1
|
Jiang H, Zeng Y, He P, Zhu X, Zhu J, Gao Y. Aberrant resting-state voxel-mirrored homotopic connectivity in major depressive disorder with and without anxiety. J Affect Disord 2025; 368:191-199. [PMID: 39173924 DOI: 10.1016/j.jad.2024.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Prior researchers have identified distinct differences in functional connectivity neuroimaging characteristics among MDD patients. However, the auxiliary diagnosis and subtype differentiation roles of VMHC values in MDD patients have yet to be fully understood. We aim to explore the separating ability of VMHC values in patients with anxious MDD or with non-anxious MDD and HCs. METHODS We recruited 90 patients with anxious MDD, 69 patients with non-anxious MDD and 84 HCs. We collected a set of clinical variables included HAMD-17 scores, HAMA scores and rs-fMRI data. The data were analyzed combining difference analysis, SVM, correlation analysis and ROC analysis. RESULTS Relative to HCs, non-anxious MDD patients displayed significant lower VMHC values in the insula and PCG, and anxious MDD patients displayed a significant decrease in VMHC values in the cerebellum_crus2, STG, postCG, MFG and IFG. Compared with non-anxious MDD patients, the anxious MDD showed significant enhanced VMHC values in the PCG. The VMHC values in the insula and cerebellum_crus2 regions showed a better ability to discriminate HCs from patients with non-anxious MDD or with anxious MDD. The VMHC values in PCG showed a better ability to discriminate patients with anxious MDD and non-anxious MDD patients. CONCLUSION The VMHC values in the insula and cerebellum_crus2 regions could be served as imaging markers to differentiate HCs from patients with non-anxious MDD or with anxious MDD respectively. And the VMHC values in the PCG could be used to discriminate patients with anxious MDD from the non-anxious MDD patients.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - YanPing Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peidong He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Xiwei Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Jiangrui Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China; Yichang City Clinical Research Center for Mental Disorders, China.
| |
Collapse
|
2
|
Ni S, An N, Li C, Ma Y, Qiao P, Ma X. Altered structural and functional homotopic connectivity associated with cognitive changes in SLE. Lupus Sci Med 2024; 11:e001307. [PMID: 39581701 PMCID: PMC11590855 DOI: 10.1136/lupus-2024-001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Previous studies have revealed functional changes within the cerebral hemispheres of patients with SLE; however the changes between cerebral hemispheres are still unknown. The present study aimed to explore the functional and structural changes between bilateral hemispheres using functional MRI and find their relationship with cognition in patients with SLE. METHODS 54 patients with SLE and 32 age-matched and sex-matched healthy controls (HCs) underwent MRI scanning and neuropsychological testing, and clinical data was collected in patients with SLE. Voxel-mirrored homotopic connectivity (VMHC) values and grey matter volume were calculated for all subjects. Correlation analysis was established to determine the relationship between VMHC values, grey matter volume and cognitive scores, blood biochemical markers in patients with SLE. RESULTS Compared with HCs, patients with SLE showed increased VMHC values in the insula and parahippocampal gyrus, while grey matter volume were reduced in these regions. Correlation analysis demonstrated that the increased VMHC values in insula was negatively correlated with decreased orientation function and positively correlated with decreased attention function. The grey matter volume in insula was negatively correlated with decreased attention and abstraction. The VMHC values and grey matter volume in insula and parahippocampal gyrus were negatively associated with lupus-specific antibodies. CONCLUSION The structural and functional changes of insula and parahippocampal gyrus might be potential neuroimaging markers, and specific antibodies associated with lupus might be involved in the pathophysiological mechanisms of brain dysfunction. TRIAL REGISTRATION NUMBER NCT06226324.
Collapse
Affiliation(s)
- Sha Ni
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ning An
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chunlei Li
- Department of Rheumatology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yue Ma
- Department of Radiology, Inner Mongolia Cardiovascular and Cerebrovascular Hospital, Hohhot, Inner Mongolia, China
| | - Pengfei Qiao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xueying Ma
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Harel M, Amiaz R, Raizman R, Leibovici A, Golan Y, Mesika D, Bodini R, Tsarfaty G, Weiser M, Livny A. Distinct homotopic functional connectivity patterns of the amygdalar sub-regions as biomarkers in major depressive disorder. J Affect Disord 2024; 365:285-292. [PMID: 39134155 DOI: 10.1016/j.jad.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) affects multiple functional neural networks. Neuroimaging studies using resting-state functional connectivity (FC) have focused on the amygdala but did not assess changes in connectivity between the left and right amygdala. The current study aimed to examine the inter-hemispheric functional connectivity (homotopic FC, HoFC) between different amygdalar sub-regions in patients with MDD compared to healthy controls, and to examine whether amygdalar sub-regions' HoFC also predicts response to Serotonin Selective Reuptake Inhibitors (SSRIs). METHOD Sixty-seven patients with MDD and 64 matched healthy controls were recruited. An MRI scan focusing on resting state fMRI and clinical and cognitive evaluations were performed. An atlas seed-based approach was used to identify the lateral and medial sub-regions of the amygdala. HoFC of these sub-regions was compared between groups and correlated with severity of depression, and emotional processing performance. Baseline HoFC levels were used to predict response to SSRIs after 2 months of treatment. RESULTS Patients with MDD demonstrated decreased inter-hemispheric FC in the medial (F3,120 = 4.11, p = 0.008, η2 = 0.096) but not in the lateral (F3,119 = 0.29, p = 0.82, η2 = 0.008) amygdala compared with healthy controls. The inter-hemispheric FC of the medial sub-region correlated with symptoms severity (r = -0.33, p < 0.001) and emotional processing performance (r = 0.38, p < 0.001). Moreover, it predicted treatment response to SSRIs 65.4 % of the cases. LIMITATIONS The current study did not address FC changes in MDD biotypes. In addition, structural connectivity was not examined. CONCLUSIONS Using a unique perspective of the amygdalar distinct areas elucidated differential inter-hemispheric FC patterns in MDD patients, emphasizing the role of interhemispheric communication in depression.
Collapse
Affiliation(s)
- Maayan Harel
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Revital Amiaz
- Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychiatry, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Reut Raizman
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Anatomy and Anthropology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Leibovici
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yael Golan
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - David Mesika
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Raffaella Bodini
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mark Weiser
- Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychiatry, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Imaging, Faculty of Medical & Health Sciences, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Li Z, Huang C, Zhao X, Gao Y, Tian S. Abnormal postcentral gyrus voxel-mirrored homotopic connectivity as a biomarker of mild cognitive impairment: A resting-state fMRI and support vector machine analysis. Exp Gerontol 2024; 195:112547. [PMID: 39168359 DOI: 10.1016/j.exger.2024.112547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND While patients affected by mild cognitive impairment (MCI) exhibit characteristic voxel-mirrored homotopic connectivity (VMHC) alterations, the ability of such VMHC abnormalities to predict the diagnosis of MCI in these patients remains uncertain. As such, this study was performed to evaluate the potential role of VMHC abnormalities in the diagnosis of MCI. METHODS MCI patients and healthy controls (HCs) were enrolled and subjected to resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological testing. VMHC and support vector machine (SVM) techniques were then used to examine the collected imaging data. RESULTS Totally, 53 MCI patients and 68 healthy controls were recruited. Compared to HCs, MCI patients presented with an increase in postcentral gyrus VMHC. SVM classification demonstrated the ability of postcentral gyrus VMHC values to classify HCs and MCI patients with accuracy, sensitivity, and specificity values of 63.64 %, 71.69 %, and 89.71 %, respectively. CONCLUSION VMHC abnormalities in the postcentral gyrus may be mechanistically involved in the pathophysiological progression of MCI patients, and these abnormal VMHC patterns may also offer utility as a neuroimaging biomarker for MCI patient diagnosis.
Collapse
Affiliation(s)
- Ziruo Li
- Department of General Practice, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan 430064, Hubei, China
| | - Chunyan Huang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xingfu Zhao
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi 214151, Jiangsu, China
| | - Yujun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, Hubei, China.
| | - Shenglan Tian
- Department of General Practice, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan 430064, Hubei, China.
| |
Collapse
|
5
|
Liu S, Chen J, Guan L, Xu L, Cai H, Wang J, Zhu DM, Zhu J, Yu Y. The brain, rapid eye movement sleep, and major depressive disorder: A multimodal neuroimaging study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111151. [PMID: 39326695 DOI: 10.1016/j.pnpbp.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Evidence has established the prominent involvement of rapid eye movement (REM) sleep disturbance in major depressive disorder (MDD). However, the neural correlates of REM sleep in MDD and their clinical significance are less clear. METHODS Cross-sectional and longitudinal polysomnography and resting-state functional MRI data were collected from 131 MDD patients and 71 healthy controls to measure REM sleep and voxel-mirrored homotopic connectivity (VMHC). Correlation and mediation analyses were performed to examine the associations between REM sleep, VMHC, and clinical variables. Moreover, we conducted spatial correlations between the neural correlates of REM sleep and a multimodal collection of reference brain maps to facilitate genetic, structural and functional annotations. RESULTS MDD patients exhibited REM sleep abnormalities manifesting as higher REM sleep latency and lower REM sleep duration, which were correlated with decreased VMHC of the precentral gyrus and inferior parietal lobe and mediated their associations with more severe anxiety symptoms. Longitudinal data showed that VMHC increase of the inferior parietal lobe was related to improvement of depression symptoms in MDD patients. Spatial correlation analyses revealed that the neural correlates of REM sleep in MDD were linked to gene categories primarily involving cellular metabolic process, signal pathway, and ion channel activity as well as linked to cortical microstructure, metabolism, electrophysiology, and cannabinoid receptor. CONCLUSION These findings may add important context to the growing literature on the complex interplay between sleep and MDD, and more broadly may inform future treatment for depression via regulating sleep.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Lianzi Guan
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Li Xu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Dao-Min Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| |
Collapse
|
6
|
Wang Y, Li J, Jin S, Wang J, Lv Y, Zou Q, Wang J. Mapping morphological cortical networks with joint probability distributions from multiple morphological features. Neuroimage 2024; 296:120673. [PMID: 38851550 DOI: 10.1016/j.neuroimage.2024.120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Morphological features sourced from structural magnetic resonance imaging can be used to infer human brain connectivity. Although integrating different morphological features may theoretically be beneficial for obtaining more precise morphological connectivity networks (MCNs), the empirical evidence to support this supposition is scarce. Moreover, the incorporation of different morphological features remains an open question. In this study, we proposed a method to construct cortical MCNs based on multiple morphological features. Specifically, we adopted a multi-dimensional kernel density estimation algorithm to fit regional joint probability distributions (PDs) from different combinations of four morphological features, and estimated inter-regional similarity in the joint PDs via Jensen-Shannon divergence. We evaluated the method by comparing the resultant MCNs with those built based on different single morphological features in terms of topological organization, test-retest reliability, biological plausibility, and behavioral and cognitive relevance. We found that, compared to MCNs built based on different single morphological features, MCNs derived from multiple morphological features displayed less segregated, but more integrated network architecture and different hubs, had higher test-retest reliability, encompassed larger proportions of inter-hemispheric edges and edges between brain regions within the same cytoarchitectonic class, and explained more inter-individual variance in behavior and cognition. These findings were largely reproducible when different brain atlases were used for cortical parcellation. Further analysis of macaque MCNs revealed weak, but significant correlations with axonal connectivity from tract-tracing, independent of the number of morphological features. Altogether, this paper proposes a new method for integrating different morphological features, which will be beneficial for constructing MCNs.
