1
|
Delavari S, Rasouli SE, Fekrvand S, Chavoshzade Z, Mahdaviani SA, Shirmast P, Sharafian S, Sherkat R, Momen T, Aleyasin S, Ahanchian H, Sadeghi-Shabestari M, Esmaeilzadeh H, Barzamini S, Tarighatmonfared F, Salehi H, Esmaeili M, Marzani Z, Fathi N, Abolnezhadian F, Rad MK, Saeedi-Boroujeni A, Shirkani A, Bagheri Z, Salami F, Shad TM, Marzbali MY, Mojtahedi H, Razavi A, Tavakolinia N, Cheraghi T, Tavakol M, Shafiei A, Behniafard N, Ebrahimi SS, Sepahi N, Ghaneimoghadam A, Rezaei A, Kalantari A, Abolhassani H, Rezaei N. Clinical heterogeneity in families with multiple cases of inborn errors of immunity. Clin Immunol 2024; 259:109896. [PMID: 38184287 DOI: 10.1016/j.clim.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEI) are a diverse range of genetic immune system illnesses affecting the innate and/or adaptive immune systems. Variable expressivity and incomplete penetrance have been reported in IEI patients with similar clinical diagnoses or even the same genetic mutation. METHODS Among all recorded patients in the national IEI registry, 193 families with multiple cases have been recognized. Clinical, laboratory and genetic variability were compared between 451 patients with different IEI entities. RESULTS The diagnosis of the first children led to the earlier diagnosis, lower diagnostic delay, timely treatment and improved survival in the second children in the majority of IEI. The highest discordance in familial lymphoproliferation, autoimmunity and malignancy were respectively observed in STK4 deficiency, DNMT3B deficiency and ATM deficiency. Regarding immunological heterogeneity within a unique family with multiple cases of IEI, the highest discordance in CD3+, CD4+, CD19+, IgM and IgA levels was observed in syndromic combined immunodeficiencies (CID), while non-syndromic CID particularly severe combined immunodeficiency (SCID) manifested the highest discordance in IgG levels. Identification of the first ATM-deficient patient can lead to improved care and better survival in the next IEI children from the same family. CONCLUSION Intrafamilial heterogeneity in immunological and/or clinical features could be observed in families with multiple cases of IEI indicating the indisputable role of appropriate treatment and preventive environmental factors besides specific gene mutations in the variable observed penetrance or expressivity of the disease. This also emphasizes the importance of implementing genetic evaluation in all members of a family with a history of IEI even if there is no suspicion of an underlying IEI as other factors besides the underlying genetic defects might cause a milder phenotype or delay in presentation of clinical features. Thus, affected patients could be timely diagnosed and treated, and their quality of life and survival would improve.
Collapse
Affiliation(s)
- Samaneh Delavari
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Erfan Rasouli
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saba Fekrvand
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Chavoshzade
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Shirmast
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Samin Sharafian
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tooba Momen
- Department of Asthma, Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute of Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Sahar Barzamini
- Department of Rheumatology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Tarighatmonfared
- Pediatric Respiratory and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Marzani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Fathi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Mina Kianmanesh Rad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Sciences, School of Medicine, Bushehr, Iran
| | - Zahra Bagheri
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Salami
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Yousefpour Marzbali
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Taher Cheraghi
- Department of Pediatrics, Guilan University of Medical Sciences, 17 Shahrivar Children's Hospital, Rasht, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sare Sadat Ebrahimi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Arezou Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Nima Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Staudacher O, Klein J, Thee S, Ullrich J, Wahn V, Unterwalder N, Kölsch U, Lankes E, Stittrich A, Dedieu C, Dinges S, Völler M, Schuetz C, Schulte J, Boztug K, Meisel C, Kuehl JS, Krüger R, Blankenstein O, von Bernuth H. Screening Newborns for Low T Cell Receptor Excision Circles (TRECs) Fails to Detect Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2872-2883. [PMID: 37302792 DOI: 10.1016/j.jaip.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Assessment of T-cell receptor excision circles (TRECs) in dried blood spots of newborns allows the detection of severe combined immunodeficiency (SCID) (T cells <300/μL at birth) with a presumed sensitivity of 100%. TREC screening also identifies patients with selected combined immunodeficiency (CID) (T cells >300/μL, yet <1500/μL at birth). Nevertheless, relevant CIDs that would benefit from early recognition and curative treatment pass undetected. OBJECTIVE We hypothesized that TREC screening at birth cannot identify CIDs that develop with age. METHODS We analyzed the number of TRECs in dried blood spots in archived Guthrie cards of 22 children who had been born in the Berlin-Brandenburg area between January 2006 and November 2018 and who had undergone hematopoietic stem-cell transplantation (HSCT) for inborn errors of immunity. RESULTS All patients with SCID would have been identified by TREC screening, but only 4 of 6 with CID. One of these patients had immunodeficiency, centromeric instability, and facial anomalies syndrome type 2 (ICF2). Two of 3 patients with ICF whom we have been following up at our institution had TREC numbers above the cutoff value suggestive of SCID at birth. Yet all patients with ICF had a severe clinical course that would have justified earlier HSCT. CONCLUSIONS In ICF, naïve T cells may be present at birth, yet they decline with age. Therefore, TREC screening cannot identify these patients. Early recognition is nevertheless crucial, as patients with ICF benefit from HSCT early in life.
Collapse
Affiliation(s)
- Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany
| | - Jeanette Klein
- Newborn Screening Laboratory, Charité Universitätsmedizin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Ullrich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nadine Unterwalder
- Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany
| | - Erwin Lankes
- Newborn Screening Laboratory, Charité Universitätsmedizin, Berlin, Germany; Department of Pediatric Endocrinology, Charité-Uninrsitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin Charité-Vivantes, Berlin, Germany
| | - Cinzia Dedieu
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Dinges
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Johannes Schulte
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; St. Anna Children's Cancer Research Institute, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Christian Meisel
- Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany; Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn-Sven Kuehl
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Pediatric Oncology, Hematology and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany; Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
3
|
Lucane Z, Slisere B, Gersone G, Papirte S, Gailite L, Tretjakovs P, Kurjane N. Cytokine Response Following SARS-CoV-2 Antigen Stimulation in Patients with Predominantly Antibody Deficiencies. Viruses 2023; 15:v15051146. [PMID: 37243231 DOI: 10.3390/v15051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Predominantly antibody deficiencies (PADs) are inborn disorders characterized by immune dysregulation and increased susceptibility to infections. Response to vaccination, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may be impaired in these patients, and studies on responsiveness correlates, including cytokine signatures to antigen stimulation, are sparse. In this study, we aimed to describe the spike-specific cytokine response following whole-blood stimulation with SARS-CoV-2 spike peptides in patients with PAD (n = 16 with common variable immunodeficiency and n = 15 with selective IgA deficiency) and its relationship with the occurrence of coronavirus disease 2019 (COVID-19) during up to 10-month follow-up period. Spike-induced antibody and cytokine production was measured using ELISA (anti-spike IgG, IFN-γ) and xMAP technology (interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-15, IL-17A, IL-21, TNF-α, TGF-β1). No difference was found in the production of cytokines between patients with PAD and controls. Anti-spike IgG and cytokine levels did not predict contraction of COVID-19. The only cytokine that distinguished between vaccinated and naturally infected unvaccinated PAD patients was IFN-γ (median 0.64 (IQR = 1.08) in vaccinated vs. 0.10 (IQR = 0.28) in unvaccinated). This study describes the spike-specific cytokine response to SARS-CoV-2 antigens, which is not predictive of contracting COVID-19 during the follow-up.
