1
|
Huang T, Hua Q, Zhao X, Tian W, Cao H, Xu W, Sun J, Zhang L, Wang K, Ji GJ. Abnormal functional lateralization and cooperation in bipolar disorder are associated with neurotransmitter and cellular profiles. J Affect Disord 2024; 369:970-977. [PMID: 39447972 DOI: 10.1016/j.jad.2024.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Hemispheric lateralization and cooperation are essential for efficient brain function, and aberrations in both have been found in psychiatric disorders such as schizophrenia. This study investigated alterations in hemispheric lateralization and cooperation among patients with bipolar disorder (BD) and associations with neurotransmitter and cell-type density distributions to identify potential molecular and cellular pathomechanisms. METHODS Sixty-seven BD patients and 127 healthy controls (HCs) were examined by resting-state functional MRI (rs-fMRI). Whole-brain maps of the autonomy index (AI) and connectivity between functionally homotopic voxels (CFH) were constructed to reveal BD-specific changes in brain functional lateralization and interhemispheric cooperation, respectively. Spatial associations of regional AI and CFH abnormalities with neurotransmitter and cell-type density distributions were examined by correlation analyses. RESULTS Bipolar disorder patients exhibited higher AI values in left superior parietal gyrus, cerebellar right Crus I, and cerebellar right Crus II, and these regional abnormalities were associated with the relative densities (proportions) of oligodendrocyte precursor cells and microglia. Patients also exhibited lower CFH values in right inferior parietal gyrus, bilateral middle occipital gyrus, left postcentral gyrus, and bilateral cerebellar crus II, and these regional abnormalities were associated with the densities of serotonin 1A and dopamine D2 receptors, oligodendrocyte precursor cells, astrocytes, and neurons. CONCLUSIONS These findings indicate that abnormal functional lateralization and cooperation in BD with potential molecular and cellular basis.
Collapse
Affiliation(s)
- Tongqing Huang
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Qiang Hua
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Xiya Zhao
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Weichao Tian
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Hai Cao
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Wenqiang Xu
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Li Zhang
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| | - Gong-Jun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
2
|
Shi Z, Li X, Todaro DR, Cao W, Lynch KG, Detre JA, Loughead J, Langleben DD, Wiers CE. Medial prefrontal neuroplasticity during extended-release naltrexone treatment of opioid use disorder - a longitudinal structural magnetic resonance imaging study. Transl Psychiatry 2024; 14:360. [PMID: 39237534 PMCID: PMC11377591 DOI: 10.1038/s41398-024-03061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Opioid use disorder (OUD) has been linked to macroscopic structural alterations in the brain. The monthly injectable, extended-release formulation of μ-opioid antagonist naltrexone (XR-NTX) is highly effective in reducing opioid craving and preventing opioid relapse. Here, we investigated the neuroanatomical effects of XR-NTX by examining changes in cortical thickness during treatment for OUD. Forty-seven OUD patients underwent structural magnetic resonance imaging and subjectively rated their opioid craving ≤1 day before (pre-treatment) and 11 ± 3 days after (on-treatment) the first XR-NTX injection. A sample of fifty-six non-OUD individuals completed a single imaging session and served as the comparison group. A publicly available [¹¹C]carfentanil positron emission tomography dataset was used to assess the relationship between changes in cortical thickness and μ-opioid receptor (MOR) binding potential across brain regions. We found that the thickness of the medial prefrontal and anterior cingulate cortices (mPFC/aCC; regions with high MOR binding potential) was comparable between the non-OUD individuals and the OUD patients at pre-treatment. However, among the OUD patients, mPFC/aCC thickness significantly decreased from pre-treatment to on-treatment. A greater reduction in mPFC/aCC thickness was associated with a greater reduction in opioid craving. Taken together, our study suggests XR-NTX-induced cortical thickness reduction in the mPFC/aCC regions in OUD patients. The reduction in thickness does not appear to indicate a restoration to the non-OUD level but rather reflects XR-NTX's distinct therapeutic impact on an MOR-rich brain structure. Our findings highlight the neuroplastic effects of XR-NTX that may inform the development of novel OUD interventions.
