1
|
Sewell KR, Doecke JD, Xiong C, Benzinger T, Masters CL, Laske C, Jucker M, Lopera F, Gordon BA, Llibre‐Guerra J, Levin J, Huey ED, Hassenstab J, Schofield PR, Day GS, Fox NC, Chhatwal J, Ibanez L, Roh JH, Perrin R, Lee J, Allegri RF, Supnet‐Bell C, Berman SB, Daniels A, Noble J, Martins RN, Rainey‐Smith S, Peiffer J, Gardener SL, Bateman RJ, Morris JC, McDade E, Erickson KI, Sohrabi HR, Brown BM. Longitudinal associations between exercise and biomarkers in autosomal dominant Alzheimer's disease. Alzheimers Dement 2024; 20:7923-7939. [PMID: 39324510 PMCID: PMC11567864 DOI: 10.1002/alz.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION We investigated longitudinal associations between self-reported exercise and Alzheimer's disease (AD)-related biomarkers in individuals with autosomal dominant AD (ADAD) mutations. METHODS Participants were 308 ADAD mutation carriers aged 39.7 ± 10.8 years from the Dominantly Inherited Alzheimer's Network. Weekly exercise volume was measured via questionnaire and associations with brain volume (magnetic resonance imaging), cerebrospinal fluid biomarkers, and brain amyloid beta (Aβ) measured by positron emission tomography were investigated. RESULTS Greater volume of weekly exercise at baseline was associated with slower accumulation of brain Aβ at preclinical disease stages β = -0.16 [-0.23 to -0.08], and a slower decline in multiple brain regions including hippocampal volume β = 0.06 [0.03 to 0.08]. DISCUSSION Exercise is associated with more favorable profiles of AD-related biomarkers in individuals with ADAD mutations. Exercise may have therapeutic potential for delaying the onset of AD; however, randomized controlled trials are vital to determine a causal relationship before a clinical recommendation of exercise is implemented. HIGHLIGHTS Greater self-reported weekly exercise predicts slower declines in brain volume in autosomal dominant Alzheimer's disease (ADAD). Greater self-reported weekly exercise predicts slower accumulation of brain amyloid beta in ADAD. Associations varied depending on closeness to estimated symptom onset.
Collapse
Affiliation(s)
- Kelsey R. Sewell
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - James D. Doecke
- Australian E‐Health Research CentreCSIROHerstonQueenslandAustralia
| | | | | | - Colin L. Masters
- The Florey InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Christoph Laske
- German Center for Neurodegenerative DiseasesTubingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Mathias Jucker
- German Center for Neurodegenerative DiseasesTubingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Francisco Lopera
- Grupo de Neurociencias de AntioquiaFacultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | | | | | - Johannes Levin
- Department of NeurologyLMU University HospitalLMUMunichGermany
- German Center for Neurodegenerative DiseasesSite MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Edward D. Huey
- Department of Psychiatry and Human BehaviorWarren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Jason Hassenstab
- Department of Psychological & Brain SciencesWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyCharles F. and Joanne Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Gregory S. Day
- Department of NeurologyMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Nick C. Fox
- Dementia Research CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Jasmeer Chhatwal
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Laura Ibanez
- Washington University in St. LouisSt. LouisMissouriUSA
| | - Jee Hoon Roh
- Department of NeurologyKorea University Anam HospitalSeoulSouth Korea
- Department of PhysiologyKorea University College of MedicineSeoulSouth Korea
| | | | - Jae‐Hong Lee
- Department of NeurologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Ricardo F. Allegri
- Cognitive Neurology Service of the FLENI FoundationFoundation for Childhood Neurological DisordersCognitive NeurologyNeuropsychology and Neuropsychiatry Section (CONICET‐FLENI)Buenos AiresArgentina
| | | | - Sarah B. Berman
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alisha Daniels
- Department of NeurologyCharles F. and Joanne Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - James Noble
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ralph N. Martins
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Stephanie Rainey‐Smith
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
| | - Jeremiah Peiffer
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha L. Gardener
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
| | | | | | - Eric McDade