Collapse
Affiliation(s)
- Yuqi Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jing Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
Yang T, Ou Y, Li H, Liu F, Li P, Xie G, Zhao J, Cui X, Guo W. Neural substrates of predicting anhedonia symptoms in major depressive disorder via connectome-based modeling. CNS Neurosci Ther 2024; 30:e14871. [PMID: 39037006 PMCID: PMC11261463 DOI: 10.1111/cns.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
MAIN PROBLEM Anhedonia is a critical diagnostic symptom of major depressive disorder (MDD), being associated with poor prognosis. Understanding the neural mechanisms underlying anhedonia is of great significance for individuals with MDD, and it encourages the search for objective indicators that can reliably identify anhedonia. METHODS A predictive model used connectome-based predictive modeling (CPM) for anhedonia symptoms was developed by utilizing pre-treatment functional connectivity (FC) data from 59 patients with MDD. Node-based FC analysis was employed to compare differences in FC patterns between melancholic and non-melancholic MDD patients. The support vector machines (SVM) method was then applied for classifying these two subtypes of MDD patients. RESULTS CPM could successfully predict anhedonia symptoms in MDD patients (positive network: r = 0.4719, p < 0.0020, mean squared error = 23.5125, 5000 iterations). Compared to non-melancholic MDD patients, melancholic MDD patients showed decreased FC between the left cingulate gyrus and the right parahippocampus gyrus (p_bonferroni = 0.0303). This distinct FC pattern effectively discriminated between melancholic and non-melancholic MDD patients, achieving a sensitivity of 93.54%, specificity of 67.86%, and an overall accuracy of 81.36% using the SVM method. CONCLUSIONS This study successfully established a network model for predicting anhedonia symptoms in MDD based on FC, as well as a classification model to differentiate between melancholic and non-melancholic MDD patients. These findings provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Tingyu Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Department of Child HealthcareHunan Children's HospitalChangshaChina
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Huabing Li
- Department of RadiologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Feng Liu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Ping Li
- Department of PsychiatryQiqihar Medical UniversityQiqiharChina
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
8
|
Liu Y, Peng X, Lin C, Liu D, Sun Y, Huang F, Liu T, Xiao L, Wei X, Wang K, Chen Z, Rong L. Fractional Amplitude of Low-Frequency Fluctuation and Voxel-Mirrored Homotopic Connectivity in Patients with Persistent Postural-Perceptual Dizziness: Resting-State Functional Magnetic Resonance Imaging Study. Brain Connect 2024; 14:274-283. [PMID: 38623770 DOI: 10.1089/brain.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Purpose: Persistent postural-perception dizziness (PPPD) is a chronic subjective form of dizziness characterized by the exacerbation of dizziness with active or passive movement, complex visual stimuli, and upright posture. Therefore, we aimed to analyze the resting-state functional magnetic resonance imaging (fMRI) in patients with PPPD using fractional amplitude of low-frequency fluctuation (fALFF) and voxel-mirrored homotopic connectivity (VMHC) and evaluate the correlation between abnormal regions in the brain and clinical features to investigate the pathogenesis of PPPD. Methods: Thirty patients with PPPD (19 females and 11 males) and 30 healthy controls (HCs; 18 females and 12 males) were closely matched for age and sex. The fALFF and VMHC methods were used to investigate differences in fMRI (BOLD sequences) between the PPPD and HC groups and to explore the associations between areas of functional abnormality and clinical characteristics (dizziness, anxiety, depression, and duration). Result: Compared to the HC group, patients with PPPD displayed different functional change patterns, with increased fALFF in the right precuneus and decreased VMHC in the bilateral precuneus. In addition, patients with PPPD had a positive correlation between precuneus fALFF values and dizziness handicap inventory (DHI) scores, and a negative correlation between VMHC values and the disease duration. Conclusions: Precuneus dysfunction was observed in patients with PPPD. The fALFF values correlated with the degree of dizziness in PPPD, and changes in VMHC values were associated with the duration of dizziness, suggesting that fMRI changes in the precuneus of patients could be used as a potential imaging marker for PPPD.
Collapse
Affiliation(s)
- Yueji Liu
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Xiyu Peng
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Cunxin Lin
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Yang Sun
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Feiran Huang
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Tengfei Liu
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Lijie Xiao
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Xiue Wei
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Kai Wang
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Zhengwei Chen
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Liangqun Rong
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Neurological Diseases, Jiangsu Province Key Clinical Department and Key Discipline of Neurology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Xia X, Tang J, Peng Y, Liu Y, Chen Y, Yuan M, Yu R, Hou X, Fu Y. Brain alterations in adolescents with first-episode depression who have experienced adverse events: evidence from resting-state functional magnetic resonance imaging. Front Psychiatry 2024; 15:1358770. [PMID: 38654725 PMCID: PMC11036546 DOI: 10.3389/fpsyt.2024.1358770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Adverse life events constitute primary risk factors for major depressive disorder (MDD), influencing brain function and structure. Adolescents, with their brains undergoing continuous development, are particularly susceptible to enduring impacts of adverse events. Methods We investigated differences and correlations among childhood trauma, negative life events, and alterations of brain function in adolescents with first-episode MDD. The study included 23 patients with MDD and 19 healthy controls, aged 10-19 years. All participants underwent resting-state functional magnetic resonance imaging and were assessed using the beck depression inventory, childhood trauma questionnaire, and adolescent self-rating life events checklist. Results Compared with healthy controls, participants with first-episode MDD were more likely to have experienced emotional abuse, physical neglect, interpersonal relationship problems, and learning stress (all p' < 0.05). These adverse life events were significantly correlated with alterations in brain functions (all p < 0.05). Discussion This study contributes novel evidence on the underlying process between adverse life events, brain function, and depression, emphasizing the significant neurophysiological impact of environmental factors.
Collapse
Affiliation(s)
- Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxiang Tang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yadong Peng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Yuan
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Hou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Chu Z, Yuan L, Lian K, He M, Lu Y, Cheng Y, Xu X, Shen Z. Reduced gray matter volume of the hippocampal tail in melancholic depression: evidence from an MRI study. BMC Psychiatry 2024; 24:183. [PMID: 38443878 PMCID: PMC10913289 DOI: 10.1186/s12888-024-05630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Melancholic depression (MD) is one of the most prevalent and severe subtypes of major depressive disorder (MDD). Previous studies have revealed inconsistent results regarding alterations in grey matter volume (GMV) of the hippocampus and amygdala of MD patients, possibly due to overlooking the complexity of their internal structure. The hippocampus and amygdala consist of multiple and functionally distinct subregions, and these subregions may play different roles in MD. This study aims to investigate the volumetric alterations of each subregion of the hippocampus and amygdala in patients with MD and non-melancholic depression (NMD). METHODS A total of 146 drug-naïve, first-episode MDD patients (72 with MD and 74 with NMD) and 81 gender-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent magnetic resonance imaging (MRI) scans. The subregional segmentation of hippocampus and amygdala was performed using the FreeSurfer 6.0 software. The multivariate analysis of covariance (MANCOVA) was used to detect GMV differences of the hippocampal and amygdala subregions between three groups. Partial correlation analysis was conducted to explore the relationship between hippocampus or amygdala subfields and clinical characteristics in the MD group. Age, gender, years of education and intracranial volume (ICV) were included as covariates in both MANCOVA and partial correlation analyses. RESULTS Patients with MD exhibited a significantly lower GMV of the right hippocampal tail compared to HCs, which was uncorrelated with clinical characteristics of MD. No significant differences were observed among the three groups in overall and subregional GMV of amygdala. CONCLUSIONS Our findings suggest that specific hippocampal subregions in MD patients are more susceptible to volumetric alterations than the entire hippocampus. The reduced right hippocampal tail may underlie the unique neuropathology of MD. Future longitudinal studies are required to better investigate the associations between reduced right hippocampal tail and the onset and progression of MD.