Collapse
Affiliation(s)
- Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin R Todaro
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wen Cao
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin G Lynch
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James Loughead
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel D Langleben
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corinde E Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Saglam Y, Ermis C, Takir S, Oz A, Hamid R, Kose H, Bas A, Karacetin G. The Contribution of Explainable Machine Learning Algorithms Using ROI-based Brain Surface Morphology Parameters in Distinguishing Early-onset Schizophrenia From Bipolar Disorder. Acad Radiol 2024; 31:3597-3604. [PMID: 38704285 DOI: 10.1016/j.acra.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE AND OBJECTIVES To differentiate early-onset schizophrenia (EOS) from early-onset bipolar disorder (EBD) using surface-based morphometry measurements and brain volumes using machine learning (ML) algorithms. METHOD High-resolution T1-weighted images were obtained to measure cortical thickness (CT), gyrification, gyrification index (GI), sulcal depth (SD), fractal dimension (FD), and brain volumes. After the feature selection step, ML classifiers were applied for each feature set and the combination of them. The SHapley Additive exPlanations (SHAP) technique was implemented to interpret the contribution of each feature. FINDINGS 144 adolescents (16.2 ± 1.4 years, female=39%) with EOS (n = 81) and EBD (n = 63) were included. The Adaptive Boosting (AdaBoost) algorithm had the highest accuracy (82.75%) in the whole dataset that includes all variables from Destrieux atlas. The best-performing algorithms were K-nearest neighbors (KNN) for FD subset, support vector machine (SVM) for SD subset, and AdaBoost for GI subset. The KNN algorithm had the highest accuracy (accuracy=79.31%) in the whole dataset from the Desikan-Killiany-Tourville atlas. CONCLUSION This study demonstrates the use of ML in the differential diagnosis of EOS and EBD using surface-based morphometry measurements. Future studies could focus on multicenter data for the validation of these results.
Collapse
Affiliation(s)
- Yesim Saglam
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Prof Dr Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey.
| | - Cagatay Ermis
- Queen Silvia Children's Hospital, Department of Child Psychiatry, Gothenburg, Sweden
| | - Seyma Takir
- Department of Artificial Intelligence and Data Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Oz
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rauf Hamid
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hatice Kose
- Department of Artificial Intelligence and Data Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Bas
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gul Karacetin
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Prof Dr Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
4
|
Nascimento C, Villela Nunes P, Paraizo Leite RE, Grinberg LT, Suemoto CK, Lafer B. The relationship of neuropsychiatric symptoms with inflammatory markers in the hippocampus and cingulate cortex of bipolar disorder subjects: A post-mortem study. J Psychiatr Res 2024; 173:25-33. [PMID: 38479345 PMCID: PMC11037553 DOI: 10.1016/j.jpsychires.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
Increased levels of inflammation markers have been found in the peripheral tissue of individuals with bipolar disorder (BD), especially during mood episodes. Previous studies found distinctive inflammatory profiles across different brain regions, but potential associations with clinical symptoms are still lacking. This study aims to evaluate the association of neuropsychiatric symptoms with inflammatory markers in the hippocampus and cingulate of individuals with BD. Levels of IL-1β, IL-6, IL-17A, cortisol, and C-reactive protein (CRP) were measured in the hippocampus and anterior cingulate of 14 BD individuals and their non-psychiatric controls. Neuropsychiatric symptoms present in the three months before death were assessed using the Neuropsychiatric Inventory (NPI). In the BD group, greater NPI scores were associated with higher IL-6 in the hippocampus (p = 0.011) and cingulate (p = 0.038) and higher IL-1β (p = 0.039) in the hippocampus. After adjusting for age, sex and CDR, IL-1β and IL-6 were still associated with higher NPI in the hippocampus. In correlation analysis considering both BD and their controls, moderate positive associations were found between NPI and IL-6 and cortisol in the hippocampus (p < 0.001 and p = 0.006) and cingulate (p = 0.024 and p = 0.016), IL-1β (p < 0.001) and IL-17A in the hippocampus (p = 0.002). No difference in inflammatory markers was found according to type of psychotropic medication used. Hence, in individuals with BD, neuropsychiatric symptoms were differently associated with specific inflammatory cytokines and CRP in the hippocampus and cingulate. These results suggest that the neuroinflammatory changes occurring in BD may be more complex than previously expected and could be associated with clinical manifestations.