Collapse
Affiliation(s)
- Zane Lucane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Baiba Slisere
- The Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, LV-1007 Riga, Latvia
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sindija Papirte
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Peteris Tretjakovs
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Natalja Kurjane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
- Outpatient Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Outpatient Clinic, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
4
|
The Autoimmune Manifestations in Patients with Genetic Defects in the B Cell Development and Differentiation Stages. J Clin Immunol 2023; 43:819-834. [PMID: 36790564 PMCID: PMC10110688 DOI: 10.1007/s10875-023-01442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Primary B cell defects manifesting as predominantly antibody deficiencies result from variable inborn errors of the B cell lineage and their development, including impairments in early bone marrow development, class switch recombination (CSR), or terminal B cell differentiation. In this study, we aimed to investigate autoimmunity in monogenic patients with B cell development and differentiation defects. METHODS Patients with known genetic defects in the B cell development and differentiation were recruited from the Iranian inborn errors of immunity registry. RESULTS A total of 393 patients with a known genetic defect in the B cell development and differentiation (257 males; 65.4%) with a median age of 12 (6-20) years were enrolled in this study. After categorizing patients, 109 patients had intrinsic B cell defects. More than half of the patients had defects in one of the ATM (85 patients), BTK (76 patients), LRBA (34 patients), and DOCK8 (33 patients) genes. Fifteen patients (3.8%) showed autoimmune complications as their first manifestation. During the course of the disease, autoimmunity was reported in 81 (20.6%) patients at a median age of 4 (2-7) years, among which 65 patients had mixed intrinsic and extrinsic and 16 had intrinsic B cell defects. The comparison between patients with the mentioned four main gene defects showed that the patient group with LRBA defect had a significantly higher frequency of autoimmunity compared to those with other gene defects. Based on the B cell defect stage, 13% of patients with early B cell defect, 17% of patients with CSR defect, and 40% of patients who had terminal B cell defect presented at least one type of autoimmunity. CONCLUSION Our results demonstrated that gene mutations involved in human B cell terminal stage development mainly LRBA gene defect have the highest association with autoimmunity.
Collapse
|
5
|
Delavari S, Wang Y, Moeini shad T, Pashangzadeh S, Nazari F, Salami F, Abolhassani H. Clinical and Immunologic Characteristics of Non-Hematologic Cancers in Patients with Inborn Errors of Immunity. Cancers (Basel) 2023; 15:cancers15030764. [PMID: 36765721 PMCID: PMC9913767 DOI: 10.3390/cancers15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of inherited disorders, and almost 500 genes associated with these disorders have been identified. Defects in IEI genes lead to diverse clinical manifestations including increased susceptibility to recurrent or prolonged infections, immune dysregulation phenotypes (such as severe atopy, allergy, autoimmunity, and uncontrolled inflammation, lymphoproliferation), as well as predisposition to malignancies. Although the majority of IEI patients present hematologic cancers, the characteristics of other types of cancers are not well described in these groups of patients. By investigating 5384 IEI patients registered in the Iranian national registry the clinical and immunologic phenotypes of patients with non-hematologic cancers were compared with other malignant and non-malignant patients. Solid tumors were reported <20% of malignant IEI patients (n = 27/144 patients) and appeared to be very heterogeneous by type and localization as well as molecular defects (mainly due to DNA repair defect resulted from ATM deficiency). The correlation between the type of malignancy and survival status was remarkable as patients with non-hematologic cancers survive higher than IEI patients with hematologic cancers. Our findings showed that different types of malignancy could be associated with specific entities of IEI. Therefore, the education of physicians about the risk of malignancies in IEI is required for personalized treatment and appropriate management of patients.
Collapse
Affiliation(s)
- Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, 14183 Stockholm, Sweden
| | - Tannaz Moeini shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Salar Pashangzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Farzad Nazari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, 14183 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
6
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Vlachiotis S, Abolhassani H. Transcriptional regulation of B cell class-switch recombination: the role in development of noninfectious complications. Expert Rev Clin Immunol 2022; 18:1145-1154. [DOI: 10.1080/1744666x.2022.2123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Targeted RNAseq Improves Clinical Diagnosis of Very Early-Onset Pediatric Immune Dysregulation. J Pers Med 2022; 12:jpm12060919. [PMID: 35743704 PMCID: PMC9224647 DOI: 10.3390/jpm12060919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Despite increased use of whole exome sequencing (WES) for the clinical analysis of rare disease, overall diagnostic yield for most disorders hovers around 30%. Previous studies of mRNA have succeeded in increasing diagnoses for clearly defined disorders of monogenic inheritance. We asked if targeted RNA sequencing could provide similar benefits for primary immunodeficiencies (PIDs) and very early-onset inflammatory bowel disease (VEOIBD), both of which are difficult to diagnose due to high heterogeneity and variable severity. We performed targeted RNA sequencing of a panel of 260 immune-related genes for a cohort of 13 patients (seven suspected PID cases and six VEOIBD) and analyzed variants, splicing, and exon usage. Exonic variants were identified in seven cases, some of which had been previously prioritized by exome sequencing. For four cases, allele specific expression or lack thereof provided additional insights into possible disease mechanisms. In addition, we identified five instances of aberrant splicing associated with four variants. Three of these variants had been previously classified as benign in ClinVar based on population frequency. Digenic or oligogenic inheritance is suggested for at least two patients. In addition to validating the use of targeted RNA sequencing, our results show that rare disease research will benefit from incorporating contributing genetic factors into the diagnostic approach.
Collapse
|
9
|
Tofighi Zavareh F, Mirshafiey A, Yazdani R, Keshtkar AA, Abolhassani H, Mahdaviani SA, Habibi S, Sohani M, Rezaei N, Aghamohammadi A. Immunophenotypic and functional analysis of lymphocyte subsets in common variable immunodeficiency patients without monogenic defects. Scand J Immunol 2022; 96:e13164. [PMID: 35305035 DOI: 10.1111/sji.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
Common variable immunodeficiency (CVID) is accompanied by various lymphocyte abnormalities believed to be mostly responsible for disease features in patients with no diagnosed monogenic defects. Here, we evaluated the association of B and T lymphocyte abnormalities with the incidence of CVID. Twenty-six genetically unsolved CVID patients were examined for B and T lymphocyte subsets by flow cytometry and CD4+ T cell proliferation by Carboxyfluorescein succinimidyl ester (CFSE) test. We detected a reduction in total, naive, memory B cells and plasmablasts, and also total, naive, central memory and regulatory CD4+ T cells, besides naive CD8+ T cells. There were an increase in CD21low and transitional B cells, effector memory (EM) and terminally differentiated effector memory (TEMRA ) CD4+ T cell subsets as well as total, EM, TEMRA , activated and cytotoxic CD8+ T cells among non-monogenic CVID patients. CD4+ T cells proliferation response was reduced regarding both division index and percent divided. In conclusion, regarding the similarity of lymphocyte abnormalities between patients without genetic defects and those with monogenic defects, genetic mutations are not responsible for these specific lymphocyte changes. However, the novel correlations observed between lymphocyte alterations among genetically unsolved CVID patients may serve as a guide to predict the potential of future CVID development for hypogammaglobulinemia children.