Collapse
Affiliation(s)
- Zhaosong Chu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Lijin Yuan
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Kun Lian
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Mengxin He
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| |
Collapse
|
11
|
Wang P, Jiang Y, Biswal BB. Aberrant interhemispheric structural and functional connectivity within whole brain in schizophrenia. Schizophr Res 2024; 264:336-344. [PMID: 38218019 DOI: 10.1016/j.schres.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Schizophrenia is a serious mental disorder whose etiology remains unclear. Although numerous studies have analyzed the abnormal gray matter functional activity and whole-brain anatomical changes in schizophrenia, fMRI signal fluctuations from white matter have usually been ignored and rarely reported in the literature. METHODS We employed 45 schizophrenia subjects and 75 healthy controls (HCs) from a publicly available fMRI dataset. By combining the voxel-mirrored homotopic connectivity (VMHC) measure and fiber tracking method, we investigated the interhemispheric functional and structural connectivity within whole brain in schizophrenia. RESULTS Compared to HCs, patients with schizophrenia exhibited significantly reduced VMHC in the bilateral middle occipital gyrus, precentral gyrus, postcentral gyrus and corpus callosum. Fiber tracking results showed the changes in structural connectivity for the bilateral precentral gyrus, and the bilateral corpus callosum, and the fiber bundles connecting bilateral precentral gyrus and connecting the bilateral corpus callosum passed through the posterior midbody, isthmus and splenium of mid-sagittal corpus callosum, which closely related to the interhemispheric integration of visual and auditory information. More importantly, we observed a negative correlation between averaged VMHC values in the postcentral gyrus and SAPS scores, and a positive correlation between the fractional anisotropy of fiber bundle connecting the bilateral precentral gyrus and Matrix Reasoning scores in schizophrenia. CONCLUSION Our findings provide a novel perspective of white matter functional images on understanding abnormal interhemispheric visual and auditory information transfer in schizophrenia.
Collapse
Affiliation(s)
- Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
12
|
Liu J, Shu Y, Wu G, Hu L, Cui H. A neuroimaging study of brain activity alterations in treatment-resistant depression after a dual target accelerated transcranial magnetic stimulation. Front Psychiatry 2024; 14:1321660. [PMID: 38288056 PMCID: PMC10822961 DOI: 10.3389/fpsyt.2023.1321660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/13/2023] [Indexed: 01/31/2024] Open
Abstract
In this study, we designed a new transcranial magnetic stimulation (TMS) protocol using a dual-target accelerated transcranial magnetic stimulation (aTMS) for patients with treatment resistant depression (TRD). There are 58 TRD patients were recruited from the Second People's Hospital of Guizhou Province, who were, respectively, received dual-target (real continuous theta burst stimulation (cTBS) at right orbitofrontal cortex (OFC) and real repetitive transcranial magnetic stimulation (rTMS) at left dorsolateral prefrontal cortex (DLPFC)), single- target (sham cTBS at right OFC and real rTMS at left DLPFC), and sham stimulation (sham cTBS at right OFC and sham rTMS at left DLPFC). Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired before and after aTMS treatment to compare characteristics of brain activities by use of amplitude of low-frequency fluctuations (ALFF), fractional low-frequency fluctuations (fALFF) and functional connectivity (FC). At the same time, Hamilton Depression Scale-24 (HAMD24) were conducted to assess the effect. HAMD24 scores reduced significantly in dual group comparing to the single and sham group. Dual-target stimulation decreased not only the ALFF values of right fusiform gyrus (FG) and fALFF values of the left superior temporal gyrus (STG), but also the FC between the right FG and the bilateral middle frontal gyrus (MFG), left triangular part of inferior frontal gyrus (IFG). Higher fALFF value in left STG at baseline may predict better reaction for bilateral arTMS. Dual-targe stimulation can significantly change resting-state brain activities and help to improve depressive symptoms.
Collapse
Affiliation(s)
- Jiaoying Liu
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yanping Shu
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, China
- Department of Psychiatry, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Gang Wu
- Department of Psychiatry, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Lingyan Hu
- Department of Psychiatry, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Hailun Cui
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Lv D, Ou Y, Xiao D, Li H, Liu F, Li P, Zhao J, Guo W. Identifying major depressive disorder with associated sleep disturbances through fMRI regional homogeneity at rest. BMC Psychiatry 2023; 23:809. [PMID: 37936090 PMCID: PMC10631123 DOI: 10.1186/s12888-023-05305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Anomalies in regional homogeneity (ReHo) have been documented in patients with major depressive disorder (MDD) and sleep disturbances (SDs). This investigation aimed to scrutinize changes in ReHo in MDD patients with comorbid SD, and to devise potential diagnostic biomarkers for detecting sleep-related conditions in patients with MDD. METHODS Patients with MDD and healthy controls underwent resting-state functional magnetic resonance imaging scans. SD severity was quantified using the 17-item Hamilton Rating Scale for Depression. Subsequent to the acquisition of imaging data, ReHo analysis was performed, and a support vector machine (SVM) method was employed to assess the utility of ReHo in discriminating MDD patients with SD. RESULTS Compared with MDD patients without SD, MDD patients with SD exhibited increased ReHo values in the right posterior cingulate cortex (PCC)/precuneus, right median cingulate cortex, left postcentral gyrus (postCG), and right inferior temporal gyrus (ITG). Furthermore, the ReHo values in the right PCC/precuneus and ITG displayed a positive correlation with clinical symptoms across all patients. SVM classification results showed that a combination of abnormal ReHo in the left postCG and right ITG achieved an overall accuracy of 84.21%, a sensitivity of 81.82%, and a specificity of 87.50% in identifying MDD patients with SD from those without SD. CONCLUSION We identified disrupted ReHo patterns in MDD patients with SD, and presented a prospective neuroimaging-based diagnostic biomarker for these patients.
Collapse
Affiliation(s)
- Dan Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Dan Xiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
- Department of Health and Medicine, Harbin Institute of Technology, Harbin, 151001, Heilongjiang, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300000, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
14
|
Spoelma MJ, Serafimovska A, Parker G. Differentiating melancholic and non-melancholic depression via biological markers: A review. World J Biol Psychiatry 2023; 24:761-810. [PMID: 37259772 DOI: 10.1080/15622975.2023.2219725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES Melancholia is a severe form of depression that is typified by greater genetic and biological influence, distinct symptomatology, and preferential response to physical treatment. This paper sought to broadly overview potential biomarkers of melancholia to benefit differential diagnosis, clinical responses and treatment outcomes. Given nuances in distinguishing melancholia as its own condition from other depressive disorder, we emphasised studies directly comparing melancholic to non-melancholic depression. METHODS A comprehensive literature search was conducted. Key studies were identified and summarised qualitatively. RESULTS 105 studies in total were identified. These studies covered a wide variety of biomarkers, and largely fell into three domains: endocrinological (especially cortisol levels, particularly in response to the dexamethasone suppression test), neurological, and immunological (particularly inflammatory markers). Less extensive evidence also exists for metabolic, genetic, and cardiovascular markers. CONCLUSIONS Definitive conclusions were predominantly limited due to substantial heterogeneity in how included studies defined melancholia. Furthermore, this heterogeneity could be responsible for the between- and within-group variability observed in the candidate biomarkers that were examined. Therefore, clarifying these definitional parameters may help identify underlying patterns in biomarker expression to improve diagnostic and therapeutic precision for the depressive disorders.
Collapse
Affiliation(s)
- Michael J Spoelma
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | | | - Gordon Parker
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Tavella G, Hadzi-Pavlovic D, Bayes A, Jebejian A, Manicavasagar V, Walker P, Parker G. Burnout and depression: Points of convergence and divergence. J Affect Disord 2023; 339:561-570. [PMID: 37479038 DOI: 10.1016/j.jad.2023.07.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Debate is ongoing as to whether burnout can be differentiated from depression. This study evaluated whether burnout and depression could be distinguished using a new burnout measure and other variables. METHODS Scores on the Sydney Burnout Measure (SBM) were compared between participants with self-diagnosed burnout (BO-all group; n = 622) and clinically-diagnosed depression (DEP-all group; n = 90). The latter group was split into melancholic (DEP-mel; n = 56) and non-melancholic (DEP-nonmel; n = 34) depression subgroups for subsequent analyses. Differences in reporting of depressive symptoms and causal attributions were also evaluated. RESULTS While total SBM scores showed poor differentiation, the BO-all group had lower social withdrawal and higher empathy loss subscale scores than the depression groups. Odds ratios were significant for several of the depressive symptoms and causal attribution items when comparing the BO-all group to the DEP-all and DEP-mel groups, while only a few items were significant when comparing the BO-all and DEP-nonmel groups. LIMITATIONS Participants in the depression group were assigned by clinician-based depression diagnoses, rather than by a standardised diagnostic interview, and the group had a relatively small sample size. Participants in the burnout group were self-diagnosed and not assessed for comorbid psychiatric diagnoses. CONCLUSIONS There were some nuanced symptoms differences between burnout and depression, but many of the SBM symptoms were not specific to burnout. Results also suggested that burnout overlaps more with non-melancholic than melancholic depression, and that differentiation of burnout and depression may rely more on weighting causal factors over symptoms.
