1
|
Manocchio F, Enepekides J, Nestor S, Giacobbe P, Rabin JS, Burke MJ, Lanctôt KL, Goubran M, Meng Y, Lipsman N, Hamani C, Davidson B. Neuromodulation as a therapeutic approach for post-traumatic stress disorder: the evidence to date. Expert Rev Neurother 2025; 25:101-120. [PMID: 39704493 DOI: 10.1080/14737175.2024.2442658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD) can have debilitating effects on quality of life, and conventional treatments show mixed results. Neuromodulation is emerging as a promising approach for treating PTSD. This review examines current neuromodulatory treatments for PTSD, and highlights methodologies, clinical outcomes, and gaps in the literature to help guide future research. AREAS COVERED A PubMed search identified 252 studies on PTSD and neuromodulation, of which 61 were selected for full review. These included 37 studies on repetitive transcranial magnetic stimulation (rTMS), 10 on transcranial direct current stimulation (tDCS),4 on deep brain stimulation (DBS) and 2 on focused ultrasound (FUS). EXPERT OPINION The present review supports the potential of neuromodulation to reduce PTSD symptoms. rTMS and tDCS targeting the dlPFC appear effective through modulating neural circuits involved in fear processing and conditioning, however, literature varies regarding efficacy of stimulation frequencies and hemispheric targets. DBS targeting the amygdala or subcallosal cingulate white matter tracts improves treatment of refractory PTSD with sustained benefits, while FUS may improve symptoms through targeted modulation of brain structures such as the amygdala, though this technique is in the early stages of exploration. Future research should refine established neuromodulatory approaches and address gaps in emerging modalities to enhance treatment efficacy.
Collapse
Affiliation(s)
- Felicia Manocchio
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jordan Enepekides
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sean Nestor
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Matthew J Burke
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Krista L Lanctôt
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maged Goubran
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Jiang C, Yang Y, Wu L, Liu W, Zhao G. Low-frequency repetitive transcranial magnetic stimulation for the treatment of post-traumatic stress disorder and its comparison with high-frequency stimulation: a systematic review and meta-analysis. Ther Adv Psychopharmacol 2024; 14:20451253241271870. [PMID: 39411406 PMCID: PMC11475085 DOI: 10.1177/20451253241271870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) showed potentially beneficial effects for the treatment of post-traumatic stress disorder (PTSD). Low-frequency (LF) rTMS decreases neuronal excitability and may have better safety compared to high-frequency (HF) rTMS. However, there lacks meta-analysis specifically focusing on LF rTMS. Objectives To specifically explore the efficacy and safety of LF rTMS for treating PTSD. Methods Databases including PubMed, EMBASE, MEDLINE, and Web of Science were systematically searched from inception to October 17, 2023. Both randomized controlled trials (RCTs) and open trials of LF rTMS on PTSD were included, and we additionally included RCTs comparing HF rTMS and sham treatment on PTSD. First, we qualitatively summarized parameters of LF rTMS treatment; then, we extracted data from the LF rTMS treatment subgroups of these studies to examine its effect size and potential influencing factors; third, we compared the effect sizes among LF rTMS, HF rTMS and sham treatment through network meta-analysis of RCTs. Results In all, 15 studies with a sample size of 542 participants were included. The overall effect size for LF rTMS as a treatment for PTSD was found as Hedges' g = 1.02 (95% CI (0.56, 1.47)). Meta-regression analysis did not reveal any influencing factors. Network meta-analysis showed that compared to sham treatment, only HF rTMS on the right dorsolateral prefrontal cortex (DLPFC) demonstrated a significant advantage in ameliorating PTSD symptoms, while LF rTMS on the right DLPFC showed a trend toward advantage, but the difference was not significant. Conclusion The current literature shows LF rTMS has effect in treating PTSD caused by various traumatic events. However, present limited number of RCT studies only showed LF rTMS to have a trend of advantage compared to sham treatment in treating PTSD caused by external traumatic events. In the future, more RCTs are needed to be made to confirm the efficacy of LF rTMS. Additionally, studies are required to elucidate the underlying mechanism in order to further improve its efficacy in different traumatic populations. PROSPERO registration number CRD42023470169.
Collapse
Affiliation(s)
- Che Jiang
- Department of Neurosurgery, General Hospital of Southern Theater Command of PLA Guangzhou City, Guangdong Province, China
| | - Yong Yang
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lili Wu
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, China
| | - Weizhi Liu
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Gang Zhao
- Department of Neurosurgery, General Hospital of Southern Theater Command of PLA Guangzhou City, Guangdong Province 510010, China
- First Clinical School of Medicine, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
3
|
Vicheva P, Osborne C, Krieg SM, Shotbolt P, Ahmadi R. Transcranial magnetic stimulation for obsessive-compulsive disorder and post-traumatic stress disorder: A comprehensive systematic review and analysis of therapeutic benefits, cortical targets, and psychopathophysiological mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2024:111147. [PMID: 39293504 DOI: 10.1016/j.pnpbp.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Transcranial magnetic stimulation (TMS) is a safe non-invasive treatment technique. We systematically reviewed randomised controlled trials (RCTs) applying TMS in obsessive compulsive disorder (OCD) and post-traumatic stress disorder (PTSD) to analyse its therapeutic benefits and explore the relationship between cortical target and psychopathophysiology. We included 47 randomised controlled trials (35 for OCD) and found a 22.7 % symptom improvement for OCD and 29.4 % for PTSD. Eight cortical targets were investigated for OCD and four for PTSD, yielding similar results. Bilateral dlPFC-TMS exhibited the greatest symptom change (32.3 % for OCD, N = 4 studies; 35.7 % for PTSD, N = 1 studies), followed by right dlPFC-TMS (24.4 % for OCD, N = 8; 26.7 % for PTSD, N = 10), and left dlPFC-TMS (22.9 % for OCD, N = 6; 23.1 % for PTSD, N = 1). mPFC-TMS showed promising results, although evidence is limited (N = 2 studies each for OCD and PTSD) and findings for PTSD were conflicting. Despite clinical improvement, reviewed reports lacked a consistent and solid rationale for cortical target selection, revealing a gap in TMS research that complicates the interpretation of findings and hinders TMS development and optimisation. Future research should adopt a hypothesis-driven approach rather than relying solely on correlations from imaging studies, integrating neurobiological processes with affective, behavioural, and cognitive states, thereby doing justice to the complexity of human experience and mental illness.