Collapse
Affiliation(s)
- Farzaneh Tofighi Zavareh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abbas Mirshafiey
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Habibi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Soltani M, Rezaei M, Fekrvand S, Ganjalikhani-Hakemi M, Abolhassani H, Yazdani R. Role of rare immune cells in common variable immunodeficiency. Pediatr Allergy Immunol 2022; 33:e13725. [PMID: 34937129 DOI: 10.1111/pai.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency disorder (CVID) is a heterogeneous disorder and the most common symptomatic antibody deficiency disease characterized with hypogammaglobulinemia and a broad range of clinical manifestations. Multiple genetic, epigenetic, and immunological defects are involved in the pathogenesis of CVID. These immunological defects include abnormalities in the number and/or function of B lymphocytes, T lymphocytes, and other rare immune cells. Although some immune cells have a relatively lower proportion among total immune subsets in the human body, they could have important roles in the pathogenesis of immunological disorders like CVID. To the best of our knowledge, this is the first review that described the role of rare immune cells in the pathogenesis and clinical presentations of CVID.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Moeini Shad T, Yazdani R, Amirifar P, Delavari S, Heidarzadeh Arani M, Mahdaviani SA, Sadeghi-Shabestari M, Aghamohammadi A, Rezaei N, Abolhassani H. Atypical Ataxia Presentation in Variant Ataxia Telangiectasia: Iranian Case-Series and Review of the Literature. Front Immunol 2022; 12:779502. [PMID: 35095854 PMCID: PMC8795590 DOI: 10.3389/fimmu.2021.779502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive neurodegenerative multisystem disorder. A minority of AT patients can present late-onset atypical presentations due to unknown mechanisms. The demographic, clinical, immunological and genetic data were collected by direct interview and examining the Iranian AT patients with late-onset manifestations. We also conducted a systematic literature review for reported atypical AT patients. We identified three Iranian AT patients (3/249, 1.2% of total registry) with later age at ataxia onset and slower neurologic progression despite elevated alpha-fetoprotein levels, history of respiratory infections, and immunological features of the syndrome. Of note, all patients developed autoimmunity in which a decrease of naïve T cells and regulatory T cells were observed. The literature searches also summarized data from 73 variant AT patients with atypical presentation indicating biallelic mild mutations mainly lead to an atypical phenotype with an increased risk of cancer. Variant AT patients present with milder phenotype or atypical form of classical symptoms causing under- or mis- diagnosis. Although missense mutations are more frequent, an atypical presentation can be associated with deleterious mutations due to unknown modifying factors.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
12
|
Comprehensive Assessment of Skin Disorders in Patients with Common Variable Immunodeficiency (CVID). J Clin Immunol 2022; 42:653-664. [PMID: 35084691 DOI: 10.1007/s10875-022-01211-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is an inborn error of immunity (IEI) characterized by various clinical manifestations such as hypogammaglobulinemia, recurrent infections, and autoimmune diseases. Among different clinical manifestations, skin manifestations have been less reported in these patients. METHODS In this study, we investigated the prevalence of dermatologic features in 387 CVID patients. Demographic information, clinical manifestations, laboratory data, and genetic findings were collected from medical records. All data were analyzed based on the presence or absence of skin disorders in CVID patients. RESULTS We observed at least one skin manifestation in about 40% of these patients. Among these complications, skin infection (n = 64, 42.1%) was the most frequent presentation, followed by non-infectious skin lesions (n = 54, 35.6%). Among skin infections, abscesses (n = 34, 22.4%) were the most common complication. Skin infections such as cellulitis, impetigo, measles, and warts were also documented. Eczema (n = 34, 22.4%) was the most common complication in atopic lesions, and vitiligo (n = 13, 8.5%) was prevalent in autoimmune/pigmentation disorders. Among all the patients with genetic mutations, one-quarter had a deleterious mutation in the LRBA gene, relating to the autoimmune and atopic skin lesions. CONCLUSION This rate of skin disorders in our cohort demonstrating these manifestations could be significant in CVID patients, and they are not rare. Low data of skin complications in CVID patients could be attributed to insufficient attention of physicians and also might alert dermatologists to perform immunological investigations in children with certain skin manifestations.
Collapse
|
13
|
Carsetti R, Corrente F, Capponi C, Mirabella M, Cascioli S, Palomba P, Bertaina V, Pagliara D, Colucci M, Piano Mortari E. Comprehensive phenotyping of human peripheral blood B lymphocytes in pathological conditions. Cytometry A 2021; 101:140-149. [PMID: 34851033 PMCID: PMC9299869 DOI: 10.1002/cyto.a.24518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Several diseases are associated with alterations of the B-cell compartment. Knowing how to correctly identify by flow cytometry the distribution of B-cell populations in the peripheral blood is important to help in the early diagnosis. In the accompanying article we describe how to identify the different B-cell subsets in the peripheral blood of healthy donors. Here we show a few examples of diseases that cause dysregulation of the B-cell compartment.
Collapse
Affiliation(s)
- Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mattia Mirabella
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Cascioli
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Patrizia Palomba
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology/Oncology and Cell Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology and Cell Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuela Colucci
- Renal Diseases Research Unit, Genetic and Rare Diseases Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Amirifar P, Yazdani R, Azizi G, Ranjouri MR, Durandy A, Plebani A, Lougaris V, Hammarstrom L, Aghamohammadi A, Abolhassani H. Known and potential molecules associated with altered B cell development leading to predominantly antibody deficiencies. Pediatr Allergy Immunol 2021; 32:1601-1615. [PMID: 34181780 DOI: 10.1111/pai.13589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Predominantly antibody deficiencies (PADs) encompass a heterogeneous group of disorders characterized by low immunoglobulin serum levels in the presence or absence of peripheral B cells. Clinical presentation of affected patients may include recurrent respiratory and gastrointestinal infections, invasive infections, autoimmune manifestations, allergic reactions, lymphoproliferation, and increased susceptibility to malignant transformation. In the last decades, several genetic alterations affecting B-cell development/maturation have been identified as causative of several forms of PADs, adding important information on the genetic background of PADs, which in turn should lead to a better understanding of these disorders and precise clinical management of affected patients. This review aimed to present a comprehensive overview of the known and potentially involved molecules in the etiology of PADs to elucidate the pathogenesis of these disorders and eventually offer a better prognosis for affected patients.