Collapse
Affiliation(s)
- Gabriela Tavella
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Australia
| | - Dusan Hadzi-Pavlovic
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Australia
| | - Adam Bayes
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Australia; Black Dog Institute, Hospital Rd, Randwick, New South Wales, Australia
| | - Artin Jebejian
- Gordon Private Hospital, Sydney, New South Wales, Australia
| | - Vijaya Manicavasagar
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Australia; Black Dog Institute, Hospital Rd, Randwick, New South Wales, Australia
| | - Peter Walker
- Lumiere Clinical Psychology, Sydney, New South Wales, Australia
| | - Gordon Parker
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Australia; Gordon Private Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Chen Q, Bi Y, Yan W, Wu S, Xia T, Wang Y, Huang S, Zhou C, Xie S, Kuang S, Kong W, Lv Z. Abnormal voxel-mirrored homotopic connectivity in first-episode major depressive disorder using fMRI: a machine learning approach. Front Psychiatry 2023; 14:1241670. [PMID: 37766927 PMCID: PMC10520785 DOI: 10.3389/fpsyt.2023.1241670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Objective To explore the interhemispheric information synergy ability of the brain in major depressive disorder (MDD) patients by applying the voxel-mirrored homotopic connectivity (VMHC) method and further explore the potential clinical diagnostic value of VMHC metric by a machine learning approach. Methods 52 healthy controls and 48 first-episode MDD patients were recruited in the study. We performed neuropsychological tests and resting-state fMRI scanning on all subjects. The VMHC values of the symmetrical interhemispheric voxels in the whole brain were calculated. The VMHC alterations were compared between two groups, and the relationship between VMHC values and clinical variables was analyzed. Then, abnormal brain regions were selected as features to conduct the classification model by using the support vector machine (SVM) approach. Results Compared to the healthy controls, MDD patients exhibited decreased VMHC values in the bilateral middle frontal gyrus, fusiform gyrus, medial superior frontal gyrus and precentral gyrus. Furthermore, the VMHC value of the bilateral fusiform gyrus was positively correlated with the total Hamilton Depression Scale (HAMD). Moreover, SVM analysis displayed that a combination of all clusters demonstrated the highest area under the curve (AUC) of 0.87 with accuracy, sensitivity, and specificity values of 86.17%, 76.74%, and 94.12%, respectively. Conclusion MDD patients had reduced functional connectivity in the bilateral middle frontal gyrus, fusiform gyrus, medial superior frontal gyrus and precentral gyrus, which may be related to depressive symptoms. The abnormality in these brain regions could represent potential imaging markers to distinguish MDD patients from healthy controls.
Collapse
Affiliation(s)
- Qing Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanmeng Bi
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, China
| | - Weixin Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhui Wu
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ting Xia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wen Kong
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Yuan L, Chu Z, Chen X, Zhu Y, Xu X, Shen Z. Changes of cortical thickness in the first episode, drug-naive depression patients with and without melancholic features. Psychiatry Res Neuroimaging 2023; 334:111683. [PMID: 37480707 DOI: 10.1016/j.pscychresns.2023.111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Melancholic depression (MD) is a more severe type of major depressive disorder (MDD) with a core feature of anhedonia. However, its pathophysiology remains unclear. The current study aims to investigate whether there is a significant difference in cortical thickness (CT) that can be used to differentiate MD patients from non-melancholic depression (NMD) patients. We recruited 137 first-episode drug-naive MDD patients and 75 healthy controls (HCs) for structural magnetic resonance imaging, analyzed using the Surface-based morphometry approach. Meanwhile, the MDD patients were divided into the MD and NMD subgroups according to their scores on the Montgomery-Asberg Depression Rating Scale and Hamilton Depression Rating Scale. No significant CT differences among the three groups were found. We also did not find significant CT changes between the NMD and the HCs groups or between the MD and NMD groups. However, the CT of the left postcentral gyrus and right precuneus among MD patients were larger than HCs. Moreover, the CT of the left postcentral gyrus and right precuneus were not correlated with the severity of the disease and illness duration. The findings suggest that the CT alterations of the left postcentral gyrus and the right precuneus are distinct pathological mechanisms for MD.
Collapse
Affiliation(s)
- Lijin Yuan
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhaosong Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xianyu Chen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yun Zhu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China; Yunnan Clinical Research Center for Mental Disorders, Kunming, 650032, China
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China; Yunnan Clinical Research Center for Mental Disorders, Kunming, 650032, China.
| |
Collapse
|
18
|
Jing H, Zhang C, Yan H, Li X, Liang J, Liang W, Ou Y, Wu W, Guo H, Deng W, Xie G, Guo W. Deviant spontaneous neural activity as a potential early-response predictor for therapeutic interventions in patients with schizophrenia. Front Neurosci 2023; 17:1243168. [PMID: 37727324 PMCID: PMC10505796 DOI: 10.3389/fnins.2023.1243168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Objective Previous studies have established significant differences in the neuroimaging characteristics between healthy controls (HCs) and patients with schizophrenia (SCZ). However, the relationship between homotopic connectivity and clinical features in patients with SCZ is not yet fully understood. Furthermore, there are currently no established neuroimaging biomarkers available for the diagnosis of SCZ or for predicting early treatment response. The aim of this study is to investigate the association between regional homogeneity and specific clinical features in SCZ patients. Methods We conducted a longitudinal investigation involving 56 patients with SCZ and 51 HCs. The SCZ patients underwent a 3-month antipsychotic treatment. Resting-state functional magnetic resonance imaging (fMRI), regional homogeneity (ReHo), support vector machine (SVM), and support vector regression (SVR) were used for data acquisition and analysis. Results In comparison to HCs, individuals with SCZ demonstrated reduced ReHo values in the right postcentral/precentral gyrus, left postcentral/inferior parietal gyrus, left middle/inferior occipital gyrus, and right middle temporal/inferior occipital gyrus, and increased ReHo values in the right putamen. It is noteworthy that there was decreased ReHo values in the right inferior parietal gyrus after treatment compared to baseline data. Conclusion The observed decrease in ReHo values in the sensorimotor network and increase in ReHo values in the right putamen may represent distinctive neurobiological characteristics of patients with SCZ, as well as a potential neuroimaging biomarker for distinguishing between patients with SCZ and HCs. Furthermore, ReHo values in the sensorimotor network and right putamen may serve as predictive indicators for early treatment response in patients with SCZ.
Collapse
Affiliation(s)
- Huan Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Dai L, Zhang X, Yu R, Wang X, Deng F, Li X, Kuang L. Abnormal brain spontaneous activity in major depressive disorder adolescents with non-suicidal self injury and its changes after sertraline therapy. Front Psychiatry 2023; 14:1177227. [PMID: 37383613 PMCID: PMC10293671 DOI: 10.3389/fpsyt.2023.1177227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Background Non-suicidal self-injury (NSSI) commonly occurs among adolescents with major depressive disorder (MDD), causing adverse effects on the physical and mental health of the patients. However, the underlying neurobiological mechanism of NSSI in adolescents with MDD (nsMDDs) remains unclear, and there are still challenges in the treatment. Studies have suggested that sertraline administration could be an effective way for treatment. Methods To verify the effectiveness and to explore the neurobiological processes, we treated a group of adolescents with nsMDDs with sertraline in this study. The brain spontaneous activity alteration was then investigated in fifteen unmedicated first-episode adolescent nsMDDs versus twenty-two healthy controls through the resting-state functional magnetic resonance imaging. Besides the baseline scanning for all participants, the nsMDDs group was scanned again after eight weeks of sertraline therapy to examine the changes after treatment. Results At pre-treatment, whole brain analysis of mean amplitude of low-frequency fluctuation (mALFF) was performed to examine the neuronal spontaneous activity alteration, and increased mALFF was found in the superior occipital extending to lingual gyrus in adolescent nsMDDs compared with controls. Meanwhile, decreased mALFF was found in the medial superior frontal in adolescent nsMDDs compared with controls. Compared with the pre-treatment, the nsMDDs group was found to have a trend of, respectively, decreased and increased functional neuronal activity at the two brain areas after treatment through the region of interest analysis. Further, whole brain comparison of mALFF at pre-treatment and post-treatment showed significantly decreased spontaneous activity in the orbital middle frontal and lingual gyrus in adolescent nsMDDs after treatment. Also, depression severity was significantly decreased after treatment. Conclusion The abnormal functional neuronal activity found at frontal and occipital cortex implied cognitive and affective disturbances in adolescent nsMDDs. The trend of upregulation of frontal neuronal activity and downregulation of occipital neuronal activity after sertraline treatment indicated that the therapy could be effective in regulating the abnormality. Notably, the significantly decreased neuronal activity in the decision related orbital middle frontal and anxiety-depression related lingual gyrus could be suggestive of reduced NSSI in adolescent MDD after therapy.
Collapse
Affiliation(s)
- Linqi Dai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoliu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Deng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Chu Z, Yuan L, He M, Cheng Y, Lu Y, Xu X, Shen Z. Atrophy of bilateral nucleus accumbens in melancholic depression. Neuroreport 2023; 34:493-500. [PMID: 37270840 DOI: 10.1097/wnr.0000000000001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Evidence from previous literature suggests that the nucleus accumbens (NAc), hippocampus, and amygdala play critical roles in the reward circuit. Meanwhile, it was also suggested that abnormalities in the reward circuit might be closely associated with the symptom of anhedonia of depression. However, few studies have investigated the structural alterations of the NAc, hippocampus, and amygdala in depression with anhedonia as the main clinical manifestation. Thus, the current study aimed to explore the structural changes of the subcortical regions among melancholic depression (MD) patients, especially in the NAc, hippocampus, and amygdala, to provide a theoretical basis for understanding the pathological mechanisms of MD. Seventy-two MD patients, 74 nonmelancholic depression (NMD) patients, and 81 healthy controls (HCs) matched for sex, age, and years of education were included in the study. All participants underwent T1-weighted MRI scans. Subcortical structure segmentation was performed using the FreeSurfer software. MD and NMD patients had reduced left hippocampal volume compared with HCs. Meanwhile, only MD patients had reduced bilateral NAc volumes. Moreover, correlation analyses showed correlations between left NAc volume and late insomnia and lassitude in MD patients. The reduced hippocampal volume may be related to the pathogenesis of major depressive disorder (MDD), and the reduced volume of the NAc may be the unique neural mechanism of MD. The findings of the current study suggest that future studies should investigate the different pathogenic mechanisms of different subtypes of MDD further to contribute to the development of individualized diagnostic and treatment protocols.
