II through relation with BDNF.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
| |
Collapse
|
30
|
The "missing heritability"-Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci Biobehav Rev 2021; 126:23-42. [PMID: 33757815 DOI: 10.1016/j.neubiorev.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders exhibit an enormous burden on the health care systems worldwide accounting for around one-third of years lost due to disability among adults. Their etiology is largely unknown and diagnostic classification is based on symptomatology and course of illness and not on objective biomarkers. Most psychiatric disorders are moderately to highly heritable. However, it is still unknown what mechanisms may explain the discrepancy between heritability estimates and the present data from genetic analysis. In addition to genetic differences also epigenetic modifications are considered as potentially relevant in the transfer of susceptibility to psychiatric diseases. Though, whether or not epigenetic alterations can be inherited for many generations is highly controversial. In the present article, we will critically summarize both the genetic findings and the results from epigenetic analyses, including also those of noncoding RNAs. We will argue that one possible solution to the "missing heritability" problem in psychiatry is a potential role of retrotransposons, the exploration of which is presently only in its beginnings.
Collapse
|
31
|
Luo PX, Manning CE, Fass JN, Williams AV, Hao R, Campi KL, Trainor BC. Sex-specific effects of social defeat stress on miRNA expression in the anterior BNST. Behav Brain Res 2021; 401:113084. [PMID: 33358922 PMCID: PMC7864284 DOI: 10.1016/j.bbr.2020.113084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
Women are more likely to suffer from stress-related affective disorders than men, but the underlying mechanisms of sex differences remain unclear. Previous works show that microRNA (miRNA) profiles are altered in stressed animals and patients with depression and anxiety disorders. In this study, we investigated how miRNA expression in the anterior bed nucleus of stria terminalis (BNST) was affected by social defeat stress in female and male California mice (Peromyscus californicus). We performed sequencing to identify miRNA transcripts in the whole brain and anterior BNST followed by qPCR analysis to compare miRNA expression between control and stressed animals. The results showed that social defeat stress induced sex-specific miRNA expression changes in the anterior BNST. Let-7a, let-7f and miR-181a-5p were upregulated in stressed female but not male mice. Our study provided evidence that social stress produces distinct molecular responses in the BNST of males and females.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Claire E Manning
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Joe N Fass
- Bioinformatics Core and Genome Center, University of California, Davis, CA, 95616, USA
| | - Alexia V Williams
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Rebecca Hao
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Katharine L Campi
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
32
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
33
|
Ehinger Y, Phamluong K, Darevesky D, Welman M, Moffat JJ, Sakhai SA, Whiteley EL, Berger AL, Laguesse S, Farokhnia M, Leggio L, Lordkipanidzé M, Ron D. Differential correlation of serum BDNF and microRNA content in rats with rapid or late onset of heavy alcohol use. Addict Biol 2021; 26:e12890. [PMID: 32135570 DOI: 10.1111/adb.12890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022]
Abstract
Heavy alcohol use reduces the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex of rodents through the upregulation of microRNAs (miRs) targeting BDNF mRNA. In humans, an inverse correlation exists between circulating blood levels of BDNF and the severity of psychiatric disorders including alcohol abuse. Here, we set out to determine whether a history of heavy alcohol use produces comparable alterations in the blood of rats. We used an intermittent access to 20% alcohol using the two-bottle choice paradigm (IA20%2BC) and measured circulating levels of BDNF protein and miRs targeting BDNF in the serum of Long-Evans rats before and after 8 weeks of excessive alcohol intake. We observed that the drinking profile of heavy alcohol users is not unified, whereas 70% of the rats gradually escalate their alcohol intake (late onset), and 30% of alcohol users exhibit a very rapid onset of drinking (rapid onset). We found that serum BDNF levels are negatively correlated with alcohol intake in both rapid onset and late onset rats. In contrast, increased expression of the miRs targeting BDNF, miR30a-5p, miR-195-5p, miR191-5p and miR206-3p, was detected only in the rapid onset rats. Finally, we report that the alcohol-dependent molecular changes are not due to alterations in platelet number. Together, these data suggest that rats exhibit both late and rapid onset of alcohol intake. We further show that heavy alcohol use produces comparable changes in BDNF protein levels in both groups. However, circulating microRNAs are responsive to alcohol only in the rapid onset rats.