1
|
Xu Y, Huang H, Wu M, Zhuang Z, Liu H, Hou M, Chen C. Transcranial Direct Current Stimulation for Cognitive Impairment Rehabilitation: A Bibliometric Analysis. Arch Med Res 2024; 56:103086. [PMID: 39326160 DOI: 10.1016/j.arcmed.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS As global demographics shift toward an older population, cognitive impairment is becoming increasingly critical. Transcranial Direct Current Stimulation (tDCS), an innovative brain stimulation technique, has the potential to significantly improve cognitive function. Our main aim is to comprehensively analyze the existing literature, identify key aspects of tDCS research in the rehabilitation of cognitive impairment, and predict future trends in this field. METHODS We used the Web of Science (WOS) database to search for English articles and reviews relevant to this topic. For visual analysis of the literature, we employed the WOS analysis tool, CiteSpace, along with VOSviewer software to ensure comprehensive analysis. RESULTS We included 2940 articles published between 1998 and 2023. Over 25 years, annual publications and citations in this field increased steadily, peaking at 379 articles in 2021. Michael A. Nitsche was a major contributor. Most articles came from developed countries, primarily North America and Europe, and journals generally had modest impact factors. Research in this field primarily aims to treat cognitive impairment resulting from pathological aging or neuropsychiatric disorders, with a particular focus on specific brain regions. Recently, researchers have integrated various treatment modalities with tDCS techniques to actively investigate effective strategies to mitigate cognitive impairments associated with pathological aging. CONCLUSION This study presents the first bibliometric analysis of the literature on tDCS in the rehabilitation of cognitive impairment, highlighting key areas of research and emerging trends. These findings provide critical insights for future tDCS interventions targeting cognitive impairment associated with pathological aging.
Collapse
Affiliation(s)
- Ying Xu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Haoyu Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mengyuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zesen Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hong Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meijin Hou
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Kang DW, Wang SM, Um YH, Kim S, Kim T, Kim D, Lee CU, Lim HK. Transcranial direct current stimulation and neuronal functional connectivity in MCI: role of individual factors associated to AD. Front Psychiatry 2024; 15:1428535. [PMID: 39224475 PMCID: PMC11366601 DOI: 10.3389/fpsyt.2024.1428535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Background Alzheimer's disease (AD) encompasses a spectrum that may progress from mild cognitive impairment (MCI) to full dementia, characterized by amyloid-beta and tau accumulation. Transcranial direct current stimulation (tDCS) is being investigated as a therapeutic option, but its efficacy in relation to individual genetic and biological risk factors remains underexplored. Objective To evaluate the effects of a two-week anodal tDCS regimen on the left dorsolateral prefrontal cortex, focusing on functional connectivity changes in neural networks in MCI patients resulting from various possible underlying disorders, considering individual factors associated to AD such as amyloid-beta deposition, APOE ϵ4 allele, BDNF Val66Met polymorphism, and sex. Methods In a single-arm prospective study, 63 patients with MCI, including both amyloid-PET positive and negative cases, received 10 sessions of tDCS. We assessed intra- and inter-network functional connectivity (FC) using fMRI and analyzed interactions between tDCS effects and individual factors associated to AD. Results tDCS significantly enhanced intra-network FC within the Salience Network (SN) and inter-network FC between the Central Executive Network and SN, predominantly in APOE ϵ4 carriers. We also observed significant sex*tDCS interactions that benefited inter-network FC among females. Furthermore, the effects of multiple modifiers, particularly the interaction of the BDNF Val66Met polymorphism and sex, were evident, as demonstrated by increased intra-network FC of the SN in female Met non-carriers. Lastly, the effects of tDCS on FC did not differ between the group of 26 MCI patients with cerebral amyloid-beta deposition detected by flutemetamol PET and the group of 37 MCI patients without cerebral amyloid-beta deposition. Conclusions The study highlights the importance of precision medicine in tDCS applications for MCI, suggesting that individual genetic and biological profiles significantly influence therapeutic outcomes. Tailoring interventions based on these profiles may optimize treatment efficacy in early stages of AD.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - TaeYeong Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| |
Collapse
|
3
|
Kang DW, Wang SM, Um YH, Kim S, Kim T, Kim D, Lee CU, Lim HK. Effects of transcranial direct current stimulation on cognition in MCI with Alzheimer's disease risk factors using Bayesian analysis. Sci Rep 2024; 14:18818. [PMID: 39138281 PMCID: PMC11322558 DOI: 10.1038/s41598-024-67664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Despite the growing interest in precision medicine-based therapies for Alzheimer's disease (AD), little research has been conducted on how individual AD risk factors influence changes in cognitive function following transcranial direct current stimulation (tDCS). This study evaluates the cognitive effects of sequential tDCS on 63 mild cognitive impairment (MCI) patients, considering AD risk factors such as amyloid-beta deposition, APOE ε4, BDNF polymorphism, and sex. Using both frequentist and Bayesian methods, we assessed the interaction of tDCS with these risk factors on cognitive performance. Notably, we found that amyloid-beta deposition significantly interacted with tDCS in improving executive function, specifically Stroop Word-Color scores, with strong Bayesian support for this finding. Memory enhancements were differentially influenced by BDNF Met carrier status. However, sex and APOE ε4 status did not show significant effects. Our results highlight the importance of individual AD risk factors in modulating cognitive outcomes from tDCS, suggesting that precision medicine may offer more effective tDCS treatments tailored to individual risk profiles in early AD stages.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea
| | - TaeYeong Kim
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea.
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Yang T, Liu W, He J, Gui C, Meng L, Xu L, Jia C. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2024; 16:140. [PMID: 38937842 PMCID: PMC11212379 DOI: 10.1186/s13195-024-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) combined with cognitive training (CT) may have shown some prospects on improving cognitive function in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, data from clinical trials or meta-analysis involving NIBS combined with CT have shown controversial results. The aim of this systematic review and meta-analysis was to evaluate short-term and long-term effects of NIBS combined with CT on improving global cognition and other specific cognitive domains in patients with AD and MCI. METHODS This systematic review and meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Five electronic databases including PubMed, Web of Science, EBSCO, Cochrane Library and Embase were searched up from inception to 20 November 2023. The PEDro scale and the Cochrane's risk of bias assessment were used to evaluate risk of bias and methodological quality of included studies. All statistical analyses were conducted with Review Manager 5.3. RESULTS We included 15 studies with 685 patients. The PEDro scale was used to assess methodological quality with a mean score of 7.9. The results of meta-analysis showed that NIBS combined with CT was effective on improving global cognition in AD and MCI (SMD = 0.52, 95% CI (0.18, 0.87), p = 0.003), especially for patients accepting repetitive transcranial magnetic stimulation (rTMS) combined with CT (SMD = 0.46, 95% CI (0.14, 0.78), p = 0.005). AD could achieve global cognition improvement from NIBS combined with CT group (SMD = 0.77, 95% CI (0.19, 1.35), p = 0.01). Transcranial direct current stimulation (tDCS) combined with CT could improve language function in AD and MCI (SMD = 0.29, 95% CI (0.03, 0.55), p = 0.03). At evaluation follow-up, rTMS combined with CT exhibited larger therapeutic responses to AD and MCI in global cognition (SMD = 0.55, 95% CI (0.09, 1.02), p = 0.02). AD could achieve global cognition (SMD = 0.40, 95% CI (0.03, 0.77), p = 0.03) and attention/working memory (SMD = 0.72, 95% CI (0.23, 1.20), p = 0.004) improvement after evaluation follow-up from NIBS combined with CT group. CONCLUSIONS Overall, NIBS combined with CT, particularly rTMS combined with CT, has both short-term and follow-up effects on improving global cognition, mainly in patients with AD. tDCS combined with CT has advantages on improving language function in AD and MCI. Future more studies need evaluate cognitive effects of NIBS combined with CT on other specific cognitive domain in patients with cognitive deterioration.
Collapse
Affiliation(s)
- Ting Yang
- Department of Rehabilitation Medicine, West China Tianfu Hospital, Sichuan University, No. 3966, South Section 2, Tianfu Avenue, Tianfu New Area, Chengdu, 610212, Sichuan, China
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
| | - Wentao Liu
- Department of Rehabilitation Medicine, West China Tianfu Hospital, Sichuan University, No. 3966, South Section 2, Tianfu Avenue, Tianfu New Area, Chengdu, 610212, Sichuan, China
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
| | - Jiali He
- Department of Rehabilitation Medicine, The Second Hospital of Chongzhou, No. 431, Tang'an West Road, Chongyang Town, Chongzhou City, Chengdu, 611230, Sichuan, China
| | - Chenfan Gui
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
| | - Lijiao Meng
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
| | - Li Xu
- Department of Rehabilitation Medicine, The Second Hospital of Chongzhou, No. 431, Tang'an West Road, Chongyang Town, Chongzhou City, Chengdu, 611230, Sichuan, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Spiroiu FI, Minuzzi L, Duarte D, McCabe RE, Soreni N. Neurocognitive effects of transcranial direct current stimulation in obsessive-compulsive disorder: a systematic review. Int J Neurosci 2024:1-14. [PMID: 38913323 DOI: 10.1080/00207454.2024.2371303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Transcranial direct current stimulation (tDCS) has been used with increasing frequency as a therapeutic tool to alleviate clinical symptoms of obsessive compulsive-disorder (OCD). However, little is known about the effects of tDCS on neurocognitive functioning among OCD patients. The aim of this review was to provide a comprehensive overview of the literature examining the effects of tDCS on specific neurocognitive functions in OCD. A literature search following PRISMA guidelines was conducted on the following databases: PubMed, PsycINFO, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Web of Science. The search yielded 4 results: one randomized, sham-controlled study (20 patients), one randomized, controlled, partial crossover trial (12 patients), one open-label study (5 patients), and one randomized, double-blind, sham-controlled, parallel-group trial (37 patients). A total of 51 patients received active tDCS with some diversity in electrode montages targeting the dorsolateral prefrontal cortex, the pre-supplementary motor area, or the orbitofrontal cortex. tDCS was associated with improved decision-making in study 1, enhanced attentional monitoring and response inhibition in study 2, improved executive and inhibitory control in study 3, and reduced attentional bias and improved response inhibition and working memory in study 4. Limitations of this review include its small sample, the absence of a sham group in half of the studies, and the heterogeneity in tDCS parameters. These preliminary results highlight the need for future testing in randomized, sham-controlled trials to examine whether and how tDCS induces relevant cognitive benefits in OCD.
Collapse
Affiliation(s)
- Flavia I Spiroiu
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Luciano Minuzzi
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Dante Duarte
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Randi E McCabe
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Noam Soreni
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Pediatric OCD Consultation Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Di Fuccio R, Lardone A, De Luca M, Ali L, Limone P, Marangolo P. Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines 2024; 12:1146. [PMID: 38927353 PMCID: PMC11200721 DOI: 10.3390/biomedicines12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The neurobiological effects of transcranial direct current stimulation (tDCS) have still not been unequivocally clarified. Some studies have suggested that the application of tDCS over the inferior frontal gyrus (IFG) enhances different aspects of cognition in healthy and neurological individuals, exerting neural changes over the target area and its neural surroundings. In this systematic review, randomized sham-controlled trials in healthy and neurological adults were selected through a database search to explore whether tDCS over the IFG combined with cognitive training modulates functional connectivity or neural changes. Twenty studies were finally included, among which twelve measured tDCS effects through functional magnetic resonance (fMRI), two through functional near-infrared spectroscopy (fNIRS), and six through electroencephalography (EEG). Due to the high heterogeneity observed across studies, data were qualitatively described and compared to assess reliability. Overall, studies that combined fMRI and tDCS showed widespread changes in functional connectivity at both local and distant brain regions. The findings also suggested that tDCS may also modulate electrophysiological changes underlying the targeted area. However, these outcomes were not always accompanied by corresponding significant behavioral results. This work raises the question concerning the general efficacy of tDCS, the implications of which extend to the steadily increasing tDCS literature.