Collapse
Affiliation(s)
- Zhaosong Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Lijin Yuan
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Mengxin He
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Yi Lu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| |
Collapse
|
21
|
Xia Y, Sun H, Hua L, Dai Z, Wang X, Tang H, Han Y, Du Y, Zhou H, Zou H, Yao Z, Lu Q. Spontaneous beta power, motor-related beta power and cortical thickness in major depressive disorder with psychomotor disturbance. Neuroimage Clin 2023; 38:103433. [PMID: 37216848 PMCID: PMC10209543 DOI: 10.1016/j.nicl.2023.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The psychomotor disturbance is a common symptom in patients with major depressive disorder (MDD). The neurological mechanisms of psychomotor disturbance are intricate, involving alterations in the structure and function of motor-related regions. However, the relationship among changes in the spontaneous activity, motor-related activity, local cortical thickness, and psychomotor function remains unclear. METHOD A total of 140 patients with MDD and 68 healthy controls performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. All patients were divided into two groups according to the presence of psychomotor slowing. Spontaneous beta power, movement-related beta desynchronization (MRBD), absolute beta power during movement and cortical characteristics in the bilateral primary motor cortex were compared using general linear models with the group as a fixed effect and age as a covariate. Finally, the moderated mediation model was tested to examine the relationship between brain metrics with group differences and psychomotor performance. RESULTS The patients with psychomotor slowing showed higher spontaneous beta power, movement-related beta desynchronization and absolute beta power during movement than patients without psychomotor slowing. Compared with the other two groups, significant decreases were found in cortical thickness of the left primary motor cortex in patients with psychomotor slowing. Our moderated mediation model showed that the increased spontaneous beta power indirectly affected impaired psychomotor performance by abnormal MRBD, and the indirect effects were moderated by cortical thickness. CONCLUSION These results suggest that patients with MDD have aberrant cortical beta activity at rest and during movement, combined with abnormal cortical thickness, contributing to the psychomotor disturbance observed in this patient population.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
22
|
Guo ZP, Chen L, Tang LR, Gao Y, Chand T, Sen ZD, Li M, Walter M, Wang L, Liu CH. Association between decreased interhemispheric functional connectivity of the insula and duration of illness in recurrent depression. J Affect Disord 2023; 329:88-95. [PMID: 36841304 DOI: 10.1016/j.jad.2023.02.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
OBJECTIVE To investigate the altered interhemispheric functional connectivity in the resting state in patients with recurrent major depressive disorder (MDD). METHODS Voxel-mirrored homotopic connectivity (VMHC), a measure of the functional connectivity between any pair of symmetrical interhemispheric voxels, and pattern classification were examined in 41 recurrent MDD patients (22 during the depressive state and 19 during the remitted state) and 60 age, sex, and education level-matched healthy controls (HC) using resting-state functional magnetic resonance imaging (fMRI). RESULTS Compared with HC, the recurrent MDD patients exhibited decreased VMHC values in the bilateral fusiform, inferior occipital gyrus, posterior insula, precentral gyrus, precuneus, superior temporal gyrus, and thalamus. A significant negative correlation between the VMHC value of the bilateral posterior insula and illness duration in recurrent MDD was identified. Support vector machine (SVM) analysis showed that VMHC in the fusiform and posterior insula could be used to distinguish recurrent MDD patients from HC with a sensitivity and accuracy >0.6. CONCLUSION Our findings revealed a reduction in the resting-state brain activity across several neural networks in patients with recurrent MDD, including within the posterior insula. Lower VMHC values in the posterior insula were associated with longer illness duration, suggesting that impairment in interhemispheric synchronization within the salience network may be due to the accumulated pathology of depression and may contribute to future depression relapse. VMHC changes in the posterior insula may serve as a potential imaging marker to discriminate recurrent MDD patients from HC.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Lei Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Li-Rong Tang
- Beijing Hospital of Anding, Capital Medical University, Beijing 100088, China
| | - Yue Gao
- Beijing Hospital of Anding, Capital Medical University, Beijing 100088, China
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Halle-Jena-Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen 72074, Germany; Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
23
|
Wen X, Han B, Li H, Dou F, Wei G, Hou G, Wu X. Unbalanced amygdala communication in major depressive disorder. J Affect Disord 2023; 329:192-206. [PMID: 36841299 DOI: 10.1016/j.jad.2023.02.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Previous studies suggested an association between functional alteration of the amygdala and typical major depressive disorder (MDD) symptoms. Examining whether and how the interaction between the amygdala and regions/functional networks is altered in patients with MDD is important for understanding its neural basis. METHODS Resting-state functional magnetic resonance imaging data were recorded from 67 patients with MDD and 74 age- and sex-matched healthy controls (HCs). A framework for large-scale network analysis based on seed mappings of amygdala sub-regions, using a multi-connectivity-indicator strategy (cross-correlation, total interdependencies (TI), Granger causality (GC), and machine learning), was employed. Multiple indicators were compared between the two groups. The altered indicators were ranked in a supporting-vector machine-based procedure and associated with the Hamilton Rating Scale for Depression scores. RESULTS The amygdala connectivity with the default mode network and ventral attention network regions was enhanced and that with the somatomotor network, dorsal frontoparietal network, and putamen regions in patients with MDD was reduced. The machine learning analysis highlighted altered indicators that were most conducive to the classification between the two groups. LIMITATIONS Most patients with MDD received different pharmacological treatments. It is difficult to illustrate the medication state's effect on the alteration model because of its complex situation. CONCLUSION The results indicate an unbalanced interaction model between the amygdala and functional networks and regions essential for various emotional and cognitive functions. The model can help explain potential aberrancy in the neural mechanisms that underlie the functional impairments observed across various domains in patients with MDD.
Collapse
Affiliation(s)
- Xiaotong Wen
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, 100872, China.
| | - Bukui Han
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Huanhuan Li
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, 100872, China.
| | - Fengyu Dou
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Guodong Wei
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Gangqiang Hou
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China
| | - Xia Wu
- School of Artificial Intelligence, Beijing Normal University, Beijing 100093, China
| |
Collapse
|
24
|
Shunkai L, Su T, Zhong S, Chen G, Zhang Y, Zhao H, Chen P, Tang G, Qi Z, He J, Zhu Y, Lv S, Song Z, Miao H, Hu Y, Jia Y, Wang Y. Abnormal dynamic functional connectivity of hippocampal subregions associated with working memory impairment in melancholic depression. Psychol Med 2023; 53:2923-2935. [PMID: 34870570 DOI: 10.1017/s0033291721004906] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Previous studies have demonstrated structural and functional changes of the hippocampus in patients with major depressive disorder (MDD). However, no studies have analyzed the dynamic functional connectivity (dFC) of hippocampal subregions in melancholic MDD. We aimed to reveal the patterns for dFC variability in hippocampus subregions - including the bilateral rostral and caudal areas and its associations with cognitive impairment in melancholic MDD. METHODS Forty-two treatment-naive MDD patients with melancholic features and 55 demographically matched healthy controls were included. The sliding-window analysis was used to evaluate whole-brain dFC for each hippocampal subregions seed. We assessed between-group differences in the dFC variability values of each hippocampal subregion in the whole brain and cognitive performance on the MATRICS Consensus Cognitive Battery (MCCB). Finally, association analysis was conducted to investigate their relationships. RESULTS Patients with melancholic MDD showed decreased dFC variability between the left rostral hippocampus and left anterior lobe of cerebellum compared with healthy controls (voxel p < 0.005, cluster p < 0.0125, GRF corrected), and poorer cognitive scores in working memory, verbal learning, visual learning, and social cognition (all p < 0.05). Association analysis showed that working memory was positively correlated with the dFC variability values of the left rostral hippocampus-left anterior lobe of the cerebellum (r = 0.338, p = 0.029) in melancholic MDD. CONCLUSIONS These findings confirmed the distinct dynamic functional pathway of hippocampal subregions in patients with melancholic MDD, and suggested that the dysfunction of hippocampus-cerebellum connectivity may be underlying the neural substrate of working memory impairment in melancholic MDD.
Collapse
Affiliation(s)
- Lai Shunkai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yunxia Zhu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sihui Lv
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zijin Song
- School of Management, Jinan University, Guangzhou 510316, China
| | - Haofei Miao
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yilei Hu
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| |
Collapse
|
25
|
Gao Y, Guo X, Zhong Y, Liu X, Tian S, Deng J, Lin X, Bao Y, Lu L, Wang G. Decreased dorsal attention network homogeneity as a potential neuroimaging biomarker for major depressive disorder. J Affect Disord 2023; 332:136-142. [PMID: 36990286 DOI: 10.1016/j.jad.2023.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Gaining insight into abnormal functional brain network homogeneity (NH) has the potential to aid efforts to target or otherwise study major depressive disorder (MDD). The NH of the dorsal attention network (DAN) in first-episode treatment-naive MDD patients, however, has yet to be studied. As such, the present study was developed to explore the NH of the DAN in order to determine the ability of this parameter to differentiate between MDD patients and healthy control (HC) individuals. METHODS This study included 73 patients with first-episode treatment-naive MDD and 73 age-, gender-, and educational level-matched healthy controls. All participants completed the attentional network test (ANT), Hamilton Rating Scale for Depression (HRSD), and resting-state functional magnetic resonance imaging (rs-fMRI) analyses. A group independent component analysis (ICA) was used to identify the DAN and to compute the NH of the DAN in patients with MDD. Spearman's rank correlation analyses were used to explore relationships between significant NH abnormalities in MDD patients, clinical parameters, and executive control reaction time. RESULTS Relative to HCs, patients exhibited reduced NH in the left supramarginal gyrus (SMG). Support vector machine (SVM) analyses and receiver operating characteristic curves indicated that the NH of the left SMG could be used to differentiate between HCs and MDD patients with respective accuracy, specificity, sensitivity, and AUC values of 92.47 %, 91.78 %, 93.15 %, and 65.39 %. A significant positive correlation was observed between the left SMG NH values and HRSD scores among MDD patients. CONCLUSIONS These results suggest that NH changes in the DAN may offer value as a neuroimaging biomarker capable of differentiating between MDD patients and healthy individuals.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Xin Guo
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Zhong
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiaoxin Liu
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Shanshan Tian
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Jiahui Deng
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiao Lin
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Yanpin Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China.
