1
|
Jørgensen MP, Øvlisen AK, Jensen JF, El-Galaly TC, Dalager MG, Vestergaard H, Broesby-Olsen S, Severinsen MT. Prevalence and incidence of mastocytosis in adults: a Danish nationwide register study. Eur J Epidemiol 2025:10.1007/s10654-024-01195-5. [PMID: 39751701 DOI: 10.1007/s10654-024-01195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Mastocytosis is a group of rare heterogeneous diseases with a prevalence previously found to be 10-23 per 100,000 persons. More awareness and improvements in the diagnostic methods in later years have led to more patients being diagnosed. Here, we set out to present the prevalence and incidence rate of mastocytosis among the adult Danish population. By merging data from the Danish National Patient Register, the Danish Pathology Register and the Danish Cancer Register we included all adult patients (≥ 18 years) diagnosed with mastocytosis in Denmark prior to 2022. A cohort of 1,594 patients with mastocytosis was identified. The prevalence of mastocytosis was 27.43 per 100,000 persons (95% confidence interval [CI]: 25.95-28.96) as of January 1, 2022, and the 25-year average incidence rate between 1997 and 2021 was 1.21 per 100,000 persons (95%CI: 1.02-1.40) with an increasing incidence rate since 2002. We found a higher prevalence of mastocytosis among adults in the Danish population than previously reported, and an increasing incidence rate during the last 20 years. Increased awareness of the disease and better diagnostic methods most likely contributed to this.
Collapse
Affiliation(s)
- Maren Poulsgaard Jørgensen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Andreas Kiesbye Øvlisen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Faartoft Jensen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Hanne Vestergaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Mastocytosis Centre, Odense University Hospital (MastOUH), Odense University Hospital, Odense, Denmark
| | - Sigurd Broesby-Olsen
- Mastocytosis Centre, Odense University Hospital (MastOUH), Odense University Hospital, Odense, Denmark
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Marianne Tang Severinsen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Hoermann G, Khoury JD. Can molecular patterns help to classify overlapping entities in myeloid neoplasms? Histopathology 2025; 86:146-157. [PMID: 39428913 DOI: 10.1111/his.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Myeloid neoplasms include myeloproliferative and myelodysplastic neoplasms and acute myeloid leukaemia. Historically, these diseases have been diagnosed based on clinicopathological features with sometimes arbitrary thresholds that have persisted even as molecular features were gradually incorporated into their classification. As such, although current diagnostic approaches can classify the majority of myeloid neoplasms accurately using a combination of molecular and clinicopathological features, some areas of overlap persist and occasionally pose diagnostic challenges. These include overlap across BCR::ABL1-negative myeloproliferative neoplasms; between clonal cytopenia of undetermined significance and myelodysplastic neoplasms; myelodysplastic/myeloproliferative neoplasms; and, detection of KIT mutations in myeloid neoplasms other than mastocytosis, raising the prospect of systemic mastocytosis. Molecular testing has become state of the art in the diagnostic work-up of myeloid neoplasms, and molecular patterns can inherently help to classify overlapping entities if considered within a framework of haematological presentations. For future development, molecular testing will likely include whole genome and transcriptome sequencing, and primarily molecular classifications of myeloid neoplasms have already been suggested. As such, genetically defined groups should still constitute the basis for our understanding of disease development from early onset to progression, while clinicopathological features could then be used to describe the stage of the disease rather than the specific type of myeloid neoplasm.
Collapse
Affiliation(s)
| | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
3
|
Valent P, Hartmann K, Hoermann G, Reiter A, Alvarez-Twose I, Brockow K, Bonadonna P, Hermine O, Niedoszytko M, Carter MC, Butterfield JH, Siebenhaar F, Zanotti R, Radia DH, Castells M, Sperr WR, Broesby-Olsen S, Triggiani M, Schwartz LB, George TI, Gülen T, Sotlar K, Gotlib J, Galli SJ, Horny HP, Metcalfe DD, Orfao A, Arock M, Akin C. Harmonization of Diagnostic Criteria in Mastocytosis for Use in Clinical Practice: WHO vs ICC vs AIM/ECNM. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:3250-3260.e5. [PMID: 39216803 DOI: 10.1016/j.jaip.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mastocytosis is a clonal myeloid disorder defined by an increase and accumulation of mast cells (MCs) in one or multiple organ systems. The complex pathology of mastocytosis results in variable clinical presentations, courses, and outcomes. The World Health Organization (WHO) divides the disease into cutaneous mastocytosis (CM), several forms of systemic mastocytosis (SM), and MC sarcoma. In most patients with SM, a somatic KIT mutation, usually D816V, is identified. Patients diagnosed with CM or nonadvanced SM, including indolent SM, have a near-normal life expectancy, whereas those with advanced SM, including aggressive SM and MC leukemia, have limited life expectancy. Since 2001, a multidisciplinary consensus group consisting of experts from the European Competence Network on Mastocytosis and the American Initiative in Mast Cell Diseases has supported the field by developing diagnostic criteria for mastocytosis. These criteria served as the basis for the WHO classification of mastocytosis over 2 decades. More recently, an International Consensus Classification group proposed slightly modified diagnostic criteria and a slightly revised classification. In this article, these changes are discussed. Furthermore, we propose harmonization among the proposals of the American Initiative in Mast Cell Diseases/European Competence Network on Mastocytosis consensus group, WHO, and the International Consensus Classification Group. Such harmonization will facilitate comparisons of retrospective study results and the conduct of prospective trials.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; MLL Munich Leukemia Laboratory, Munich, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Iván Alvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) and CIBERONC, Hospital Virgen del Valle, Toledo, Spain
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | | | - Olivier Hermine
- Imagine Institute Université de Paris, Sorbonne, INSERM U1163, Centre national de référence des mastocytoses, Hôpital Necker, Assistance publique hôpitaux de Paris, Paris, France
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Roberta Zanotti
- Department of Medicine, IRCSS Ospedale Sacro Cuore Don Calabria di Negrar, Negrar di Valpolicella, Verona, Italy
| | - Deepti H Radia
- Department of Clinical Haematology, Guys and St Thomas' NHS Hospitals, London, United Kingdom
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy & Immunology, Virginia Commonwealth University (VCU), Richmond, Va
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Theo Gülen
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Alberto Orfao
- Servicio Central de Citometria (NUCLEUS), Centro de Investigacion del Cancer (IBMCC; CSIC/USAL) Instituto Biosanitario de Salamanca (IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Michel Arock
- CEREMAST, Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
4
|
Hamilton MJ, Greene LW, Madigan LM, Wang SA, Arana Yi C, Kuykendall A, George TI, Castells MC. Case Report: Multidisciplinary management of a patient with indolent systemic mastocytosis and refractory symptoms. FRONTIERS IN ALLERGY 2024; 5:1401187. [PMID: 39493747 PMCID: PMC11527781 DOI: 10.3389/falgy.2024.1401187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Systemic mastocytosis (SM) is a rare hematologic condition characterized by the proliferation and accumulation in tissue of clonal mast cells in multiple organ systems. The release of mast cell mediators in the indolent disease type and the predominant mast cell infiltration of tissues in advanced disease contribute to the heterogeneous clinical presentation. The disease driver in >90% of adult cases is an activating KIT mutation, with D816V being the most frequent. Here we describe a case of a young adult male presenting with osteoporosis with associated symptoms of reflux and a history of bee sting anaphylaxis. A multidisciplinary approach to the diagnosis and management was required to minimize morbidities and prevent complications. Current best supportive care was inadequate to control the patient's disease, and a selective KIT D816V inhibitor (avapritinib) was initiated. Conventional, and advanced therapies, including those in the treatment pipeline for SM are discussed.