- Washington University in St. LouisSt. LouisMissouriUSA
| | | | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Belinda M. Brown
- Centre for Healthy AgeingHealth Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
- Centre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- Centre for Precision Health, Edith Cowan UniversityJoondalupWestern AustraliaAustralia
| | | |
Collapse
|
2
|
Guzmán‐Vélez E, Rivera‐Hernández A, Fabrega S, Oliveira G, Martínez JE, Baena A, Picard G, Lopera F, Arnold SE, Taylor JA, Quiroz YT. Relationship between physical activity and biomarkers of pathology and neuroinflammation in preclinical autosomal-dominant Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70003. [PMID: 39748841 PMCID: PMC11694529 DOI: 10.1002/trc2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025]
Abstract
Objective Physical activity (PA) has been linked to reduced Alzheimer's disease (AD) risk. However, less is known about its effects in the AD preclinical stage. We aimed to investigate whether greater PA was associated with lower plasma biomarkers of AD pathology, neural injury, reactive astrocytes, and better cognition in individuals with autosomal-dominant AD due to the presenilin-1 E280A mutation who are virtually guaranteed to develop dementia. Methods Twenty-eight cognitively unimpaired mutation carriers (ages x̄ = 29.28) wore a FitBit Charge-4 for 14 days. We calculated their average steps to measure locomotion, and Training Impulse (TRIMP) to quantify the intensity and duration of PAs using heart rate. Plasma amyloid beta 42/40 ratio, phosphorylated tau 181, neurofilament light chain, and glial fibrillary acidic protein (GFAP) were measured. Cognition was assessed with the Consortium to Establish a Registry for Alzheimer's Disease word list learning and delayed recall, Trail Making Test Part A, and Wechsler Adult Intelligence Scale-version IV Digit Span Backward. We conducted multiple linear regressions controlling for age, sex, body mass index, and education. Results There were no associations among steps or TRIMP with plasma biomarkers or cognition. Greater TRIMP was related to higher GFAP levels. Conclusions PA was not associated with cognition or plasma biomarkers. However, greater intensity and duration of PAs were related to higher GFAP. Participants engaged very little in moderate to vigorous PA. Therefore, light PA may not exert a significant protective effect in preclinical AD. Future work with larger samples and longitudinal data is needed to elucidate further the potential impact of PA on AD progression in the preclinical stages. Highlights Locomotion (average steps) was not associated with plasma biomarkers or cognition.Greater training load (training impulse) was related to higher glial fibrillary acidic protein levels in mutation carriers.Light physical activity may not suffice to exert a protective effect on Alzheimer's disease.
Collapse
Affiliation(s)
- Edmarie Guzmán‐Vélez
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Sofia Fabrega
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| | - Gabriel Oliveira
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| | - Jairo E. Martínez
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusettsUSA
| | - Ana Baena
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Glen Picard
- Cardiovascular Research LaboratorySpaulding Rehabilitation HospitalCambridgeMassachusettsUSA
- Department of Physical Medicine & RehabilitationHarvard Medical SchoolBoston, MAUSA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Steven E. Arnold
- Department of Neurology, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| | - J Andrew Taylor
- Cardiovascular Research LaboratorySpaulding Rehabilitation HospitalCambridgeMassachusettsUSA
- Department of Physical Medicine & RehabilitationHarvard Medical SchoolBoston, MAUSA
| | - Yakeel T. Quiroz
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Department of Neurology, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
3
|
Daniels AJ, McDade E, Llibre-Guerra JJ, Xiong C, Perrin RJ, Ibanez L, Supnet-Bell C, Cruchaga C, Goate A, Renton AE, Benzinger TL, Gordon BA, Hassenstab J, Karch C, Popp B, Levey A, Morris J, Buckles V, Allegri RF, Chrem P, Berman SB, Chhatwal JP, Farlow MR, Fox NC, Day GS, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Takada L, Sosa AL, Martins R, Mori H, Noble JM, Salloway S, Huey E, Rosa-Neto P, Sánchez-Valle R, Schofield PR, Roh JH, Bateman RJ. 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311689. [PMID: 39148846 PMCID: PMC11326320 DOI: 10.1101/2024.08.08.24311689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.