Collapse
Affiliation(s)
- Petya Vicheva
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Faculty Heidelberg, Department of Neurosurgery, University Heidelberg, Heidelberg, Germany.
| | - Curtis Osborne
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sandro M Krieg
- Medical Faculty Heidelberg, Department of Neurosurgery, University Heidelberg, Heidelberg, Germany
| | - Paul Shotbolt
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Rezvan Ahmadi
- Medical Faculty Heidelberg, Department of Neurosurgery, University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Brown R, Cherian K, Jones K, Wickham R, Gomez R, Sahlem G. Repetitive transcranial magnetic stimulation for post-traumatic stress disorder in adults. Cochrane Database Syst Rev 2024; 8:CD015040. [PMID: 39092744 PMCID: PMC11295260 DOI: 10.1002/14651858.cd015040.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND The estimated lifetime prevalence of post-traumatic stress disorder (PTSD) in adults worldwide has been estimated at 3.9%. PTSD appears to contribute to alterations in neuronal network connectivity patterns. Current pharmacological and psychotherapeutic treatments for PTSD are associated with inadequate symptom improvement and high dropout rates. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive therapy involving induction of electrical currents in cortical brain tissue, may be an important treatment option for PTSD to improve remission rates and for people who cannot tolerate existing treatments. OBJECTIVES To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on post-traumatic stress disorder (PTSD) in adults. SEARCH METHODS We searched the Cochrane Common Mental Disorders Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two clinical trials registers. We checked reference lists of relevant articles. The most recent search was January 2023. SELECTION CRITERIA We included randomized controlled trials (RCTs) assessing the efficacy and safety of rTMS versus sham rTMS for PTSD in adults from any treatment setting, including veterans. Eligible trials employed at least five rTMS treatment sessions with both active and sham conditions. We included trials with combination interventions, where a pharmacological agent or psychotherapy was combined with rTMS for both intervention and control groups. We included studies meeting the above criteria regardless of whether they reported any of our outcomes of interest. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risk of bias in accordance with Cochrane standards. Primary outcomes were PTSD severity immediately after treatment and serious adverse events during active treatment. Secondary outcomes were PTSD remission, PTSD response, PTSD severity at two follow-up time points after treatment, dropouts, and depression and anxiety severity immediately after treatment. MAIN RESULTS We included 13 RCTs in the review (12 published; 1 unpublished dissertation), with 577 participants. Eight studies included stand-alone rTMS treatment, four combined rTMS with an evidence-based psychotherapeutic treatment, and one investigated rTMS as an adjunctive to treatment-as-usual. Five studies were conducted in the USA, and some predominantly included white, male veterans. Active rTMS probably makes little to no difference to PTSD severity immediately following treatment (standardized mean difference (SMD) -0.14, 95% confidence interval (CI) -0.54 to 0.27; 3 studies, 99 participants; moderate-certainty evidence). We downgraded the certainty of evidence by one level for imprecision (sample size insufficient to detect a difference of medium effect size). We deemed one study as having a low risk of bias and the remaining two as having 'some concerns' for risk of bias. A sensitivity analysis of change-from-baseline scores enabled inclusion of a greater number of studies (6 studies, 252 participants). This analysis yielded a similar outcome to our main analysis but also indicated significant heterogeneity in efficacy across studies, including two studies with a high risk of bias. Reported rates of serious adverse events were low, with seven reported (active rTMS: 6; sham rTMS: 1). The evidence is very uncertain about the effect of active rTMS on serious adverse events (odds ratio (OR) 5.26, 95% CI 0.26 to 107.81; 5 studies, 251 participants; very low-certainty evidence [Active rTMS: 23/1000, sham rTMS: 4/1000]). We downgraded the evidence by one level for risk of bias and two levels for imprecision. We rated four of five studies as having a high risk of bias, and the fifth as 'some concerns' for bias. We were unable to assess PTSD remission immediately after treatment as none of the included studies reported this outcome. AUTHORS' CONCLUSIONS Based on moderate-certainty evidence, our review suggests that active rTMS probably makes little to no difference to PTSD severity immediately following treatment compared to sham stimulation. However, significant heterogeneity in efficacy was detected when we included a larger number of studies in sensitivity analysis. We observed considerable variety in participant and protocol characteristics across studies included in this review. For example, studies tended to be weighted towards inclusion of either male veterans or female civilians. Studies varied greatly in terms of the proportion of the sample with comorbid depression. Study protocols differed in treatment design and stimulation parameters (e.g. session number/duration, treatment course length, stimulation intensity/frequency, location of stimulation). These differences may affect efficacy, particularly when considering interactions with participant factors. Reported rates of serious adverse events were very low (< 1%) across active and sham conditions. It is uncertain whether rTMS increases the risk of serious adverse event occurrence, as our certainty of evidence was very low. Studies frequently lacked clear definitions for serious adverse events, as well as detail on tracking/assessment of data and information on the safety population. Increased reporting on these elements would likely aid the advancement of both research and clinical recommendations of rTMS for PTSD. Currently, there is insufficient evidence to meta-analyze PTSD remission, PTSD treatment response, and PTSD severity at different periods post-treatment. Further research into these outcomes could inform the clinical use of rTMS. Additionally, the relatively large contribution of data from trials that focused on white male veterans may limit the generalizability of our conclusions. This could be addressed by prioritizing recruitment of more diverse participant samples.