Collapse
Affiliation(s)
- Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anne Durandy
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Alessandro Plebani
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lennart Hammarstrom
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
15
|
Primary antibody deficiencies in Turkey: molecular and clinical aspects. Immunol Res 2021; 70:44-55. [PMID: 34618307 DOI: 10.1007/s12026-021-09242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Primary antibody deficiencies (PAD) are the most common subtype of primary immunodeficiencies, characterized by increased susceptibility to infections and autoimmunity, allergy, or malignancy predisposition. PAD syndromes comprise of immune system genes highlighted the key role of B cell activation, proliferation, migration, somatic hypermutation, or isotype switching have a wide spectrum from agammaglobulinemia to selective Ig deficiency. In this study, we describe the molecular and the clinical aspects of fifty-two PAD patients. The most common symptoms of our cohort were upper and lower respiratory infections, bronchiectasis, diarrhea, and recurrent fever. Almost all patients (98%) had at least one of the symptoms like autoimmunity, lymphoproliferation, allergy, or gastrointestinal disease. A custom-made next-generation sequencing (NGS) panel, which contains 24 genes, was designed to identify well-known disease-causing variants in our cohort. We identified eight variants (15.4%) among 52 PAD patients. The variants mapped to BTK (n = 4), CD40L (n = 1), ICOS (n = 1), IGHM (n = 1), and TCF3 (n = 1) genes. Three novel variants were described in the BTK (p.G414W), ICOS (p.G60*), and IGHM (p.S19*) genes. We performed Sanger sequencing to validate pathogenic variants and check for allelic segregation in the family. Targeted NGS panel sequencing can be beneficial as a suitable diagnostic modality for diagnosing well-known monogenic PAD diseases (only 2-10% of PADs); however, screening only the coding regions of the genome may not be adequately powered to solve the pathogenesis of PAD in all cases. Deciphering the regulatory regions of the genome and better understanding the epigenetic modifications will elucidate the molecular basis of complex PADs.
Collapse
|
16
|
Abolhassani H, Wang Y, Hammarström L, Pan-Hammarström Q. Hallmarks of Cancers: Primary Antibody Deficiency Versus Other Inborn Errors of Immunity. Front Immunol 2021; 12:720025. [PMID: 34484227 PMCID: PMC8416062 DOI: 10.3389/fimmu.2021.720025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023] Open
Abstract
Inborn Errors of Immunity (IEI) comprise more than 450 inherited diseases, from which selected patients manifest a frequent and early incidence of malignancies, mainly lymphoma and leukemia. Primary antibody deficiency (PAD) is the most common form of IEI with the highest proportion of malignant cases. In this review, we aimed to compare the oncologic hallmarks and the molecular defects underlying PAD with other IEI entities to dissect the impact of avoiding immune destruction, genome instability, and mutation, enabling replicative immortality, tumor-promoting inflammation, resisting cell death, sustaining proliferative signaling, evading growth suppressors, deregulating cellular energetics, inducing angiogenesis, and activating invasion and metastasis in these groups of patients. Moreover, some of the most promising approaches that could be clinically tested in both PAD and IEI patients were discussed.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
17
|
Esmaeilzadeh H, Askarisarvestani A, Hosseini N, Samimi S, Shafiei A, Mahdaviani SA, Eslami N, Chavoshzadeh Z, Fallahi M, Khakbazanfard N, Shabestari MS, Aleyasin S, Nabavizadeh SH, Cheraghi T, Kalantari A, Ahmadiafshar A, Safari M, Eslamian MH, Molatefi R, Shirkani A, Heidarzadeh Arani M, Tavakol M, Bemanian MH, Arshi S, Nabavi M, Shokri S, Shahhosseini B, Mortazavi N, Nakhaei P, Nazari F, Fallahpour M, Ahanchian H, Moazzen N, Khoshkhui M, Motlagh AV, Aghamohammadi A, Abolhassani H, Yazdani R, Rezaei N. Adverse reactions in a large cohort of patients with inborn errors of immunity receiving intravenous immunoglobulin. Clin Immunol 2021; 230:108826. [PMID: 34418548 DOI: 10.1016/j.clim.2021.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intravenous immunoglobulins (IVIg) are the major treatment in inborn errors of immunity (IEI) disorders; However, IVIg infusions show some adverse effects. We aimed to assess the adverse reactions of IVIg infusions. METHODS Data of IVIg infusions in IEI patients were collected from 2011 to 2021. Totally, 363 IEI patients received IVIg regularly in Iran entered the study. The adverse reactions are classified regarding their severity and chronicity. RESULTS 22,667 IVIg infusions were performed in the study. 157 patients (43.2%) and 1349 (5.9%) infusions were associated with at least one type of adverse reaction. The highest rates of adverse reactions were seen in severe combined immunodeficiency. Myalgia, chills, headache, fever, and hypotension were the most frequent adverse effects of IVIg. CONCLUSION The reactions affect almost half of the patients mainly in the first infusions which necessitate the close observation of IEI patients receiving IVIg.
Collapse
Affiliation(s)
- Hossein Esmaeilzadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Division of Allergy and Clinical Immunology, Pediatrics Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Askarisarvestani
- Division of Allergy and Clinical Immunology, Pediatrics Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nazanin Hosseini
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Samimi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Shafiei
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Allergy and Clinical immunology Dept, Mofid Children Hospital, , Shahid Beheshti University of Medical Sciences, Tehran, , Iran
| | - Zahra Chavoshzadeh
- Allergy and Clinical immunology Dept, Mofid Children Hospital, , Shahid Beheshti University of Medical Sciences, Tehran, , Iran
| | - Mazdak Fallahi
- Allergy and Clinical immunology Dept, Mofid Children Hospital, , Shahid Beheshti University of Medical Sciences, Tehran, , Iran
| | - Nasrin Khakbazanfard
- Allergy and Clinical immunology Dept, Mofid Children Hospital, , Shahid Beheshti University of Medical Sciences, Tehran, , Iran
| | | | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Division of Allergy and Clinical Immunology, Pediatrics Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hesamedin Nabavizadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Division of Allergy and Clinical Immunology, Pediatrics Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Taher Cheraghi
- Department of Pediatrics, 17th Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mojgan Safari
- Department of Pediatrics, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | | | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Shahhosseini
- Division of Allergy and Clinical Immunology, Pediatrics Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Mortazavi
- Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Nakhaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Nazari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Moazzen
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Khoshkhui
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Vosughi Motlagh
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
18
|
Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021; 12:634181. [PMID: 33643318 PMCID: PMC7905085 DOI: 10.3389/fimmu.2021.634181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.