Collapse
Affiliation(s)
- Matthew J. Hamilton
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Loren W. Greene
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| | - Lauren M. Madigan
- Department of Dermatology, University of Utah, Salt Lake City, UT, United States
| | - Sa A. Wang
- Division of Pathology-Lab Medicine Division, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Cecilia Arana Yi
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Andrew Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Tracy I. George
- ARUP Laboratories, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Mariana C. Castells
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Cilloni D, Maffeo B, Savi A, Danzero AC, Bonuomo V, Fava C. Detection of KIT Mutations in Systemic Mastocytosis: How, When, and Why. Int J Mol Sci 2024; 25:10885. [PMID: 39456668 PMCID: PMC11507058 DOI: 10.3390/ijms252010885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
More than 90% of patients affected by mastocytosis are characterized by a somatic point mutation of KIT, which induces ligand-independent activation of the receptor and downstream signal triggering, ultimately leading to mast cell accumulation and survival. The most frequent mutation is KIT p.D816V, but other rarer mutations can also be found. These mutations often have a very low variant allele frequency (VAF), well below the sensitivity of common next-generation sequencing (NGS) methods used in routine diagnostic panels. Highly sensitive methods are developing for detecting mutations. This review summarizes the current indications on the recommended methods and on how to manage and interpret molecular data for the diagnosis and follow-up of patients with mastocytosis.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Mauriziano Hospital, 10128 Turin, Italy; (B.M.); (A.S.); (A.C.D.); (V.B.); (C.F.)
| | | | | | | | | | | |
Collapse
|
6
|
Boggs NA, Tanasi I, Hartmann K, Zanotti R, Gonzalez-de-Olano D. Mast Cell Disorders and Hymenoptera Venom-Triggered Anaphylaxis: Evaluation and Management. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024:S2213-2198(24)00853-5. [PMID: 39187156 DOI: 10.1016/j.jaip.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Patients with Hymenoptera venom allergy (HVA), especially those with severe anaphylaxis, frequently have concomitant clonal mast cell disease (MCD) in the form of systemic mastocytosis or monoclonal mast cell activation syndrome. Detection of clonal MCD is important because it will have significant consequences for managing HVA. Therefore, we recommend patients with HVA be systematically screened for clonal MCD. The pretest probability of clonal MCD can be assessed in a stepwise fashion starting with examination of the skin for typical monomorphic maculopapular cutaneous mastocytosis lesions; measurement of the baseline serum tryptase (BST) and tryptase genotyping for patients with BST greater than 11 ng/mL; followed by the Red Española de Mastocitosis score, which is calculated using anaphylaxis clinical features, BST, and the patient's sex. A bone marrow biopsy should be performed in patients with monomorphic maculopapular cutaneous mastocytosis, a Red Española de Mastocitosis score of 2 or greater, or an elevated BST based on tryptase genotype. Patients with HVA and a clonal MCD should be treated with immunotherapy directed against the Hymenoptera venom for which they are sensitized. For this high-risk subgroup of patients with HVA, it is recommended to continue immunotherapy for more than 5 years or indefinitely and to carry at least three epinephrine autoinjectors. Future studies should determine whether KIT D816V-selective tyrosine kinase inhibitors are effective at preventing or reducing the severity of Hymenoptera-venom triggered anaphylaxis in patients with clonal MCD.
Collapse
Affiliation(s)
- Nathan A Boggs
- Department of Medicine, Uniformed Services University, Bethesda, Md; Allergy, Immunology, and Immunizations Service, Walter Reed National Military Medical Center, Bethesda, Md.