Collapse
Affiliation(s)
- Raffaele Di Fuccio
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Anna Lardone
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Mariagiovanna De Luca
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Leila Ali
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Pierpaolo Limone
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| |
Collapse
|
7
|
Wang Z, Gallegos J, Tippett D, Onyike CU, Desmond JE, Hillis AE, Frangakis CE, Caffo B, Tsapkini K. Baseline functional connectivity predicts who will benefit from neuromodulation: evidence from primary progressive aphasia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.19.24305354. [PMID: 38699365 PMCID: PMC11065007 DOI: 10.1101/2024.04.19.24305354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Identifying the characteristics of individuals who demonstrate response to an intervention allows us to predict who is most likely to benefit from certain interventions. Prediction is challenging in rare and heterogeneous diseases, such as primary progressive aphasia (PPA), that have varying clinical manifestations. We aimed to determine the characteristics of those who will benefit most from transcranial direct current stimulation (tDCS) of the left inferior frontal gyrus (IFG) using a novel heterogeneity and group identification analysis. Methods We compared the predictive ability of demographic and clinical patient characteristics (e.g., PPA variant and disease progression, baseline language performance) vs. functional connectivity alone (from resting-state fMRI) in the same cohort. Results Functional connectivity alone had the highest predictive value for outcomes, explaining 62% and 75% of tDCS effect of variance in generalization (semantic fluency) and in the trained outcome of the clinical trial (written naming), contrasted with <15% predicted by clinical characteristics, including baseline language performance. Patients with higher baseline functional connectivity between the left IFG (opercularis and triangularis), and between the middle temporal pole and posterior superior temporal gyrus, were most likely to benefit from tDCS. Conclusions We show the importance of a baseline 7-minute functional connectivity scan in predicting tDCS outcomes, and point towards a precision medicine approach in neuromodulation studies. The study has important implications for clinical trials and practice, providing a statistical method that addresses heterogeneity in patient populations and allowing accurate prediction and enrollment of those who will most likely benefit from specific interventions.
Collapse
Affiliation(s)
- Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Jessica Gallegos
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Donna Tippett
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | - John E Desmond
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
- Neuroscience Program, Johns Hopkins University, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Constantine E Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Neophytou K, Williamson K, Herrmann O, Afthinos A, Gallegos J, Martin N, Tippett DC, Tsapkini K. Home-Based Transcranial Direct Current Stimulation in Primary Progressive Aphasia: A Pilot Study. Brain Sci 2024; 14:391. [PMID: 38672040 PMCID: PMC11048435 DOI: 10.3390/brainsci14040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND This study aims to determine (a) if home-based anodal transcranial direct current stimulation (a-tDCS) delivered to the left supramarginal gyrus (SMG) coupled with verbal short-term memory/working memory (vSTM/WM) treatment ("RAM", short for "Repeat After Me") is more effective than sham-tDCS in improving vSTM/WM in patients with primary progressive aphasia (PPA), and (b) whether tDCS effects generalize to other language and cognitive abilities. METHODS Seven PPA participants received home-based a-tDCS and sham-tDCS coupled with RAM treatment in separate conditions in a double-blind design. The treatment task required participants to repeat word spans comprising semantically and phonologically unrelated words in the same and reverse order. The evaluation of treatment effects was carried out using the same tasks as in the treatment but with different items (near-transfer effects) and tasks that were not directly related to the treatment (far-transfer effects). RESULTS A-tDCS showed (a) a significant effect in improving vSTM abilities, measured by word span backward, and (b) a generalization of this effect to other language abilities, namely, spelling (both real words and pseudowords) and learning (retention and delayed recall). CONCLUSIONS These preliminary results indicate that vSTM/WM intervention can improve performance in trained vSTM/WM tasks in patients with PPA, especially when augmented with home-based tDCS over the left SMG.
Collapse
Affiliation(s)
- Kyriaki Neophytou
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Kelly Williamson
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Alexandros Afthinos
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Cooper Medical School of Rowan University, Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Jessica Gallegos
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Nadine Martin
- Department of Communication Sciences and Disorders, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA;
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 174, Baltimore, MD 21287, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Department of Cognitive Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Lau CI, Liu MN, Cheng FY, Wang HC, Walsh V, Liao YY. Can transcranial direct current stimulation combined with interactive computerized cognitive training boost cognition and gait performance in older adults with mild cognitive impairment? a randomized controlled trial. J Neuroeng Rehabil 2024; 21:26. [PMID: 38365761 PMCID: PMC10874043 DOI: 10.1186/s12984-024-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Older adults with Mild Cognitive Impairment (MCI) are often subject to cognitive and gait deficits. Interactive Computerized Cognitive Training (ICCT) may improve cognitive function; however, the effect of such training on gait performance is limited. Transcranial Direct Current Stimulation (tDCS) improves cognition and gait performance. It remains unclear whether combining tDCS with ICCT produces an enhanced synergistic effect on cognition and complex gait performance relative to ICCT alone. This study aimed to compare the effects of tDCS combined with ICCT on cognition and gait performance in older adults with MCI. METHOD Twenty-one older adults with MCI were randomly assigned to groups receiving either anodal tDCS and ICCT ( tDCS + ICCT ) or sham tDCS and ICCT ( sham + ICCT ). Participants played Nintendo Switch cognitive games for 40 min per session, simultaneously receiving either anodal or sham tDCS over the left dorsolateral prefrontal cortex for the first 20 min. Cognitive and gait assessments were performed before and after 15 training sessions. RESULTS The global cognition, executive function, and working-memory scores improved in both groups, but there were no significant interaction effects on cognitive outcomes. Additionally, the group × time interactions indicated that tDCS + ICCT significantly enhanced dual-task gait performance in terms of gait speed (p = 0.045), variability (p = 0.016), and dual-task cost (p = 0.039) compared to sham + ICCT. CONCLUSION The combined effect of tDCS and ICCT on cognition was not superior to that of ICCT alone; however, it had a significant impact on dual-task gait performance. Administering tDCS as an adjunct to ICCT may thus provide additional benefits for older adults with MCI. TRIAL REGISTRATION This trial was registered at http://www. CLINICALTRIALS in.th/ (TCTR 20,220,328,009).
Collapse
Affiliation(s)
- Chi Ieong Lau
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, UK
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fang-Yu Cheng
- Institute of Long-Term Care, MacKay Medical College, New Taipei, Taiwan
| | - Han-Cheng Wang
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Vincent Walsh
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Ying-Yi Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| |
Collapse
|
10
|
Heimann F, Weiss S, Müller HM. Anodal transcranial direct current stimulation (atDCS) and functional transcranial Doppler sonography (fTCD) in healthy elderly and patients with MCI: modulation of age-related changes in word fluency and language lateralization. FRONTIERS IN AGING 2024; 4:1171133. [PMID: 38414493 PMCID: PMC10896906 DOI: 10.3389/fragi.2023.1171133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/15/2023] [Indexed: 02/29/2024]
Abstract
Introduction: In addition to age-related changes in language, hemispheric lateralization of language functions steadily declines with age. Also, performance on word fluency tasks declines and is sensitive to the expression of dementia-related changes. The aim of this study is to evaluate the effect of anodal tDCS combined with a word fluency training on language lateralization and word fluency performance in healthy elderly subjects and in persons with mild cognitive impairment (MCI). Methods: The effect of anodal tDCS over the left inferio frontal gyrus (IFG) was measured in a group of healthy elderly up to the age of 67 years (YG, Ø = 63.9 ± 3.02), a group of healthy elderly aged 68 years and older (OG, Ø = 78.1, ± 4.85), and a group of patients with MCI (Ø = 81.18, ± 7.35) by comparing performance in phonological and semantic word fluency tasks before and after 3 days of tDCS. Half of the experimental participants received sham stimulation. In addition, language lateralization was determined using a lateralization index (LI) measured with functional transcranial Doppler sonography (fTCD) before and after the stimulation period. Results: Anodal tDCS was associated with significantly higher scores in phonological but not semantic word fluency in both YG and OG. In MCI patients, no difference was measured between the tDCS and sham groups in either word fluency task. fTCD showed significantly increased left lateralization in all three groups after the training phase. However, this effect was independent of tDCS and the degree of lateralization could not be predicted by word fluency performance in any of the groups. Discussion: Phonological word fluency can be increased with atDCS in healthy elderly people by stimulating the IFG in a 3-day training. When cognitive decline has reached a certain stage, as is the case with MCI, this paradigm does not seem to be effective enough.
Collapse
Affiliation(s)
- Florian Heimann
- Experimental Neurolinguistics Group, Bielefeld University, Bielefeld, Germany
| | - Sabine Weiss
- Experimental Neurolinguistics Group, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Clinical Linguistics, Bielefeld University, Bielefeld, Germany
| | - Horst M. Müller
- Experimental Neurolinguistics Group, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
11
|
Antonenko D, Fromm AE, Thams F, Kuzmina A, Backhaus M, Knochenhauer E, Li SC, Grittner U, Flöel A. Cognitive training and brain stimulation in patients with cognitive impairment: a randomized controlled trial. Alzheimers Res Ther 2024; 16:6. [PMID: 38212815 PMCID: PMC10782634 DOI: 10.1186/s13195-024-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Repeated sessions of training and non-invasive brain stimulation have the potential to enhance cognition in patients with cognitive impairment. We hypothesized that combining cognitive training with anodal transcranial direct current stimulation (tDCS) will lead to performance improvement in the trained task and yield transfer to non-trained tasks. METHODS In our randomized, sham-controlled, double-blind study, 46 patients with cognitive impairment (60-80 years) were randomly assigned to one of two interventional groups. We administered a 9-session cognitive training (consisting of a letter updating and a Markov decision-making task) over 3 weeks with concurrent 1-mA anodal tDCS over the left dorsolateral prefrontal cortex (20 min in tDCS, 30 s in sham group). Primary outcome was trained task performance (letter updating task) immediately after training. Secondary outcomes included performance in tasks testing working memory (N-back task), decision-making (Wiener Matrices test) and verbal memory (verbal learning and memory test), and resting-state functional connectivity (FC). Tasks were administered at baseline, at post-assessment, and at 1- and 7-month follow-ups (FU). MRI was conducted at baseline and 7-month FU. Thirty-nine participants (85%) successfully completed the intervention. Data analyses are reported on the intention-to-treat (ITT) and the per-protocol (PP) sample. RESULTS For the primary outcome, no difference was observed in the ITT (β = 0.1, 95%-CI [- 1.2, 1.3, p = 0.93] or PP sample (β = - 0.2, 95%-CI [- 1.6, 1.2], p = 0.77). However, secondary analyses in the N-back working memory task showed that, only in the PP sample, the tDCS outperformed the sham group (PP: % correct, β = 5.0, 95%-CI [- 0.1, 10.2], p = 0.06, d-prime β = 0.2, 95%-CI [0.0, 0.4], p = 0.02; ITT: % correct, β = 3.0, 95%-CI [- 3.9, 9.9], p = 0.39, d-prime β = 0.1, 95%-CI [- 0.1, 0.3], p = 0.5). Frontoparietal network FC was increased from baseline to 7-month FU in the tDCS compared to the sham group (pFDR < 0.05). Exploratory analyses showed a correlation between individual memory improvements and higher electric field magnitudes induced by tDCS (ρtDCS = 0.59, p = 0.02). Adverse events did not differ between groups, questionnaires indicated successful blinding (incidence rate ratio, 1.1, 95%-CI [0.5, 2.2]). CONCLUSIONS In sum, cognitive training with concurrent brain stimulation, compared to cognitive training with sham stimulation, did not lead to superior performance enhancements in patients with cognitive impairment. However, we observed transferred working memory benefits in patients who underwent the full 3-week intervention. MRI data pointed toward a potential intervention-induced modulation of neural network dynamics. A link between individual performance gains and electric fields suggested dosage-dependent effects of brain stimulation. Together, our findings do not support the immediate benefit of the combined intervention on the trained function, but provide exploratory evidence for transfer effects on working memory in patients with cognitive impairment. Future research needs to explore whether individualized protocols for both training and stimulation parameters might further enhance treatment gains. TRIAL REGISTRATION The study is registered on ClinicalTrials.gov (NCT04265378). Registered on 7 February 2020. Retrospectively registered.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - Anna Elisabeth Fromm
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Anna Kuzmina
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Malte Backhaus
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Elena Knochenhauer
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, 01062, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, 01062, Dresden, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), 10187, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475, Greifswald, Germany
| |
Collapse
|
12
|
Luppi JJ, Stam CJ, Scheltens P, de Haan W. Virtual neural network-guided optimization of non-invasive brain stimulation in Alzheimer's disease. PLoS Comput Biol 2024; 20:e1011164. [PMID: 38232116 PMCID: PMC10824453 DOI: 10.1371/journal.pcbi.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/29/2024] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.