Collapse
Affiliation(s)
- Camila Nascimento
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil; Federal University of Sao Paulo - School of Medicine, Department of Biochemistry, Discipline of Molecular Biology, Sao Paulo, SP, Brazil.
| | - Paula Villela Nunes
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil; Memory and Aging Center University of California, Department of Neurology, San Francisco, USA
| | - Renata Elaine Paraizo Leite
- Biobank for Aging Studies, LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, SP, Brazil
| | - Lea Tenenholz Grinberg
- Biobank for Aging Studies, LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, SP, Brazil; Memory and Aging Center University of California, Department of Neurology, San Francisco, USA
| | - Claudia Kimie Suemoto
- Biobank for Aging Studies, LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, SP, Brazil
| | - Beny Lafer
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Rozovsky R, Bertocci M, Iyengar S, Stiffler RS, Bebko G, Skeba AS, Brady T, Aslam H, Phillips ML. Identifying tripartite relationship among cortical thickness, neuroticism, and mood and anxiety disorders. Sci Rep 2024; 14:8449. [PMID: 38600283 PMCID: PMC11006921 DOI: 10.1038/s41598-024-59108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The number of young adults seeking help for emotional distress, subsyndromal-syndromal mood/anxiety symptoms, including those associated with neuroticism, is rising and can be an early manifestation of mood/anxiety disorders. Identification of gray matter (GM) thickness alterations and their relationship with neuroticism and mood/anxiety symptoms can aid in earlier diagnosis and prevention of risk for future mood and anxiety disorders. In a transdiagnostic sample of young adults (n = 252;177 females; age 21.7 ± 2), Hypothesis (H) 1:regularized regression followed by multiple regression examined relationships among GM cortical thickness and clinician-rated depression, anxiety, and mania/hypomania; H2:the neuroticism factor and its subfactors as measured by NEO Personality Inventory (NEO-PI-R) were tested as mediators. Analyses revealed positive relationships between left parsopercularis thickness and depression (B = 4.87, p = 0.002), anxiety (B = 4.68, p = 0.002), mania/hypomania (B = 6.08, p ≤ 0.001); negative relationships between left inferior temporal gyrus (ITG) thickness and depression (B = - 5.64, p ≤ 0.001), anxiety (B = - 6.77, p ≤ 0.001), mania/hypomania (B = - 6.47, p ≤ 0.001); and positive relationships between left isthmus cingulate thickness (B = 2.84, p = 0.011), and anxiety. NEO anger/hostility mediated the relationship between left ITG thickness and mania/hypomania; NEO vulnerability mediated the relationship between left ITG thickness and depression. Examining the interrelationships among cortical thickness, neuroticism and mood and anxiety symptoms enriches the potential for identifying markers conferring risk for mood and anxiety disorders and can provide targets for personalized intervention strategies for these disorders.
Collapse
Affiliation(s)
- Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA.