Collapse
Affiliation(s)
- Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
19
|
Fekrvand S, Delavari S, Chavoshzadeh Z, Sherkat R, Mahdaviani SA, Sadeghi Shabestari M, Azizi G, Arzanian MT, Shahin Shamsian B, Eskandarzadeh S, Eslami N, Rae W, Condino-Neto A, Mohammadi J, Abolhassani H, Yazdani R, Aghamohammadi A. The First Iranian Cohort of Pediatric Patients with Activated Phosphoinositide 3-Kinase-δ (PI3Kδ) Syndrome (APDS). Immunol Invest 2021; 51:644-659. [PMID: 33401995 DOI: 10.1080/08820139.2020.1863982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently defined combined primary immunodeficiency disease (PID) characterized by recurrent respiratory tract infections, lymphoproliferation, autoimmunity and lymphoma. Gain-of-function mutations in PIK3CD and loss-of-function of PIK3R1 genes lead to APDS1 and APDS2, respectively.Methods: Demographic, clinical, immunological and genetic data were collected from medical records of 15 pediatric patients, who were genetically identified using the whole-exome sequencing method.Results: Fifteen patients (6 APDS1 and 9 APDS2) were enrolled in this study. Recurrent respiratory tract infections followed by lymphoproliferation and autoimmunity were the most common manifestations (86.7%, 53.3% and 26.7%, respectively). Five patients (33.3%) had a Hyper-IgM-syndrome-like immunoglobulin profile. In the APDS1 group, splice site and missense mutations were found in half of the patients and the C-lobe domain of PIK3CD was the most affected region (50%). In the APDS2 group, splice site mutation was the most frequent mutation (77.8%) and the inter-SH2 domain was the most affected region of PIK3R1 (66.7%). Mortality rate was significantly higher in APDS2 group (P = .02) mainly due to chronic lung infections.Conclusion: Respiratory tract infections and humoral immunodeficiency are commonly the most important complication in pediatric APDS patients, and they can be fatal by ultimately causing catastrophic damage to the structure of lungs. Hence, physicians should be aware of its significance and further work-up of patients with recurrent respiratory tract infections especially in patients with lymphoproliferation. Moreover, delineation of genotype-phenotype associations with disease severity could be helpful in the timely application of appropriate management and patients' survival.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, lsfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghi Shabestari
- Children Hospital of Tabriz, Immunology Research Center of Tabriz, TB and Lung Research Center of Tabriz, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taghi Arzanian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Eskandarzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Science, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
20
|
Abolhassani H. Specific Immune Response and Cytokine Production in CD70 Deficiency. Front Pediatr 2021; 9:615724. [PMID: 33996677 PMCID: PMC8120026 DOI: 10.3389/fped.2021.615724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Collective clinical and immunologic findings of defects in the CD27-CD70 axis indicate a primary immunodeficiency associated with terminal B-cell development defect and immune dysregulation leading to autoimmunity, uncontrolled viral infection, and lymphoma. Since the molecular mechanism underlying this entity of primary immunodeficiency has been recently described, more insight regarding the function and profile of immunity is required. Therefore, this study aimed to investigate stimulated antibody production, polyclonal vs. virus-specific T-cell response, and cytokine production of a CD70-deficient patient reported previously with early-onset antibody deficiency suffering from chronic viral infections and B-cell lymphoma. The patient and her family members were subjected to clinical evaluation, immunological assays, and functional analyses. The findings of this study indicate an impaired ability of B cells to produce immunoglobulins, and a poor effector function of T cells was also associated with the severity of clinical phenotype. Reduced proportions of cells expressing the memory marker CD45RO, as well as T-bet and Eomes, were observed in CD70-deficient T cells. The proportion of 2B4+ and PD-1+ virus-specific CD8+ T cells was also reduced in the patient. Although the CD70-mutated individuals presented with early-onset clinical manifestations that were well-controlled by using conventional immunological and anticancer chemotherapies, with better prognosis as compared with CD27-deficient patients, targeted treatment toward specific disturbed immune profile may improve the management and even prevent secondary complications.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Yazdani R, Aghamohammadi A, Rezaei N. Application of Flow Cytometry in Predominantly Antibody Deficiencies. Endocr Metab Immune Disord Drug Targets 2020; 21:647-663. [PMID: 32693771 DOI: 10.2174/1871530320666200721013312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022]
Abstract
Predominantly antibody deficiencies (PADs) are a heterogeneous group of primary immunodeficiency disorders (PIDs), consisting of recurrent infections, autoimmunity, inflammation, and other immune complications. In the recent years, several immunological and genetic defects have been recognized in PADs. Currently, 45 distinct PAD disorders with 40 different genetic defects have been identified based on the 2019 IUIS classification. Genetic analysis is helpful for diagnosing PIDs; however, genetic studies are expensive, time-consuming, and unavailable everywhere. Flow cytometry is a highly sensitive tool for evaluating the immune system and diagnosing PADs. In addition to cell populations and subpopulations assay, flow cytometry can measure cell surface, intracellular and intranuclear proteins, biological changes associated with specific immune defects, and certain functional immune abnormalities. These capabilities help in rapid diagnostic and prognostic assessment as well as in evaluating the pathogenesis of PADs. For the first time, this review particularly provides an overview of the application of flow cytometry for diagnosis, immunophenotyping, and determining the pathogenesis of PADs.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
22
|
Asgardoon MH, Azizi G, Yazdani R, Sohani M, Pashangzadeh S, Kalantari A, Shariat M, Shafiei A, Salami F, Jamee M, Rasouli SE, Mohammadi J, Hassanpour G, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Behniafard N, Nabavi M, Bemanian MH, Arshi S, Molatefi R, Sherkat R, Shirkani A, Alyasin S, Jabbari-Azad F, Ghaffari J, Mesdaghi M, Ahanchian H, Khoshkhui M, Eslamian MH, Cheraghi T, Dabbaghzadeh A, Nasiri Kalmarzi R, Esmaeilzadeh H, Tafaroji J, Khalili A, Sadeghi-Shabestari M, Darougar S, Moghtaderi M, Ahmadiafshar A, Shakerian B, Heidarzadeh M, Ghalebaghi B, Fathi SM, Darabi B, Fallahpour M, Mohsenzadeh A, Ebrahimi S, Sharafian S, Vosughimotlagh A, Tafakoridelbari M, Rahimi Haji-Abadi M, Ashournia P, Razaghian A, Rezaei A, Delavari S, Shirmast P, Babaha F, Samavat A, Mamishi S, Khazaei HA, Negahdari B, Rezaei N, Abolhassani H, Aghamohammadi A. Monogenic Primary Immunodeficiency Disorder Associated with Common Variable Immunodeficiency and Autoimmunity. Int Arch Allergy Immunol 2020; 181:706-714. [PMID: 32615565 DOI: 10.1159/000508817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is the most frequent primary immunodeficiency disorder mainly characterized by recurrent bacterial infections besides other immunological defects including loss of or dysfunction of B cells and decreased immunoglobulin levels. In this study, our aim is to evaluate clinical, immunological, and molecular data of patients with a primary clinical diagnosis of CVID and autoimmune phenotype with a confirmed genetic diagnosis. METHODS Among 297 patients with CVID, who were registered in the Iranian Primary Immunodeficiency Registry at Children's Medical Center Hospital in Iran, 83 patients have been genetically examined and 27 patients with autoimmunity and confirmed genetic mutations were selected for analysis. Whole-exome sequencing and confirmatory Sanger sequencing methods were used for the study population. A questionnaire was retrospectively filled for all patients to evaluate demographic, laboratory, clinical, and genetic data. RESULTS In the 27 studied patients, 11 different genetic defects were identified, and the most common mutated gene was LRBA, reported in 17 (63.0%) patients. Two patients (7.7%) showed autoimmune complications as the first presentation of immunodeficiency. Eleven patients (40.7%) developed one type of autoimmunity, and 16 patients (59.3%) progressed to poly-autoimmunity. Most of the patients with mono-autoimmunity (n = 9, 90.0%) primarily developed infectious complications, while in patients with poly-autoimmunity, the most common first presentation was enteropathy (n = 6, 37.6%). In 13 patients (61.9%), the diagnosis of autoimmune disorders preceded the diagnosis of primary immunodeficiency. The most frequent autoimmune manifestations were hematologic (40.7%), gastrointestinal (48.1%), rheumatologic (25.9%), and dermatologic (22.2%) disorders. Patients with poly-autoimmunity had lower regulatory T cells than patients with mono-autoimmunity. CONCLUSION In our cohort, the diagnosis of autoimmune disorders preceded the diagnosis of primary immunodeficiency in most patients. This association highlights the fact that patients referring with autoimmune manifestations should be evaluated for humoral immunity.