| | - Ilaria Tanasi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Universitaria di Verona, Verona, Italy
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Roberta Zanotti
- IRCCS Ospedale Sacro Cuore Don Calabria di Negrar, Medicine Unit, Negrar di Valpolicella, Verona, Italy
| | - David Gonzalez-de-Olano
- Department of Allergy, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Cao V, Lee SJ, Bai Y, Holland SM, Rosen LB, Metcalfe DD, Komarow HD. Autoantibodies to type I interferons in patients with systemic mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100273. [PMID: 38817344 PMCID: PMC11137574 DOI: 10.1016/j.jacig.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 06/01/2024]
Abstract
Background Autoantibodies to type I interferons have been identified in association with a variety of inflammatory and autoimmune diseases. Type I interferons have demonstrated inhibitory effects on mast cell proliferation and degranulation. Systemic mastocytosis (SM) is a disease characterized by increased mast cell burden and mediator release. Whether autoantibodies to type I interferon are present in the sera of patients with SM, and if so, whether they correlate with characteristics of disease, is unknown. Objective The purpose of this study was to determine whether autoantibodies to type I interferons are observed in the sera of patients with SM, and if so, whether they correlate with biomarkers of disease severity. Methods We analyzed sera from 89 patients with SM for concentrations of autoantibodies to type I interferon by using a multiplex particle-based assay and signal neutralization capacity by using a STAT1 activity assay and then compared these measurements with those in a database of information on 1284 healthy controls. Results Our cohort was predominantly female (57.3%), with a median age of 56 years. Of the cohort members, 13 produced autoantibodies to IFN-β, 3 to IFN-ω, and 0 to IFN-α. None of the 13 sera demonstrated signal neutralization. Neither autoantibody concentration nor signaling inhibition measurements correlated with tryptase concentrations or D816V allele burden. Conclusion Although a small subpopulation of patients with SM have autoantibodies to type I interferons, there was no correlation between autoantibody production and signaling inhibition. These data are consistent with the conclusion that autoantibodies to type I interferon do not play a significant role in the pathogenesis or severity of SM.
Collapse
Affiliation(s)
- Vivian Cao
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Serena J. Lee
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lindsey B. Rosen
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hirsh D. Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
8
|
Rossignol J, Arock M. Diagnosis of mastocytosis: emerging iceberg? Blood 2024; 144:350-352. [PMID: 39052270 DOI: 10.1182/blood.2024024943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
|
9
|
Lübke J, Schmid A, Christen D, Oude Elberink HNG, Span LFR, Niedoszytko M, Gorska A, Lange M, Gleixner KV, Hadzijusufovic E, Stefan A, Angelova-Fischer I, Zanotti R, Bonifacio M, Bonadonna P, Shoumariyeh K, von Bubnoff N, Müller S, Perkins C, Elena C, Malcovati L, Hagglund H, Mattsson M, Parente R, Varkonyi J, Fortina AB, Caroppo F, Brockow K, Zink A, Breynaert C, Leven T, Yavuz AS, Doubek M, Sabato V, Schug T, Hartmann K, Triggiani M, Gotlib J, Hermine O, Arock M, Kluin-Nelemans HC, Panse J, Sperr WR, Valent P, Reiter A, Schwaab J. Serum chemistry profiling and prognostication in systemic mastocytosis: a registry-based study of the ECNM and GREM. Blood Adv 2024; 8:2890-2900. [PMID: 38593217 PMCID: PMC11214361 DOI: 10.1182/bloodadvances.2024012756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Certain laboratory abnormalities correlate with subvariants of systemic mastocytosis (SM) and are often prognostically relevant. To assess the diagnostic and prognostic value of individual serum chemistry parameters in SM, 2607 patients enrolled within the European Competence Network on Mastocytosis and 575 patients enrolled within the German Registry on Eosinophils and Mast Cells were analyzed. For screening and diagnosis of SM, tryptase was identified as the most specific serum parameter. For differentiation between indolent and advanced SM (AdvSM), the following serum parameters were most relevant: tryptase, alkaline phosphatase, β2-microglobulin, lactate dehydrogenase (LDH), albumin, vitamin B12, and C-reactive protein (P < .001). With regard to subvariants of AdvSM, an elevated LDH of ≥260 U/L was associated with multilineage expansion (leukocytosis, r = 0.37, P < .001; monocytosis, r = 0.26, P < .001) and the presence of an associated myeloid neoplasm (P < .001), whereas tryptase levels were highest in mast cell leukemia (MCL) vs non-MCL (308μg/L vs 146μg/L, P = .003). Based on multivariable analysis, the hazard-risk weighted assignment of 1 point to LDH (hazard ratio [HR], 2.1; 95% confidence interval [CI], 1.1-4.0; P = .018) and 1.5 points each to β2-microglobulin (HR, 2.7; 95% CI, 1.4-5.4; P = .004) and albumin (HR, 3.3; 95% CI, 1.7-6.5; P = .001) delineated a highly predictive 3-tier risk classification system (0 points, 8.1 years vs 1 point, 2.5 years; ≥1.5 points, 1.7 years; P < .001). Moreover, serum chemistry parameters enabled further stratification of patients classified as having an International Prognostic Scoring System for Mastocytosis-AdvSM1/2 risk score (P = .027). In conclusion, serum chemistry profiling is a crucial tool in the clinical practice supporting diagnosis and prognostication of SM and its subvariants.