Collapse
Affiliation(s)
- Janne J. Luppi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Philippen S, Hanert A, Schönfeld R, Granert O, Yilmaz R, Jensen-Kondering U, Splittgerber M, Moliadze V, Siniatchkin M, Berg D, Bartsch T. Transcranial direct current stimulation of the right temporoparietal junction facilitates hippocampal spatial learning in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 2024; 157:48-60. [PMID: 38056370 DOI: 10.1016/j.clinph.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Spatial memory deficits are an early symptom in Alzheimer's disease (AD), reflecting the neurodegenerative processes in the neuronal navigation network such as in hippocampal and parietal cortical areas. As no effective treatment options are available, neuromodulatory interventions are increasingly evaluated. Against this backdrop, we investigated the neuromodulatory effect of anodal transcranial direct current stimulation (tDCS) on hippocampal place learning in patients with AD or mild cognitive impairment (MCI). METHODS In this randomized, double-blind, sham-controlled study with a cross-over design anodal tDCS of the right temporoparietal junction (2 mA for 20 min) was applied to 20 patients diagnosed with AD or MCI and in 22 healthy controls while they performed a virtual navigation paradigm testing hippocampal place learning. RESULTS We show an improved recall performance of hippocampal place learning after anodal tDCS in the patient group compared to sham stimulation but not in the control group. CONCLUSIONS These results suggest that tDCS can facilitate spatial memory consolidation via stimulating the parietal-hippocampal navigation network in AD and MCI patients. SIGNIFICANCE Our findings suggest that tDCS of the temporoparietal junction may restore spatial navigation and memory deficits in patients with AD and MCI.
Collapse
Affiliation(s)
- S Philippen
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Hanert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Schönfeld
- Psychology Department, Halle University, Germany
| | - O Granert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Yilmaz
- Dept. of Neurology, University of Ankara, Medical School, Ankara, Turkey
| | - U Jensen-Kondering
- Dept. of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany; Dept. of Neuroradiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - M Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany; Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, University Clinics OWL, Bielefeld University, Germany
| | - D Berg
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - T Bartsch
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
14
|
Kim J, Yang Y. Alterations in cognitive function and blood biomarkers following transcranial direct current stimulation in patients with amyloid positron emission tomography-positive Alzheimer's disease: a preliminary study. Front Neurosci 2023; 17:1327886. [PMID: 38178837 PMCID: PMC10765986 DOI: 10.3389/fnins.2023.1327886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive cognitive decline. To address this, we conducted a randomized, double-blinded, sham-controlled study to investigate the therapeutic potential of transcranial direct current stimulation (tDCS) on patients with amyloid positron emission tomography (PET)- positive AD. Methods Participants already undergoing pharmacological treatment and testing positive for amyloid PET were divided into Active-tDCS (n = 8) and Sham-tDCS (n = 8) groups. For 12 weeks, participants or their caregivers administered daily bi-frontal tDCS (YMS-201B+, Ybrain Inc., Seongnam, Korea) at home (2 mA, 30 min). Pre- and post-intervention assessments included neuropsychological tests and blood sample measurements for oligomerized beta-amyloid. Results The Active-tDCS group demonstrated significant improvements in cognitive domains such as language abilities, verbal memory, and attention span and in frontal lobe functions compared to the Sham-tDCS group. Furthermore, the Active-tDCS group showed a marked reduction in post-intervention plasma Aβ oligomerization tendency level, suggesting changes in pivotal AD-associated biomarkers. Discussion Our results emphasize the potential therapeutic benefits of tDCS for mild AD patients with amyloid PET positivity and stress the urgency for broader research, considering the global challenges of dementia and the need to pursue innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jinuk Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - YoungSoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
15
|
Wang T, Yan S, Lu J. The effects of noninvasive brain stimulation on cognitive function in patients with mild cognitive impairment and Alzheimer's disease using resting-state functional magnetic resonance imaging: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3160-3172. [PMID: 37349974 PMCID: PMC10580344 DOI: 10.1111/cns.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE The aim of this systematic review and meta-analysis was to evaluate the efficacy of noninvasive brain stimulation (NIBS) on cognition using functional magnetic resonance imaging (fMRI) in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), thus providing the neuroimaging mechanism of cognitive intervention. METHODS English articles published up to April 30, 2023 were searched in the PubMed, Web of Science, Embase, and Cochrane Library databases. We included randomized controlled trials where resting-state fMRI was used to observe the effect of NIBS in patients with MCI or AD. RevMan software was used to analyze the continuous variables, and SDM-PSI software was used to perform an fMRI data analysis. RESULTS A total of 17 studies comprising 258 patients in the treatment group and 256 in the control group were included. After NIBS, MCI patients in the treatment group showed hyperactivation in the right precuneus and decreased activity in the left cuneus and right supplementary motor area. In contrast, patients in the control group showed decreased activity in the right middle frontal gyrus and no hyperactivation. The clinical cognitive scores in MCI patients were significantly improved by NIBS, while not in AD. Some evidence regarding the modulation of NIBS in resting-state brain activity and functional brain networks in patients with AD was found. CONCLUSIONS NIBS could improve cognitive function in patients with MCI and AD. fMRI evaluations could be added to evaluate the contribution of specific NIBS treatment therapeutic effectiveness.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| |
Collapse
|
16
|
Lane HY, Wang SH, Lin CH. Adjunctive transcranial direct current stimulation (tDCS) plus sodium benzoate for the treatment of early-phase Alzheimer's disease: A randomized, double-blind, placebo-controlled trial. Psychiatry Res 2023; 328:115461. [PMID: 37729717 DOI: 10.1016/j.psychres.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/22/2023]
Abstract
Previous studies found that an NMDA receptor (NMDAR) enhancer, sodium benzoate, improved cognitive function of patients with early-phase Alzheimer's disease (AD). Transcranial direct current stimulation (tDCS) induces NMDAR-dependent synaptic plasticity and strengthens cognitive function of AD patients. This study aimed to evaluate efficacy and safety of tDCS plus benzoate in early-phase dementia. In this 24-week randomized, double-blind, placebo-controlled trial, 97 patients with early-phase AD received 10-session tDCS during the first 2 weeks. They then took benzoate or placebo for 24 weeks. We assessed the patients using Alzheimer's disease assessment scale - cognitive subscale (ADAS-cog), Clinician's Interview-Based Impression of Change plus Caregiver Input, Mini Mental Status Examination, Alzheimer's disease Cooperative Study scale for ADL in MCI, and a battery of additional cognitive tests. Forty-seven patients received sodium benzoate, and the other 50 placebo. The two treatment groups didn't differ significantly in ADAS-cog or other measures. Addition of benzoate to tDCS didn't get extra benefit or side effect in this study. For more thoroughly studying the potential of combining tDCS with benzoate in the AD treatment, future research should use other study designs, such as longer-term benzoate treatment, adding benzoate in the middle of tDCS trial sessions, or administering benzoate then tDCS.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
17
|
El Jamal C, Harrie A, Rahman-Filipiak A, Iordan AD, DaSilva AF, Ploutz-Snyder R, Khadr L, Vesia M, Bikson M, Hampstead BM. Tolerability and blinding of high-definition transcranial direct current stimulation among older adults at intensities of up to 4 mA per electrode. Brain Stimul 2023; 16:1328-1335. [PMID: 37660936 PMCID: PMC11218548 DOI: 10.1016/j.brs.2023.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Few studies have investigated tolerability, blinding, and double-blinding of High-Definition transcranial Direct Current Stimulation (HD-tDCS) at amplitudes above 2 milliamps (mA). OBJECTIVE We examined a) tolerability of HD-tDCS during stimulation sessions and b) blinding and double blinding of participants and study team members. METHODS Data from a mixed neurologic sample of 292 older adults were pooled from 3046 HD-tDCS sessions (2329 active; 717 sham). Per electrode amplitudes ranged from 1 mA to 4 mA with total currents up to 10 mA. Participants completed a standardized sensation (tolerability) questionnaire after each session. Participants and study team members stated whether the participant received active or sham stimulation at the end of various sessions. Data were collapsed into the presence/absence of a symptom due to low rates of positive responding and were analyzed for both differences and bioequivalency. RESULTS There were no safety-related adverse events. HD-tDCS was well tolerated with mostly no ("none") or "mild" sensations reported across sessions, regardless of active or sham condition and in both stimulation naïve and experienced participants. There were no significant differences in side effects between active and sham, with some achieving bioequivalence. Tingling and itching were significantly more common after lower (<2 mA) than higher (≥3 mA) amplitude active sessions, while skin redness was significantly more common after higher amplitudes. Blinding was effective at the participant and study team levels. CONCLUSIONS HD-tDCS was well tolerated with center electrode amplitudes up to 4 mA. The bimodal ramp-up/down format of the sham was effective for blinding. These results support higher scalp-based amplitudes that enable greater brain-based current intensities in older adults.