Collapse
Affiliation(s)
- Alisha J. Daniels
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Eric McDade
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Richard J. Perrin
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Brian A. Gordon
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Celeste Karch
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Brent Popp
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Allan Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - John Morris
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Virginia Buckles
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Patricio Chrem
- Institute of Neurological Research FLENI, Buenos Aires, Argentina
| | | | - Jasmeer P. Chhatwal
- Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston MA, USA
| | | | - Nick C. Fox
- UK Dementia Research Institute at University College London, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Johannes Levin
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Ana Luisa Sosa
- Instituto Nacional de Neurologia y Neurocirugla Innn, Mexico City, Mexico
| | - Ralph Martins
- Edith Cowan University, Western Australia, Australia
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Edward Huey
- Brown University, Butler Hospital, Providence, RI, USA
| | - Pedro Rosa-Neto
- Centre de Recherche de L’hopital Douglas and McGill University, Montreal, Quebec
| | - Raquel Sánchez-Valle
- Hospital Clínic de Barcelona. IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jee Hoon Roh
- Korea University, Korea University Anam Hospital, Seoul, South Korea
| | | | | |
Collapse
|
4
|
Latimer CS, Prater KE, Postupna N, Dirk Keene C. Resistance and Resilience to Alzheimer's Disease. Cold Spring Harb Perspect Med 2024; 14:a041201. [PMID: 38151325 PMCID: PMC11293546 DOI: 10.1101/cshperspect.a041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dementia is a significant public health crisis; the most common underlying cause of age-related cognitive decline and dementia is Alzheimer's disease neuropathologic change (ADNC). As such, there is an urgent need to identify novel therapeutic targets for the treatment and prevention of the underlying pathologic processes that contribute to the development of AD dementia. Although age is the top risk factor for dementia in general and AD specifically, these are not inevitable consequences of advanced age. Some individuals are able to live to advanced age without accumulating significant pathology (resistance to ADNC), whereas others are able to maintain cognitive function despite the presence of significant pathology (resilience to ADNC). Understanding mechanisms of resistance and resilience will inform therapeutic strategies to promote these processes to prevent or delay AD dementia. This article will highlight what is currently known about resistance and resilience to AD, including our current understanding of possible underlying mechanisms that may lead to candidate preventive and treatment interventions for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - Katherine E Prater
- Department of Neurology, University of Washington, Seattle 98195, Washington, USA
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| |
Collapse
|
5
|
Rice PE, Thumuluri D, Barnstaple R, Fanning J, Laurita-Spanglet J, Soriano CT, Hugenschmidt CE. Moving Towards a Medicine of Dance: A Scoping Review of Characteristics of Dance Interventions Targeting Older Adults and a Theoretical Framework. J Alzheimers Dis 2024:JAD230741. [PMID: 39031353 DOI: 10.3233/jad-230741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Dance combines cultural and aesthetic elements with behaviors important for brain health, including physical activity, social engagement, and cognitive challenge. Therefore, dance could positively impact public health given the rapidly aging population, increasing incidence of Alzheimer's disease and related dementias, and lack of uptake of exercise in many older adults. Despite a high volume of literature, existing literature does not support evidence-based guidelines for dance to support healthy aging. Objective To conduct a scoping review of the dance intervention literature in older adults and provide information to facilitate a more consistent approach among scientists in designing dance interventions for older adults that stimulate physical and neurocognitive health adaptations. Methods Study characteristics (sample size, population, study design, outcomes, intervention details) were ascertained from 112 separate studies of dance reported in 127 papers that reported outcomes important for brain health (cardiorespiratory fitness, balance and mobility, cognition, mood, and quality of life). Results High heterogeneity across studies was evident. Class frequency ranged from < 1 to 5 classes per week, class length from 30-120 minutes, and intervention duration from 2 weeks to 18 months. Studies often did not randomize participants, had small (< 30) sample sizes, and used varied comparator conditions. Over 50 tests of cognition, 40 dance forms, and 30 tests of mobility were identified. Conclusions Based on these results, important future directions are establishing common data elements, developing intervention mapping and mechanistic modeling, and testing dosing parameters to strengthen and focus trial design of future studies and generate evidence-based guidelines for dance.
Collapse
Affiliation(s)
- Paige E Rice
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | - Deepthi Thumuluri
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Jason Fanning
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Christina T Soriano
- Department of Theatre and Dance, Wake Forest University, Winston-Salem, NC, USA
| | - Christina E Hugenschmidt
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Nicola L, Loo SJQ, Lyon G, Turknett J, Wood TR. Does resistance training in older adults lead to structural brain changes associated with a lower risk of Alzheimer's dementia? A narrative review. Ageing Res Rev 2024; 98:102356. [PMID: 38823487 DOI: 10.1016/j.arr.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Dementia, particularly Alzheimer's Disease (AD), has links to several modifiable risk factors, especially physical inactivity. When considering the relationship between physcial activity and dementia risk, cognitive benefits are generally attributed to aerobic exercise, with resistance exercise (RE) receiving less attention. This review aims to address this gap by evaluating the impact of RE on brain structures and cognitive deficits associated with AD. Drawing insights from randomized controlled trials (RCTs) utilizing structural neuroimaging, the specific influence of RE on AD-affected brain structures and their correlation with cognitive function are discussed. Preliminary findings suggest that RE induces structural brain changes in older adults that could reduce the risk of AD or mitigate AD progression. Importantly, the impacts of RE appear to follow a dose-response effect, reversing pathological structural changes and improving associated cognitive functions if performed at least twice per week for at least six months, with greatest effects in those already experiencing some element of cognitive decline. While more research is eagerly awaited, this review contributes insights into the potential benefits of RE for cognitive health in the context of AD-related changes in brain structure and function.