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology University of California, San Francisco San Francisco California
| | - Khanhky Phamluong
- Department of Neurology University of California, San Francisco San Francisco California
| | - David Darevesky
- Department of Neurology University of California, San Francisco San Francisco California
| | - Melanie Welman
- Research Center Montreal Heart Institute Montreal Quebec Canada
| | - Jeffrey J. Moffat
- Department of Neurology University of California, San Francisco San Francisco California
| | - Samuel A. Sakhai
- Department of Neurology University of California, San Francisco San Francisco California
| | - Ellanor L. Whiteley
- Department of Neurology University of California, San Francisco San Francisco California
| | - Anthony L. Berger
- Department of Neurology University of California, San Francisco San Francisco California
| | - Sophie Laguesse
- Department of Neurology University of California, San Francisco San Francisco California
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section National Institute on Drug Abuse Intramural Research Program Baltimore Maryland
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research National Institutes of Health Bethesda Maryland
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section National Institute on Drug Abuse Intramural Research Program Baltimore Maryland
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences Brown University Providence Rhode Island
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research National Institutes of Health Bethesda Maryland
| | - Marie Lordkipanidzé
- Research Center Montreal Heart Institute Montreal Quebec Canada
- Faculty of Pharmacy University of Montreal Montreal Quebec Canada
| | - Dorit Ron
- Department of Neurology University of California, San Francisco San Francisco California
| |
Collapse
|
34
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|
35
|
Miao C, Chang J. The important roles of microRNAs in depression: new research progress and future prospects. J Mol Med (Berl) 2021; 99:619-636. [PMID: 33641067 DOI: 10.1007/s00109-021-02052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-encoding, single-stranded RNA molecules of about 22 nucleotides in length encoded by endogenous genes involved in posttranscriptional gene expression regulation. Studies have shown that miRNAs participate in a series of important pathophysiological processes, including the pathogenesis of depression. This article systematically summarized the research results published in the field of miRNAs and depression, which mainly involved three topics: circulating miRNAs as markers for diagnosis and prognosis of depression, the regulatory roles of miRNAs in the pathogenesis of depression, and the roles of miRNAs in the mechanisms of depression treatment. By summarizing and analyzing the research literature in recent years, we found that some circulating miRNAs can be potential biomarkers for the diagnosis and prognostic evaluation of depression. miRNAs that disorderly expressed during the disease play important roles in the depression pathogenesis, and miRNAs also play roles in the mechanisms of psychotherapy and drug therapy for depression. Elucidating the important roles of miRNAs in depression will bring people's understanding of the pathogenesis of depression to a new level. In addition, these miRNAs may be developed as new biomarkers for diagnosing depression, or as drug targets, or these molecules may be used as new drugs, which may provide new means for the treatment of depression. KEY MESSAGES: • The research results of miRNAs and depression are reviewed. • Circulating miRNAs can be potential biomarkers for depression. • MiRNAs play important roles in the depression pathogenesis. • MiRNAs play important roles in drug therapy for depression.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China. .,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Institute of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, 233100, China.