Collapse
Affiliation(s)
- Carine El Jamal
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ashley Harrie
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Annalise Rahman-Filipiak
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru D Iordan
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandre F DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Robert Ploutz-Snyder
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Lara Khadr
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Michael Vesia
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Benjamin M Hampstead
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Kang DW, Wang SM, Um YH, Kim S, Kim T, Kim D, Lee CU, Lim HK. Impact of transcranial direct current stimulation on white matter microstructure integrity in mild cognitive impairment patients according to effect modifiers as risk factors for Alzheimer's disease. Front Aging Neurosci 2023; 15:1234086. [PMID: 37744398 PMCID: PMC10517264 DOI: 10.3389/fnagi.2023.1234086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Little research exists on how individual risk factors for Alzheimer's disease (AD) affect the intermediate phenotype after transcranial direct current stimulation (tDCS), despite the importance of precision medicine-based therapeutic approaches. Objective To determine how an application of sequential tDCS (2 mA/day, left dorsolateral prefrontal cortex, 10 sessions) affects changes in white matter (WM) microstructure integrity in 63 mild cognitive impairment (MCI) patients with effect modifiers such as Aβ deposition, APOE ε4 carrier status, BDNF Val66Met polymorphism status, and sex. Methods We examined individual effect modifier-by-tDCS interactions and multiple effect modifiers-by-tDCS interactions for diffusion metrics. We also evaluated the association between baseline Aβ deposition and changes in WM microstructure integrity following tDCS. Results We found that APOE ε4 carrier status and sex had a significant interaction with tDCS, resulting in increased fractional anisotropy (FA) in the right uncinate fasciculus (UF) after stimulation. Additionally, we observed multiple effect modifiers-by-tDCS interactions on WM integrity of the right UF, leading to a more pronounced increase in FA values in APOE ε4 carriers and females with Val66 homozygotes. Finally, baseline Aβ deposition was positively associated with a difference in FA of the left cingulum in the hippocampal area, which showed a positive association with the changes in the score for delayed memory. Conclusion Our study shows the differential impact of individual AD risk factors on changes in the early intermediate phenotype after sequential tDCS in MCI patients. This research emphasizes the importance of precision medicine approaches in tDCS for the prodromal stages of AD.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - TaeYeong Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| |
Collapse
|
19
|
Soleimani G, Nitsche MA, Bergmann TO, Towhidkhah F, Violante IR, Lorenz R, Kuplicki R, Tsuchiyagaito A, Mulyana B, Mayeli A, Ghobadi-Azbari P, Mosayebi-Samani M, Zilverstand A, Paulus MP, Bikson M, Ekhtiari H. Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments. Transl Psychiatry 2023; 13:279. [PMID: 37582922 PMCID: PMC10427701 DOI: 10.1038/s41398-023-02565-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Romy Lorenz
- Department of Psychology, Stanford University, Stanford, CA, USA
- MRC CBU, University of Cambridge, Cambridge, UK
- Department of Neurophysics, MPI, Leipzig, Germany
| | | | | | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Ahmad Mayeli
- University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Hamed Ekhtiari
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
20
|
Pallanti S, Grassi E, Knotkova H, Galli G. Transcranial direct current stimulation in combination with cognitive training in individuals with mild cognitive impairment: a controlled 3-parallel-arm study. CNS Spectr 2023; 28:489-494. [PMID: 36093863 DOI: 10.1017/s1092852922000979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Several studies showed that transcranial direct current stimulation (tDCS) enhances cognition in patients with mild cognitive impairment (MCI), however, whether tDCS leads to additional gains when combined with cognitive training remains unclear. This study aims to compare the effects of a concurrent tDCS-cognitive training intervention with either tDCS or cognitive training alone on a group of patients with MCI. METHODS The study was a 3-parallel-arm study. The intervention consisted of 20 daily sessions of 20 minutes each. Patients (n = 62) received anodal tDCS to the left dorsolateral prefrontal cortex, cognitive training on 5 cognitive domains (orientation, attention, memory, language, and executive functions), or both. To examine intervention gains, we examined global cognitive functioning, verbal short-term memory, visuospatial memory, and verbal fluency pre- and post-intervention. RESULTS All outcome measures improved after the intervention in the 3 groups. The improvement in global cognitive functioning and verbal fluency was significantly larger in patients who received the combined intervention. Instead, the intervention gain in verbal short-term memory and visuospatial memory was similar across the 3 groups. DISCUSSION tDCS, regardless of the practicalities, could be an efficacious treatment in combination with cognitive training given the increased effectiveness of the combined treatment. CONCLUSIONS Future studies will need to consider individual differences at baseline, including genetic factors and anatomical differences that impact the electric field generated by tDCS and should also consider the feasibility of at-home treatments consisting of the application of tDCS with cognitive training.
Collapse
Affiliation(s)
- Stefano Pallanti
- Department of Family and Social Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Institute of Neuroscience, Florence, Italy
| | | | - Helena Knotkova
- Department of Family and Social Medicine, Albert Einstein College of Medicine, New York, NY, USA
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA
| | - Giulia Galli
- Department of Psychology, Kingston University, Kingston, UK
| |
Collapse
|
21
|
Holczer A, Vékony T, Klivényi P, Must A. Frontal two-electrode transcranial direct current stimulation protocols may not affect performance on a combined flanker Go/No-Go task. Sci Rep 2023; 13:11901. [PMID: 37488206 PMCID: PMC10366169 DOI: 10.1038/s41598-023-39161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been tested to modulate cognitive control or response inhibition using various electrode montages. However, electrode montages and current polarities have not been systematically compared when examining tDCS effects on cognitive control and response inhibition. In this randomized, sham-controlled study, 38 healthy volunteers were randomly grouped into receiving one session of sham, anodal, and cathodal each in an electrode montage that targeted either the dorsolateral prefrontal cortex (DLPFC) or the fronto-medial (FM) region. Participants performed a combined flanker Go/No-Go task during stimulation. No effect of tDCS was found in the DLPFC and FM groups neither using anodal nor cathodal stimulation. No major adverse effects of tDCS were identified using either montage or stimulation type and the two groups did not differ in terms of the reported sensations. The present study suggests that single-session tDCS delivered in two two-electrode montages might not affect cognitive control or response inhibition, despite using widely popular stimulation parameters. This is in line with the heterogeneous findings in the field and calls for further systematic research to exclude less reliable methods from those with more pronounced effects, identify the determinants of responsiveness, and develop optimal ways to utilize this technique.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, Hungary.
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, 95 Boulevard Pinel, 69500, Bron, France
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, Hungary
| | - Anita Must
- Chronos Systems on behalf of WCG Clinical Endpoint Solutions, Budapest, Hungary
| |
Collapse
|
22
|
Jeong JH, Sung DJ, Kim KT, Kim DJ, Kim H. Differentiating changes in movement-related EEG response induced by transcranial direct current stimulation using convolutional neural network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082596 DOI: 10.1109/embc40787.2023.10340257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that can modulate neuronal excitability and induce brain plasticity. Although tDCS has been studied with various methods, more research is needed on the movement-related electroencephalography (EEG) changes induced by tDCS. Moreover, it is necessary to investigate whether these changes can be distinguished through a convolutional neural network (CNN)-based classifier. In this study, we measured the EEG during the voluntary foot-tapping task of participants who received tDCS or sham stimulation and evaluated the classification performance. As a result, significantly higher classification accuracy was shown using the β band (88.7±9.4%), which is more related to motor function, than in the other bands (71.4±10.6% for δ band, 64.1±13.4% for θ band, and 65.7±10.9% for α band). Consequently, EEG changes during the voluntary foot-tapping task induced by tDCS appeared large in the β band, implying that it is effective in classifying whether tDCS was given or not, and plays an important role in identifying the effect of tDCS.
Collapse
|
23
|
Nissim NR, Pham DVH, Poddar T, Blutt E, Hamilton RH. The impact of gamma transcranial alternating current stimulation (tACS) on cognitive and memory processes in patients with mild cognitive impairment or Alzheimer's disease: A literature review. Brain Stimul 2023; 16:748-755. [PMID: 37028756 PMCID: PMC10862495 DOI: 10.1016/j.brs.2023.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS)-a noninvasive brain stimulation technique that modulates cortical oscillations through entrainment-has been demonstrated to alter oscillatory activity and enhance cognition in healthy adults. TACS is being explored as a tool to improve cognition and memory in patient populations with mild cognitive impairment (MCI) and Alzheimer's disease (AD). OBJECTIVE To review the growing body of literature and current findings obtained from the application of tACS in patients with MCI or AD, highlighting the effects of gamma tACS on brain function, memory, and cognition. Evidence on the use of brain stimulation in animal models of AD is also discussed. Important parameters of stimulation are underscored for consideration in protocols that aim to apply tACS as a therapeutic tool in patients with MCI/AD. FINDINGS The application of gamma tACS has shown promising results in the improvement of cognitive and memory processes that are impacted in patients with MCI/AD. These data demonstrate the potential for tACS as an interventional stand-alone tool or alongside pharmacological and/or other behavioral interventions in MCI/AD. CONCLUSIONS While the use of tACS in MCI/AD has evidenced encouraging results, the effects of this stimulation technique on brain function and pathophysiology in MCI/AD remains to be fully determined. This review explores the literature and highlights the need for continued research on tACS as a tool to alter the course of the disease by reinstating oscillatory activity, improving cognitive and memory processing, delaying disease progression, and remediating cognitive abilities in patients with MCI/AD.
Collapse
Affiliation(s)
- N R Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA.
| | - D V H Pham
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - T Poddar
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - E Blutt
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - R H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA.
| |
Collapse
|
24
|
Koo GK, Gaur A, Tumati S, Kusumo RW, Bawa KK, Herrmann N, Gallagher D, Lanctôt KL. Identifying factors influencing cognitive outcomes after anodal transcranial direct current stimulation in older adults with and without cognitive impairment: A systematic review. Neurosci Biobehav Rev 2023; 146:105047. [PMID: 36646259 DOI: 10.1016/j.neubiorev.2023.105047] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Anodal transcranial direct current stimulation (tDCS) can improve cognition in healthy older adults, those with Alzheimer's disease (AD) and mild cognitive impairment (MCI), albeit with considerable variability in response. This systematic review identifies interindividual factors that may influence tDCS outcomes in older individuals with or without cognitive impairment. Peer-reviewed articles were included if they assessed whether cognitive outcomes (memory or global cognition) after tDCS were associated with pre-intervention factors in healthy older adults or individuals with AD/MCI. We identified eight factors that may affect cognitive outcomes after tDCS. Improved tDCS outcomes were predicted by lower baseline cognitive function when tDCS was combined with a co-intervention (but not when used alone). Preserved brain structure and better baseline functional connectivity, genetic polymorphisms, and the use of concomitant medications may predict better tDCS outcomes, but further research is warranted. tDCS outcomes were not consistently associated with age, cognitive reserve, sex, and AD risk factors. Accounting for individual differences in baseline cognition, particularly for combined interventions, may thus maximize the therapeutic potential of tDCS.
Collapse
Affiliation(s)
- Grace Ky Koo
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Amish Gaur
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Shankar Tumati
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Raphael W Kusumo
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Kritleen K Bawa
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
25
|
Jung B, Yang C, Lee SH. Electroceutical and Bioelectric Therapy: Its Advantages and Limitations. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:19-31. [PMID: 36700309 PMCID: PMC9889897 DOI: 10.9758/cpn.2023.21.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/27/2023]
Abstract
Given the long history, the field of electroceutical and bioelectric therapy has grown impressively, recognized as the main modality of mental health treatments along with psychotherapy and pharmacotherapy. Electroceutical and bioelectric therapy comprises electroconvulsive therapy (ECT), vagus nerve stimulation (VNS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation (DBS), transcranial electrical stimulation (tES), and other brain stimulation techniques. Much empirical research has been published regarding the application guidelines, mechanism of action, and efficacy of respective brain stimulation techniques, but no comparative study that delineates the advantages and limitations of each therapy exists for a comprehensive understanding of each technique. This review provides a comparison of existing electroceutical and bioelectric techniques, primarily focusing on the therapeutic advantages and limitations of each therapy in the current electroceutical and bioelectric field.
Collapse
Affiliation(s)
- Bori Jung
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea,Department of Psychology, Sogang University, Seoul, Korea
| | - Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea,Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea,Address for correspondence: Seung-Hwan Lee Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang 10380, Korea, E-mail: , ORCID: https://orcid.org/0000-0003-0305-3709
| |
Collapse
|
26
|
Licata AE, Zhao Y, Herrmann O, Hillis AE, Desmond J, Onyike C, Tsapkini K. Sex differences in effects of tDCS and language treatments on brain functional connectivity in primary progressive aphasia. Neuroimage Clin 2023; 37:103329. [PMID: 36701874 PMCID: PMC9883295 DOI: 10.1016/j.nicl.2023.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Primary Progressive Aphasia (PPA) is a neurodegenerative disorder primarily affecting language functions. Neuromodulatory techniques (e.g., transcranial direct current stimulation, active-tDCS) and behavioral (speech-language) therapy have shown promising results in treating speech and language deficits in PPA patients. One mechanism of active-tDCS efficacy is through modulation of network functional connectivity (FC). It remains unknown how biological sex influences FC and active-tDCS or language treatment(s). In the current study, we compared sex differences, induced by active-tDCS and language therapy alone, in the default mode and language networks, acquired during resting-state fMRI in 36 PPA patients. Using a novel statistical method, the covariate-assisted-principal-regression (CAPs) technique, we found sex and age differences in FC changes following active-tDCS. In the default mode network (DMN): (1) men (in both conditions) showed greater FC in DMN than women. (2) men who received active-tDCS showed greater FC in the DMN than men who received language-treatment only. In the language network: (1) women who received active-tDCS showed significantly greater FC across the language network than women who received sham-tDCS. As age increases, regardless of sex and treatment condition, FC in language regions decreases. The current findings suggest active-tDCS treatment in PPA alters network-specific FC in a sex-dependent manner.