| | - Lin Lu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
26
|
Zhang C, Jing H, Yan H, Li X, Liang J, Zhang Q, Liang W, Ou Y, Peng C, Yu Y, Wu W, Xie G, Guo W. Disrupted interhemispheric coordination of sensory-motor networks and insula in major depressive disorder. Front Neurosci 2023; 17:1135337. [PMID: 36960171 PMCID: PMC10028102 DOI: 10.3389/fnins.2023.1135337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Objective Prior researches have identified distinct differences in neuroimaging characteristics between healthy controls (HCs) and patients with major depressive disorder (MDD). However, the correlations between homotopic connectivity and clinical characteristics in patients with MDD have yet to be fully understood. The present study aimed to investigate common and unique patterns of homotopic connectivity and their relationships with clinical characteristics in patients with MDD. Methods We recruited 42 patients diagnosed with MDD and 42 HCs. We collected a range of clinical variables, as well as exploratory eye movement (EEM), event-related potentials (ERPs) and resting-state functional magnetic resonance imaging (rs-fMRI) data. The data were analyzed using correlation analysis, support vector machine (SVM), and voxel-mirrored homotopic connectivity (VMHC). Results Compared with HCs, patients with MDD showed decreased VMHC in the insula, and increased VMHC in the cerebellum 8/vermis 8/vermis 9 and superior/middle occipital gyrus. SVM analysis using VMHC values in the cerebellum 8/vermis 8/vermis 9 and insula, or VMHC values in the superior/middle occipital gyrus and insula as inputs can distinguish HCs and patients with MDD with high accuracy, sensitivity, and specificity. Conclusion The study demonstrated that decreased VMHC in the insula and increased VMHC values in the sensory-motor networks may be a distinctive neurobiological feature for patients with MDD, which could potentially serve as imaging markers to discriminate HCs and patients with MDD.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Huan Jing
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Qinqin Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Wenting Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Can Peng
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yang Yu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Weibin Wu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
- *Correspondence: Guojun Xie,
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Wenbin Guo,
| |
Collapse
|
27
|
Abnormal dynamic functional network connectivity in first-episode, drug-naïve patients with major depressive disorder. J Affect Disord 2022; 319:336-343. [PMID: 36084757 DOI: 10.1016/j.jad.2022.08.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/25/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Dynamic functional network connectivity (dFNC) could capture temporal features of spontaneous brain activity during MRI scanning, and it might be a powerful tool to examine functional brain network alters in major depressive disorder (MDD). Therefore, this study investigated the changes in temporal properties of dFNC of first-episode, drug-naïve patients with MDD. A total of 48 first-episode, drug-naïve MDD patients and 46 age- and gender-matched healthy controls were recruited in this study. Sliding windows were implied to construct dFNC. We assessed the relationships between altered dFNC temporal properties and depressive symptoms. Receiver operating characteristic (ROC) curve analyses were used to examine the diagnostic performance of these altered temporal properties. The results showed that patients with MDD have more occurrences and spent more time in a weak connection state, but with fewer occurrences and shorter dwell time in a strong connection state. Importantly, the fractional time and mean dwell time of state 2 was negatively correlated with Hamilton Depression Rating Scale (HDRS) scores. ROC curve analysis demonstrated that these temporal properties have great identified power including the fractional time and mean dwell time in state 2, and the AUC is 0.872, 0.837, respectively. The AUC of the combination of fractional time and mean dwell time in state 2 with age, gender is 0.881. Our results indicated the temporal properties of dFNC are altered in first-episode, drug-naïve patients with MDD, and these changes' properties could serve as a potential biomarker in MDD.
Collapse
|
28
|
Resting state functional connectivity as a marker of internalizing disorder onset in high-risk youth. Sci Rep 2022; 12:21337. [PMID: 36494495 PMCID: PMC9734132 DOI: 10.1038/s41598-022-25805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
While research has linked alterations in functional connectivity of the default mode (DMN), cognitive control (CCN), and salience networks (SN) to depression and anxiety, little research has examined whether these alterations may be premorbid vulnerabilities. This study examined resting state functional connectivity (RSFC) of the CCN, DMN, and SN as markers of risk for developing an onset of a depressive or anxiety disorder in adolescents at high familial risk for these disorders. At baseline, 135 participants aged 11-17 completed resting-state functional magnetic resonance imaging, measures of internalizing symptoms, and diagnostic interviews to assess history of depressive and anxiety disorders. Diagnostic assessments were completed again at 9- or 18-month follow-up for 112 participants. At baseline, increased CCN connectivity to areas of the visual network, and decreased connectivity between the left SN and the precentral gyrus, predicted an increased likelihood of a new onset at follow-up. Increased connectivity between the right SN and postcentral gyrus at baseline predicted first episode onsets at follow-up. Altered connectivity between these regions may represent a risk factor for developing a clinically significant onset of an internalizing disorder. Results may have implications for understanding the neural bases of internalizing disorders for early identification and prevention efforts.
Collapse
|
29
|
Yao S, Kendrick KM. Reduced homotopic interhemispheric connectivity in psychiatric disorders: evidence for both transdiagnostic and disorder specific features. PSYCHORADIOLOGY 2022; 2:129-145. [PMID: 38665271 PMCID: PMC11003433 DOI: 10.1093/psyrad/kkac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 04/28/2024]
Abstract
There is considerable interest in the significance of structural and functional connections between the two brain hemispheres in terms of both normal function and in relation to psychiatric disorders. In recent years, many studies have used voxel mirrored homotopic connectivity analysis of resting state data to investigate the importance of connectivity between homotopic regions in the brain hemispheres in a range of neuropsychiatric disorders. The current review summarizes findings from these voxel mirrored homotopic connectivity studies in individuals with autism spectrum disorder, addiction, attention deficit hyperactivity disorder, anxiety and depression disorders, and schizophrenia, as well as disorders such as Alzheimer's disease, mild cognitive impairment, epilepsy, and insomnia. Overall, other than attention deficit hyperactivity disorder, studies across psychiatric disorders report decreased homotopic resting state functional connectivity in the default mode, attention, salience, sensorimotor, social cognition, visual recognition, primary visual processing, and reward networks, which are often associated with symptom severity and/or illness onset/duration. Decreased homotopic resting state functional connectivity may therefore represent a transdiagnostic marker for general psychopathology. In terms of disorder specificity, the extensive decreases in homotopic resting state functional connectivity in autism differ markedly from attention deficit hyperactivity disorder, despite both occurring during early childhood and showing extensive co-morbidity. A pattern of more posterior than anterior regions showing reductions in schizophrenia is also distinctive. Going forward, more studies are needed to elucidate the functions of these homotopic functional connections in both health and disorder and focusing on associations with general psychopathology, and not only on disorder specific symptoms.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
30
|
Bonelli C, Mancuso L, Manuello J, Liloia D, Costa T, Cauda F. Sex differences in brain homotopic co-activations: a meta-analytic study. Brain Struct Funct 2022; 227:2839-2855. [PMID: 36269398 DOI: 10.1007/s00429-022-02572-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
An element of great interest in functional connectivity is 'homotopic connectivity' (HC), namely the connectivity between two mirrored areas of the two hemispheres, mainly mediated by the fibers of the corpus callosum. Despite a long tradition of studying sexual dimorphism in the human brain, to our knowledge only one study has addressed the influence of sex on HC.We investigated the issue of homotopic co-activations in women and men using a coordinate-based meta-analytic method and data from the BrainMap database. A first unexpected observation was that the database was affected by a sex bias: women-only groups are investigated less often than men-only ones, and they are more often studied in certain domains such as emotion compared to men, and less in cognition. Implementing a series of sampling procedures to equalize the size and proportion of the datasets, our results indicated that females exhibit stronger interhemispheric co-activation than males, suggesting that the female brain is less lateralized and more integrated than that of males. In addition, males appear to show less intense but more extensive co-activation than females. Some local differences also appeared. In particular, it appears that primary motor and perceptual areas are more co-activated in males, in contrast to the opposite trend in the rest of the brain. This argues for a multidimensional view of sex brain differences and suggests that the issue should be approached with more complex models than previously thought.
Collapse
Affiliation(s)
- Chiara Bonelli
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Lorenzo Mancuso
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Jordi Manuello
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Department of Psychology, GCS-fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Department of Psychology, GCS-fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- Department of Psychology, GCS-fMRI, Koelliker Hospital, University of Turin, Turin, Italy.
| | - Franco Cauda
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Department of Psychology, GCS-fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Fu X, Yang X, Cui X, Liu F, Li H, Yan M, Xie G, Guo W. Overlapping and segregated changes of functional hubs in melancholic depression and non-melancholic depression. J Psychiatr Res 2022; 154:123-131. [PMID: 35933856 DOI: 10.1016/j.jpsychires.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous research found associations between neuropsychiatric disorders and patterns of highly connected "hub" nodes, which are crucial in coordinating brain functions. Melancholic depression is considered a relatively distinct and homogenous subtype of major depressive disorder (MDD), which responds better to pharmacological treatments than placebos or psychotherapies. Accordingly, melancholic depression probably has distinct neuropathological underpinnings. This study aims to examine the overlapping and segregated changes of functional hubs in melancholic and non-melancholic MDD. METHODS Thirty-one melancholic patients, 28 non-melancholic patients, and 32 healthy controls were included. Resting-state functional imaging data were analyzed using global functional connectivity. RESULTS Both melancholic and non-melancholic patients had increased GFC in the bilateral insula and decreased GFC in the PCC/precuneus compared to HCs. The distinction was that melancholic patients showed increased GFC in the bilateral thalamus, right inferior parietal lobule (IPL), and left cerebellum Crus I and decreased GFC in the left temporal lobe, whereas non-melancholic patients showed increased GFC in the left superior parietal lobe. Additionally, compared with non-melancholic patients, melancholic individuals displayed significant increases of GFC in the left IPL and cerebellum. CONCLUSION Increased GFC of the insula and decreased GFC of the PCC and precuneus are the common abnormalities of melancholic and non-melancholic MDD. Hyperconnectivity of the IPL and cerebellum might be distinctive neuropathological features of melancholic MDD.