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
36
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
37
|
Dysregulation of miR-185, miR-193a, and miR-450a in the skin are linked to the depressive phenotype. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110052. [PMID: 32738353 DOI: 10.1016/j.pnpbp.2020.110052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dysregulated microRNAs (miRNAs) in dermal fibroblasts of depressive subjects, indicate biomarker potential and can possibly aid clinical diagnostics. To overcome methodological challenges related to human experiments and fibroblast cultures, we here validate 38 miRNAs previously observed to be dysregulated in human fibroblasts from depressed subjects, in the skin of four distinct rat models of depression. METHODS In the presented study male rats from the adrenocorticotropic hormone (ACTH) model (n = 10/group), the chronic mild stress model (n = 10/group), Wistar Kyoto/Wistar Hannover rats (n = 10/group), and Flinders Resistant/Flinders Sensitive Line rats (n = 8/group) were included. Real-time qPCR was utilized to investigate miRNA alterations in flash-frozen skin-biopsies from the ear and fibroblast cultures. RESULTS In the ACTH rat model of depression, we identified nine dysregulated miRNAs in the skin and three in the fibroblasts. As the skin presented three times the amount of dysregulated miRNAs compared to the fibroblasts, skin instead of fibroblasts were continuously used for studies with the other rat models. In the skin from the four rat models of depression, 15 out of 38 miRNAs re-exhibited significant dysregulation in at least one of the rat models of depression and 67% were regulated in the same direction as in the human study. miR-450a and miR-193a presented dysregulation across rat models and miR-193a and miR-185 exhibited very strong dysregulation (30-fold and 50-fold, respectively). Lastly, an Ingenuity Pathway Analysis indicated functional overlap between dysregulated miRNAs, and common regulated pathways. CONCLUSION Flash-frozen skin is a valid alternative to fibroblast cultures as the skin appear to retain more of the miRNA dysregulation present in vivo. A sub-population of 15 miRNAs appear to be specific for the depressive phenotype, as they are dysregulated in both human depressed patients and distinct rat models of depression. We propose miR-450a, miR-185, and miR-193a as biomarker candidates of particular interest.
Collapse
|
38
|
Kasatkina MY, Zhanin IS, Gulyaeva NV. Ischemic Stroke and Depression Biomarkers: Are There Specific Markers for Post-Stroke Depression? NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Aly J, Engmann O. The Way to a Human's Brain Goes Through Their Stomach: Dietary Factors in Major Depressive Disorder. Front Neurosci 2020; 14:582853. [PMID: 33364919 PMCID: PMC7750481 DOI: 10.3389/fnins.2020.582853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, more than 250 million people are affected by depression (major depressive disorder; MDD), a serious and debilitating mental disorder. Currently available treatment options can have substantial side effects and take weeks to be fully effective. Therefore, it is important to find safe alternatives, which act more rapidly and in a larger number of patients. While much research on MDD focuses on chronic stress as a main risk factor, we here make a point of exploring dietary factors as a somewhat overlooked, yet highly promising approach towards novel antidepressant pathways. Deficiencies in various groups of nutrients often occur in patients with mental disorders. These include vitamins, especially members of the B-complex (B6, B9, B12). Moreover, an imbalance of fatty acids, such as omega-3 and omega-6, or an insufficient supply with minerals, including magnesium and zinc, are related to MDD. While some of them are relevant for the synthesis of monoamines, others play a crucial role in inflammation, neuroprotection and the synthesis of growth factors. Evidence suggests that when deficiencies return to normal, changes in mood and behavior can be, at least in some cases, achieved. Furthermore, supplementation with dietary factors (so called "nutraceuticals") may improve MDD symptoms even in the absence of a deficiency. Non-vital dietary factors may affect MDD symptoms as well. For instance, the most commonly consumed psychostimulant caffeine may improve behavioral and molecular markers of MDD. The molecular structure of most dietary factors is well known. Hence, dietary factors may provide important molecular tools to study and potentially help treat MDD symptoms. Within this review, we will discuss the role of dietary factors in MDD risk and symptomology, and critically discuss how they might serve as auxiliary treatments or preventative options for MDD.