Collapse
Affiliation(s)
- Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Alicia Schmid
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Deborah Christen
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Hanneke N. G. Oude Elberink
- Department of Allergology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lambert F. R. Span
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Gorska
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Karoline V. Gleixner
- Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department/University Clinic for Companion Animals and Horses, Internal Medicine Small Animals, University Clinic for Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - Alex Stefan
- University Clinic for Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Irena Angelova-Fischer
- Department of Dermatology and Venereology, Allergy Center, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Roberta Zanotti
- Department of Medicine, Section of Hematology, Verona University Hospital, Verona, Italy
| | - Massimiliano Bonifacio
- Department of Medicine, Section of Hematology, Verona University Hospital, Verona, Italy
| | | | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Sabine Müller
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cecelia Perkins
- Stanford Cancer Institute, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA
| | - Chiara Elena
- Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Malcovati
- Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Hans Hagglund
- Division of Hematology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mattias Mattsson
- Division of Hematology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Judit Varkonyi
- Department of Hematology, Semmelweis University, Budapest, Hungary
| | - Anna Belloni Fortina
- Department of Medicine, Pediatric Dermatology Unit, University of Padova, Padova, Italy
| | - Francesca Caroppo
- Department of Medicine, Pediatric Dermatology Unit, University of Padova, Padova, Italy
| | - Knut Brockow
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Zink
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christine Breynaert
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group and MASTeL, University Hospitals Leuven, Leuven, Belgium
| | - Toon Leven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group and MASTeL, University Hospitals Leuven, Leuven, Belgium
| | - Akif Selim Yavuz
- Division of Hematology, Istanbul Medical School, University of Istanbul, Istanbul, Turkey
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vito Sabato
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerpen, Belgium
| | - Tanja Schug
- Department of Dermatology and Venereology, University Hospital Graz, Graz, Austria
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA
| | - Olivier Hermine
- French Reference Center for Mastocytosis, Hospital Necker, Assistance Publique Hôpitaux de Paris, Imagine Institute, University Paris Descartes, Paris, France
| | - Michel Arock
- French Reference Center for Mastocytosis, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, University Paris Sorbonne, Paris, France
| | - Hanneke C. Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jens Panse
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Wolfgang R. Sperr
- Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Greiner G, Witzeneder N, Klein K, Tangermann S, Kodajova P, Jaeger E, Ratzinger F, Gerner MC, Jawhar M, Baumgartner S, Fruehwirth K, Schmetterer KG, Zuber J, Gleixner KV, Mayerhofer M, Schwarzinger I, Simonitsch-Klupp I, Esterbauer H, Baer C, Walter W, Meggendorfer M, Strassl R, Haferlach T, Hartmann K, Kenner L, Sperr WR, Reiter A, Sexl V, Arock M, Valent P, Hoermann G. Tumor necrosis factor α promotes clonal dominance of KIT D816V+ cells in mastocytosis: role of survivin and impact on prognosis. Blood 2024; 143:1006-1017. [PMID: 38142424 DOI: 10.1182/blood.2023020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Systemic mastocytosis (SM) is defined by the expansion and accumulation of neoplastic mast cells (MCs) in the bone marrow (BM) and extracutaneous organs. Most patients harbor a somatic KIT D816V mutation, which leads to growth factor-independent KIT activation and accumulation of MC. Tumor necrosis factor α (TNF) is a proapoptotic and inflammatory cytokine that has been implicated in the clonal selection of neoplastic cells. We found that KIT D816V increases the expression and secretion of TNF. TNF expression in neoplastic MCs is reduced by KIT-targeting drugs. Similarly, knockdown of KIT or targeting the downstream signaling cascade of MAPK and NF-κB signaling reduced TNF expression levels. TNF reduces colony formation in human BM cells, whereas KIT D816V+ cells are less susceptible to the cytokine, potentially contributing to clonal selection. In line, knockout of TNF in neoplastic MC prolonged survival and reduced myelosuppression in a murine xenotransplantation model. Mechanistic studies revealed that the relative resistance of KIT D816V+ cells to TNF is mediated by the apoptosis-regulator BIRC5 (survivin). Expression of BIRC5 in neoplastic MC was confirmed by immunohistochemistry of samples from patients with SM. TNF serum levels are significantly elevated in patients with SM and high TNF levels were identified as a biomarker associated with inferior survival. We here characterized TNF as a KIT D816V-dependent cytokine that promotes clonal dominance. We propose TNF and apoptosis-associated proteins as potential therapeutic targets in SM.
Collapse
Affiliation(s)
- Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nadine Witzeneder
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Jaeger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Marlene C Gerner
- Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
- Department of Hematology and Oncology, Helios Pforzheim, Pforzheim, Germany
| | - Sigrid Baumgartner
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - Karin Fruehwirth
- Medical Central Laboratory, State Hospital Feldkirch, Feldkirch, Austria
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Karoline V Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Ilse Schwarzinger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Robert Strassl
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | | | - Michel Arock
- Department of Hematological Biology and French National Reference Center for Mastocytosis (CEREMAST), Pitié-Salpêtrière Hospital, Paris Sorbonne University, Paris, France
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Munich Leukemia Laboratory, Munich, Germany
| |
Collapse
|
11
|
Lübke J, Naumann N, Hoffmann O, Horny HP, Sotlar K, Rudelius M, Metzgeroth G, Fabarius A, Hofmann WK, Reiter A, Schwaab J. A clinical, morphological and molecular study of 70 patients with gastrointestinal involvement in systemic mastocytosis. Sci Rep 2024; 14:702. [PMID: 38184670 PMCID: PMC10771518 DOI: 10.1038/s41598-023-49749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
In 70 patients with KIT D816V positive systemic mastocytosis (SM) including 36 patients with advanced SM (AdvSM), we correlated the extent of reported mucosal mast cell ([m]MC) infiltration of the upper and/or lower gastrointestinal tract (UGIT, n = 63; LGIT, n = 64; both, n = 57) with symptoms and markers of MC burden/subtype. GI symptoms were reported by all patients (mean 2.1 number of symptoms). A strong mMC infiltration was identified in 24 patients (UGIT, 17/63, 27%; LGIT, 19/64, 30%). Concurrent involvement of UGIT and LGIT (n = 12) correlated with female gender (75%) and a higher symptom burden (mean 2.7) but not with MC burden or subtype. Significant differences between non-AdvSM and AdvSM were reported regarding food intolerance (54% vs. 17%), cramping (54% vs. 22%) and weight loss (0% vs. 64%). KIT D816V was identified in 54/56 (96%) available biopsies. In 46 patients, digital PCR revealed a correlation with low albumin levels (r = - 0.270, P = 0.069) and the KIT D816V VAF in peripheral blood (r = 0.317, P = 0.036) but not with the extent of mMC infiltration or markers of MC burden/subtype. Although MC mediator triggered GI symptoms have a substantial impact on the quality of life, correlation to objective disease parameters is lacking thus making its systematic assessment challenging.