Collapse
Affiliation(s)
- Xiaoya Fu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaolun Yang
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xilong Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300000, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Meiqi Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Guangrong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| |
Collapse
|
32
|
Gao Y, Zhao X, Huang J, Wang S, Chen X, Li M, Sun F, Wang G, Zhong Y. Abnormal regional homogeneity in right caudate as a potential neuroimaging biomarker for mild cognitive impairment: A resting-state fMRI study and support vector machine analysis. Front Aging Neurosci 2022; 14:979183. [PMID: 36118689 PMCID: PMC9475111 DOI: 10.3389/fnagi.2022.979183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Mild cognitive impairment (MCI) is a heterogeneous syndrome characterized by cognitive impairment on neurocognitive tests but accompanied by relatively intact daily activities. Due to high variation and no objective methods for diagnosing and treating MCI, guidance on neuroimaging is needed. The study has explored the neuroimaging biomarkers using the support vector machine (SVM) method to predict MCI. Methods In total, 53 patients with MCI and 68 healthy controls were involved in scanning resting-state functional magnetic resonance imaging (rs-fMRI). Neurocognitive testing and Structured Clinical Interview, such as Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) test, Activity of Daily Living (ADL) Scale, Hachinski Ischemic Score (HIS), Clinical Dementia Rating (CDR), Montreal Cognitive Assessment (MoCA), and Hamilton Rating Scale for Depression (HRSD), were utilized to assess participants' cognitive state. Neuroimaging data were analyzed with the regional homogeneity (ReHo) and SVM methods. Results Compared with healthy comparisons (HCs), ReHo of patients with MCI was decreased in the right caudate. In addition, the SVM classification achieved an overall accuracy of 68.6%, sensitivity of 62.26%, and specificity of 58.82%. Conclusion The results suggest that abnormal neural activity in the right cerebrum may play a vital role in the pathophysiological process of MCI. Moreover, the ReHo in the right caudate may serve as a neuroimaging biomarker for MCI, which can provide objective guidance on diagnosing and managing MCI in the future.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinfu Zhao
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - JiChao Huang
- Affiliated Shuyang Hospital, Nanjing University of Chinese Medicine, Suqian, China
| | - Sanwang Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Chen
- Department of Psychiatry, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Mingzhe Li
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Fengjiao Sun
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Gaohua Wang
| | - Yi Zhong
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
- Yi Zhong
| |
Collapse
|
33
|
Zhang X, Zhang R, Lv L, Qi X, Shi J, Xie S. Correlation between cognitive deficits and dorsolateral prefrontal cortex functional connectivity in first-episode depression. J Affect Disord 2022; 312:152-158. [PMID: 35752217 DOI: 10.1016/j.jad.2022.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/17/2022] [Accepted: 06/16/2022] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Although depression is commonly accompanied by cognitive deficits, the underlying mechanism remains unclear. One possibility is that such deficits are related to abnormal brain network connections. The purpose of this study was thus to investigate changes in brain functional connectivity (FC) in depression and its relationship with cognitive deficits. METHODS We enrolled 37 first-episode MDD patients and 53 matched healthy controls (HC). All participants completed clinical and neurocognitive assessments and underwent resting-state functional MRI. Seed-based analysis was used to define the dorsolateral prefrontal cortex (DLPFC) and FC analysis was then performed. We used bias correlation to analyze the correlation between FC and clinical and neurocognitive scores. RESULTS MDD patients showed increased FC of the right DLPFC with the left inferior temporal gyrus, left cuneus, right inferior frontal gyrus, right anterior cingulate cortex, left BA39, right angular gyrus, right precuneus, left middle frontal gyrus, and right precentral gyrus. MDD patients also showed stronger FC in the left thalamus and reduced FC between the left superior occipital gyrus and left DLPFC seed region. Interestingly, increased FC was related to disease severity (with the right precentral gyrus) and social cognitive dysfunction (with the right angular gyrus) in MDD patients. LIMITATIONS The sample size was relatively small and it is unclear how age may influence FC changes in patients with depression. CONCLUSIONS These findings support changes in FC of the DLPFC in early MDD patients related to cognitive function. FC is a potential biomarker for the diagnosis of MDD.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lanlan Lv
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyang Qi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shiping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Song Y, Huang C, Zhong Y, Wang X, Tao G. Abnormal Reginal Homogeneity in Left Anterior Cingulum Cortex and Precentral Gyrus as a Potential Neuroimaging Biomarker for First-Episode Major Depressive Disorder. Front Psychiatry 2022; 13:924431. [PMID: 35722559 PMCID: PMC9199967 DOI: 10.3389/fpsyt.2022.924431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
Objective There is no objective method to diagnose major depressive disorder (MDD). This study explored the neuroimaging biomarkers using the support vector machine (SVM) method for the diagnosis of MDD. Methods 52 MDD patients and 45 healthy controls (HCs) were involved in resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Imaging data were analyzed with the regional homogeneity (ReHo) and SVM methods. Results Compared with HCs, MDD patients showed increased ReHo in the left anterior cingulum cortex (ACC) and decreased ReHo in the left precentral gyrus (PG). No correlations were detected between the ReHo values and the Hamilton Rating Scale for Depression (HRSD) scores. The SVM results showed a diagnostic accuracy of 98.96% (96/97). Increased ReHo in the left ACC, and decreased ReHo in the left PG were illustrated, along with a sensitivity of 98.07%(51/52) and a specificity of100% (45/45). Conclusion Our results suggest that abnormal regional neural activity in the left ACC and PG may play a key role in the pathophysiological process of first-episode MDD. Moreover, the combination of ReHo values in the left ACC and precentral gyrusmay serve as a neuroimaging biomarker for first-episode MDD.
Collapse
Affiliation(s)
- Yan Song
- Nanning Fifth People's Hospital, Nanning, China
| | - Chunyan Huang
- Department of Cardiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Yi Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Xi Wang
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | |
Collapse
|
35
|
Mertse N, Denier N, Walther S, Breit S, Grosskurth E, Federspiel A, Wiest R, Bracht T. Associations between anterior cingulate thickness, cingulum bundle microstructure, melancholia and depression severity in unipolar depression. J Affect Disord 2022; 301:437-444. [PMID: 35026360 DOI: 10.1016/j.jad.2022.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Structural and functional alterations of the anterior cingulate cortex (ACC) have been related to emotional, cognitive and behavioral domains of major depressive disorder. In this study, we investigate cortical thickness of rostral and caudal ACC. In addition, we explore white matter microstructure of the cingulum bundle (CB), a white matter pathway connecting multiple segments of the ACC. We hypothesized reduced cortical thickness and reduced white matter microstructure of the CB in MDD, in particular in the melancholic subtype. In addition, we expect an association between depression severity and CB microstructure. METHODS Fifty-four patients with a current depressive episode and 22 healthy controls matched for age, gender and handedness underwent structural and diffusion-weighted MRI-scans. Cortical thickness of rostral and caudal ACC were computed. The CB was reconstructed bilaterally using manual tractography. Cortical thickness and fractional anisotropy (FA) of bilateral CB were compared first between all patients and healthy controls and second between healthy controls, melancholic and non-melancholic patients. Correlations between FA and depression severity were calculated. RESULTS We found no group differences in rostral and caudal ACC cortical thickness or in FA of the CB comparing all patients with healthy controls. Melancholic patients had reduced cortical thickness of bilateral caudal ACC compared to non-melancholic patients and compared to healthy controls. Across all patients, depression severity was associated with reduced FA in bilateral CB. LIMITATIONS Impact of medication CONCLUSIONS: Cortical thickness of the caudal ACC is associated with the melancholic syndrome. CB microstructure may represent a marker of depression severity.
Collapse
Affiliation(s)
- Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Elmar Grosskurth
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland.
| |
Collapse
|
36
|
Luo Q, Chen J, Li Y, Wu Z, Lin X, Yao J, Yu H, Peng H, Wu H. Altered regional brain activity and functional connectivity patterns in major depressive disorder: A function of childhood trauma or diagnosis? J Psychiatr Res 2022; 147:237-247. [PMID: 35066292 DOI: 10.1016/j.jpsychires.2022.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022]
Abstract
Childhood trauma (CT) is a non-specific risk factor for major depressive disorder (MDD). However, the neurobiological mechanisms of MDD with CT remain unclear. In the present study, we sought to determine the specific brain regions associated with CT and MDD etiology. Fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) analyses were performed to assess alterations of intrinsic brain activity in MDD with CT, MDD without CT, healthy controls with CT, and healthy controls without CT. Two-by-two factorial analyses were performed to examine the effects of the factors "MDD" and "CT" on fALFF and FC. Moderator analysis was used to explore whether the severity of depression moderated the relationship between CT and aberrant fALFF. We found that the etiological effects of MDD and CT exhibited negative impacts on brain dysfunction including altered fALFF in the left postcentral gyrus, left lingual gyrus, left paracentral lobule (PCL), and left cuneus. Decreased FC was observed in the following regions: (i) the left lingual gyrus seed and the left fusiform gyrus as well as the right calcarine cortex; (ii) the left PCL seed and the left supplementary motor area, left calcarine cortex, left precentral gyrus, and right cuneus; (iii) the left postcentral gyrus seed and left superior parietal lobule, right postcentral gyrus, and left precentral gyrus. Furthermore, the severity of depression acted as a moderator in the relationship between CT and aberrant fALFF in the left PCL. These data indicate that MDD patients with and without trauma exposure are clinically and neurobiologically distinct.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
| |
Collapse
|
37
|
Fu X, Ding Y, Chen J, Liu F, Li H, Zhao J, Guo W. Altered Brain Functional Asymmetry in Patients With Major Depressive Disorder Related to Gastrointestinal Symptoms. Front Neurosci 2022; 15:797598. [PMID: 35250436 PMCID: PMC8891942 DOI: 10.3389/fnins.2021.797598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDisrupted brain functional asymmetry has been reported in major depressive disorder (MDD). The comorbidity may be a crucial factor to this functional asymmetry. It is quite common that gastrointestinal (GI) symptoms are comorbid with MDD, but limited evidence focuses on the effect of GI comorbidity on the neuropathology of MDD from a functional lateralization perspective.MethodsResting-state functional magnetic resonance imaging was obtained in 28 healthy controls (HCs), 35 MDD patients with GI symptoms (GI-MDD patients), and 17 patients with MDD without GI symptoms (nGI-MDD patients). The parameter of asymmetry (PAS) was used to analyze the imaging data and evaluate the changes of functional asymmetry.ResultsThe GI-MDD patients showed increased PAS scores in the left inferior frontal gyrus (IFG) and superior medial prefrontal cortex (MPFC) and decreased PAS scores in the right postcentral gyrus in comparison with nGI-MDD patients. The PAS scores of the left IFG and left superior MPFC were correlated with the severity of GI problems and could be applied to distinguish GI-MDD patients from nGI-MDD patients with an accuracy, a sensitivity, and a specificity of 92.31, 100, and 76.47%, respectively. Furthermore, GI-MDD and nGI-MDD patients both displayed increased PAS scores in the PCC/precuneus.ConclusionsThis study revealed the influence of concomitant GI symptoms on functional asymmetry in MDD patients. Increased PAS scores of the left IFG and superior MPFC might represent an unbalanced regulation of brain over GI function and had the potential to be regarded as distinctive features related to functional GI symptoms in MDD.