Collapse
Affiliation(s)
- Randi Brown
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
| | - Kirsten Cherian
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Jones
- Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Robert Wickham
- Department of Psychological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Rowena Gomez
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory Sahlem
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Liu H, Wang X, Gong T, Xu S, Zhang J, Yan L, Zeng Y, Yi M, Qian Y. Neuromodulation treatments for post-traumatic stress disorder: A systematic review and network meta-analysis covering efficacy, acceptability, and follow-up effects. J Anxiety Disord 2024; 106:102912. [PMID: 39094317 DOI: 10.1016/j.janxdis.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Neuromodulation treatments are novel interventions for post-traumatic stress disorder (PTSD), but their comparative effects at treatment endpoint and follow-up and the influence of moderators remain unclear. We included randomized controlled trials (RCTs) that explored neuromodulation, both as monotherapy and in combination, for treating patients with PTSD. 21 RCTs with 981 PTSD patients were included. The neuromodulation treatment was classified into nine protocols, including subtypes of transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), cervical vagal nerve stimulation (VNS), and trigeminal nerve stimulation (TNS). This Bayesian network meta-analysis demonstrated that (1) dual-tDCS (SMD = -1.30), high-frequency repetitive TMS (HF-rTMS) (SMD = -0.97), intermittent theta burst stimulation (iTBS) (SMD = -0.93), and low-frequency repetitive TMS (LF-rTMS) (SMD = -0.76) were associated with significant reductions in PTSD symptoms at the treatment endpoint, but these effects were not significant at follow-up; (2) no difference was found between any active treatment with sham controls; (3) regarding co-morbid additions, synchronized TMS (sTMS) was significantly associated with reductions of depression symptoms at treatment endpoint (SMD = -1.80) and dual-tDCS was associated with reductions in anxiety symptoms at follow-up (SMD = -1.70). Findings suggested dual-tDCS, HF-rTMS, iTBS, and LF-rTMS were effective for reducing PTSD symptoms, while their sustained efficacy was limited.
Collapse
Affiliation(s)
- Haoning Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan North Road, Haidian District, Beijing 100871, PR China
| | - Xinyi Wang
- Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Tingting Gong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China; Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing 100083, PR China
| | - Shi Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China; Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing 100083, PR China
| | - Jiachen Zhang
- Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Li Yan
- Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Yuyi Zeng
- Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China; Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing 100083, PR China
| | - Ying Qian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan North Road, Haidian District, Beijing 100871, PR China.
| |
Collapse
|
6
|
Zhang Y, Peng Z, Tang N, Zhang Y, Liu N, Lv R, Meng Y, Cai M, Wang H. Efficacy of MRI-guided rTMS for post-traumatic stress disorder by modulating amygdala activity: study protocol for a randomised controlled trial. BMJ Open 2024; 14:e081751. [PMID: 38960463 PMCID: PMC11227799 DOI: 10.1136/bmjopen-2023-081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD) is a prevalent and severe psychiatric disorder. Repetitive transcranial magnetic stimulation (rTMS) targeting the dorsolateral prefrontal cortex provides limited relief for symptoms of PTSD. This study will be conducted to validate the efficacy of MRI-guided rTMS in targeting the sites most closely associated with the amygdala for patients with PTSD. We hypothesise that the intervention will improve clinical symptoms by decreasing amygdala activity in patients. METHODS AND ANALYSIS A randomised, double-blind, sham-controlled trial will be conducted. Forty-eight eligible patients with PTSD will be randomly assigned to receive either active or sham MRI-guided rTMS for 10 consecutive days after the initial MRI scans. MRI scans will be recollected at the end of the intervention. Clinical assessments will be performed at baseline, treatment day 5, treatment day 10, and 2 weeks, 4 weeks, 8 weeks after completion of the intervention to monitor changes in clinical symptoms. The primary assessment outcome is the change in PTSD symptoms between baseline and treatment day 10, as measured by the PTSD Checklist for DSM-5. Repeated measures analysis of variance will be performed using statistical software SPSS V.26.0. The significance level will be set at 0.05. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Ethics Committee of Xijing Hospital in Xi'an, China (KY20222176-X-1), and the trial has been registered on ClinicalTrials.gov. The findings of this trial will be disseminated at academic conferences or published in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT05544110.