Collapse
Affiliation(s)
| | | | | | | | - Thomas R Wood
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Institute for Human and Machine Cognition, Pensacola, FL, USA.
| |
Collapse
|
7
|
Rodriguez-Ayllon M, Solis-Urra P, Arroyo-Ávila C, Álvarez-Ortega M, Molina-García P, Molina-Hidalgo C, Gómez-Río M, Brown B, Erickson KI, Esteban-Cornejo I. Physical activity and amyloid beta in middle-aged and older adults: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:133-144. [PMID: 37558161 PMCID: PMC10980893 DOI: 10.1016/j.jshs.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND One of the pathological hallmarks distinguishing Alzheimer's disease from other dementias is the accumulation of amyloid beta (Aβ). Higher physical activity is associated with decreased dementia risk, and one potential path could be through Aβ levels modulation. We aimed to explore the relationship between physical activity and Aβ in middle-aged and older adults. METHODS A systematic search of PubMed, Web of Science, PsycINFO, Cochrane Central Register of Controlled Trials, and SPORTDiscus was performed from inception to April 28, 2022. Studies were eligible if they included physical activity and Aβ data in adults aged 45 years or older. Multi-level meta-analyses of intervention and observational studies were performed to examine the role of physical activity in modulating Aβ levels. RESULTS In total, 37 articles were included (8 randomized controlled trials, 3 non-randomized controlled trials, 4 prospective longitudinal studies, and 22 cross-sectional studies). The overall effect size of physical activity interventions on changes in blood Aβ was medium (pooled standardized mean difference = -0.69, 95% confidence interval (95%CI): -1.41 to 0.03; I2 = 74.6%). However, these results were not statistically significant, and there were not enough studies to explore the effects of physical activity on cerebrospinal fluid (CSF) and brain Aβ. Data from observational studies were examined based on measurements of Aβ in the brain using positron emission tomography scans, CSF, and blood. Higher physical activity was positively associated with Aβ only in the CSF (Estimate r = 0.12; 95%CI: 0.05-0.18; I2 = 38.00%). CONCLUSION Physical activity might moderately reduce blood Aβ in middle-aged and older adults. However, results were only near statistical significance and might be interpreted with caution given the methodological limitations observed in some of the included studies. In observational studies, higher levels of physical activity were positively associated with Aβ only in CSF. Therefore, further research is needed to understand the modulating role of physical activity in the brain, CSF, and blood Aβ, as well as its implication for cognitive health.
Collapse
Affiliation(s)
- María Rodriguez-Ayllon
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, GD 3015, the Netherlands
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile; Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | - Cristina Arroyo-Ávila
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Miriam Álvarez-Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Pablo Molina-García
- Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | | | - Manuel Gómez-Río
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | - Belinda Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kirk I Erickson
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; Advent Health Research Institute, Neuroscience Institute Orlando, Orlando, FL 32803, USA
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Physiopathology of Obesity and Nutrition Research Center (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain.
| |
Collapse
|
8
|
Jia D, Tian Z, Wang R. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res Rev 2023; 91:102087. [PMID: 37832607 DOI: 10.1016/j.arr.2023.102087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The benefits of regular physical activity are related to delaying and reversing the onset of ageing and age-related disorders, including cardiomyopathy, neurodegenerative diseases, cancer, obesity, diabetes, and fatty liver diseases. However, the molecular mechanisms of the benefits of exercise or physical activity on ageing and age-related disorders remain poorly understood. Mitochondrial dysfunction is implicated in the pathogenesis of ageing and age-related metabolic diseases. Mitochondrial health is an important mediator of cellular function. Therefore, exercise alleviates metabolic diseases in individuals with advancing ageing and age-related diseases by the remarkable promotion of mitochondrial biogenesis and function. Exerkines are identified as signaling moieties released in response to exercise. Exerkines released by exercise have potential roles in improving mitochondrial dysfunction in response to age-related disorders. This review comprehensive summarizes the benefits of exercise in metabolic diseases, linking mitochondrial dysfunction to the onset of age-related diseases. Using relevant examples utilizing this approach, the possibility of designing therapeutic interventions based on these molecular mechanisms is addressed.