Collapse
Affiliation(s)
- Janine Aly
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Germany
| | - Olivia Engmann
- Institute for Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
40
|
Ning S, Li Z, Ji Z, Fan D, Wang K, Wang Q, Hua L, Zhang J, Meng X, Yuan Y. MicroRNA‑494 suppresses hypoxia/reoxygenation‑induced cardiomyocyte apoptosis and autophagy via the PI3K/AKT/mTOR signaling pathway by targeting SIRT1. Mol Med Rep 2020; 22:5231-5242. [PMID: 33174056 PMCID: PMC7646990 DOI: 10.3892/mmr.2020.11636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Acute myocardial infarction can be caused by ischemia/reperfusion (I/R) injury; however, the mechanism underlying I/R is not completely understood. The present study investigated the functions and mechanisms underlying microRNA (miR)-494 in I/R-induced cardiomyocyte apoptosis and autophagy. Hypoxia/reoxygenation (H/R)-treated H9c2 rat myocardial cells were used as an in vitro I/R injury model. Apoptosis and autophagy were analyzed by Cell Counting Kit-8 assay, Lactic dehydrogenase and superoxide dismutase assay, flow cytometry, TUNEL staining and western blotting. Reverse transcription-quantitative PCR demonstrated that, H9c2 cells treated with 12 h hypoxia and 3 h reoxygenation displayed significantly downregulated miR-494 expression levels compared with control cells. Compared with the corresponding negative control (NC) groups, miR-494 mimic reduced H/R-induced cell apoptosis and autophagy, whereas miR-494 inhibitor displayed the opposite effects. Silent information regulator 1 (SIRT1) was identified as a target gene of miR-494. Furthermore, miR-494 inhibitor-mediated effects on H/R-induced cardiomyocyte apoptosis and autophagy were partially reversed by SIRT1 knockdown. Moreover, compared with si-NC, SIRT1 knockdown significantly increased the phosphorylation levels of PI3K, AKT and mTOR in H/R-treated and miR-494 inhibitor-transfected H9c2 cells. Collectively, the results indicated that miR-494 served a protective role against H/R-induced cardiomyocyte apoptosis and autophagy by directly targeting SIRT1, suggesting that miR-494 may serve as a novel therapeutic target for myocardial I/R injury.
Collapse
Affiliation(s)
- Shuwei Ning
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Zhiying Li
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Zhenyu Ji
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dandan Fan
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Keke Wang
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Qian Wang
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Lei Hua
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Junyue Zhang
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Xiangguang Meng
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Yiqiang Yuan
- Department of Cardiovascular Internal Medicine, Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
41
|
Torres-Berrío A, Hernandez G, Nestler EJ, Flores C. The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biol Psychiatry 2020; 88:611-624. [PMID: 32593422 PMCID: PMC7529861 DOI: 10.1016/j.biopsych.2020.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
The Netrin-1/DCC guidance cue pathway plays a critical role in guiding growing axons toward the prefrontal cortex during adolescence and in the maturational organization and adult plasticity of prefrontal cortex connectivity. In this review, we put forward the idea that alterations in prefrontal cortex architecture and function, which are intrinsically linked to the development of major depressive disorder, originate in part from the dysregulation of the Netrin-1/DCC pathway by a mechanism that involves microRNA-218. We discuss evidence derived from mouse models of stress and from human postmortem brain and genome-wide association studies indicating an association between the Netrin-1/DCC pathway and major depressive disorder. We propose a potential role of circulating microRNA-218 as a biomarker of stress vulnerability and major depressive disorder.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, Montreal, Quebec, Canada; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Tabano S, Caldiroli A, Terrasi A, Colapietro P, Grassi S, Carnevali GS, Fontana L, Serati M, Vaira V, Altamura AC, Miozzo M, Buoli M. A miRNome analysis of drug-free manic psychotic bipolar patients versus healthy controls. Eur Arch Psychiatry Clin Neurosci 2020; 270:893-900. [PMID: 31422452 DOI: 10.1007/s00406-019-01057-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
The lifetime presence of psychotic symptoms is associated with more clinical severity, poorer outcome and biological changes in patients affected by bipolar disorder (BD). Epigenetic mechanisms have been evoked to explain the onset of psychotic symptoms in BD as well as the associated biological changes. The main objective of the present study was to evaluate the expression profiles of circulating microRNAs (miRNAs) in drug-free manic psychotic bipolar patients versus healthy controls (HC), to identify possible non-invasive molecular markers of the disorder. 15 drug-free manic psychotic bipolar patients and 9 HC were enrolled and 800 miRNAs expression profile was measured by Nanostring nCounter technology on plasma samples and validated through qPCR. Overall, twelve miRNAs showed a significantly altered expression between the two groups (p < 0.05). Functional annotation of predicted miRNAs targets by MultiMIR R tool showed repression in bipolar patients of genes with a role in neurodevelopment and neurogenesis, and upregulation of genes involved in metabolism regulation. We identified a signature of circulating miRNA characteristic of manic psychotic bipolar patients, suggesting a possible role in neurodevelopment and metabolic processes regulation.