Collapse
Affiliation(s)
- Yaochi Zhang
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Nailong Tang
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Yuyu Zhang
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Nian Liu
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Runxin Lv
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Yumeng Meng
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| |
Collapse
|
7
|
Tseng PT, Zeng BY, Wang HY, Zeng BS, Liang CS, Chen YCB, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Li DJ, Lin PY, Chen YW, Hsu CW, Hung KC, Shiue YL, Li CT. Efficacy and acceptability of noninvasive brain stimulation for treating posttraumatic stress disorder symptoms: A network meta-analysis of randomized controlled trials. Acta Psychiatr Scand 2024; 150:5-21. [PMID: 38616056 DOI: 10.1111/acps.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Despite its high lifetime prevalence rate and the elevated disability caused by posttraumatic stress disorder (PTSD), treatments exhibit modest efficacy. In consideration of the abnormal connectivity between the dorsolateral prefrontal cortex (DLPFC) and amygdala in PTSD, several randomized controlled trials (RCTs) addressing the efficacy of different noninvasive brain stimulation (NIBS) modalities for PTSD management have been undertaken. However, previous RCTs have reported inconsistent results. The current network meta-analysis (NMA) aimed to compare the efficacy and acceptability of various NIBS protocols in PTSD management. METHODS We systematically searched ClinicalKey, Cochrane Central Register of Controlled Trials, Embase, ProQuest, PubMed, ScienceDirect, Web of Science, and ClinicalTrials.gov to identify relevant RCTs. The targeted RCTs was those comparing the efficacy of NIBS interventions, such as transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and transcutaneous cervical vagal nerve stimulation, in patients with PTSD. The NMA was conducted using a frequentist model. The primary outcomes were changes in the overall severity of PTSD and acceptability (to be specific, rates of dropouts for any reason). RESULTS We identified 14 RCTs that enrolled 686 participants. The NMA demonstrated that among the investigated NIBS types, high-frequency rTMS over bilateral DLPFCs was associated with the greatest reduction in overall PTSD severity. Further, in comparison with the sham controls, excitatory stimulation over the right DLPFC with/without excitatory stimulation over left DLPFC were associated with significant reductions in PTSD-related symptoms, including depression and anxiety symptoms, and overall PTSD severity. CONCLUSIONS This NMA demonstrated that excitatory stimulation over the right DLPFC with or without excitatory stimulation over left DLPFC were associated with significant reductions in PTSD-related symptoms. TRIAL REGISTRATION PROSPERO CRD42023391562.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Yan Zeng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Yu Wang
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Bing-Syuan Zeng
- Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yang-Chieh Brian Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
- Departamento de Ciências Médicas, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Health Data Analytics & Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taiwan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
- Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| |
Collapse
|
8
|
Aarts I, Thorsen AL, Vriend C, Planting C, van den Heuvel OA, Thomaes K. Effects of psychotherapy on brain activation during negative emotional processing in patients with posttraumatic stress disorder: a systematic review and meta-analysis. Brain Imaging Behav 2024; 18:444-455. [PMID: 38049598 DOI: 10.1007/s11682-023-00831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating condition which has been related to problems in emotional regulation, memory and cognitive control. Psychotherapy has a non-response rate of around 50% and understanding the neurobiological working mechanisms might help improve treatment. To integrate findings from multiple smaller studies, we performed the first meta-analysis of changes in brain activation with a specific focus on emotional processing after psychotherapy in PTSD patients. We performed a meta-analysis of brain activation changes after treatment during emotional processing for PTSD with seed-based d mapping using a pre-registered protocol (PROSPERO CRD42020211039). We analyzed twelve studies with 191 PTSD patients after screening 3700 studies. We performed systematic quality assessment both for the therapeutic interventions and neuroimaging methods. Analyses were done in the full sample and in a subset of studies that reported whole-brain results. We found decreased activation after psychotherapy in the left amygdala, (para)hippocampus, medial temporal lobe, inferior frontal gyrus, ventrolateral prefrontal cortex, right pallidum, anterior cingulate cortex, bilateral putamen, and insula. Decreased activation in the left amygdala and left ventrolateral PFC was also found in eight studies that reported whole-brain findings. Results did not survive correction for multiple comparisons. There is tentative support for decreased activation in the fear and cognitive control networks during emotional processing after psychotherapy for PTSD. Future studies would benefit from adopting a larger sample size, using designs that control for confounding variables, and investigating heterogeneity in symptom profiles and treatment response.
Collapse
Affiliation(s)
- Inga Aarts
- Sinai Centrum, Arkin, Amstelveen, The Netherlands.
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands.
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands.
| | - A L Thorsen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Center for Crisis Psychology, University of Bergen, Bergen, Norway
| | - C Vriend
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
| | - C Planting
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, University Library, Amsterdam, The Netherlands
| | - O A van den Heuvel
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
| | - K Thomaes
- Sinai Centrum, Arkin, Amstelveen, The Netherlands
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Guzick AG, Tendler A, Brown LA, Onyeka OC, Storch EA. Linguistic and affective characteristics of script-driven imagery for adults with posttraumatic stress order: Associations with clinical outcomes during deep transcranial magnetic stimulation. J Trauma Stress 2024; 37:291-306. [PMID: 38291162 DOI: 10.1002/jts.23010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 02/01/2024]
Abstract
Brief exposure to traumatic memories using script-driven imagery (SDI) has been proposed as a promising treatment for posttraumatic stress disorder (PTSD). This study investigated the effect of SDI plus active versus sham deep transcranial magnetic stimulation (TMS) in a secondary analysis of a randomized controlled trial for adults with PTSD (N = 134). Linguistic features of scripts and self-reported distress during a 12-session deep TMS treatment protocol were examined as they related to (a) baseline PTSD symptom severity, (b) trauma characteristics, and (c) treatment outcomes. Linguistic Inquiry and Word Count (LIWC) software was used to analyze the following linguistic features of SDIs: negative emotion, authenticity, and cognitive processing. More use of negative emotion words was associated with less severe self-reported and clinician-rated baseline PTSD symptom severity, r = -.18, p = .038. LIWC features did not differ based on index trauma type, range: F(3, 125) = 0.29-0.49, ps = .688-.831. Between-session reductions in self-reported distress across SDI trials predicted PTSD symptom improvement across both conditions at 5-week, B = -15.68, p = .010, and 9-week endpoints, B = -16.38, p = .011. Initial self-reported distress and linguistic features were not associated with treatment outcomes. The findings suggest that individuals with PTSD who experience between-session habituation to SDI-related distress are likely to experience a corresponding improvement in PTSD symptoms.