Collapse
Affiliation(s)
- Mohammad Hossein Asgardoon
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Salar Pashangzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Shariat
- Department of Allergy and Clinical Immunology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Jamee
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Erfan Rasouli
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Javad Mohammadi
- Department of Life Science, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali Children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Sciences, School of Medicine, Bushehr, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Javad Ghaffari
- Department of Pediatrics, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Khoshkhui
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Taher Cheraghi
- Department of Pediatrics, 17 Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Dabbaghzadeh
- Department of Allergy and Clinical Immunology, Pediatrics Infectious Diseases Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rasoul Nasiri Kalmarzi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Javad Tafaroji
- Department of Pediatrics, Qom University of Medical Sciences, Qom, Iran
| | - Abbas Khalili
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Sepideh Darougar
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Moghtaderi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Behzad Shakerian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Heidarzadeh
- Department of Immunology and Allergy, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Ghalebaghi
- Department of Pediatrics, 17 Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mohammad Fathi
- Department of Immunology and Allergy, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behzad Darabi
- Department of Immunology and Allergy, Ilam University of Medical Sciences, Ilam, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mohsenzadeh
- Department of Pediatrics, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sarehsadat Ebrahimi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Vosughimotlagh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Tafakoridelbari
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Rahimi Haji-Abadi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ashournia
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Paniz Shirmast
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Fateme Babaha
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ashraf Samavat
- Genetics Office, Centers for Disease Control and Prevention (CDC), Ministry of Health of Iran, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical, Sciences, Tehran, Iran
| | - Hossein Ali Khazaei
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Primary Immunodeficiency, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at the Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran, .,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
23
|
Fekrvand S, Mozdarani H, Delavari S, Sohani M, Nazari F, Kiaee F, Bagheri Y, Azizi G, Hassanpour G, Mozdarani S, Abolhassani H, Aghamohammadi A, Yazdani R. Evaluation of Radiation Sensitivity in Patients with Hyper IgM Syndrome. Immunol Invest 2020; 50:580-596. [PMID: 32584193 DOI: 10.1080/08820139.2020.1779288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND HIGM syndrome is a rare form of primary immunodeficiencies characterized by normal/increased amounts of serum IgM and decreased serum levels of other switched immunoglobulin classes. Since the affected patients are continuously infected with various types of pathogens and are susceptible for cancers, diagnostic and therapeutic tests including imaging techniques are recommended for the diagnosis and treatment of these patients, which predispose them to higher accumulated doses of radiation. Given the evidence of class switching recombination machinery defect and its association with an increased rate of DNA repair, we aimed to evaluate radiation sensitivity among a group of patients diagnosed with HIGM syndrome. METHODS 19 HIGM patients (14 CD40 L and 3 AID deficiencies and 2 unsolved cases without known genetic defects) and 17 control subjects (10 healthy subjects as negative control group, 7 ataxia-telangiectasia patients as positive control group) were enrolled. G2 assay was carried out for the determination of radiosensitivity. RESULTS Based on radiation-induced chromosomal changes among the studied HIGM patients and their comparison with the controls, almost all (95%) the patients had degrees of radiosensitivity: 6 patients with low to moderate, 1 patient with moderate, 11 patients with severe and 1 patient without radiation sensitivity. CONCLUSION Today, X-ray radiation plays a very important role in diagnostic and therapeutic procedures; while increased exposure has devastating effects especially in radiosensitive patients. Considering higher sensitivity in HIGM patients, utilizing radiation-free techniques could partly avoid unnecessary and high-level exposure to radiation, thus preventing or reducing its harmful effects on the affected patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center,Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences,Tarbiat Modares University, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center,Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center,Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Nazari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center,Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kiaee
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center,Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center,Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Banday AZ, Jindal AK, Kaur A, Kumar Y, Nameirakpam J, Patra PK, Rawat A. A young girl with hypogammaglobulinemia and granulomatous hepatitis caused by a novel mutation in ZBTB24 gene: A case based analysis. Immunobiology 2020; 225:151912. [PMID: 32061411 DOI: 10.1016/j.imbio.2020.151912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome(s) are a group (ICF1 to ICF4) of autosomal recessive combined immunodeficiency disorders that may mimic common variable immunodeficiency (CVID) at initial presentation. Unlike CVID, autoimmune manifestations have been reported uncommonly in patients with ICF2. PROCEDURE Herein we describe a new case of ICF2 with a novel ZBTB24 mutation and granulomatous hepatitis, with a literature review of all patients with ZBTB24 mutations. RESULTS Post-neonatal hepatitis, reported in only 2 patients of ICF2 till date, was the presenting manifestation of the index child with ICF2. Evaluation revealed a homozygous mutation in ZBTB24 gene (c.433_434delGC, p.Ala145ProfsTer7). On literature review a total of 39 cases with ZBTB24 mutations reported till date were found, with two-thirds of reported patients being males. Respiratory tract infections and facial anomalies are commonest clinical features seen in more than 80 % of the patients. All patients who have immunoglobulin levels tested have at least 1 isotype decreased with decreased B cell number seen in at least one-third of patients. Decreased IgG and IgA levels are seen more frequently in patients with truncation mutations as compared to missense mutations. Candidiasis and Pneumocystis infections have been reported only in patients with truncation mutations. CONCLUSIONS Facial features should be looked for in all patients presenting with hypogammaglobulinemia. Next generation sequencing should be considered in patients who have a CVID like presentation in early age with unusual manifestations.