Collapse
Affiliation(s)
- Abigail E Licata
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Faculty of Psychology and Educational Sciences, University of Geneva, Geneva 1205, Switzerland
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore MD 21287, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John Desmond
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore MD 21287, USA.
| |
Collapse
|
27
|
Satorres E, Escudero Torrella J, Real E, Pitarque A, Delhom I, Melendez JC. Home-based transcranial direct current stimulation in mild neurocognitive disorder due to possible Alzheimer's disease. A randomised, single-blind, controlled-placebo study. Front Psychol 2023; 13:1071737. [PMID: 36660288 PMCID: PMC9844131 DOI: 10.3389/fpsyg.2022.1071737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction Mild neurocognitive disorder (mNCD), a pre-dementia stage close to Mild Cognitive Impairment, shows a progressive and constant decline in the memory domain. Of the non-pharmacological therapeutic interventions that may help to decelerate the neurodegenerative progress, transcranial direct current stimulation (tDCS) shows beneficial effects on the learning curve, immediate recall, immediate verbal memory and executive functions. The purpose of this research was to study the effect of tDCS on general cognition, immediate and delayed memory and executive functions by comparing an active group with a placebo group of mNCD patients. Methods Participants were 33 mNCD due to possible AD, randomly assigned to two groups: 17 active tDCS and 16 placebo tDCS. Ten sessions of tDCS were conducted over the left dorsolateral prefrontal cortex. Several neuropsychological scales were administered to assess the primary outcome measures of general cognitive function, immediate and delayed memory and learning ability, whereas the secondary outcome measures included executive function tests. All participants were evaluated at baseline and at the end of the intervention. Mixed ANOVAs were performed. Results Significant effects were obtained on general cognitive function, immediate and delayed memory and learning ability, with increases in scores in the active tDCS group. However, there were no significant effects on executive function performance. Conclusion The present study demonstrated the effectiveness of tDCS in an active tDCS group, compared to a placebo group, in improving general cognition and immediate and delayed memory, as previous studies found. Taken together, our data suggest that tDCS is a simple, painless, reproducible and easy technique that is useful for treating cognitive alterations found in neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Elena Real
- Faculty of Psychology, University of Valencia, Valencia, Spain
| | | | - Iraida Delhom
- Faculty of Psychology, Jaume I University, Castellón de La Plana, Spain
| | - Juan C. Melendez
- Faculty of Psychology, University of Valencia, Valencia, Spain,*Correspondence: Juan C. Melendez,
| |
Collapse
|
28
|
Hanoglu L, Velioglu HA, Hanoglu T, Yulug B. Neuroimaging-Guided Transcranial Magnetic and Direct Current Stimulation in MCI: Toward an Individual, Effective and Disease-Modifying Treatment. Clin EEG Neurosci 2023; 54:82-90. [PMID: 34751037 DOI: 10.1177/15500594211052815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The therapeutic approaches currently applied in Alzheimer's disease (AD) and similar neurodegenerative diseases are essentially based on pharmacological strategies. However, despite intensive research, the effectiveness of these treatments is limited to transient symptomatic effects, and they are still far from exhibiting a true therapeutic effect capable of altering prognosis. The lack of success of such pharmacotherapy-based protocols may be derived from the cases in the majority of trials being too advanced to benefit significantly in therapeutic terms at the clinical level. For neurodegenerative diseases, mild cognitive impairment (MCI) may be an early stage of the disease continuum, including Alzheimer's. Noninvasive brain stimulation (NIBS) techniques have been developed to modulate plasticity in the human cortex in the last few decades. NIBS techniques have made it possible to obtain unique findings concerning brain functions, and design novel approaches to treat various neurological and psychiatric conditions. In addition, its synaptic and cellular neurobiological effects, NIBS is an attractive treatment option in the early phases of neurodegenerative diseases, such as MCI, with its beneficial modifying effects on cellular neuroplasticity. However, there is still insufficient evidence about the potential positive clinical effects of NIBS on MCI. Furthermore, the huge variability of the clinical effects of NIBS limits its use. In this article, we reviewed the combined approach of NIBS with various neuroimaging and electrophysiological methods. Such methodologies may provide a new horizon to the path for personalized treatment, including a more individualized pathophysiology approach which might even define new specific targets for specific symptoms of neurodegenerations.
Collapse
Affiliation(s)
- Lutfu Hanoglu
- 218502Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Halil Aziz Velioglu
- 218502Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Taha Hanoglu
- 218502Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Burak Yulug
- 450199Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
29
|
Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer's disease? An updated meta-analysis. Clin Neurophysiol 2022; 144:23-40. [PMID: 36215904 DOI: 10.1016/j.clinph.2022.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Alzheimer's disease dementia (AD) and its preclinical stage, mild cognitive impairment (MCI), are critical issues confronting the aging society. Non-invasive brain stimulation (NIBS) techniques have the potential to be effective tools for enhancing cognitive functioning. The main objective of our meta-analysis was to quantify and update the status of the efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) and Transcranial Direct Current Stimulation (tDCS) when applied in AD and MCI. METHODS The systematic literature search was conducted in PubMed and Web of Science according to PRISMA statement. RESULTS Pooled effect sizes (Hedges' g) from 32 studies were analyzed using random effect models. We found both, rTMS and tDCS to have significant immediate cognition-enhancing effect in AD with rTMS inducing also beneficial long-term effects. We found no evidence for synergistic effect of cognitive training with NIBS. CONCLUSIONS In AD a clinical recommendation can be made for NEURO-ADTM system and for high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC) as probably effective protocols (B-level of evidence) and for anodal tDCS over the left DLPFC as a possibly effective. SIGNIFICANCE According to scientific literature, NIBS may be an effective method for improving cognition in AD and possibly in MCI.
Collapse
|
30
|
Figeys M, Villarey S, Leung AWS, Raso J, Buchan S, Kammerer H, Rawani D, Kohls-Wiebe M, Kim ES. tDCS over the left prefrontal Cortex improves mental flexibility and inhibition in geriatric inpatients with symptoms of depression or anxiety: A pilot randomized controlled trial. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:997531. [PMID: 36386776 PMCID: PMC9641275 DOI: 10.3389/fresc.2022.997531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Patients with depression and/or anxiety are commonly seen in inpatient geriatric settings. Both disorders are associated with an increased risk of cognitive impairments, notably in executive functioning. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, involves the administration of a low-dose electrical current to induce neuromodulation, which ultimately may act on downstream cognitive processing. OBJECTIVE The purpose of this study was to determine the effects of tDCS on executive functioning in geriatric inpatients with symptoms of depression and/or anxiety. DESIGN Pilot Randomized Controlled Trial. SETTING Specialized geriatric wards in a tertiary rehabilitation hospital. METHODS Thirty older-aged adults were recruited, of which twenty completed ten-to-fifteen sessions of 1.5 mA anodal or sham tDCS over the left dorsolateral prefrontal cortex. Cognitive assessments were administered at baseline and following the tDCS protocol; analyses examined the effects of tDCS on cognitive performance between groups (anodal or sham tDCS). RESULTS tDCS was found to increase inhibitory processing and cognitive flexibility in the anodal tDCS group, with significant changes on the Stroop test and Trail Making Test-Part B. No significant changes were observed on measures of attention or working memory. DISCUSSION These results provide preliminary evidence that tDCS-induced neuromodulation may selectively improve cognitive processing in older adults with symptoms of depression and/or anxiety. CLINICAL TRIALS REGISTRATION www.clinicaltrials.gov, NCT04558177.
Collapse
Affiliation(s)
- Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Alberta Health Services, Edmonton, AB, Canada,Correspondence: Mathieu Figeys
| | - Sheryn Villarey
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ada W. S. Leung
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Department of Occupational Therapy, University of Alberta, Edmonton, AB, Canada
| | - Jim Raso
- Alberta Health Services, Edmonton, AB, Canada
| | - Steven Buchan
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | | | - David Rawani
- Alberta Health Services, Edmonton, AB, Canada,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Esther S. Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Department of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Zhang Y, Li C, Chen D, Tian R, Yan X, Zhou Y, Song Y, Yang Y, Wang X, Zhou B, Gao Y, Jiang Y, Zhang X. Repeated High-Definition Transcranial Direct Current Stimulation Modulated Temporal Variability of Brain Regions in Core Neurocognitive Networks Over the Left Dorsolateral Prefrontal Cortex in Mild Cognitive Impairment Patients. J Alzheimers Dis 2022; 90:655-666. [DOI: 10.3233/jad-220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early intervention of amnestic mild cognitive impairment (aMCI) may be the most promising way for delaying or even preventing the progression to Alzheimer’s disease. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has been recognized as a promising approach for the treatment of aMCI. Objective: In this paper, we aimed to investigate the modulating mechanism of tDCS on the core neurocognitive networks of brain. Methods: We used repeated anodal high-definition transcranial direct current stimulation (HD-tDCS) over the left dorsolateral prefrontal cortex and assessed the effect on cognition and dynamic functional brain network in aMCI patients. We used a novel method called temporal variability to depict the characteristics of the dynamic brain functional networks. Results: We found that true anodal stimulation significantly improved cognitive performance as measured by the Montreal Cognitive Assessment after simulation. Meanwhile, the Mini-Mental State Examination scores showed a clear upward trend. More importantly, we found significantly altered temporal variability of dynamic functional connectivity of regions belonging to the default mode network, central executive network, and the salience network after true anodal stimulation, indicating anodal HD-tDCS may enhance brain function by modulating the temporal variability of the brain regions. Conclusion: These results imply that ten days of anodal repeated HD-tDCS over the LDLPFC exerts beneficial effects on the temporal variability of the functional architecture of the brain, which may be a potential neural mechanism by which HD-tDCS enhances brain functions. Repeated HD-tDCS may have clinical uses for the intervention of brain function decline in aMCI patients.