Collapse
Affiliation(s)
- Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
9
|
Daly T. If deprivation worsens dementia outcomes, stimulation should improve them. Curr Med Res Opin 2023; 39:1391-1394. [PMID: 37725088 DOI: 10.1080/03007995.2023.2260741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
It is still not known what causes Alzheimer's Disease (AD). In this period of uncertainty, an emerging literature on risk factors suggests that the concept of "stimulation" is a useful pragmatic tool both before and after diagnosis to improve cognitive health. Before diagnosis of AD, stimulation of the brain through education, exercise, and social stimulation provides fortification against later cognitive decline. After diagnosis, specific electrical stimulation of brain circuits may protect cognitive function, and non-specific stimulation through different kinds of environmental enrichment may help to compensate for cognitive decline. Pragmatic guidelines are offered here to maximise enabling stimulation (physical, cognitive, and social activity) and minimise disabling stimulation across the lifetime (e.g. stress, pollution, and poor diet). However, much deeper structural changes in society are needed to struggle against socioeconomic and environmental deprivation and the inaccessibility of education for women across the globe.
Collapse
Affiliation(s)
- Timothy Daly
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Zheng L, Eramudugolla R, Cherbuin N, Drouin SM, Dixon RA, Anstey KJ. Gender specific factors contributing to cognitive resilience in APOE ɛ4 positive older adults in a population-based sample. Sci Rep 2023; 13:8037. [PMID: 37198167 DOI: 10.1038/s41598-023-34485-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Although APOE ɛ4 has been identified as the strongest genetic risk factor for Alzheimer's Disease, there are some APOE ɛ4 carriers who do not go on to develop Alzheimer's disease or cognitive impairment. This study aims to investigate factors contributing to this "resilience" separately by gender. Data were drawn from APOE ɛ4 positive participants who were aged 60 + at baseline in the Personality and Total Health Through Life (PATH) Study (N = 341, Women = 46.3%). Participants were categorised into "resilient" and "non-resilient" groups using Latent Class Analysis based on their cognitive impairment status and cognitive trajectory across 12 years. Logistic regression was used to identify the risk and protective factors that contributed to resilience stratified by gender. For APOE ɛ4 carriers who have not had a stroke, predictors of resilience were increased frequency of mild physical activity and being employed at baseline for men, and increased number of mental activities engaged in at baseline for women. The results provide insights into a novel way of classifying resilience among APOE ɛ4 carriers and risk and protective factors contributing to resilience separately for men and women.
Collapse
Affiliation(s)
- Lidan Zheng
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia.
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia.
- UNSW Ageing Futures Institute, Kensington, NSW, Australia.
| | - Ranmalee Eramudugolla
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
- UNSW Ageing Futures Institute, Kensington, NSW, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Shannon M Drouin
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Roger A Dixon
- Department of Psychology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kaarin J Anstey
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
- UNSW Ageing Futures Institute, Kensington, NSW, Australia
| |
Collapse
|
11
|
Wei P. Ultra-Early Screening of Cognitive Decline Due to Alzheimer's Pathology. Biomedicines 2023; 11:biomedicines11051423. [PMID: 37239094 DOI: 10.3390/biomedicines11051423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's pathology can be assessed and defined via Aβ and tau biomarkers. The preclinical period of Alzheimer's disease is long and lasts several decades. Although effective therapies to block pathological processes of Alzheimer's disease are still lacking, downward trends in the incidence and prevalence of dementia have occurred in developed countries. Accumulating findings support that education, cognitive training, physical exercise/activities, and a healthy lifestyle can protect cognitive function and promote healthy aging. Many studies focus on detecting mild cognitive impairment (MCI) and take a variety of interventions in this stage to protect cognitive function. However, when Alzheimer's pathology advances to the stage of MCI, interventions may not be successful in blocking the development of the pathological process. MCI individuals reverting to normal cognitive function exhibited a high probability to progress to dementia. Therefore, it is necessary to take effective measures before the MCI stage. Compared with MCI, an earlier stage, transitional cognitive decline, may be a better time window in which effective interventions are adopted for at-risk individuals. Detecting this stage in large populations relies on rapid screening of cognitive function; given that many cognitive tests focus on MCI detection, new tools need to be developed.