Collapse
Affiliation(s)
- Aaqib Zaffar Banday
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Anit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Research Block-A, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Johnson Nameirakpam
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pratap Kumar Patra
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
25
|
Moazzami B, Mohayeji Nasrabadi MA, Abolhassani H, Olbrich P, Azizi G, Shirzadi R, Modaresi M, Sohani M, Delavari S, Shahkarami S, Yazdani R, Aghamohammadi A. Comprehensive assessment of respiratory complications in patients with common variable immunodeficiency. Ann Allergy Asthma Immunol 2020; 124:505-511.e3. [PMID: 32007567 DOI: 10.1016/j.anai.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is a heterogeneous group of disorders, characterized by recurrent upper and lower respiratory tract infections and some noninfectious clinical complications. OBJECTIVE To provide a detailed evaluation of respiratory presentations and complications in a cohort of Iranian patients with CVID. METHODS A retrospective cohort study was conducted on 245 CVID patients who were recorded in the Iranian primary immunodeficiency disorders registry network. Respiratory manifestations were evaluated by reviewing clinical hospital records, immunologic findings, pulmonary function tests (PFT), and high-resolution computed tomography (HRCT) scans. RESULTS Most of the patients (n = 208, 85.2%) had experienced at least 1 episode of acute respiratory manifestation, and pneumonia was observed in 31.6 % (n = 77) of cases as a first disease manifestation. During the follow-up, pneumonia, sinusitis, and otitis media were documented in 166 (68.6%), 125 (51.2%), and 103 (42.6%) cases, respectively. Abnormal PFT measurements were documented in 53.8% of patients. Among these patients, 21.5% showed restrictive changes, whereas 18.4% of patients showed an obstructive pattern. Bronchiectasis was the most frequent radiological finding, confirmed in 27.2% of patients. Patients with bronchiectasis were older at the time of immunodeficiency diagnosis (P < .001) and had longer diagnosis delay (P < .001) when compared with patients without bronchiectasis. CONCLUSION This study highlights the importance of monitoring the respiratory tract system even in asymptomatic patients. Pulmonary function tests and CT scans are the most commonly used techniques aiming to identify these patients early, aiming to reduce the rate of long-term respiratory complications.
Collapse
Affiliation(s)
- Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Ali Mohayeji Nasrabadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at the Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rohola Shirzadi
- Department of Pediatric Pulmonary and Sleep Medicine, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Modaresi
- Department of Pediatric Pulmonary and Sleep Medicine, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
26
|
Silva SL, Fonseca M, Pereira MLM, Silva SP, Barbosa RR, Serra-Caetano A, Blanco E, Rosmaninho P, Pérez-Andrés M, Sousa AB, Raposo AASF, Gama-Carvalho M, Victorino RMM, Hammarstrom L, Sousa AE. Monozygotic Twins Concordant for Common Variable Immunodeficiency: Strikingly Similar Clinical and Immune Profile Associated With a Polygenic Burden. Front Immunol 2019; 10:2503. [PMID: 31824477 PMCID: PMC6882918 DOI: 10.3389/fimmu.2019.02503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/10/2023] Open
Abstract
Monozygotic twins provide a unique opportunity to better understand complex genetic diseases and the relative contribution of heritable factors in shaping the immune system throughout life. Common Variable Immunodeficiency Disorders (CVID) are primary antibody defects displaying wide phenotypic and genetic heterogeneity, with monogenic transmission accounting for only a minority of the cases. Here, we report a pair of monozygotic twins concordant for CVID without a family history of primary immunodeficiency. They featured a remarkably similar profile of clinical manifestations and immunological alterations at diagnosis (established at age 37) and along the subsequent 15 years of follow-up. Interestingly, whole-exome sequencing failed to identify a monogenic cause for CVID, but unraveled a combination of heterozygous variants, with a predicted deleterious impact. These variants were found in genes involved in relevant immunological pathways, such as JUN, PTPRC, TLR1, ICAM1, and JAK3. The potential for combinatorial effects translating into the observed disease phenotype is inferred from their roles in immune pathways, namely in T and B cell activation. The combination of these genetic variants is also likely to impose a significant constraint on environmental influences, resulting in a similar immunological phenotype in both twins, despite exposure to different living conditions. Overall, these cases stress the importance of integrating NGS data with clinical and immunological phenotypes at the single-cell level, as provided by multi-dimensional flow-cytometry, in order to understand the complex genetic landscape underlying the vast majority of patients with CVID, as well as those with other immunodeficiencies.
Collapse
Affiliation(s)
- Susana L Silva
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Fonseca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Marcelo L M Pereira
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Sara P Silva
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Rita R Barbosa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Serra-Caetano
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC, Number CB16/12/00400, Institute of Health Carlos III, Madrid, Spain
| | - Pedro Rosmaninho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Martin Pérez-Andrés
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC, Number CB16/12/00400, Institute of Health Carlos III, Madrid, Spain
| | - Ana Berta Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Alexandre A S F Raposo
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Rui M M Victorino
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | | | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| |
Collapse
|
27
|
Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 2019; 7:26-37. [PMID: 32181273 PMCID: PMC7063417 DOI: 10.1016/j.gendis.2019.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID), a heterogeneous group of inborn errors of immunity, is the most common symptomatic primary immunodeficiency disorder. Patients with CVID have highly variable clinical presentation. With the advent of whole genome sequencing and genome wide association studies (GWAS), there has been a remarkable improvement in understanding the genetics of CVID. This has also helped in understanding the pathogenesis of CVID and has drastically improved the management of these patients. A multi-omics approach integrating the DNA sequencing along with RNA sequencing, proteomics, epigenetic and metabolomics profile is the need of the hour to unravel specific CVID associated disease pathways and novel therapeutic targets. In this review, we elaborate various techniques that have helped in understanding the genetics of CVID.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Zaffar Banday
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jhumki Das
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Ilkjær FV, Rasmussen LD, Martin-Iguacel R, Westh L, Katzenstein TL, Hansen ABE, Nielsen TL, Larsen CS, Johansen IS. How to Identify Common Variable Immunodeficiency Patients Earlier: General Practice Patterns. J Clin Immunol 2019; 39:641-652. [PMID: 31372799 DOI: 10.1007/s10875-019-00666-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Diagnostic delay is a major problem concerning common variable immunodeficiency (CVID). We aimed to determine the pattern of general practitioner (GP) consultations in individuals diagnosed with CVID within 3 years before the diagnosis and whether the risk of diagnosis was associated with the frequency of consultations or character of examinations. METHODS We conducted a nested case-control study, identifying 132 adult CVID patients and 5940 age- and gender-matched controls from national registers during 1997-2013. We used conditional logistic regression to calculate the odds ratios (OR) and 95% confidence intervals (95%CI). RESULTS The median number of consultations among individuals with CVID was more than twice that of the controls in all 3 years (3rd, 10; 2nd, 11.5; and 1st, 15.4 vs. 4). We found a statistically significant association between the number of consultations and the risk of a subsequent CVID diagnosis, independent of age and gender, but strongest in the individuals < 40 years. In the 3rd year before diagnosis, having 9-15 consultations compared with 1-4 was associated with an OR (95%CI) of 5.0 (2.3-10.9), 2.4 (1.1-5.4), and 1.3 (0.3-5.3) for those aged 18-40, 41-60, and > 60, respectively. Several examinations (i.e., blood tests for inflammation/infection and pulmonary function test) were associated with increased odds of a subsequent CVID diagnosis. CONCLUSION The risk of a CVID diagnosis was highly related to both the number of consultations and the character of examinations performed by the GP. CVID should be a differential diagnosis among patients with multiple consultations, especially in patients < 40 years old.