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Alexander S Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Tyler Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| |
Collapse
|
6
|
Kumar M, Goyal P, Sagar R, Kumaran SS. Gray matter biomarkers for major depressive disorder and manic disorder using logistic regression. J Psychiatr Res 2024; 171:177-184. [PMID: 38295451 DOI: 10.1016/j.jpsychires.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
The study investigates morphometric changes using surface-based measures and logistic regression in Major depressive-disorder (MDD) and Manic-disorder patients as compared to controls. MDD (n = 21) and manic (n = 20) subjects were recruited from psychiatric clinics, along with 19 healthy-controls from local population, after structured and semi-structured clinical interview (DSM-IV, brief Psychotic-Rating Scale (BPRS), Young Mania Rating Scale (YMRS), Hamilton depression rating scale (HDRS), cognitive function by postgraduate Institute Battery of Brain Dysfunction (PGIBBD)). Using 3D T1-weighted images, gray matter (GM) cortical thickness and GM-based morphometric signatures (using logistic regression) were compared among MDD, manic disorder and controls using analysis of covariance (ANCOVA). No significant difference was found between the MDD and manic disorder patients. When compared to controls, cortical thinning was observed in bilateral rostral middle frontal gyrus and parsopercularis, right lateral occipital cortex, right lingual gyrus in MDD; and bilateral rostral middle frontal and superior frontal gyrus, right middle temporal gyrus, left supramarginal and left precentral gyrus in Manic disorders. Logistic regression analysis exhibited GM cortical thinning in the bilateral parsopercularis, right lateral occipital cortex and lingual gyrus in MDD; and bilateral rostral middle, superior frontal gyri, right middle temporal gyrus in Manic with a sensitivity and specificity of 85.7 % and 94.7 % and 90.0 % and 94.7 %, respectively in comparison with controls. Both groups exhibited GM loss in bilateral rostral middle frontal gyrus brain regions compared to controls. Multivariate analysis revealed common changes in GM in MDD and manic disorders associated with mood temperament, but differences when compared to controls.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India.
| | - Prashant Goyal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India.
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India.
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Toffanin T, Cattarinussi G, Ghiotto N, Lussignoli M, Pavan C, Pieri L, Schiff S, Finatti F, Romagnolo F, Folesani F, Nanni MG, Caruso R, Zerbinati L, Belvederi Murri M, Ferrara M, Pigato G, Grassi L, Sambataro F. Effects of electroconvulsive therapy on cortical thickness in depression: a systematic review. Acta Neuropsychiatr 2024:1-15. [PMID: 38343196 DOI: 10.1017/neu.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is one of the most studied and validated available treatments for severe or treatment-resistant depression. However, little is known about the neural mechanisms underlying ECT. This systematic review aims to critically review all structural magnetic resonance imaging studies investigating longitudinal cortical thickness (CT) changes after ECT in patients with unipolar or bipolar depression. METHODS We performed a search on PubMed, Medline, and Embase to identify all available studies published before April 20, 2023. A total of 10 studies were included. RESULTS The investigations showed widespread increases in CT after ECT in depressed patients, involving mainly the temporal, insular, and frontal regions. In five studies, CT increases in a non-overlapping set of brain areas correlated with the clinical efficacy of ECT. The small sample size, heterogeneity in terms of populations, comorbidities, and ECT protocols, and the lack of a control group in some investigations limit the generalisability of the results. CONCLUSIONS Our findings support the idea that ECT can increase CT in patients with unipolar and bipolar depression. It remains unclear whether these changes are related to the clinical response. Future larger studies with longer follow-up are warranted to thoroughly address the potential role of CT as a biomarker of clinical response after ECT.
Collapse
Affiliation(s)
- Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Niccolò Ghiotto
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | | | - Chiara Pavan
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Luca Pieri
- Department of Medicine, University of Padova, Padua, Italy
| | - Sami Schiff
- Department of Medicine, University of Padova, Padua, Italy
| | - Francesco Finatti
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Francesca Romagnolo
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Federica Folesani
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Giulia Nanni
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Rosangela Caruso
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Luigi Zerbinati
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Martino Belvederi Murri
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Ferrara
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giorgio Pigato
- Department of Psychiatry, Padova University Hospital, Padua, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
8
|
Shen L, Zhang J, Fan S, Ping L, Yu H, Xu F, Cheng Y, Xu X, Yang C, Zhou C. Cortical thickness abnormalities in autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:65-77. [PMID: 36542200 DOI: 10.1007/s00787-022-02133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The pathological mechanism of autism spectrum disorder (ASD) remains unclear. Nowadays, surface-based morphometry (SBM) based on structural magnetic resonance imaging (sMRI) techniques have reported cortical thickness (CT) variations in ASD. However, the findings were inconsistent and heterogeneous. This current meta-analysis conducted a whole-brain vertex-wise coordinate-based meta-analysis (CBMA) on CT studies to explore the most noticeable and robust CT changes in ASD individuals by applying the seed-based d mapping (SDM) program. A total of 26 investigations comprised 27 datasets were included, containing 1,635 subjects with ASD and 1470 HC, along with 94 coordinates. Individuals with ASD exhibited significantly altered CT in several regions compared to HC, including four clusters with thicker CT in the right superior temporal gyrus (STG.R), the left middle temporal gyrus (MTG.L), the left anterior cingulate/paracingulate gyri, the right superior frontal gyrus (SFG.R, medial orbital parts), as well as three clusters with cortical thinning including the left parahippocampal gyrus (PHG.L), the right precentral gyrus (PCG.R) and the left middle frontal gyrus (MFG.L). Adults with ASD only demonstrated CT thinning in the right parahippocampal gyrus (PHG.R), revealed by subgroup meta-analyses. Meta-regression analyses found that CT in STG.R was positively correlated with age. Meanwhile, CT in MFG.L and PHG.L had negative correlations with the age of ASD individuals. These results suggested a complicated and atypical cortical development trajectory in ASD, and would provide a deeper understanding of the neural mechanism underlying the cortical morphology in ASD.