Collapse
Affiliation(s)
- Silvia Tabano
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, Milan, Italy
| | - Alice Caldiroli
- Department of Psychiatry, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Università degli Studi di Milano, Via F. Sforza 35, 20122, Milan, Italy.
| | - Andrea Terrasi
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Colapietro
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, Milan, Italy
| | - Silvia Grassi
- Department of Psychiatry, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Università degli Studi di Milano, Via F. Sforza 35, 20122, Milan, Italy
| | - Greta Silvia Carnevali
- Department of Psychiatry, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Università degli Studi di Milano, Via F. Sforza 35, 20122, Milan, Italy
| | - Laura Fontana
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, Milan, Italy
| | - Marta Serati
- Department of Psychiatry, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Università degli Studi di Milano, Via F. Sforza 35, 20122, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Università degli Studi di Milano, Milan, Italy
| | - A Carlo Altamura
- Department of Psychiatry, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Università degli Studi di Milano, Via F. Sforza 35, 20122, Milan, Italy
| | - Monica Miozzo
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Buoli
- Department of Psychiatry, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Università degli Studi di Milano, Via F. Sforza 35, 20122, Milan, Italy
| |
Collapse
|
43
|
Huang R, Zhang Y, Bai Y, Han B, Ju M, Chen B, Yang L, Wang Y, Zhang H, Zhang H, Xie C, Zhang Z, Yao H. N 6-Methyladenosine Modification of Fatty Acid Amide Hydrolase Messenger RNA in Circular RNA STAG1-Regulated Astrocyte Dysfunction and Depressive-like Behaviors. Biol Psychiatry 2020; 88:392-404. [PMID: 32387133 DOI: 10.1016/j.biopsych.2020.02.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic messenger RNAs and is essential for multiple RNA processing events in physiological and pathological processes. However, precisely how m6A methylation is involved in major depressive disorder (MDD) is not fully understood. METHODS Circular RNA STAG1 (circSTAG1) was screened from the hippocampus of chronic unpredictable stress-treated mice using high-throughput RNA sequencing. Microinjection of circSTAG1 lentivirus into the mouse hippocampus was used to observe the role of circSTAG1 in depression. Sucrose preference, forced swim, and tail suspension tests were performed to evaluate the depressive-like behaviors of mice. Astrocyte dysfunction was examined by GFAP immunostaining and 3D reconstruction. Methylated RNA immunoprecipitation sequence analysis was used to identify downstream targets of circSTAG1/ALKBH5 (alkB homolog 5) axis. Cell Counting Kit-8 assay was performed to evaluate astrocyte viability in vitro. RESULTS circSTAG1 was significantly decreased in the chronic unpredictable stress-treated mouse hippocampus and in peripheral blood of patients with MDD. Overexpression of circSTAG1 notably attenuated astrocyte dysfunction and depressive-like behaviors induced by chronic unpredictable stress. Further examination indicated that overexpressed circSTAG1 captured ALKBH5 and decreased the translocation of ALKBH5 into the nucleus, leading to increased m6A methylation of fatty acid amide hydrolase (FAAH) messenger RNA and degradation of FAAH in astrocytes with subsequent attenuation of depressive-like behaviors and astrocyte loss induced by corticosterone in vitro. CONCLUSIONS Our findings dissect the functional link between circSTAG1 and m6A methylation in the context of MDD, providing evidence that circSTAG1 may be a novel therapeutic target for MDD.