Collapse
Affiliation(s)
- Yanchun Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi, P.R. China
| | - Deqiang Chen
- Department of CT, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Rui Tian
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xinyue Yan
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yingwen Zhou
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yancheng Song
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yanlong Yang
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xiaoxuan Wang
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Bo Zhou
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yuhong Gao
- Institute of Geriatrics, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yujuan Jiang
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xi Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Vakili O, Asili P, Babaei Z, Mirahmad M, Keshavarzmotamed A, Asemi Z, Mafi A. Circular RNAs in Alzheimer's Disease: A New Perspective of Diagnostic and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-125997. [PMID: 36043720 DOI: 10.2174/1871527321666220829164211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs), as covalently closed single-stranded noncoding RNA molecules, have been recently identified to involve in several biological processes, principally through targeting microRNAs. Among various neurodegenerative diseases (NDs), accumulating evidence has proposed key roles for circRNAs in the pathogenesis of Alzheimer's disease (AD); although the exact relationship between these RNA molecules and AD progression is not clear, they have been believed to mostly act as miRNA sponges or gene transcription modulators through correlating with multiple proteins, involved in the accumulation of Amyloid β (Aβ) peptides, as well as tau protein, as AD's pathological hallmark. More interestingly, circRNAs have also been reported to play diagnostic and therapeutic roles during AD progression. OBJECTIVE Literature review indicated that circRNAs could essentially contribute to the onset and development of AD. Thus, in the current review, the circRNAs' biogenesis and functions are addressed at first, and then the interplay between particular circRNAs and AD is comprehensively discussed. Eventually, the diagnostic and therapeutic significance of these noncoding RNAs is highlighted in brief. RESULTS A large number of circRNAs are expressed in the brain. Thereby, these RNA molecules are noticed as potential regulators of neural functions in healthy circumstances, as well as neurological disorders. Moreover, circRNAs have also been reported to have potential diagnostic and therapeutic capacities in relation to AD, the most prevalent ND. CONCLUSION CircRNAs have been shown to act as sponges for miRNAs, thereby regulating the function of related miRNAs, including oxidative stress, reduction of neuroinflammation, and the formation and metabolism of Aβ, all of which developed in AD. CircRNAs have also been proposed as biomarkers that have potential diagnostic capacities in AD. Despite these characteristics, the use of circRNAs as therapeutic targets and promising diagnostic biomarkers will require further investigation and characterization of the function of these RNA molecules in AD.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Thams F, Külzow N, Flöel A, Antonenko D. Modulation of network centrality and gray matter microstructure using multi-session brain stimulation and memory training. Hum Brain Mapp 2022; 43:3416-3426. [PMID: 35373873 PMCID: PMC9248322 DOI: 10.1002/hbm.25857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022] Open
Abstract
Neural mechanisms of behavioral improvement induced by repeated transcranial direct current stimulation (tDCS) combined with cognitive training are yet unclear. Previously, we reported behavioral effects of a 3-day visuospatial memory training with concurrent anodal tDCS over the right temporoparietal cortex in older adults. To investigate intervention-induced neural alterations we here used functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) datasets available from 35 participants of this previous study, acquired before and after the intervention. To delineate changes in whole-brain functional network architecture, we employed eigenvector centrality mapping. Gray matter alterations were analyzed using DTI-derived mean diffusivity (MD). Network centrality in the bilateral posterior temporooccipital cortex was reduced after anodal compared to sham stimulation. This focal effect is indicative of decreased functional connectivity of the brain region underneath the anodal electrode and its left-hemispheric homolog with other "relevant" (i.e., highly connected) brain regions, thereby providing evidence for reorganizational processes within the brain's network architecture. Examining local MD changes in these clusters, an interaction between stimulation condition and training success indicated a decrease of MD in the right (stimulated) temporooccipital cluster in individuals who showed superior behavioral training benefits. Using a data-driven whole-brain network approach, we provide evidence for targeted neuromodulatory effects of a combined tDCS-and-training intervention. We show for the first time that gray matter alterations of microstructure (assessed by DTI-derived MD) may be involved in tDCS-enhanced cognitive training. Increased knowledge on how combined interventions modulate neural networks in older adults, will help the development of specific therapeutic interventions against age-associated cognitive decline.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nadine Külzow
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Neurological Rehabilitation Clinic, Kliniken Beelitz GmbH, Beelitz, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
34
|
Senkowski D, Sobirey R, Haslacher D, Soekadar SR. Boosting working memory: Uncovering the differential effects of tDCS and tACS. Cereb Cortex Commun 2022; 3:tgac018. [PMID: 35592391 PMCID: PMC9113288 DOI: 10.1093/texcom/tgac018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Working memory (WM) is essential for reasoning, decision making and problem solving. Recently, there has been an increasing effort in improving WM through non-invasive brain stimulation, especially transcranial direct and alternating current stimulation (tDCS/tACS). Studies suggest that tDCS and tACS can modulate WM performance, but large variability in research approaches hinders identification of optimal stimulation protocols and interpretation of study results. Moreover, it is unclear whether tDCS and tACS differentially affect WM. Here, we summarize and compare studies examining the effects of tDCS and tACS on WM performance in healthy adults. Following PRISMA-selection criteria, our systematic review resulted in 43 studies (29 tDCS, 11 tACS, 3 both) with a total of 1826 adult participants. For tDCS, only 4 out of 23 single-session studies reported effects on WM, while 7 out of 9 multi-session experiments showed positive effects on WM training. For tACS, 10 out of 14 studies demonstrated effects on WM, which were frequency dependent and robust for frontoparietal stimulation. Our review revealed no reliable effect of single-session tDCS on WM, but moderate effects of multi-session tDCS and single-session tACS. We discuss implications of these findings and future directions in the emerging research field of non-invasive brain stimulation and WM.
Collapse
Affiliation(s)
- Daniel Senkowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Rabea Sobirey
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - David Haslacher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Surjo R Soekadar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| |
Collapse
|
35
|
Balduin-Philipps LS, Weiss S, Mueller H. Supporting auditory word recognition with transcranial direct current stimulation: effects in elderly individuals with and without objective memory complaints. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:237-259. [PMID: 33432880 DOI: 10.1080/13825585.2020.1861203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Healthy elderly people often experience a subjective loss of daily memory performance whereas an objective decrease in memory performance is often observed in patients with memory complaints. In this paper, we investigate the influence of a single session of "anodal" transcranial direct current stimulation (a-tDCS) on auditory word recognition performance in a decision time experiment. Three groups of participants (>64 years of age) with and without memory complaints underwent a word recognition task, in which they had to recognize words previously encoded among several distractors (semantically or phonologically related words) via a button press. In this double-blinded study, the participants completed two sessions (sham/a-tDCS), counterbalanced between subjects with a washout period of at least 10 days. Twenty minutes of 1.5 mA a-tDCS was applied over the left temporal cortex during the memorizing and decision phases. Overall, our results demonstrated that the participants, independent of their memory performance, were faster in word recognition during a-tDCS. As expected, older participants with memory complaints recognized significantly less words correctly compared to other participants. However, tDCS did not have a beneficial effect on the extent of successful word recognition. These results suggest a general effect of a single session of a-tDCS over the left temporal cortex, with participants becoming faster in their word recognition, thus having easier access to encoded words.
Collapse
Affiliation(s)
- Larissa S Balduin-Philipps
- Experimental Neurolinguistics Group, Bielefeld University, Bielefeld, Germany
- Cluster of Excellence "Cognitive Interaction Technology" (CITEC), Bielefeld University, Bielefeld, Germany
| | - Sabine Weiss
- Experimental Neurolinguistics Group, Bielefeld University, Bielefeld, Germany
- Cluster of Excellence "Cognitive Interaction Technology" (CITEC), Bielefeld University, Bielefeld, Germany
- Clinical Linguistics, Bielefeld University, Bielefeld, Germany
| | - Horst Mueller
- Experimental Neurolinguistics Group, Bielefeld University, Bielefeld, Germany
- Cluster of Excellence "Cognitive Interaction Technology" (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
36
|
Brain network modulation in Alzheimer's and frontotemporal dementia with transcranial electrical stimulation. Neurobiol Aging 2022; 111:24-34. [DOI: 10.1016/j.neurobiolaging.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
|
37
|
DiNuzzo M, Mangia S, Giove F. Manipulations of sleep‐like slow‐wave activity by noninvasive brain stimulation. J Neurosci Res 2022; 100:1218-1225. [DOI: 10.1002/jnr.25029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mauro DiNuzzo
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology University of Minnesota Minneapolis Minnesota USA
| | - Federico Giove
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
- Laboratory of Neurophysics and Neuroimaging Fondazione Santa Lucia IRCCS Rome Italy
| |
Collapse
|
38
|
Cammisuli DM, Cignoni F, Ceravolo R, Bonuccelli U, Castelnuovo G. Transcranial Direct Current Stimulation (tDCS) as a Useful Rehabilitation Strategy to Improve Cognition in Patients With Alzheimer's Disease and Parkinson's Disease: An Updated Systematic Review of Randomized Controlled Trials. Front Neurol 2022; 12:798191. [PMID: 35185754 PMCID: PMC8847129 DOI: 10.3389/fneur.2021.798191] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders characterized by cognitive impairment and functional decline increasing with disease progression. Within non-pharmacological interventions, transcranial direct current stimulation (tDCS) might represent a cost-effective rehabilitation strategy to implement cognitive abilities with positive implications for functional autonomy and quality-of-life of patients. Our systematic review aimed at evaluating the effects of tDCS upon cognition in people suffering from AD and PD. We searched for randomized controlled trials (RCTs) into PubMed, Web of Science, and Cochrane Library. Three review authors extracted data of interest, with neuropsychological tests or experimental cognitive tasks scores as outcome measures. A total of 17 RCTs (10 trials for AD and 7 trials for PD) were included. Compared with sham stimulation, tDCS may improve global cognition and recognition memory in patients with AD and also some executive functions (i.e., divided attention, verbal fluency, and reduction of sensitivity to interference) in patients with PD. Criticism remains about benefits for the other investigated cognitive domains. Despite preliminary emerging evidences, larger RCTs with common neuropsychological measures and long-term follow-ups establishing longevity of the observed effects are necessary for future research in applied psychology field, alongside improved clinical guidelines on the neurodegenerative disorders pertaining electrodes montage, sessions number, duration and intensity of the stimulation, and cognitive battery to be used.
Collapse
Affiliation(s)
| | - Fabio Cignoni
- Neurological Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Azienda Unità Sanitaria Locale (USL) Toscana Nord Ovest, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Azienda Unità Sanitaria Locale (USL) Toscana Nord Ovest, Pisa, Italy
| | - Gianluca Castelnuovo
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
- Psychology Research Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy
- *Correspondence: Gianluca Castelnuovo ;
| |
Collapse
|
39
|
Rodella C, Bernini S, Panzarasa S, Sinforiani E, Picascia M, Quaglini S, Cavallini E, Vecchi T, Tassorelli C, Bottiroli S. A double-blind randomized controlled trial combining cognitive training (CoRe) and neurostimulation (tDCS) in the early stages of cognitive impairment. Aging Clin Exp Res 2022; 34:73-83. [PMID: 34156651 DOI: 10.1007/s40520-021-01912-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The prevalence of neurodegenerative diseases is expected to increase over the next years, therefore, new methods able to prevent and delay cognitive decline are needed. AIMS To evaluate the effectiveness of a combined treatment protocol associating a computerized cognitive training (CoRe) with anodal transcranial direct current stimulation (tDCS). METHODS In this randomized controlled trial, 33 patients in the early stage of cognitive impairment were assigned to the experimental group (CoRE + real tDCS) or control group (CoRE + sham tDCS). In each group, the intervention lasted 3 consecutive weeks (4 sessions/week). A neuropsychological assessment was administered at baseline (T0), post-intervention (T1) and 6-months later (T2). RESULTS The CoRE + real tDCS group only improved in working memory and attention/processing speed at both T1 and T2. It reported a stable MMSE score at T2, while the CoRE + sham tDCS group worsened. Age, mood, and T0 MMSE score resulted to play a role in predicting treatment effects. CONCLUSION Combined multi-domain interventions may contribute to preventing or delaying disease progression. TRIAL REGISTRATION Trial registration number (ClinicalTrials.gov): NCT04118686.