Collapse
Affiliation(s)
- Liancheng Shen
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Junqing Zhang
- Department of Pharmacy, Shandong Daizhuang Hospital, Jining, China
| | - Shiran Fan
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Fangfang Xu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Yang
- School of Rehabilitation Medicine, Jining Medical University, Jining, China.
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
9
|
Jiang X, Zai CC, Kennedy KG, Zou Y, Nikolova YS, Felsky D, Young LT, MacIntosh BJ, Goldstein BI. Association of polygenic risk for bipolar disorder with grey matter structure and white matter integrity in youth. Transl Psychiatry 2023; 13:322. [PMID: 37852985 PMCID: PMC10584947 DOI: 10.1038/s41398-023-02607-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
There is a gap in knowledge regarding the polygenic underpinnings of brain anomalies observed in youth bipolar disorder (BD). This study examined the association of a polygenic risk score for BD (BD-PRS) with grey matter structure and white matter integrity in youth with and without BD. 113 participants were included in the analyses, including 78 participants with both T1-weighted and diffusion-weighted MRI images, 32 participants with T1-weighted images only, and 3 participants with diffusion-weighted images only. BD-PRS was calculated using PRS-CS-auto and was based on independent adult genome-wide summary statistics. Vertex- and voxel-wise analyses examined the associations of BD-PRS with grey matter metrics (cortical volume [CV], cortical surface area [CSA], cortical thickness [CTh]) and fractional anisotropy [FA] in the combined sample, and separately in BD and HC. In the combined sample of participants with T1-weighted images (n = 110, 66 BD, 44 HC), higher BD-PRS was associated with smaller grey matter metrics in frontal and temporal regions. In within-group analyses, higher BD-PRS was associated with lower CTh of frontal, temporal, and fusiform gyrus in BD, and with lower CV and CSA of superior frontal gyrus in HC. In the combined sample of participants with diffusion-weighted images (n = 81, 49 BD, 32 HC), higher BD-PRS was associated with lower FA in widespread white matter regions. In summary, BD-PRS calculated based on adult genetic data was negatively associated with grey matter structure and FA in youth in regions implicated in BD, which may suggest neuroimaging markers of vulnerability to BD. Future longitudinal studies are needed to examine whether BD-PRS predicts neurodevelopmental changes in BD vs. HC and its interaction with course of illness and long-term medication use.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yuliya S Nikolova
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Palau P, Solanes A, Madre M, Saez-Francas N, Sarró S, Moro N, Verdolini N, Sanchez M, Alonso-Lana S, Amann BL, Romaguera A, Martin-Subero M, Fortea L, Fuentes-Claramonte P, García-León MA, Munuera J, Canales-Rodríguez EJ, Fernández-Corcuera P, Brambilla P, Vieta E, Pomarol-Clotet E, Radua J. Improved estimation of the risk of manic relapse by combining clinical and brain scan data. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023; 16:235-243. [PMID: 37839962 DOI: 10.1016/j.rpsm.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Estimating the risk of manic relapse could help the psychiatrist individually adjust the treatment to the risk. Some authors have attempted to estimate this risk from baseline clinical data. Still, no studies have assessed whether the estimation could improve by adding structural magnetic resonance imaging (MRI) data. We aimed to evaluate it. MATERIAL AND METHODS We followed a cohort of 78 patients with a manic episode without mixed symptoms (bipolar type I or schizoaffective disorder) at 2-4-6-9-12-15-18 months and up to 10 years. Within a cross-validation scheme, we created and evaluated a Cox lasso model to estimate the risk of manic relapse using both clinical and MRI data. RESULTS The model successfully estimated the risk of manic relapse (Cox regression of the time to relapse as a function of the estimated risk: hazard ratio (HR)=2.35, p=0.027; area under the curve (AUC)=0.65, expected calibration error (ECE)<0.2). The most relevant variables included in the model were the diagnosis of schizoaffective disorder, poor impulse control, unusual thought content, and cerebellum volume decrease. The estimations were poorer when we used clinical or MRI data separately. CONCLUSION Combining clinical and MRI data may improve the risk of manic relapse estimation after a manic episode. We provide a website that estimates the risk according to the model to facilitate replication by independent groups before translation to clinical settings.