Collapse
Affiliation(s)
- Xiaoya Fu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yudan Ding
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenbin Guo,
| |
Collapse
|
38
|
Abnormal degree centrality as a potential imaging biomarker for right temporal lobe epilepsy: A resting-state fMRI study and support vector machine analysis. Neuroscience 2022; 487:198-206. [PMID: 35158018 DOI: 10.1016/j.neuroscience.2022.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/26/2022]
|
39
|
Luo L, Lei X, Zhu C, Wu J, Ren H, Zhan J, Qin Y. Decreased Connectivity in Precuneus of the Ventral Attentional Network in First-Episode, Treatment-Naïve Patients With Major Depressive Disorder: A Network Homogeneity and Independent Component Analysis. Front Psychiatry 2022; 13:925253. [PMID: 35693966 PMCID: PMC9184427 DOI: 10.3389/fpsyt.2022.925253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The ventral attentional network (VAN) can provide quantitative information on cognitive problems in patients with major depressive disorder (MDD). Nevertheless, little is known about network homogeneity (NH) changes in the VAN of these patients. The aim of this study was to examine the NH values in the VAN by independent component analysis (ICA) and compare the NH values between MDD patients and the normal controls (NCs). METHODS Attentional network test and resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 73 patients, and 70 NCs matched by gender, age, and education years. ICA and NH were employed to evaluate the data. Moreover, the NH values were compared, and Spearman's rank correlation analysis was used to assess the correlations with the executive control reaction time (ECRT). RESULTS Our results showed that the first-episode, treatment-naive MDD patients had decreased NH in the right precuneus (PCu) and abnormal ECRT compared with NCs. However, no significant correlation was found between the NH values and measured clinical variables. CONCLUSION Our results highlight the potential importance of VAN in the pathophysiology of cognitive problems in MDD, thus offering new directions for future research on MDD.
Collapse
Affiliation(s)
- Liqiong Luo
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xijun Lei
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Canmin Zhu
- Department of Neurology, The First People's Hospital of Jiangxia District, Wuhan, China
| | - Jun Wu
- Department of Neurosurgery, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhan
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yongzhang Qin
- Department of Endocrinology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
40
|
Xiong S, Li W, Zhou Y, Ren H, Lin G, Zhang S, Xiang X. Vortioxetine Modulates the Regional Signal in First-Episode Drug-Free Major Depressive Disorder at Rest. Front Psychiatry 2022; 13:950885. [PMID: 35845440 PMCID: PMC9277001 DOI: 10.3389/fpsyt.2022.950885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous studies on brain functional alterations associated with antidepressants for major depressive disorder (MDD) have produced conflicting results because they involved short treatment periods and a variety of compounds. METHODS Resting-state functional magnetic resonance imaging scans were obtained from 25 first-episode drug-free patients with MDD and 25 healthy controls. The patients, who were treated with vortioxetine for 8 weeks, were scanned at two-time points (baseline and week 8 of treatment). The amplitude of low-frequency fluctuation (ALFF) in the imaging data was used to analyze local brain signal alterations associated with antidepressant treatment. RESULTS Compared with the controls, the patients at baseline showed decreased ALFF values in the right inferior temporal gyrus and increased ALFF values in the left inferior cerebellum, right cingulate gyrus and postcentral gyrus. After 8 weeks of vortioxetine treatment, patients showed increased ALFF values in the bilateral cingulate gyrus, middle temporal gyrus, medial superior frontal gyrus, and inferior cerebellum. CONCLUSION This study provided evidence that vortioxetine modulates brain signals in MDD sufferers. These findings contribute to the understanding of how antidepressants effect brain function.
Collapse
Affiliation(s)
- Shihong Xiong
- Department of Nephrology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Yang Zhou
- Wuhan Mental Health Center, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | | | - Sheng Zhang
- Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Xiang
- Department of Spine and Orthopedics, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Liu L, Fan J, Zhan H, Huang J, Cao R, Xiang X, Tian S, Ren H, Tong M, Li Q. Abnormal regional signal in the left cerebellum as a potential neuroimaging biomarker of sudden sensorineural hearing loss. Front Psychiatry 2022; 13:967391. [PMID: 35935421 PMCID: PMC9354585 DOI: 10.3389/fpsyt.2022.967391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE While prior reports have characterized visible changes in neuroimaging findings in individuals suffering from sudden sensorineural hearing loss (SSNHL), the utility of regional homogeneity (ReHo) as a means of diagnosing SSNHL has yet to be established. The present study was thus conducted to assess ReHo abnormalities in SSNHL patients and to establish whether these abnormalities offer value as a diagnostic neuroimaging biomarker of SSNHL through a support vector machine (SVM) analysis approach. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) analyses of 27 SSNHL patients and 27 normal controls were conducted, with the resultant imaging data then being analyzed based on a combination of ReHo and SVM approaches. RESULTS Relative to normal control individuals, patients diagnosed with SSNHL exhibited significant reductions in ReHo values in the left cerebellum, bilateral inferior temporal gyrus (ITG), left superior temporal pole (STP), right parahippocampal gyrus (PHG), left posterior cingulum cortex (PCC), and right superior frontal gyrus (SFG). SVM analyses suggested that reduced ReHo values in the left cerebellum were associated with high levels of diagnostic accuracy (96.30%, 52/54), sensitivity (92.59%, 25/27), and specificity (100.00%, 27/27) when distinguishing between SSNHL patients and control individuals. CONCLUSION These data suggest that SSNHL patients exhibit abnormal resting-state neurological activity, with changes in the ReHo of the left cerebellum offering value as a diagnostic neuroimaging biomarker associated with this condition.
Collapse
Affiliation(s)
- Lei Liu
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hui Zhan
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Junli Huang
- Department of Medical Imaging, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Rui Cao
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoran Xiang
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shuai Tian
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Miao Tong
- Department of Stomatology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Deng Z, Jiang X, Liu W, Zhao W, Jia L, Sun Q, Xie Y, Zhou Y, Sun T, Wu F, Kong L, Tang Y. The aberrant dynamic amplitude of low-frequency fluctuations in melancholic major depressive disorder with insomnia. Front Psychiatry 2022; 13:958994. [PMID: 36072459 PMCID: PMC9441487 DOI: 10.3389/fpsyt.2022.958994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Insomnia is considered one of the manifestations of sleep disorders, and its intensity is linked to the treatment effect or suicidal thoughts. Major depressive disorder (MDD) is classified into various subtypes due to heterogeneous symptoms. Melancholic MDD has been considered one of the most common subtypes with special sleep features. However, the brain functional mechanisms in melancholic MDD with insomnia remain unclear. MATERIALS AND METHODS Melancholic MDD and healthy controls (HCs, n = 46) were recruited for the study. Patients were divided into patients with melancholic MDD with low insomnia (mMDD-LI, n = 23) and patients with melancholic MDD with high insomnia (mMDD-HI, n = 30), according to the sleep disturbance subscale of the 17-item Hamilton Depression Rating Scale. The dynamic amplitude of low-frequency fluctuation was employed to investigate the alterations of brain activity among the three groups. Then, the correlations between abnormal dALFF values of brain regions and the severity of symptoms were investigated. RESULTS Lower dALFF values were found in the mMDD-HI group in the right middle temporal gyrus (MTG)/superior temporal gyrus (STG) than in the mMDD-LI (p = 0.014) and HC groups (p < 0.001). Melancholic MDD groups showed decreased dALFF values than HC in the right middle occipital gyri (MOG)/superior occipital gyri (SOG), the right cuneus, the bilateral lingual gyrus, and the bilateral calcarine (p < 0.05). Lower dALFF values than HC in the left MOG/SOG and the left cuneus in melancholic MDD groups were found, but no significant difference was found between the mMDD-LI group and HC group (p = 0.079). Positive correlations between the dALFF values in the right MTG/STG and HAMD-SD scores (the sleep disturbance subscale of the HAMD-17) in the mMDD-HI group (r = 0.41, p = 0.042) were found. In the pooled melancholic MDD, the dALFF values in the right MOG/SOG and the right cuneus (r = 0.338, p = 0.019), the left MOG/SOG and the left cuneus (r = 0.299, p = 0.039), and the bilateral lingual gyrus and the bilateral calcarine (r = 0.288, p = 0.047) were positively correlated with adjusted HAMD scores. CONCLUSION The occipital cortex may be related to depressive symptoms in melancholic MDD. Importantly, the right MTG/STG may play a critical role in patients with melancholic MDD with more severe insomnia.
Collapse
Affiliation(s)
- Zijing Deng
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen Liu
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenhui Zhao
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Jia
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Xie
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Sun
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|