Collapse
Affiliation(s)
- Andrew G Guzick
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Aron Tendler
- BrainsWay Ltd., Jerusalem, Israel
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Lily A Brown
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ogechi C Onyeka
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Hickson R, Simonsen MW, Miller KJ, Madore MR. Durability of deep transcranial magnetic stimulation for veterans with treatment resistant depression with comorbid suicide risk and PTSD symptoms. Psychiatry Res 2024; 332:115690. [PMID: 38183924 DOI: 10.1016/j.psychres.2023.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Evidence supports transcranial magnetic stimulation (TMS) as an effective treatment for symptoms of depression and PTSD; however, there has been limited investigation into the durability of symptoms reduction. The Hampton Veterans Affairs Medical Center's (HVAMC) rTMS clinic used H-coil for dTMS for Veterans with treatment-resistant depression and tracked symptomology at multiple times points up to six months post-treatment. Veterans underwent 30 session of dTMS treatment using the Hesed coil (H1 coil). The PHQ-9, PCL-5, and BSS were administered to Veterans at four time points: pretreatment, post-treatment, three months after treatment, and six months after treatment. In aggregate, there were clinically significant reductions in symptoms of depression (43.47%), PTSD (44.14%) and suicidal ideation (54.02%) at the six month follow-up relative to pretreatment. Results provide evidence of the impact and durability of dTMS on symptoms of MDD, PTSD, and suicidal ideation among Veterans with treatment-resistant depression.
Collapse
Affiliation(s)
- Robert Hickson
- Department of Psychology, Palo Alto University, Palo Alto, CA, United States; VA Palo Alto Health Care System Sierra Pacific Mental Illness Research Education Clinical Center, Palo Alto, CA, United States
| | - Max W Simonsen
- Hampton VA Medical Center, Hampton, VA, United States; Department of Psychiatry, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kenneth J Miller
- Hampton VA Medical Center, Hampton, VA, United States; Department of Psychiatry, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Michelle R Madore
- VA Palo Alto Health Care System Sierra Pacific Mental Illness Research Education Clinical Center, Palo Alto, CA, United States; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA, United States.
| |
Collapse
|
11
|
Benster LL, Weissman CR, Stolz LA, Daskalakis ZJ, Appelbaum LG. Pre-clinical indications of brain stimulation treatments for non-affective psychiatric disorders, a status update. Transl Psychiatry 2023; 13:390. [PMID: 38097566 PMCID: PMC10721798 DOI: 10.1038/s41398-023-02673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Over the past two decades noninvasive brain stimulation (NIBS) techniques have emerged as powerful therapeutic options for a range of psychiatric and neurological disorders. NIBS are hypothesized to rebalance pathological brain networks thus reducing symptoms and improving functioning. This development has been fueled by controlled studies with increasing size and rigor aiming to characterize how treatments induce clinically effective change. Clinical trials of NIBS for specific indications have resulted in federal approval for unipolar depression, bipolar depression, smoking cessation, and obsessive-compulsive disorder in the United States, and several other indications worldwide. As a rapidly emerging field, there are numerous pre-clinical indications currently in development using a variety of electrical and magnetic, non-convulsive, and convulsive approaches. This review discusses the state-of-the-science surrounding promising avenues of NIBS currently in pre-approval stages for non-affective psychiatric disorders. We consider emerging therapies for psychosis, anxiety disorders, obsessive-compulsive disorder, and borderline personality disorder, utilizing transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and magnetic seizure therapy (MST), with an additional brief section for early-stage techniques including transcranial focused ultrasound stimulation (tFUS) and transcranial alternating current stimulation (tACS). As revealed in this review, there is considerable promise across all four psychiatric indications with different NIBS approaches. Positive findings are notable for the treatment of psychosis using tDCS, MST, and rTMS. While rTMS is already FDA approved for the treatment of obsessive-compulsive disorder, methodologies such as tDCS also demonstrate potential in this condition. Emerging techniques show promise for treating non-affective disorders likely leading to future regulatory approvals.