Collapse
|
40
|
Liao YY, Liu MN, Wang HC, Walsh V, Lau CI. Combining Transcranial Direct Current Stimulation With Tai Chi to Improve Dual-Task Gait Performance in Older Adults With Mild Cognitive Impairment: A Randomized Controlled Trial. Front Aging Neurosci 2021; 13:766649. [PMID: 34966268 PMCID: PMC8710779 DOI: 10.3389/fnagi.2021.766649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Engaging in a secondary task while walking increases motor-cognitive interference and exacerbates fall risk in older adults with mild cognitive impairment (MCI). Previous studies have demonstrated that Tai Chi (TC) may improve cognitive function and dual-task gait performance. Intriguingly, with emerging studies also indicating the potential of transcranial direct current stimulation (tDCS) in enhancing such motor-cognitive performance, whether combining tDCS with TC might be superior to TC alone is still unclear. The purpose of this study was to investigate the effects of combining tDCS with TC on dual-task gait in patients with MCI. Materials and Methods: Twenty patients with MCI were randomly assigned to receive either anodal or sham tDCS, both combined with TC, for 36 sessions over 12 weeks. Subjects received 40 min of TC training in each session. During the first 20 min, they simultaneously received either anodal or sham tDCS over the left dorsolateral prefrontal cortex. Outcome measures included dual-task gait performance and other cognitive functions. Results: There were significant interaction effects between groups on the cognitive dual task walking. Compared to sham, the anodal tDCS group demonstrated a greater improvement on cadence and dual task cost of speed. Conclusion: Combining tDCS with TC may offer additional benefits over TC alone in enhancing dual-task gait performance in patients with MCI. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [TCTR20201201007].
Collapse
Affiliation(s)
- Ying-Yi Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Han-Cheng Wang
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Vincent Walsh
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Chi Ieong Lau
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Department of Neurology, University Hospital, Taipai, Macao SAR, China
| |
Collapse
|
41
|
Cao H, Tan X, Liu Z, Zhao L, Chi L, Li M, Liu C, Li H. The Effect of Adding Transcranial Direct Current Stimulation to Hyperbaric Oxygen Therapy in Patients With Delayed Encephalopathy After Carbon Monoxide Poisoning: A Randomised Controlled Trial. Front Neurol 2021; 12:719765. [PMID: 34925204 PMCID: PMC8671762 DOI: 10.3389/fneur.2021.719765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: To investigate the effect of transcranial direct current stimulation (tDCS) combined with hyperbaric oxygen therapy (HBOT) in patients with delayed encephalopathy after carbon monoxide poisoning (DEACMP). Design: A parallel-group, open-label randomised controlled study. Setting: Hyperbaric Oxygen Therapy Room of the Second Hospital of Hebei Medical University. Subjects: A total of 40 patients were recruited for the current study. Patients were randomly divided into a treatment group and a control group (20 cases/group). Interventions: Control group: conventional, individualised rehabilitation therapy. Treatment group: conventional, individualised rehabilitation therapy and tDCS. Main Measures: cognitive function of patients, the Barthel Index (BI). Results: After treatment, significantly higher MMSE and BI scores, as well as a greater reduction in P300 latency and an increase in P300 amplitude, were observed in the treatment group compared to the control group (MMSE: 13 ± 7 vs. 9 ± 5; P300 latency: 342 ± 29 vs. 363 ± 17 ms; P300 amplitude: 7.0 ± 3.3 vs. 5.1 ± 2.7 μV; all P < 0.05). In both groups, however, MMSE and BI scores, in addition to P300 amplitude, were significantly improved; in contrast, there was a decrease in P300 latency in both groups after treatment compared to before treatment (all P < 0.05). Conclusion: Combined with HBOT, tDCS can help improve cognitive function and ADL in patients with DEACMP. This combination therapy might be a helpful method to enhance the recovery of patients with DEACMP.
Collapse
Affiliation(s)
- Huifang Cao
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaona Tan
- Department of Neurological Rehabilitation, Hebei Medical University Affiliated Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Zibo Liu
- The Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Long Zhao
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Chi
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Manyu Li
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhui Liu
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongling Li
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
42
|
Liu CS, Herrmann N, Song BX, Ba J, Gallagher D, Oh PI, Marzolini S, Rajji TK, Charles J, Papneja P, Rapoport MJ, Andreazza AC, Vieira D, Kiss A, Lanctôt KL. Exercise priming with transcranial direct current stimulation: a study protocol for a randomized, parallel-design, sham-controlled trial in mild cognitive impairment and Alzheimer's disease. BMC Geriatr 2021; 21:677. [PMID: 34863115 PMCID: PMC8645072 DOI: 10.1186/s12877-021-02636-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive type of brain stimulation that uses electrical currents to modulate neuronal activity. A small number of studies have investigated the effects of tDCS on cognition in patients with Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD), and have demonstrated variable effects. Emerging evidence suggests that tDCS is most effective when applied to active brain circuits. Aerobic exercise is known to increase cortical excitability and improve brain network connectivity. Exercise may therefore be an effective, yet previously unexplored primer for tDCS to improve cognition in MCI and mild AD. Methods Participants with MCI or AD will be randomized to receive 10 sessions over 2 weeks of either exercise primed tDCS, exercise primed sham tDCS, or tDCS alone in a blinded, parallel-design trial. Those randomized to an exercise intervention will receive individualized 30-min aerobic exercise prescriptions to achieve a moderate-intensity dosage, equivalent to the ventilatory anaerobic threshold determined by cardiopulmonary assessment, to sufficiently increase cortical excitability. The tDCS protocol consists of 20 min sessions at 2 mA, 5 times per week for 2 weeks applied through 35 cm2 bitemporal electrodes. Our primary aim is to assess the efficacy of exercise primed tDCS for improving global cognition using the Montreal Cognitive Assessment (MoCA). Our secondary aims are to evaluate the efficacy of exercise primed tDCS for improving specific cognitive domains using various cognitive tests (n-back, Word Recall and Word Recognition Tasks from the Alzheimer’s Disease Assessment Scale-Cognitive subscale) and neuropsychiatric symptoms (Neuropsychiatric Inventory). We will also explore whether exercise primed tDCS is associated with an increase in markers of neurogenesis, oxidative stress and angiogenesis, and if changes in these markers are correlated with cognitive improvement. Discussion We describe a novel clinical trial to investigate the effects of exercise priming before tDCS in patients with MCI or mild AD. This proof-of-concept study may identify a previously unexplored, non-invasive, non-pharmacological combination intervention that improves cognitive symptoms in patients. Findings from this study may also identify potential mechanistic actions of tDCS in MCI and mild AD. Trial registration Clinicaltrials.gov, NCT03670615. Registered on September 13, 2018.
Collapse
Affiliation(s)
- Celina S Liu
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 3K1, Canada.,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Bing Xin Song
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 3K1, Canada.,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Joycelyn Ba
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Paul I Oh
- Cardiovascular Prevention and Rehabilitation Program, KITE - Toronto Rehabilitation Institute, University Health Network, 347 Rumsey Road, Toronto, ON, M5G 1R7, Canada
| | - Susan Marzolini
- Cardiovascular Prevention and Rehabilitation Program, KITE - Toronto Rehabilitation Institute, University Health Network, 347 Rumsey Road, Toronto, ON, M5G 1R7, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction & Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Charles
- Family & Community Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Purti Papneja
- Family & Community Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Mark J Rapoport
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Ana C Andreazza
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 3K1, Canada
| | - Danielle Vieira
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Alex Kiss
- Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 3K1, Canada. .,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada. .,Cardiovascular Prevention and Rehabilitation Program, KITE - Toronto Rehabilitation Institute, University Health Network, 347 Rumsey Road, Toronto, ON, M5G 1R7, Canada.
| |
Collapse
|
43
|
Pini L, Wennberg AM, Salvalaggio A, Vallesi A, Pievani M, Corbetta M. Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease. Ageing Res Rev 2021; 72:101482. [PMID: 34606986 DOI: 10.1016/j.arr.2021.101482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by different clinical entities. Although AD phenotypes share a common molecular substrate (i.e., amyloid beta and tau accumulation), several clinicopathological differences exist. Brain functional networks might provide a macro-scale scaffolding to explain this heterogeneity. In this review, we summarize the evidence linking different large-scale functional network abnormalities to distinct AD phenotypes. Specifically, executive deficits in early-onset AD link with the dysfunction of networks that support sustained attention and executive functions. Posterior cortical atrophy relates to the breakdown of visual and dorsal attentional circuits, while the primary progressive aphasia variant of AD may be associated with the dysfunction of the left-lateralized language network. Additionally, network abnormalities might provide in vivo signatures for distinguishing proteinopathies that mimic AD, such as TAR DNA binding protein 43 related pathologies. These network differences vis-a-vis clinical syndromes are more evident in the earliest stage of AD. Finally, we discuss how these findings might pave the way for new tailored interventions targeting the most vulnerable brain circuit at the optimal time window to maximize clinical benefits.
Collapse
|
44
|
Siegert A, Diedrich L, Antal A. New Methods, Old Brains-A Systematic Review on the Effects of tDCS on the Cognition of Elderly People. Front Hum Neurosci 2021; 15:730134. [PMID: 34776903 PMCID: PMC8578968 DOI: 10.3389/fnhum.2021.730134] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The world's population is aging. With this comes an increase in the prevalence of age-associated diseases, which amplifies the need for novel treatments to counteract cognitive decline in the elderly. One of the recently discussed non-pharmacological approaches is transcranial direct current stimulation (tDCS). TDCS delivers weak electric currents to the brain, thereby modulating cortical excitability and activity. Recent evidence suggests that tDCS, mainly with anodal currents, can be a powerful means to non-invasively enhance cognitive functions in elderly people with age-related cognitive decline. Here, we screened a recently developed tDCS database (http://tdcsdatabase.com) that is an open access source of published tDCS papers and reviewed 16 studies that applied tDCS to healthy older subjects or patients suffering from Alzheimer's Disease or pre-stages. Evaluating potential changes in cognitive abilities we focus on declarative and working memory. Aiming for more standardized protocols, repeated tDCS applications (2 mA, 30 min) over the left dorso-lateral prefrontal cortex (LDLPFC) of elderly people seem to be one of the most efficient non-invasive brain stimulation (NIBS) approaches to slow progressive cognitive deterioration. However, inter-subject variability and brain state differences in health and disease restrict the possibility to generalize stimulation methodology and increase the necessity of personalized protocol adjustment by means of improved neuroimaging techniques and electrical field modeling.
Collapse
Affiliation(s)
- Anna Siegert
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Ghafoor U, Yang D, Hong KS. Neuromodulatory effects of HD-tACS/tDCS on the prefrontal cortex: A resting-state fNIRS-EEG study. IEEE J Biomed Health Inform 2021; 26:2192-2203. [PMID: 34757916 DOI: 10.1109/jbhi.2021.3127080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcranial direct and alternating current stimulation (tDCS and tACS, respectively) can modulate human brain dynamics and cognition. However, these modalities have not been compared using multiple imaging techniques concurrently. In this study, 15 participants participated in an experiment involving two sessions with a gap of 10 d. In the first and second sessions, tACS and tDCS were administered to the participants. The anode for tDCS was positioned at point FpZ, and four cathodes were positioned over the left and right prefrontal cortices (PFCs) to target the frontal regions simultaneously. tDCS was administered with 1 mA current. tACS was supplied with a current of 1 mA (zero-to-peak value) at 10 Hz frequency. Stimulation was applied concomitantly with functional near-infrared spectroscopy and electroencephalography acquisitions in the resting-state. The statistical test showed significant alteration (p < 0.001) in the mean hemodynamic responses during and after tDCS and tACS periods. Between-group comparison revealed a significantly less (p < 0.001) change in the mean hemodynamic response caused by tACS compared with tDCS. As hypothesized, we successfully increased the hemodynamics in both left and right PFCs using tDCS and tACS. Moreover, a significant increase in alpha-band power (p < 0.01) and low beta band power (p < 0.05) due to tACS was observed after the stimulation period. Although tDCS is not frequency-specific, it increased but not significantly (p > 0.05) the powers of most bands including delta, theta, alpha, low beta, high beta, and gamma. These findings suggest that both hemispheres can be targeted and that both tACS and tDCS are equally effective in high-definition configurations, which may be of clinical relevance.