Collapse
Affiliation(s)
- Rongrong Huang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Minzi Ju
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Biling Chen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Li Yang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China; Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Haisan Zhang
- Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, China; Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China; Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
44
|
Venditti S, Verdone L, Reale A, Vetriani V, Caserta M, Zampieri M. Molecules of Silence: Effects of Meditation on Gene Expression and Epigenetics. Front Psychol 2020; 11:1767. [PMID: 32849047 PMCID: PMC7431950 DOI: 10.3389/fpsyg.2020.01767] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Many studies have consistently demonstrated an epigenetic link between environmental stimuli and physiological as well as cognitive responses. Epigenetic mechanisms represent a way to regulate gene activity in real time without modifying the DNA sequence, thus allowing the genome to adapt its functions to changing environmental contexts. Factors such as lifestyle, behavior, and the practice of sitting and moving mindful activities have been shown to be important means of environmental enrichment. Such practices, which include mindfulness meditation, Vipassana, Yoga, Tai Chi, and Quadrato Motor Training, have been reported to positively impact well-being. In fact, they can be considered emotional and attentional regulatory activities, which, by inducing a state of greater inner silence, allow the development of increased self-awareness. Inner silence can therefore be considered a powerful tool to counteract the negative effects of overabundant environmental noise, thanks to its power to relieve stress-related symptoms. Since all these positive outcomes rely on physiological and biochemical activities, the molecular and epigenetic mechanisms influenced by different mindful practices have recently started to be investigated. Here, we review some of the findings that could allow us to uncover the mechanisms by which specific practices influence well-being.
Collapse
Affiliation(s)
- Sabrina Venditti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Valerio Vetriani
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
45
|
Abstract
The risk for major depression is both genetically and environmentally determined. It has been proposed that epigenetic mechanisms could mediate the lasting increases in depression risk following exposure to adverse life events and provide a mechanistic framework within which genetic and environmental factors can be integrated. Epigenetics refers to processes affecting gene expression and translation that do not involve changes in the DNA sequence and include DNA methylation (DNAm) and microRNAs (miRNAs) as well as histone modifications. Here we review evidence for a role of epigenetics in the pathogenesis of depression from studies investigating DNAm, miRNAs, and histone modifications using different tissues and various experimental designs. From these studies, a model emerges where underlying genetic and environmental risk factors, and interactions between the two, could drive aberrant epigenetic mechanisms targeting stress response pathways, neuronal plasticity, and other behaviorally relevant pathways that have been implicated in major depression.
.
Collapse
Affiliation(s)
- Signe Penner-Goeke
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
46
|
Roy B, Yoshino Y, Allen L, Prall K, Schell G, Dwivedi Y. Exploiting Circulating MicroRNAs as Biomarkers in Psychiatric Disorders. Mol Diagn Ther 2020; 24:279-298. [PMID: 32304043 PMCID: PMC7269874 DOI: 10.1007/s40291-020-00464-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-invasive peripheral biomarkers play a significant role in both disease diagnosis and progression. In the past few years, microRNA (miRNA) expression changes in circulating peripheral tissues have been found to be correlative with changes in neuronal tissues from patients with neuropsychiatric disorders. This is a notable quality of a biomolecule to be considered as a biomarker for both prognosis and diagnosis of disease. miRNAs, members of the small non-coding RNA family, have recently gained significant attention due to their ability to epigenetically influence almost every aspect of brain functioning. Empirical evidence suggests that miRNA-associated changes in the brain are often translated into behavioral changes. Current clinical understanding further implicates their role in the management of major psychiatric conditions, including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). This review aims to critically evaluate the potential advantages and disadvantages of miRNAs as diagnostic/prognostic biomarkers in psychiatric disorders as well as in treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yuta Yoshino
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lauren Allen
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kevin Prall
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Grant Schell
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
47
|