Collapse
Affiliation(s)
- Pol Palau
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Benito Menni CASM - Hospital General de Granollers, Germanes Hospitalàries, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Aleix Solanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Merce Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Barcelona, Spain
| | - Naia Saez-Francas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Sant Rafael, Germanes Hospitalàries. Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Moro
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Benito Menni CASM - Hospital General de Granollers, Germanes Hospitalàries, Barcelona, Spain
| | - Norma Verdolini
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Barcelona Bipolar Disorders and Depressive Unit, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
| | - Manel Sanchez
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Barcelona, Spain; Department of Geriatric Psychiatry, Sagrat Cor Hospital, Martorell, Barcelona, Spain; Sociedad Española de Psicogeriatría (SEPG), Barcelona, Spain
| | - Sílvia Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
| | - Benedikt L Amann
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Centre Fòrum Research Unit, Institute of Neuropsychiatry and Addiction, Parc de Salut Mar, Barcelona, Spain; Mental Health Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Anna Romaguera
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Mare de Déu de la Mercè, Germanes Hospitalàries, Barcelona, Spain
| | - Marta Martin-Subero
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Centre Fòrum Research Unit, Institute of Neuropsychiatry and Addiction, Parc de Salut Mar, Barcelona, Spain; Mental Health Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria A García-León
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Munuera
- Imatge Diagnòstica i Terapèutica, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; Servei de Diagnòstic per la Imatge, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Esplugues de Llobregat, Spain
| | - Erick Jorge Canales-Rodríguez
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IEL-LTS5, Station 11, CH-1015 Lausanne, Switzerland
| | - Paloma Fernández-Corcuera
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Psychiatry Department, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eduard Vieta
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Barcelona Bipolar Disorders and Depressive Unit, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Joaquim Radua
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Zhang S, She S, Qiu Y, Li Z, Wu X, Hu H, Zheng W, Huang R, Wu H. Multi-modal MRI measures reveal sensory abnormalities in major depressive disorder patients: A surface-based study. Neuroimage Clin 2023; 39:103468. [PMID: 37473494 PMCID: PMC10372163 DOI: 10.1016/j.nicl.2023.103468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Multi-modal magnetic resonance imaging (MRI) measures are supposed to be able to capture different brain neurobiological aspects of major depressive disorder (MDD). A fusion analysis of structural and functional modalities may better reveal the disease biomarker specific to the MDD disease. METHODS We recruited 30 MDD patients and 30 matched healthy controls (HC). For each subject, we acquired high-resolution brain structural images and resting-state fMRI (rs-fMRI) data using a 3 T MRI scanner. We first extracted the brain morphometric measures, including the cortical volume (CV), cortical thickness (CT), and surface area (SA), for each subject from the structural images, and then detected the structural clusters showing significant between-group differences in each measure using the surface-based morphology (SBM) analysis. By taking the identified structural clusters as seeds, we performed seed-based functional connectivity (FC) analyses to determine the regions with abnormal FC in the patients. Based on a logistic regression model, we performed a classification analysis by selecting these structural and functional cluster-wise measures as features to distinguish the MDD patients from the HC. RESULTS The MDD patients showed significantly lower CV in a cluster involving the right superior temporal gyrus (STG) and middle temporal gyrus (MTG), and lower SA in three clusters involving the bilateral STG, temporal pole gyrus, and entorhinal cortex, and the left inferior temporal gyrus, and fusiform gyrus, than the controls. No significant difference in CT was detected between the two groups. By taking the above-detected clusters as seeds to perform the seed-based FC analysis, we found that the MDD patients showed significantly lower FC between STG/MTG (CV's cluster) and two clusters located in the bilateral visual cortices than the controls. The logistic regression model based on the structural and functional features reached a classification accuracy of 86.7% (p < 0.001) between MDD and controls. CONCLUSION The present study showed sensory abnormalities in MDD patients using the multi-modal MRI analysis. This finding may act as a disease biomarker distinguishing MDD patients from healthy individuals.