Collapse
|
46
|
Coemans S, Struys E, Vandenborre D, Wilssens I, Engelborghs S, Paquier P, Tsapkini K, Keulen S. A Systematic Review of Transcranial Direct Current Stimulation in Primary Progressive Aphasia: Methodological Considerations. Front Aging Neurosci 2021; 13:710818. [PMID: 34690737 PMCID: PMC8530184 DOI: 10.3389/fnagi.2021.710818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
A variety of tDCS approaches has been used to investigate the potential of tDCS to improve language outcomes, or slow down the decay of language competences caused by Primary Progressive Aphasia (PPA). The employed stimulation protocols and study designs in PPA are generally speaking similar to those deployed in post-stroke aphasic populations. These two etiologies of aphasia however differ substantially in their pathophysiology, and for both conditions the optimal stimulation paradigm still needs to be established. A systematic review was done and after applying inclusion and exclusion criteria, 15 articles were analyzed focusing on differences and similarities across studies especially focusing on PPA patient characteristics (age, PPA variant, language background), tDCS stimulation protocols (intensity, frequency, combined therapy, electrode configuration) and study design as recent reviews and group outcomes for individual studies suggest tDCS is an effective tool to improve language outcomes, while methodological approach and patient characteristics are mentioned as moderators that may influence treatment effects. We found that studies of tDCS in PPA have clinical and methodological and heterogeneity regarding patient populations, stimulation protocols and study design. While positive group results are usually found irrespective of these differences, the magnitude, duration and generalization of these outcomes differ when comparing stimulation locations, and when results are stratified according to the clinical variant of PPA. We interpret the results of included studies in light of patient characteristics and methodological decisions. Further, we highlight the role neuroimaging can play in study protocols and interpreting results and make recommendations for future work.
Collapse
Affiliation(s)
- Silke Coemans
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| | - Esli Struys
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dorien Vandenborre
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Ineke Wilssens
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reference Center for Biological Markers of Dementia, BIODEM, Institute Born-Bunge, Universiteit Antwerpen, Antwerp, Belgium
| | - Philippe Paquier
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Antwerp, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen, Antwerp, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Stefanie Keulen
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
47
|
Brooks H, Oughli HA, Kamel L, Subramanian S, Morgan G, Blumberger DM, Kloeckner J, Kumar S, Mulsant BH, Lenze EJ, Rajji TK. Enhancing Cognition in Older Persons with Depression or Anxiety with a Combination of Mindfulness-Based Stress Reduction (MBSR) and Transcranial Direct Current Stimulation (tDCS): Results of a Pilot Randomized Clinical Trial. Mindfulness (N Y) 2021; 12:3047-3059. [PMID: 34630733 PMCID: PMC8491443 DOI: 10.1007/s12671-021-01764-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
Objectives Individuals with subjective memory complaints and symptoms of depression and/or anxiety are at high risk for further cognitive decline, and possible progression to dementia. Low-burden interventions to help slow or prevent cognitive decline in this high-risk group are needed. The objective of this study is to assess the feasibility of combining Mindfulness-Based Stress Reduction (MBSR) with transcranial direct current stimulation (tDCS) to increase putative benefits of MBSR for cognitive function and everyday mindfulness in depressed or anxious older adults with subjective cognitive decline. Methods We conducted a two-site pilot double-blind randomized sham-controlled trial, combining active MBSR with either active or sham tDCS. The intervention included weekly in-class group sessions at the local university hospital and daily at-home practice. Anodal tDCS was applied for 30 min during MBSR meditative practice, both in-class and at-home. Results Twenty-six individuals with subjective cognitive complaints and symptoms of depression and/or anxiety were randomized to active (n = 12) or sham tDCS (n = 14). The combination of MBSR and tDCS was safe and well tolerated, though at-home adherence and in-class attendance were variable. While they were not statistically significant, the largest effect sizes for active vs. sham tDCS were for everyday mindfulness (d = 0.6) and social functioning (d = 0.9) (F(1,21) = 3.68, p = 0.07 and F(1,21) = 3.9, p = 0.06, respectively). Conclusions Our findings suggest that it is feasible and safe to combine tDCS with MBSR in older depressed and anxious adults, including during remote, at-home use. Furthermore, tDCS may enhance MBSR via transferring its meditative learning and practice into increases in everyday mindfulness. Future studies need to improve adherence to MBSR with tDCS. Trial Registration ClinicalTrials.gov (NCT03653351 and NCT03680664). Supplementary Information The online version contains supplementary material available at 10.1007/s12671-021-01764-9.
Collapse
Affiliation(s)
- Heather Brooks
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | | | - Lojine Kamel
- Washington University School of Medicine, St. Louis, MO USA
| | | | - Gwen Morgan
- Centre for Mindfulness Studies, Toronto, Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | | | - Sanjeev Kumar
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Benoit H Mulsant
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Eric J Lenze
- Washington University School of Medicine, St. Louis, MO USA
| | - Tarek K Rajji
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Kim J, Kim H, Jeong H, Roh D, Kim DH. tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: A direct comparison between tACS and tDCS. J Psychiatr Res 2021; 141:248-256. [PMID: 34256276 DOI: 10.1016/j.jpsychires.2021.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Neuromodulation has gained attention as a potential non-pharmacological intervention for mild cognitive impairment (MCI). However, no studies have directly compared the effects of transcranial alternating current stimulation (tACS) with transcranial direct current stimulation (tDCS) on MCI patients. We aimed to identify the more promising and efficient therapeutic option between tACS and tDCS for cognitive enhancement in MCI patients. We compared the effects of gamma-tACS with tDCS on cognitive function and electroencephalography (EEG) in MCI patients. In this sham-controlled, double-blinded, repeated-measures study with the order of the stimulation counterbalanced across patients (n = 20), both gamma-tACS (40 H z) and tDCS were administered at the same intensity (2 mA) in the dorsolateral prefrontal cortex for 30 min. Cognitive tests (Stroop and Trail-Making-Test [TMT]) and EEG were performed before and after single-session stimulation. Gamma-tACS improved the Stroop-color in comparison with tDCS (p = .044) and sham (p = .010) and enhanced the TMT-B in comparison with sham (p = .021). However, tDCS was not significantly different from sham in changes of any cognitive test scores. In EEG analysis, gamma-tACS increased beta activity in comparison with sham and tDCS, whereas tDCS decreased delta and theta activity in comparison with sham. Gamma-tACS also increased beta 2 source activity in the anterior cingulate, compared to sham. The cognitive benefits of tACS in MCI patients appeared superior to those of tDCS. tACS facilitated cognitive function by increasing beta activity, while tDCS delayed the progression of MCI symptoms by decreasing slow-frequency activity. Thus, tACS could be used as a new therapeutic option for MCI.
Collapse
Affiliation(s)
- Jiheon Kim
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea; Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hansol Kim
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hyewon Jeong
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Daeyoung Roh
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea; Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Do Hoon Kim
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea; Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
49
|
He F, Li Y, Li C, Fan L, Liu T, Wang J. Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions. PLoS One 2021; 16:e0256100. [PMID: 34388179 PMCID: PMC8363005 DOI: 10.1371/journal.pone.0256100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve cognitive function. However, it is not clear how high-definition tDCS (HD-tDCS) regulates the cognitive function and its neural mechanism, especially in individuals with mild cognitive impairment (MCI). This study aimed to examine whether HD-tDCS can modulate cognitive function in individuals with MCI and to determine whether the potential variety is related to spontaneous brain activity changes recorded by resting-state functional magnetic resonance imaging (rs-fMRI). Forty-three individuals with MCI were randomly assigned to receive either 10 HD-tDCS sessions or 10 sham sessions to the left dorsolateral prefrontal cortex (L-DLPFC). The fractional amplitude of low-frequency fluctuation (fALFF) and the regional homogeneity (ReHo) was computed using rs-fMRI data from all participants. The results showed that the fALFF and ReHo values changed in multiple areas following HD-tDCS. Brain regions with significant decreases in fALFF values include the Insula R, Precuneus R, Thalamus L, and Parietal Sup R, while the Temporal Inf R, Fusiform L, Occipital Sup L, Calcarine R, and Angular R showed significantly increased in their fALFF values. The brain regions with significant increases in ReHo values include the Temporal Inf R, Putamen L, Frontal Mid L, Precentral R, Frontal Sup Medial L, Frontal Sup R, and Precentral L. We found that HD-tDCS can alter the intensity and synchrony of brain activity, and our results indicate that fALFF and ReHo analysis are sensitive indicators for the detection of HD-tDCS during spontaneous brain activity. Interestingly, HD-tDCS increases the ReHo values of multiple brain regions, which may be related to the underlying mechanism of its clinical effects, these may also be related to a potential compensation mechanism involving the mobilization of more regions to complete a function following a functional decline.
Collapse
Affiliation(s)
- Fangmei He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Chenxi Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| |
Collapse
|
50
|
Rasmussen ID, Boayue NM, Mittner M, Bystad M, Grnli OK, Vangberg TR, Csifcsák G, Aslaksen PM. High-Definition Transcranial Direct Current Stimulation Improves Delayed Memory in Alzheimer's Disease Patients: A Pilot Study Using Computational Modeling to Optimize Electrode Position. J Alzheimers Dis 2021; 83:753-769. [PMID: 34366347 DOI: 10.3233/jad-210378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The optimal stimulation parameters when using transcranial direct current stimulation (tDCS) to improve memory performance in patients with Alzheimer's disease (AD) are lacking. In healthy individuals, inter-individual differences in brain anatomy significantly influence current distribution during tDCS, an effect that might be aggravated by variations in cortical atrophy in AD patients. OBJECTIVE To measure the effect of individualized HD-tDCS in AD patients. METHODS Nineteen AD patients were randomly assigned to receive active or sham high-definition tDCS (HD-tDCS). Computational modeling of the HD-tDCS-induced electric field in each patient's brain was analyzed based on magnetic resonance imaging (MRI) scans. The chosen montage provided the highest net anodal electric field in the left dorsolateral prefrontal cortex (DLPFC). An accelerated HD-tDCS design was conducted (2 mA for 3×20 min) on two separate days. Pre- and post-intervention cognitive tests and T1 and T2-weighted MRI and diffusion tensor imaging data at baseline were analyzed. RESULTS Different montages were optimal for individual patients. The active HD-tDCS group improved significantly in delayed memory and MMSE performance compared to the sham group. Five participants in the active group had higher scores on delayed memory post HD-tDCS, four remained stable and one declined. The active HD-tDCS group had a significant positive correlation between fractional anisotropy in the anterior thalamic radiation and delayed memory score. CONCLUSION HD-tDCS significantly improved delayed memory in AD. Our study can be regarded as a proof-of-concept attempt to increase tDCS efficacy. The present findings should be confirmed in larger samples.
Collapse
Affiliation(s)
- Ingrid Daae Rasmussen
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway.,Department of Geropsychiatry, University Hospital of North Norway, Norway
| | - Nya Mehnwolo Boayue
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Matthias Mittner
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Martin Bystad
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway.,Department of Geropsychiatry, University Hospital of North Norway, Norway
| | - Ole K Grnli
- Department of Geropsychiatry, University Hospital of North Norway, Norway
| | - Torgil Riise Vangberg
- Department of Clinical Medicine, University hospital of North Norway, Norway.,PET Center, University hospital of North Norway, Tromsø, Norway
| | - Gábor Csifcsák
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Per M Aslaksen
- Department of Psychology, Research Group for Cognitive Neuroscience, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway.,Department of Child and Adolescent Psychiatry, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|