The clues in solving the mystery of major psychosis: The epigenetic basis of schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2020; 113:51-61. [DOI: 10.1016/j.neubiorev.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
|
48
|
Point-of-care testing of MicroRNA based on personal glucose meter and dual signal amplification to evaluate drug-induced kidney injury. Anal Chim Acta 2020; 1112:72-79. [DOI: 10.1016/j.aca.2020.03.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
49
|
Wei ZX, Xie GJ, Mao X, Zou XP, Liao YJ, Liu QS, Wang H, Cheng Y. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology 2020; 45:1050-1058. [PMID: 31986519 PMCID: PMC7162931 DOI: 10.1038/s41386-020-0622-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/13/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
Exosomal microRNAs (miRNAs) have been suggested to participate in the pathogenesis of neuropsychiatric diseases, but their role in major depressive disorder (MDD) is unknown. We performed a genome-wide miRNA expression profiling of blood-derived exosomes from MDD patients and control subjects and revealed the top differentially expressed exosomal miRNA, i.e. hsa-miR-139-5p (upregulation), had good performance to differentiate between MDD patients and controls. Tail vein injection of blood exosomes isolated from MDD patients into normal mice caused their depressive-like behaviors as determined by the forced swimming, tail suspension, and novelty suppressed feeding tests, and injection of blood exosomes isolated from healthy volunteers into unpredictable mild stress (CUMS)-treated mice alleviated their depressive-like behaviors. CUMS mice also showed significantly increased blood and brain levels of exosomal miR-139-5p. Furthermore, the depressive-like behaviors in CUMS-treated mice were rescued by intranasal injection of miR-139-5p antagomir, suggesting that increased exosomal miR-139-5p levels may mediate stress-induced depression-like behavior in mice. Both exosome treatment and miR-139-5p antagomir treatment increased hippocampal neurogenesis in the CUMS-treated mice, and treatment of exosome from MDD patients decreased hippocampal neurogenesis in the normal mice. The role of miR-139-5p in neurogenesis was validated by in vitro experiments, demonstrating that miR-139-5p is a negative regulator for neural stem cell proliferation and neuronal differentiation. Our findings together suggest that exosomes from patients with major depression caused depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Therefore, exosomal miRNAs are promising targets for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Ze-Xu Wei
- 0000 0004 0369 0529grid.411077.4Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Guo-Jun Xie
- The Third People’s Hospital of Foshan, Foshan, Guangdong China
| | - Xiao Mao
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China
| | - Xin-Peng Zou
- 0000 0004 0369 0529grid.411077.4Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ya-Jin Liao
- 0000 0004 0369 0529grid.411077.4Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qing-Shan Liu
- 0000 0004 0369 0529grid.411077.4Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hua Wang
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China. .,NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China.
| |
Collapse
|
50
|
Huang X, Xu Z, Liu JH, Yu BY, Tian J. Dual signal amplification for microRNA-21 detection based on duplex-specific nuclease and invertase. RSC Adv 2020; 10:11257-11262. [PMID: 35495318 PMCID: PMC9050473 DOI: 10.1039/c9ra10657j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/02/2020] [Indexed: 01/09/2023] Open
Abstract
MicroRNA-21 (miRNA-21) is a significant biomarker which is closely related to some kinds of diseases, such as cancer, cardiovascular disease and kidney disease. Therefore, the detection of miRNA-21 is of great importance and can provide essential information for disease diagnosis. In this study, we report a facile, sensitive assay for miRNA-21 detection using personal glucose meters (PGM). Biotinylated DNA strand linked invertase (Inv) is conjugated on the surface of streptavidin-coated magnetic beads (MBs) to form a MBs-DNA-Inv complex. Target miRNA-21 in the detection system is captured by the MBs-DNA-Inv probe through DNA/RNA hybridization. The duplex-specific nuclease (DSN) enzyme specifically cleaves the DNA to recycle the target miRNA and release invertase, thereby triggering the dual signal amplification and ensuring high sensitivity. Besides, we establish a linear relationship between PGM and different concentrations of miRNA-21 in the range of 10 to 200 pM. The limit of detection is 1.8 pM, which is more sensitive than some of the previous reports. In addition, the biosensor exhibits excellent sequence selectivity and single-base mutation can be discriminated. Moreover, the expression of miRNA-21 is confirmed in urine from mice by our method, which is in good accordance with the qRT-PCR result. Therefore, a dependable, low-cost strategy for the detection of miRNA has been established and it meets the latest analytical demands for miRNA determination that is suitable for the public.
Collapse
Affiliation(s)
- Xitong Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhiming Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Ji-Hua Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|