Collapse
Affiliation(s)
- Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Oliver Hoffmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Hans-Peter Horny
- Department of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Karl Sotlar
- Department of Pathology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Martina Rudelius
- Department of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
12
|
Costa A, Scalzulli E, Carmosino I, Capriata M, Ielo C, Masucci C, Passucci M, Martelli M, Breccia M. Systemic mastocytosis: 2023 update on diagnosis and management in adults. Expert Opin Emerg Drugs 2023; 28:153-165. [PMID: 37256917 DOI: 10.1080/14728214.2023.2221028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Systemic mastocytosis (SM) is a complex and heterogeneous disease, characterized by the clonal accumulation of mast cells in one or more organs. In 2022 both the World Health Organization (WHO) and the International Consensus Classification (ICC) modified the diagnostic and classification criteria of SM. Moreover, the identification of new clinical and molecular variables has improved prognostic tools and led to increasingly individualized therapeutic strategies. AREAS COVERED The aim of this review is to present the updates introduced by the International Consensus Classification in diagnostic criteria of SM. In addition, we report the latest data available from the most important clinical trials in patients both with non-advanced and advanced disease, including elenestinib and bezuclastinib. EXPERT OPINION Diagnosis and classification of SM has evolved over years. The most recent WHO and ICC classification improved SM diagnostic work-up, providing clinicians with a clear and simplified diagnostic scheme. New approved targeted therapies such as midostaurin and avapritinib modified the treatment paradigm in patients in advanced stage, and next-generation inhibitors actually investigated in clinical trials are expected in the next future.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Marcello Capriata
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Chiara Masucci
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Mauro Passucci
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
13
|
Pyatilova P, Bernstein JA, Aulenbacher F, Borges MS, Dimitrijević S, Hoehn G, Maurer M, Kolkhir P, Siebenhaar F. The diagnostic workup for systemic mastocytosis differs from consensus recommendations: Results of a worldwide survey. World Allergy Organ J 2023; 16:100838. [PMID: 38020286 PMCID: PMC10661596 DOI: 10.1016/j.waojou.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Mastocytosis is a complex disorder affecting various organs. The diagnostic workup can be challenging and requires a multidisciplinary approach including the use of uncommon tests. To assess mastocytosis management around the globe, we conducted the first worldwide online survey for physicians. Methods A 21-item questionnaire was sent out to the members of the World Allergy Organization (WAO), the Global Allergy and Asthma European Network (GA2LEN), the Urticaria (UCARE) and Angioedema (ACARE) Centers of Reference and Excellence, the German Society of Allergology and Clinical Immunology (DGAKI), and the European Mast Cell and Basophil Research Network (EMBRN) in April-June 2021. Results Across 628 respondents from 79 countries 87.7% and 9.7% of physicians were allergists/clinical immunologists and/or dermatologists. Participating physicians were from all regions of the world (Europe, EU: 41.6%; North America, NA: 24.8%; Latin America, LA: 14.5%; Asia-Pacific, AP: 12.6%; and Africa/Middle East, AME: 6.5%). Only 2.2% of respondents worked at Specialized Mastocytosis Centers (SMCs) in North America or European Union. Physicians reported caring for 4 patients with mastocytosis per year, with higher numbers in European Union and Asia Pacific (5/year) compared to Latin America (2/year). Dermatologists and physicians who work at SMCs reported higher patient numbers (15/year and 80/year, respectively). Suspicion of mastocytosis in the allergology and dermatology community is commonly driven by anaphylaxis (82.9%), mastocytosis skin lesions (82.1%), or elevated tryptase levels (76.6%). Osteoporosis and gastrointestinal symptoms less often prompted suspicion of mastocytosis (21.4% and 49.9%, respectively). World Health Organisation (WHO)-diagnostic criteria and classification, regardless of the region, are only used by about 50% of physicians, with higher rates for SMCs (83.3%). Serum tryptase, bone marrow biopsy, and KIT D816V mutation analysis are included in the diagnostic workup by 90.9%, 61.5%, and 58.4% of physicians, respectively. The biggest challenges for the management of mastocytosis are the lack of more effective treatment options (51.1%), missing multidisciplinary networks (47.1%), and the lack of experience of specialists from other disciplines (39.0%). Conclusions The diagnostic workup for mastocytosis differs from consensus recommendations and varies between regions. This may be improved by establishing active multidisciplinary networks, increasing access to diagnostic procedures, consistently applying WHO criteria, and developing new Mastocytosis Centers of Reference and Excellence.
Collapse
Affiliation(s)
- Polina Pyatilova
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Jonathan A. Bernstein
- Allergy Section, Division of Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Felix Aulenbacher
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Mario Sanchez Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad and Clinica El Ávila, Caracas, Venezuela
| | | | - Gerard Hoehn
- Blueprint Medicines Corporation, Cambridge, MA, USA
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| |
Collapse
|
14
|
Abstract
Systemic mastocytosis is associated with KIT D816V mutation in more than 90% of cases. Patients with non-advanced forms of mastocytosis (indolent systemic mastocytosis, bone marrow mastocytosis, and smoldering systenic mastocytosis) have a low rate of progession to advanced variants and generally have a comparable life expectancy to age-matched general population. Symptomatology in non-advanced mastocytosis is variable and is related to mast cell mediator release. While some patients require no or minimal symptomatic therapy with antimediator drugs, other may suffer from refractory symptoms impacting the quality of life despite being on multiple anti-mediator drugs. KIT tyrosine kinase inhibitors have been approved for advanced SM, and avapritinib has also been recently approved as the first such inhibitor for indolent systemic mastocytosis. Other TKIs are currently in clinical trials for patients with non-advanced SM who have persistent and severe symptoms despite optimized antimediator therapy. This article will review the current state of the science and available clinical data from trials of tyrosine kinase inhibitors in non-advanced systemic mastocytosis.
Collapse
Affiliation(s)
- Cem Akin
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, PO Box 442, Suite H-2100, Ann Arbor, MI 48106-0442, USA.
| |
Collapse
|
15
|
Chantran Y, Valent P, Arock M. KIT Mutations and Other Genetic Defects in Mastocytosis: Implications for Disease Pathology and Targeted Therapies. Immunol Allergy Clin North Am 2023; 43:651-664. [PMID: 37758404 DOI: 10.1016/j.iac.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A KIT activating mutation (usually KIT D816V) is detected in neoplastic cells in greater than 90% of indolent patients with systemic mastocytosis (SM). In more advanced variants of SM, additional genetic defects can be found in several myeloid malignancy-related genes, which can be detected by applying next-generation sequencing. Currently, the techniques recommended to detect the KIT D816V mutation and quantify the mutational burden in peripheral blood, bone marrow, or other organs/tissues are allele specific-quantitative PCR or droplet digital PCR. These techniques are useful for diagnosis, prognostication, follow-up and monitoring of therapeutic efficacy of cytoreductive agents in patients with SM.