Collapse
Affiliation(s)
- Shufei Zhang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Yidan Qiu
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Zezhi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Xiaoyan Wu
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Huiqing Hu
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Ruiwang Huang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
12
|
Slapø NB, Jørgensen KN, Elvsåshagen T, Nerland S, Roelfs D, Valstad M, Timpe CMF, Richard G, Beck D, Sæther LS, Frogner Werner MC, Lagerberg TV, Andreassen OA, Melle I, Agartz I, Westlye LT, Moberget T, Jönsson EG. Relationship between function and structure in the visual cortex in healthy individuals and in patients with severe mental disorders. Psychiatry Res Neuroimaging 2023; 332:111633. [PMID: 37028226 DOI: 10.1016/j.pscychresns.2023.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Patients with schizophrenia spectrum disorders (SCZspect) and bipolar disorders (BD) show impaired function in the primary visual cortex (V1), indicated by altered visual evoked potential (VEP). While the neural substrate for altered VEP in these patients remains elusive, altered V1 structure may play a role. One previous study found a positive relationship between the amplitude of the P100 component of the VEP and V1 surface area, but not V1 thickness, in a small sample of healthy individuals. Here, we aimed to replicate these findings in a larger healthy control (HC) sample (n = 307) and to examine the same relationship in patients with SCZspect (n = 30) or BD (n = 45). We also compared the mean P100 amplitude, V1 surface area and V1 thickness between controls and patients and found no significant group differences. In HC only, we found a significant positive P100-V1 surface area association, while there were no significant P100-V1 thickness relationships in HC, SCZspect or BD. Together, our results confirm previous findings of a positive P100-V1 surface area association in HC, whereas larger patient samples are needed to further clarify the function-structure relationship in V1 in SCZspect and BD.
Collapse
Affiliation(s)
- Nora Berz Slapø
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | - Stener Nerland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Daniel Roelfs
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Norway
| | - Clara M F Timpe
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | | | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
13
|
Argyropoulos GD, Christidi F, Karavasilis E, Bede P, Antoniou A, Velonakis G, Seimenis I, Kelekis N, Smyrnis N, Papakonstantinou O, Efstathopoulos E, Ferentinos P. Predominant polarity as a neurobiological specifier in bipolar disorder: Evidence from a multimodal neuroimaging study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110718. [PMID: 36634808 DOI: 10.1016/j.pnpbp.2023.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND While predominant (PP) and onset polarity (OP) have considerable clinical and treatment implications in bipolar disorder (BD), the neurobiological underpinnings of PP and OP from a radiological perspective remain largely unknown. The main objective of this study is to investigate the neuroanatomical profile of polarity subphenotypes (PP and OP) in euthymic BD patients, using a standardized multimodal neuroimaging protocol to evaluate regional gray matter (GM) volumes, cortical thickness, as well as white matter (WM) integrity of major projection, commissural and association tracts. METHODS Forty-two euthymic BD patients stratified for PP and OP and 42 healthy controls (HC) were included in this computational neuroimaging study to comprehensively characterize gray and white matter alterations. Univariate analyses of covariance (ANCOVAs) were conducted with Bonferroni corrections for each MRI modality and Cohen's d effect sizes were calculated for group comparisons. RESULTS Phenotype-associated cortical thickness abnormalities and volumetric alterations were identified, but no WM changes ascertained. Specifically, we found a main effect of OP on GM volume of left middle frontal gyrus and of OP and PP (either or both) on cortical thickness of various regions previously implicated in BD, i.e. inferior frontal gyrus-pars opercularis (left) and pars orbitalis (bilateral), left lateral orbitofrontal