Collapse
Affiliation(s)
- Lindsay L Benster
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA.
| | - Cory R Weissman
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Louise A Stolz
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Zafiris J Daskalakis
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Lawrence G Appelbaum
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| |
Collapse
|
12
|
Yuan H, Liu B, Li F, Jin Y, Zheng S, Ma Z, Wu Z, Chen C, Zhang L, Gu Y, Gao X, Yang Q. Effects of intermittent theta-burst transcranial magnetic stimulation on post-traumatic stress disorder symptoms: A randomized controlled trial. Psychiatry Res 2023; 329:115533. [PMID: 37826976 DOI: 10.1016/j.psychres.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a prevalent and debilitating illness, which can be alleviated by transcranial magnetic stimulation (TMS). Intermittent theta burst stimulation (iTBS), a newer form of repetitive transcranial magnetic stimulation (rTMS), offers the advantage of shorter treatment sessions compared to the standard 10 Hz rTMS treatment. In order to compare the two forms of TMS, we enrolled 75 participants aged between 18 and 55 years who presented with (PCL-C) scale score of at least 50. Participants were randomly assigned to groups in a ratio of 1:1:1, receiving either 10 Hz rTMS, iTBS, or sham-controlled iTBS. Participants in the two treatment groups underwent 15 therapies which consisted of 1800 pulses and targeted the right dorsolateral prefrontal cortex (DLPFC). The main outcomes included changes in scores on the PCL-C and the Post-Traumatic Growth Inventory (PTGI). After intervention, the PCL-C and PTGI scores in iTBS and rTMS groups were significantly different from those in sham-controlled iTBS group. No significant differences in PCL-C and PTGI were found between the two active treatment groups. ITBS, with a shorter treatment duration, can effectively improve the symptoms of PTSD, with no significant difference in effect from that of rTMS. Future studies need to further elucidate the mechanisms, optimize the parameters and investigate the therapeutic potential and efficacy of iTBS in PTSD.
Collapse
Affiliation(s)
- Huiling Yuan
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China; Department of Psychiatry, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Bin Liu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Fengzhan Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yinchuan Jin
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Shi Zheng
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Zhujing Ma
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Zhongying Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Chen Chen
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Liang Zhang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yanan Gu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Xing Gao
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Qun Yang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Hall PA, Burhan AM, MacKillop JC, Duarte D. Next-generation cognitive assessment: Combining functional brain imaging, system perturbations and novel equipment interfaces. Brain Res Bull 2023; 204:110797. [PMID: 37875208 DOI: 10.1016/j.brainresbull.2023.110797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Conventional cognitive assessment is widely used in clinical and research settings, in educational institutions, and in the corporate world for personnel selection. Such approaches involve having a client, a patient, or a research participant complete a series of standardized cognitive tasks in order to challenge specific and global cognitive abilities, and then quantify performance for the desired end purpose. The latter may include a diagnostic confirmation of a disease, description of a state or ability, or matching cognitive characteristics to a particular occupational role requirement. Metrics derived from cognitive assessments are putatively informative about important features of the brain and its function. For this reason, the research sector also makes use of cognitive assessments, most frequently as a stimulus for cognitive activity from which to extract functional neuroimaging data. Such "task-related activations" form the core of the most widely used neuroimaging technologies, such as fMRI. Much of what we know about the brain has been drawn from the interleaving of cognitive assessments of various types with functional brain imaging technologies. Despite innovation in neuroimaging (i.e., quantifying the neural response), relatively little innovation has occurred on task presentation and volitional response measurement; yet these together comprise the core of cognitive performance. Moreover, even when cognitive assessment is interleaved with functional neuroimaging, this is most often undertaken in the research domain, rather than the primary applications of cognitive assessment in diagnosis and monitoring, education and personnel selection. There are new ways in which brain imaging-and even more importantly, brain modulation-technologies can be combined with automation and artificial intelligence to deliver next-generation cognitive assessment methods. In this review paper, we describe some prototypes for how this can be done and identify important areas for progress (technological and otherwise) to enable it to happen. We will argue that the future of cognitive assessment will include semi- and fully-automated assessments involving neuroimaging, standardized perturbations via neuromodulation technologies, and artificial intelligence. Furthermore, the fact that cognitive assessments take place in a social/interpersonal context-normally between the patient and clinician-makes the human-machine interface consequential, and this will also be discussed.
Collapse
Affiliation(s)
- Peter A Hall
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada; Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Amer M Burhan
- Ontario Shores Centre for Mental Health Sciences, Whitby, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James C MacKillop
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dante Duarte
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Seniors Mental Health Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Tillman GD, Morris EE, Bass C, Turner M, Watson K, Brooks JT, Rawlinson T, Kozel FA, Kraut MA, Motes MA, Hart J. P3a amplitude to trauma-related stimuli reduced after successful trauma-focused PTSD treatment. Biol Psychol 2023; 182:108648. [PMID: 37482132 DOI: 10.1016/j.biopsycho.2023.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
An elevated P3a amplitude to trauma-related stimuli is strongly associated with posttraumatic stress disorder (PTSD), yet little is known about whether this response to trauma-related stimuli is affected by treatment that decreases PTSD symptoms. As an analysis of secondary outcome measures from a randomized controlled trial, we investigated the latency and amplitude changes of the P3a in responses in a three-condition oddball visual task that included trauma-related (combat scenes) and trauma-unrelated (threatening animals) distractors. Fifty-five U.S. veterans diagnosed with combat-related PTSD were randomized to receive either active or sham repetitive transcranial magnetic stimulation (rTMS). All received cognitive processing therapy, CPT+A, which requires a written account of the index trauma. They were tested before and 6 months after protocol completion. P3a amplitude and response time decreases were driven largely by the changes in the responses to the trauma-related stimuli, and this decrease correlated to the decrease in PTSD symptoms. The amplitude changes were greater in those who received rTMS + CPT than in those who received sham rTMS + CPT, suggesting that rTMS plays beneficial role in reducing arousal and threat bias, which may allow for more effective engagement in trauma-focused PTSD treatment.