Collapse
Affiliation(s)
- Yannick Chantran
- Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Department of Biological Immunology, Saint-Antoine Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Health Environmental Risk Assessment (HERA) Team, Centre of Research in Epidemiology and Statistics (CRESS), Inserm / INRAE, Faculty of Pharmacy, Université de Paris, Paris, France
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria; Division of Hematology and Hemostaseology, Department of Internal Medicine, Medical University of Vienna
| | - Michel Arock
- Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France.
| |
Collapse
|
16
|
Valent P, Akin C, Arock M, Gleixner KV, Greinix H, Hermine O, Horny HP, Ivanov D, Orfao A, Rabitsch W, Reiter A, Schulenburg A, Sotlar K, Sperr WR, Ustun C. Antibody-Based and Cell Therapies for Advanced Mastocytosis: Established and Novel Concepts. Int J Mol Sci 2023; 24:15125. [PMID: 37894806 PMCID: PMC10607143 DOI: 10.3390/ijms242015125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced systemic mastocytosis (SM) is a heterogeneous group of myeloid neoplasms characterized by an uncontrolled expansion of mast cells (MC) in one or more internal organs, SM-induced tissue damage, and poor prognosis. Advanced SM can be categorized into aggressive SM (ASM), MC leukemia (MCL), and SM with an associated hematologic neoplasm (SM-AHN). In a vast majority of all patients, neoplastic cells display a KIT mutation, mostly D816V and rarely other KIT variants. Additional mutations in other target genes, such as SRSF2, ASXL1, or RUNX1, may also be identified, especially when an AHN is present. During the past 10 years, improved treatment approaches have led to a better quality of life and survival in patients with advanced SM. However, despite the availability of novel potent inhibitors of KIT D816V, not all patients enter remission and others relapse, often with a multi-mutated and sometimes KIT D816V-negative disease exhibiting multi-drug resistance. For these patients, (poly)chemotherapy, antibody-based therapies, and allogeneic hematopoietic stem cell transplantation may be viable treatment alternatives. In this article, we discuss treatment options for patients with drug-resistant advanced SM, including novel KIT-targeting drugs, antibody-based drugs, and stem cell-eradicating therapies.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI 48106, USA
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
| | - Karoline V. Gleixner
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hildegard Greinix
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria
| | - Olivier Hermine
- Service d’Hématologie, Imagine Institute Université de Paris, INSERM U1163, Centre National de Référence des Mastocytoses, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCC; CSIC/USAL) Instituto Biosanitario de Salamanca (IBSAL), CIBERONC and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Werner Rabitsch
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, 68135 Mannheim, Germany
| | - Axel Schulenburg
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Celalettin Ustun
- Department of Medicine, Division of Hematology, Oncology, and Cell Therapy, Coleman Foundation Blood and Marrow Transplant Center at Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Valent P, Hoermann G, Bonadonna P, Hartmann K, Sperr WR, Broesby-Olsen S, Brockow K, Niedoszytko M, Hermine O, Chantran Y, Butterfield JH, Greiner G, Carter MC, Sabato V, Radia DH, Siebenhaar F, Triggiani M, Gülen T, Alvarez-Twose I, Staudinger T, Traby L, Sotlar K, Reiter A, Horny HP, Orfao A, Galli SJ, Schwartz LB, Lyons JJ, Gotlib J, Metcalfe DD, Arock M, Akin C. The Normal Range of Baseline Tryptase Should Be 1 to 15 ng/mL and Covers Healthy Individuals With HαT. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3010-3020. [PMID: 37572755 DOI: 10.1016/j.jaip.2023.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Physiological levels of basal serum tryptase vary among healthy individuals, depending on the numbers of mast cells, basal secretion rate, copy numbers of the TPSAB1 gene encoding alpha tryptase, and renal function. Recently, there has been a growing debate about the normal range of tryptase because individuals with the hereditary alpha tryptasemia (HαT) trait may or may not be symptomatic, and if symptomatic, uncertainty exists as to whether this trait directly causes clinical phenotypes or aggravates certain conditions. In fact, most HαT-positive cases are regarded as asymptomatic concerning mast cell activation. To address this point, experts of the European Competence Network on Mastocytosis (ECNM) and the American Initiative in Mast Cell Diseases met at the 2022 Annual ECNM meeting and discussed the physiological tryptase range. Based on this discussion, our faculty concluded that the normal serum tryptase range should be defined in asymptomatic controls, inclusive of individuals with HαT, and based on 2 SDs covering the 95% confidence interval. By applying this definition in a literature screen, the normal basal tryptase in asymptomatic controls (HαT-positive persons included) ranges between 1 and 15 ng/mL. This definition should avoid overinterpretation, unnecessary referrals, and unnecessary anxiety or anticipatory fear of illness in healthy individuals.