Collapse
Affiliation(s)
- Frederik V Ilkjær
- Department of Infectious Diseases, Odense University Hospital, J. B. Winsløws Vej 4, Odense, Denmark. .,Odense Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 9a, Odense, Denmark.
| | - Line D Rasmussen
- Department of Infectious Diseases, Odense University Hospital, J. B. Winsløws Vej 4, Odense, Denmark
| | - Raquel Martin-Iguacel
- Department of Infectious Diseases, Odense University Hospital, J. B. Winsløws Vej 4, Odense, Denmark
| | - Lena Westh
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, Aarhus, Denmark
| | - Terese L Katzenstein
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen, Denmark
| | - Ann-Brit E Hansen
- Department of Infectious Diseases, Hvidovre Hospital, Copenhagen University Hospital, Kettegaard Allé 30, Copenhagen, Denmark
| | - Thyge L Nielsen
- Department of Pulmonary and Infectious Diseases, North Zealand Hospital, Dyrehavevej 29, Hilleroed, Denmark
| | - Carsten S Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, Aarhus, Denmark.,International Center of Immunodeficiency Diseases, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, Aarhus, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, J. B. Winsløws Vej 4, Odense, Denmark
| |
Collapse
|
29
|
Al-Herz W, Al-Ahmad M, Al-Khabaz A, Husain A, Sadek A, Othman Y. The Kuwait National Primary Immunodeficiency Registry 2004-2018. Front Immunol 2019; 10:1754. [PMID: 31396239 PMCID: PMC6668014 DOI: 10.3389/fimmu.2019.01754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: To present the report from the Kuwait National Primary Immunodeficiency Registry between 2004 and 2018. Methods: The patients were followed prospectively between January 2004 and December 2018 and their collected data included sociodemographic, diagnosis, clinical presentation, laboratory tests, and treatment. Results: A total of 314 PID patients (165 males and 149 females) were registered during the study period. Most of the patients (n = 287, 91.4%) were Kuwaiti nationals and the prevalence among Kuwaitis was 20.27/100,000 with a cumulative incidence of 24.96/100,000 Kuwaitis. The distribution of the patients according to PID categories was as follow: immunodeficiencies affecting cellular and humoral immunity, 100 patients (31.8%); combined immunodeficiencies with associated syndromic features, 68 patients (21.7%); predominantly antibody deficiencies, 56 patients (17.8%); diseases of immune dysregulation, 47 patients (15%); congenital defects of phagocyte number or function, 20 patients (6.4%); autoinflammatory disorders, 1 patient (0.3%); and complement deficiencies, 22 patients (7%). The mean age of the patients at onset of symptoms was 26 months while the mean age at diagnosis was 53 months and the mean delay in diagnosis was 27 months. Most of the patients (n = 272, 86%) had onset of symptoms before the age of 5 years. Parental consanguinity rate within the registered patients was 78% and a positive family history of PID was noticed in 50% of the patients. Genetic testing was performed in 69% of the patients with an overall diagnostic yield of 90%. Mutations were identified in 46 different genes and more than 90% of the reported genetic defects were transmitted by an autosomal recessive pattern. Intravenous immunoglobulins and stem cell transplantation were used in 58% and 25% of the patients, respectively. There were 81 deaths (26%) among the registered patients with a mean age of death of 25 months. Conclusions: PID is not infrequent in Kuwait and the reported prevalence is the highest in the literature with increased proportion of more severe forms. Collaborative efforts including introduction of newborn screening should be implemented to diagnose such cases earlier and improve the quality of life and prevent premature deaths.
Collapse
Affiliation(s)
- Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.,Allergy & Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Mona Al-Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.,Department of Allergy, Al-Rashid Allergy Center, Kuwait University, Kuwait City, Kuwait
| | - Ahmad Al-Khabaz
- Allergy & Clinical Immunology Unit, Pediatric Department, Mubarak Al-Kabeer Hospital, Kuwait University, Jabriya, Kuwait
| | - Ahmed Husain
- Allergy & Clinical Immunology Unit, Pediatric Department, Al-Ameri Hospital, Kuwait City, Kuwait
| | - Ali Sadek
- Kuwait National Center for Health Information, Ministry of Health, Kuwait City, Kuwait
| | - Yasmeen Othman
- Department of Allergy, Al-Rashid Allergy Center, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
30
|
Moazzami B, Yazdani R, Azizi G, Kiaei F, Tafakori M, Modaresi M, Shirzadi R, Mahdaviani SA, Sohani M, Abolhassani H, Aghamohammadi A. Respiratory Complications in Patients with Hyper IgM Syndrome. J Clin Immunol 2019; 39:557-568. [DOI: 10.1007/s10875-019-00650-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
|
31
|
Al-Herz W, Chou J, Delmonte OM, Massaad MJ, Bainter W, Castagnoli R, Klein C, Bryceson YT, Geha RS, Notarangelo LD. Comprehensive Genetic Results for Primary Immunodeficiency Disorders in a Highly Consanguineous Population. Front Immunol 2019; 9:3146. [PMID: 30697212 PMCID: PMC6340972 DOI: 10.3389/fimmu.2018.03146] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 01/31/2023] Open
Abstract
Objective: To present the genetic causes of patients with primary immune deficiencies (PIDs) in Kuwait between 2004 and 2017. Methods: The data was obtained from the Kuwait National Primary Immunodeficiency Disorders Registry. Genomic DNA from patients with clinical and immunological features of PID was sequenced using Sanger sequencing (SS), next generation sequencing (NGS) of targeted genes, whole exome sequencing (WES), and/or whole genome sequencing (WGS). Functional assays were utilized to assess the biologic effect of identified variants. Fluorescence in situ hybridization (FISH) for 22q11.2 deletion and genomic hybridizations arrays were performed when thymic defects were suspected. Results: A total of 264 patients were registered during the study period with predominance of patients with immunodeficiencies affecting cellular and humoral immunity (35.2%), followed by combined immunodeficiencies with associated syndromic features (24%). Parental consanguinity and family history suggestive of PID were reported in 213 (81%) and 145 patients (55%), respectively. Genetic testing of 206 patients resulted in a diagnostic yield of 70%. Mutations were identified in 46 different genes and more than 90% of the reported genetic defects were transmitted by in an autosomal recessive pattern. The majority of the mutations were missense mutations (57%) followed by deletions and frame shift mutations. Five novel disease-causing genes were discovered. Conclusions: Genetic testing should be an integral part in the management of primary immunodeficiency patients. This will help the delivery of precision medicine and facilitate proper genetic counseling. Studying inbred populations using sophisticated diagnostic methods can allow better understanding of the genetics of primary immunodeficiency disorders.
Collapse
Affiliation(s)
- Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.,Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Janet Chou
- Division of Immunology, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wayne Bainter
- Division of Immunology, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Pediatrics, University of Pavia, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Yenan T Bryceson
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, Aghamohammadi A. The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol 2018; 198:19-30. [PMID: 30439505 DOI: 10.1016/j.clim.2018.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on the underlying genetic defect, the affected patients present a variety of clinical manifestations including pulmonary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproliferation and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in patients with HIGM syndrome have been reviewed.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|