Collapse
Affiliation(s)
- Gail D Tillman
- Callier Center, University of Texas at Dallas, Dallas, TX, USA.
| | | | - Christina Bass
- Callier Center, University of Texas at Dallas, Dallas, TX, USA
| | - Mary Turner
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kelsey Watson
- Callier Center, University of Texas at Dallas, Dallas, TX, USA
| | - Jared T Brooks
- Callier Center, University of Texas at Dallas, Dallas, TX, USA
| | - Tyler Rawlinson
- Callier Center, University of Texas at Dallas, Dallas, TX, USA
| | - F Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, FL, USA
| | - Michael A Kraut
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Motes
- Callier Center, University of Texas at Dallas, Dallas, TX, USA
| | - John Hart
- Callier Center, University of Texas at Dallas, Dallas, TX, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX, USA; Departments of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Wesley MJ, Lile JA. Combining noninvasive brain stimulation with behavioral pharmacology methods to study mechanisms of substance use disorder. Front Neurosci 2023; 17:1150109. [PMID: 37554294 PMCID: PMC10405288 DOI: 10.3389/fnins.2023.1150109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Psychotropic drugs and transcranial magnetic stimulation (TMS) are effective for treating certain psychiatric conditions. Drugs and TMS have also been used as tools to explore the relationship between brain function and behavior in humans. Combining centrally acting drugs and TMS has proven useful for characterizing the neural basis of movement. This combined intervention approach also holds promise for improving our understanding of the mechanisms underlying disordered behavior associated with psychiatric conditions, including addiction, though challenges exist. For example, altered neocortical function has been implicated in substance use disorder, but the relationship between acute neuromodulation of neocortex with TMS and direct effects on addiction-related behaviors is not well established. We propose that the combination of human behavioral pharmacology methods with TMS can be leveraged to help establish these links. This perspective article describes an ongoing study that combines the administration of delta-9-tetrahydrocannabinol (THC), the main psychoactive compound in cannabis, with neuroimaging-guided TMS in individuals with problematic cannabis use. The study examines the impact of the left dorsolateral prefrontal cortex (DLPFC) stimulation on cognitive outcomes impacted by THC intoxication, including the subjective response to THC and the impairing effects of THC on behavioral performance. A framework for integrating TMS with human behavioral pharmacology methods, along with key details of the study design, are presented. We also discuss challenges, alternatives, and future directions.
Collapse
Affiliation(s)
- Michael J. Wesley
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Joshua A. Lile
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Shenasa MA, Ellerman-Tayag E, Canet P, Martis B, Mishra J, Ramanathan DS. Theta Burst Stimulation Is Not Inferior to High-Frequency Repetitive Transcranial Magnetic Stimulation in Reducing Symptoms of Posttraumatic Stress Disorder in Veterans With Depression: A Retrospective Case Series. Neuromodulation 2023:S1094-7159(23)00135-6. [PMID: 37015842 DOI: 10.1016/j.neurom.2023.02.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES Two commonly used forms of repetitive transcranial magnetic stimulation (rTMS) were recently shown to be equivalent for the treatment of depression: high-frequency stimulation (10 Hz), a protocol that lasts between 19 and 38 minutes, and intermittent theta burst stimulation (iTBS), a protocol that can be delivered in just three minutes. However, it is unclear whether iTBS treatment offers the same benefits as those of standard 10-Hz rTMS for comorbid symptoms such as those seen in posttraumatic stress disorder (PTSD). MATERIALS AND METHODS In this retrospective case series, we analyzed treatment outcomes in veterans from the Veterans Affairs San Diego Healthcare System who received 10-Hz (n = 47) or iTBS (n = 51)-rTMS treatments for treatment-resistant depression between February 2018 and June 2022. We compared outcomes between these two stimulation protocols in symptoms of depression (using changes in the Patient Health Questionnaire-9 [PHQ-9]) and PTSD (using changes in the PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, or Patient Checklist [PCL]-5). RESULTS There was an imbalance of sex between groups (p < 0.05). After controlling for sex, we found no significant difference by stimulation protocol for depression (PHQ-9, F [1,94] = 0.16, p = 0.69, eta-squared = 0.002), confirming the original study previously noted. We also showed no difference by stimulation protocol of changes in PTSD symptoms (PCL-5, F [1,94] = 3.46, p = 0.067, eta-squared = 0.036). The iTBS group showed a decrease from 41.9 ± 4.4 to 25.1 ± 4.9 (a difference of 16.8 points) on the PCL-5 scale whereas the 10-Hz group showed a decrease from 43.6 ± 2.9 to 35.2 ± 3.2 on this scale (a difference of 8.4 points). Follow-up analyses restricting the sample in various ways did not meaningfully change these results (no follow-up analyses showed that there was a significant difference between stimulation protocols). CONCLUSIONS Although limited by small sample size, nonblind, and pseudorandomized assignment, our data suggest that iTBS is similar to 10-Hz stimulation in inducing reductions in PTSD symptoms and depression in military veterans.