Collapse
Affiliation(s)
- Peter Valent
- Division of Haematology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; MLL Munich Leukemia Laboratory, Munich, Germany
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Wolfgang R Sperr
- Division of Haematology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Olivier Hermine
- Service d'hématologie, Imagine Institute Université de Paris, Centre national de référence des mastocytoses, Hôpital Necker, Assistance publique hôpitaux de Paris, Paris, France
| | - Yannick Chantran
- Department of Biological Immunology, Saint-Antoine Hospital, Paris Sorbonne University, Paris, France
| | | | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria
| | - Melody C Carter
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Vito Sabato
- Faculty of Medicine and Health Sciences, Department of Immunology-Allergology-Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Deepti H Radia
- Guy's & St. Thomas' National Health Service (NHS) Foundation Trust, Guy's Hospital, London, UK
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology (IA), Berlin, Germany
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Theo Gülen
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Alvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) and CIBERONC, Hospital Virgen del Valle, Toledo, Spain
| | - Thomas Staudinger
- Department of Internal Medicine I, Intensive Care Unit, Medical University of Vienna, Vienna, Austria
| | - Ludwig Traby
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCC CSIC/USAL) Instituto Biosanitario de Salamanca (IBSAL), CIBERONC and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Md
| | - Jason Gotlib
- Stanford University School of Medicine/Stanford Cancer Institute, Stanford, Calif
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Paris Sorbonne University, Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
18
|
KIT D816V Mast Cells Derived from Induced Pluripotent Stem Cells Recapitulate Systemic Mastocytosis Transcriptional Profile. Int J Mol Sci 2023; 24:ijms24065275. [PMID: 36982353 PMCID: PMC10049485 DOI: 10.3390/ijms24065275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Mast cells (MCs) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MCs occur in low abundance, which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells in the body and established a novel and robust protocol for human iPS cell differentiation toward MCs. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MCs that recapitulate SM disease features: increased number of MCs, abnormal maturation kinetics and activated phenotype, CD25 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MCs are a reliable, inexhaustible, and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.
Collapse
|
19
|
Marek-Jozefowicz L, Nedoszytko B, Grochocka M, Żmijewski MA, Czajkowski R, Cubała WJ, Slominski AT. Molecular Mechanisms of Neurogenic Inflammation of the Skin. Int J Mol Sci 2023; 24:5001. [PMID: 36902434 PMCID: PMC10003326 DOI: 10.3390/ijms24055001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The skin, including the hypodermis, is the largest body organ and is in constant contact with the environment. Neurogenic inflammation is the result of the activity of nerve endings and mediators (neuropeptides secreted by nerve endings in the development of the inflammatory reaction in the skin), as well as interactions with other cells such as keratinocytes, Langerhans cells, endothelial cells and mast cells. The activation of TRPV-ion channels results in an increase in calcitonin gene-related peptide (CGRP) and substance P, induces the release of other pro-inflammatory mediators and contributes to the maintenance of cutaneous neurogenic inflammation (CNI) in diseases such as psoriasis, atopic dermatitis, prurigo and rosacea. Immune cells present in the skin (mononuclear cells, dendritic cells and mast cells) also express TRPV1, and their activation directly affects their function. The activation of TRPV1 channels mediates communication between sensory nerve endings and skin immune cells, increasing the release of inflammatory mediators (cytokines and neuropeptides). Understanding the molecular mechanisms underlying the generation, activation and modulation of neuropeptide and neurotransmitter receptors in cutaneous cells can aid in the development of effective treatments for inflammatory skin disorders.
Collapse
Affiliation(s)
- Luiza Marek-Jozefowicz
- Department of Dermatology and Venerology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
- Molecular Laboratory, Invicta Fertility and Reproductive Centre, 81-740 Sopot, Poland
| | - Małgorzata Grochocka
- Department of Dermatology and Venerology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Michał A. Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venerology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Wiesław J. Cubała
- Department of Psychiatry, Medical University of Gdansk, Debinki St. 7 Build. 25, 80-952 Gdansk, Poland
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, 500 22nd Street South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue, Birmingham, AL 35294, USA
| |
Collapse
|
20
|
Akdis CA, Akdis M, Boyd SD, Sampath V, Galli SJ, Nadeau KC. Allergy: Mechanistic insights into new methods of prevention and therapy. Sci Transl Med 2023; 15:eadd2563. [PMID: 36652536 DOI: 10.1126/scitranslmed.add2563] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades, the prevalence of allergic diseases has increased worldwide. Here, we review the etiology and pathophysiology of allergic diseases, including the role of the epithelial barrier, the immune system, climate change, and pollutants. Our current understanding of the roles of early life and infancy; diverse diet; skin, respiratory, and gut barriers; and microbiome in building immune tolerance to common environmental allergens has led to changes in prevention guidelines. Recent developments on the mechanisms involved in allergic diseases have been translated to effective treatments, particularly in the past 5 years, with additional treatments now in advanced clinical trials.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos CH-7265, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos CH-7265, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos CH-7265, Switzerland
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA
| | - Stephen J Galli
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
How to evaluate the patient with a suspected mast cell disorder and how/when to manage symptoms. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:55-63. [PMID: 36485101 PMCID: PMC9820312 DOI: 10.1182/hematology.2022000366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cell disorders include mastocytosis and mast cell activation syndromes. Mastocytosis is a rare clonal disorder of the mast cell, driven by KIT D816V mutation in most cases. Mastocytosis is diagnosed and classified according to World Health Organization criteria. Mast cell activation syndromes encompass a diverse group of disorders and may have clonal or nonclonal etiologies. Hematologists may be consulted to assist in the diagnostic workup and/or management of mast cell disorders. A consult to the hematologist for mast cell disorders may provoke anxiety due to the rare nature of these diseases and the management of nonhematologic mast cell activation symptoms. This article presents recommendations on how to approach the diagnosis and management of patients referred for common clinical scenarios.