gyrus, bilateral medial segment of the superior frontal gyrus, left planum polare, right anterior cingulate gyrus, left anterior and posterior insula, bilateral frontal operculum (both OP and PP); left anterior and posterior orbitofrontal gyrus, left transverse temporal gyrus, right posterior insula (only OP); and right medial frontal cortex (only PP). Based on the magnitude of differences on pairwise comparisons, we found a large effect of OP on cortical thickness in a single region (left anterior orbitofrontal gyrus) (OP-M > OP-D), while PP subgroups showed large or medium effect size differences in cortical thickness (PP-M > PP-D) in a wider array of regions (right medial frontal cortex, left frontal operculum, left inferior frontal gyrus-pars opercularis, bilateral medial segment of the superior frontal gyrus). For most regions, PP-D patients showed the greatest decreases in cortical thickness compared to HC while PP-M showed the smallest, with PP-U showing an "unspecified" pattern mostly lying in-between PP-D and PP-M. CONCLUSIONS Our multimodal imaging findings suggest specific polarity BD subgroups with compromised cortical thickness; we recorded a greater impact of PP on brain structure compared to OP, which provides additional evidence that PP can be considered as a neurobiological specifier in BD.
Collapse
Affiliation(s)
- Georgios D Argyropoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- 2nd Department of Psychiatry, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Peter Bede
- Department of Neurology, St James's Hospital, Dublin, Ireland; Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Seimenis
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Olympia Papakonstantinou
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Yang W, Jin S, Duan W, Yu H, Ping L, Shen Z, Cheng Y, Xu X, Zhou C. The effects of childhood maltreatment on cortical thickness and gray matter volume: a coordinate-based meta-analysis. Psychol Med 2023; 53:1681-1699. [PMID: 36946124 DOI: 10.1017/s0033291723000661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Childhood maltreatment has been suggested to have an adverse impact on neurodevelopment, including microstructural brain abnormalities. Existing neuroimaging findings remain inconsistent and heterogeneous. We aim to explore the most prominent and robust cortical thickness (CTh) and gray matter volume (GMV) alterations associated with childhood maltreatment. A systematic search on relevant studies was conducted through September 2022. The whole-brain coordinate-based meta-analysis (CBMA) on CTh and GMV studies were conducted using the seed-based d mapping (SDM) software. Meta-regression analysis was subsequently applied to investigate potential associations between clinical variables and structural changes. A total of 45 studies were eligible for inclusion, including 11 datasets on CTh and 39 datasets on GMV, consisting of 2550 participants exposed to childhood maltreatment and 3739 unexposed comparison subjects. Individuals with childhood maltreatment exhibited overlapped deficits in the median cingulate/paracingulate gyri simultaneously revealed by both CTh and GM studies. Regional cortical thinning in the right anterior cingulate/paracingulate gyri and the left middle frontal gyrus, as well as GMV reductions in the left supplementary motor area (SMA) was also identified. No greater regions were found for either CTh or GMV. In addition, several neural morphology changes were associated with the average age of the maltreated individuals. The median cingulate/paracingulate gyri morphology might serve as the most robust neuroimaging feature of childhood maltreatment. The effects of early-life trauma on the human brain predominantly involved in cognitive functions, socio-affective functioning and stress regulation. This current meta-analysis enhanced the understanding of neuropathological changes induced by childhood maltreatment.
Collapse
Affiliation(s)
- Wei Yang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Shushu Jin
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Weiwei Duan
- School of Mental Health, Jining Medical University, Jining, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cong Zhou
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
- School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|