Collapse
Affiliation(s)
- Mohammad Ali Shenasa
- Mental Health Care Line, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Em Ellerman-Tayag
- Mental Health Care Line, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Philippe Canet
- Mental Health Care Line, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Brian Martis
- Mental Health Care Line, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jyoti Mishra
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Dhakshin S Ramanathan
- Mental Health Care Line, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Camacho‐Conde JA, del Rosario Gonzalez‐Bermudez M, Carretero‐Rey M, Khan ZU. Therapeutic potential of brain stimulation techniques in the treatment of mental, psychiatric, and cognitive disorders. CNS Neurosci Ther 2022; 29:8-23. [PMID: 36229994 PMCID: PMC9804057 DOI: 10.1111/cns.13971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Treatment for brain diseases has been disappointing because available medications have failed to produce clinical response across all the patients. Many patients either do not respond or show partial and inconsistent effect, and even in patients who respond to the medications have high relapse rates. Brain stimulation has been seen as an alternative and effective remedy. As a result, brain stimulation has become one of the most valuable therapeutic tools for combating against brain diseases. In last decade, studies with the application of brain stimulation techniques not only have grown exponentially but also have expanded to wide range of brain disorders. Brain stimulation involves passing electric currents into the cortical and subcortical area brain cells with the use of noninvasive as well as invasive methods to amend brain functions. Over time, technological advancements have evolved into the development of precise devices; however, at present, most used noninvasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In the current review, we will provide an overview of the potential of noninvasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques focusing on the treatment of mental, psychiatric, and cognitive disorders.
Collapse
Affiliation(s)
- Jose Antonio Camacho‐Conde
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | | | - Marta Carretero‐Rey
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | - Zafar U. Khan
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain,CIBERNEDInstitute of Health Carlos IIIMadridSpain
| |
Collapse
|
19
|
Concerto C, Lanza G, Fisicaro F, Pennisi M, Rodolico A, Torrisi G, Bella R, Aguglia E. Repetitive transcranial magnetic stimulation for post-traumatic stress disorder: Lights and shadows. World J Clin Cases 2022; 10:5929-5933. [PMID: 35979128 PMCID: PMC9258373 DOI: 10.12998/wjcc.v10.i17.5929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/27/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
We have read with interest the publication that describes the available data related to the use of neuromodulation strategies for the treatment of post-traumatic stress disorder (PTSD). Despite treatment advances, however, a substantial proportion of PTSD patients receiving psychological and/or pharmacological treatment do not reach an adequate clinical response. In their paper, the authors draw attention to the current understanding of the use of repetitive transcranial magnetic stimulation (rTMS) as a potential treatment for PTSD. Most of the previous studies indeed applied both inhibitory (1 Hz) and excitatory (> 1 Hz, up to 20 Hz) rTMS to the right and/or left dorsolateral prefrontal cortex. Despite larger therapeutic effects observed when high-frequency stimulation was applied, the question of which side and frequency of stimulation is the most successful is still debated. The authors also reported on the after-effect of rTMS related to neuroplasticity and identified the intermittent theta burst stimulation as a technique of particular interest because of it showed the most effective improvement on PTSD symptoms. However, although numerous studies have highlighted the possible beneficial use of rTMS protocols for PTSD, the exact mechanism of action remains unclear. In their conclusions, the authors stated that rTMS has been demonstrated to be effective for the treatment of PTSD symptoms. Nevertheless, we believe that further research with homogeneous samples, standardized protocols, and objective outcome measures is needed to identify specific therapeutic targets and to better define significant changes when active and sham stimulation procedures are compared.
Collapse
Affiliation(s)
- Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania 95124, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania 95124, Italy
| | - Giulia Torrisi
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania 95124, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, University of Catania, Catania 95123, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania 95124, Italy
| |
Collapse
|
20
|
Petrosino NJ, Cosmo C, Berlow YA, Zandvakili A, van ’t Wout-Frank M, Philip NS. Transcranial magnetic stimulation for post-traumatic stress disorder. Ther Adv Psychopharmacol 2021; 11:20451253211049921. [PMID: 34733479 PMCID: PMC8558793 DOI: 10.1177/20451253211049921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric disorder. While current treatment options are effective for some, many individuals fail to respond to first-line psychotherapies and pharmacotherapy. Transcranial magnetic stimulation (TMS) has emerged over the past several decades as a noninvasive neuromodulatory intervention for psychiatric disorders including depression, with mounting evidence for its safety, tolerability, and efficacy in treating PTSD. While several meta-analyses of TMS for PTSD have been published to date showing large effect sizes on PTSD overall, there is marked variability between studies, making it difficult to draw simple conclusions about how best to treat patients. The following review summarizes over 20 years of the existing literature on TMS as a PTSD treatment, and includes nine randomized controlled trials and many other prospective studies of TMS monotherapy, as well as five randomized controlled trials investigating TMS combined with psychotherapy. While the majority of studies utilize repetitive TMS targeted to the right dorsolateral prefrontal cortex (DLPFC) at low frequency (1 Hz) or high frequency (10 or 20 Hz), others have used alternative frequencies, targeted other regions (most commonly the left DLPFC), or trialed different stimulation protocols utilizing newer TMS modalities such as synchronized TMS and theta-burst TMS (TBS). Although it is encouraging that positive outcomes have been shown, there is a paucity of studies directly comparing available approaches. Biomarkers, such as functional imaging and electroencephalography, were seldomly incorporated yet remain crucial for advancing our knowledge of how to predict and monitor treatment response and for understanding mechanism of action of TMS in this population. Effects on PTSD are often sustained for up to 2-3 months, but more long-term studies are needed in order to understand and predict duration of response. In short, while TMS appears safe and effective for PTSD, important steps are needed to operationalize optimal approaches for patients suffering from this disorder.
Collapse
Affiliation(s)
- Nicholas J. Petrosino
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Camila Cosmo
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Yosef A. Berlow
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Amin Zandvakili
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Mascha van ’t Wout-Frank
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, 830 Chalkstone Avenue, Providence, RI 02908, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|