Collapse
|
22
|
Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, Arber DA, Arcila ME, Bejar R, Berliner N, Borowitz MJ, Branford S, Brown AL, Cargo CA, Döhner H, Falini B, Garcia-Manero G, Haferlach T, Hellström-Lindberg E, Kim AS, Klco JM, Komrokji R, Lee-Cheun Loh M, Loghavi S, Mullighan CG, Ogawa S, Orazi A, Papaemmanuil E, Reiter A, Ross DM, Savona M, Shimamura A, Skoda RC, Solé F, Stone RM, Tefferi A, Walter MJ, Wu D, Ebert BL, Cazzola M. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022; 140:2228-2247. [PMID: 36130297 PMCID: PMC10488320 DOI: 10.1182/blood.2022015853] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
Collapse
Affiliation(s)
- Eric J. Duncavage
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Courtney D. DiNardo
- Division of Cancer Medicine, Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Lucy A. Godley
- Section of Hematology and Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Alessandro M. Vannucchi
- Department of Hematology, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Keyur P. Patel
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Lettering Cancer Center, New York, NY
| | - Rafael Bejar
- Division of Hematology and Oncology, University of California San Diego, La Jolla, CA
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Michael J. Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Anna L. Brown
- Department of Pathology, South Australia Heath Alliance, Adelaide, Australia
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Brunangelo Falini
- Department of Hematology, CREO, University of Perugia, Perugia, Italy
| | | | | | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Mignon Lee-Cheun Loh
- Department of Pediatrics, Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Sanam Loghavi
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seishi Ogawa
- University of Kyoto School of Medicine, Kyoto, Japan
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX
| | | | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - David M. Ross
- Haematology Directorate, SA Pathology, Adelaide, Australia
| | - Michael Savona
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Akiko Shimamura
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Radek C. Skoda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Francesc Solé
- MDS Group, Institut de Recerca contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Valent P, Arock M, Akin C, Metcalfe DD. Recent Developments in the Field of Mast Cell Disorders: Classification, Prognostication, and Management. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2052-2055. [PMID: 35961732 DOI: 10.1016/j.jaip.2022.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
24
|
Sotlar K, George TI, Kluin P, Reiter A, Schwaab J, Panse J, Brockow K, Hartmann K, Sperr WR, Kristensen T, Nedoszytko B, Carter M, Bonadonna P, Lyons JJ, Kluin-Nelemans HC, Hermine O, Akin C, Broesby-Olsen S, Hoermann G, Triggiani M, Butterfield JH, Jawhar M, Gotlib J, Metcalfe DD, Orfao A, Arock M, Valent P, Horny HP. Standards of Pathology in the Diagnosis of Systemic Mastocytosis: Recommendations of the EU-US Cooperative Group. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1986-1998.e2. [PMID: 35724949 DOI: 10.1016/j.jaip.2022.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/08/2023]
Abstract
Pathology plays a central role in the diagnosis of systemic mastocytosis (SM), its delineation from other neoplasms and reactive conditions, and in monitoring of SM under therapy. The morphologic hallmark of SM is the accumulation of spindle-shaped, hypogranulated mast cells (MCs) in bone marrow (BM) and other extracutaneous tissues. Four of the 5 World Health Organization-defined diagnostic criteria (ie, compact MC aggregates [=major criterion]; atypical MC morphology; activating KIT point mutations; aberrant expression of CD25 and/or CD2 and/or CD30 in MCs [=minor criteria]) can be addressed by the pathologist. The final classification of SM variants as either BM mastocytosis, indolent SM, smoldering SM, aggressive SM (ASM), SM with an associated hematologic neoplasm (SM-AHN), or MC leukemia (MCL) has important prognostic significance and requires the integration of certain morphological, clinical, radiological, and biochemical data, referred to as B- and C-findings. Substantial diagnostic challenges may be posed to the pathologist and clinician especially in the so-called advanced SM variants, that is, ASM, MCL, and SM-AHN. In this article, updated recommendations of the EU-US Cooperative Group regarding standards of pathology in the diagnosis of SM, presented during the year 2020 Working Conference held in September in Vienna, are reported.
Collapse
Affiliation(s)
- Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria.
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Philip Kluin
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Jens Panse
- Department of Oncology, Haematology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Thomas Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Boguslaw Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk and Invicta Fertility and Reproductive Center, Molecular Laboratory, Sopot, Poland
| | - Melody Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Md
| | | | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Md
| | - Hanneke C Kluin-Nelemans
- Department of Haematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Olivier Hermine
- Imagine Institute Université Paris Descartes, Sorbonne, Paris Cité, Centre national de référence des mastocytoses, Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; MLL Munich Leukemia Laboratory, Munich, Germany
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | | | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Md
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCsC; CSIC/USAL) Instituto Biosanitario de Salamanca (IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMCs), Paris, France
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria; Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
25
|
Systemic Mastocytosis and Other Entities Involving Mast Cells: A Practical Review and Update. Cancers (Basel) 2022; 14:cancers14143474. [PMID: 35884535 PMCID: PMC9322501 DOI: 10.3390/cancers14143474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Evidence in the recent literature suggests that the presentation spectrum of mast cell neoplasms is broad. In this article, we elaborate on recent data pertaining to minor diagnostic criteria of systemic mastocytosis (SM), including sensitive testing methods for detection of activating mutations in the KIT gene or its variants, and adjusted serum tryptase levels in cases with hereditary α-tryptasemia. We also summarize entities that require differential diagnosis, such as the recently reclassified SM subtype named bone marrow mastocytosis, mast cell leukemia (an SM subtype that can be acute or chronic); the rare morphological variant of all SM subtypes known as well-differentiated systemic mastocytosis; the extremely rare myelomastocytic leukemia and its differentiating features from mast cell leukemia; and mast cell activation syndrome. In addition, we provide a concise clinical update of the latest adjusted risk stratification model incorporating genomic data to define prognosis in SM and new treatments that were approved for advanced SM (midostaurin, avapritinib).
Collapse
|
26
|
González-López O, Muñoz-González JI, Orfao A, Álvarez-Twose I, García-Montero AC. Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers (Basel) 2022; 14:cancers14102487. [PMID: 35626091 PMCID: PMC9139197 DOI: 10.3390/cancers14102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which activating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, which has been associated with higher tumour burden and additional mutations in other genes, leading to an increased rate of transformation to advanced SM. Thus, among other mutations, alterations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mutation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient outcome, has become of great help to identify SM patients at higher risk of disease progression and/or poor survival who could benefit from closer follow-up and eventually also early cytoreductive treatment.
Collapse
Affiliation(s)
- Oscar González-López
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Javier I. Muñoz-González
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Iván Álvarez-Twose
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast, Virgen del Valle Hospital) and REMA, 45071 Toledo, Spain
| | - Andrés C. García-Montero
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|