Collapse
Affiliation(s)
- Pengxu Wei
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
12
|
van der Flier WM, de Vugt ME, Smets EMA, Blom M, Teunissen CE. Towards a future where Alzheimer's disease pathology is stopped before the onset of dementia. NATURE AGING 2023; 3:494-505. [PMID: 37202515 DOI: 10.1038/s43587-023-00404-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) is a major healthcare challenge with no curative treatment at present. To address this challenge, we need a paradigm shift, where we focus on pre-dementia stages of AD. In this Perspective, we outline a strategy to move towards a future with personalized medicine for AD by preparing for and investing in effective and patient-orchestrated diagnosis, prediction and prevention of the dementia stage. While focusing on AD, this Perspective also discusses studies that do not specify the cause of dementia. Future personalized prevention strategies encompass multiple components, including tailored combinations of disease-modifying interventions and lifestyle. By empowering the public and patients to be more actively engaged in the management of their health and disease and by developing improved strategies for diagnosis, prediction and prevention, we can pave the way for a future with personalized medicine, in which AD pathology is stopped to prevent or delay the onset of dementia.
Collapse
Affiliation(s)
- Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands.
- Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands.
| | - Marjolein E de Vugt
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Ellen M A Smets
- Medical Psychology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - Marco Blom
- Alzheimer Nederland, Amersfoort, Utrecht, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Wang YY, Zhou YN, Jiang L, Wang S, Zhu L, Zhang SS, Yang H, He Q, Liu L, Xie YH, Liang X, Tang J, Chao FL, Tang Y. Long-term voluntary exercise inhibited AGE/RAGE and microglial activation and reduced the loss of dendritic spines in the hippocampi of APP/PS1 transgenic mice. Exp Neurol 2023; 363:114371. [PMID: 36871860 DOI: 10.1016/j.expneurol.2023.114371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Alzheimer's disease (AD) is closely related to hippocampal synapse loss, which can be alleviated by running exercise. However, further studies are needed to determine whether running exercise reduces synapse loss in the hippocampus in an AD model by regulating microglia. Ten-month-old male wild-type mice and APP/PS1 mice were randomly divided into control and running groups. All mice in the running groups were subjected to voluntary running exercise for four months. After the behavioral tests, immunohistochemistry, stereological methods, immunofluorescence staining, 3D reconstruction, western blotting and RNA-Seq were performed. Running exercise improved the spatial learning and memory abilities of APP/PS1 mice and increased the total number of dendritic spines, the levels of the PSD-95 and Synapsin Ia/b proteins, the colocalization of PSD-95 and neuronal dendrites (MAP-2) and the number of PSD-95-contacting astrocytes (GFAP) in the hippocampi of APP/PS1 mice. Moreover, running exercise reduced the relative expression of CD68 and Iba-1, the number of Iba-1+ microglia and the colocalization of PSD-95 and Iba-1+ microglia in the hippocampi of APP/PS1 mice. The RNA-Seq results showed that some differentially expressed genes (DEGs) related to the complement system (Cd59b, Serping1, Cfh, A2m, and Trem2) were upregulated in the hippocampi of APP/PS1 mice, while running exercise downregulated the C3 gene. At the protein level, running exercise also reduced the expression of advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGE), C1q and C3 in the hippocampus and AGEs and RAGE in hippocampal microglia in APP/PS1 mice. Furthermore, the Col6a3, Scn5a, Cxcl5, Tdg and Clec4n genes were upregulated in the hippocampi of APP/PS1 mice but downregulated after running, and these genes were associated with the C3 and RAGE genes according to protein-protein interaction (PPI) analysis. These findings indicate that long-term voluntary exercise might protect hippocampal synapses and affect the function and activation of microglia, the AGE/RAGE signaling pathway in microglia and the C1q/C3 complement system in the hippocampus in APP/PS1 mice, and these effects may be related to the Col6a3, Scn5a, Cxcl5, Tdg and Clec4n genes. The current results provide an important basis for identifying targets for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi-Ying Wang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Ning Zhou
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Zhu
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan-Shan Zhang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Hao Yang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Qi He
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Han Xie
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
14
|
Dowllah IM, Lopez-Alvarenga J, Maestre GE, Karabulut U, Lehker M, Karabulut M. Relationship Between Cognitive Performance, Physical Activity, and Socio-Demographic/Individual Characteristics Among Aging Americans. J Alzheimers Dis 2023; 92:975-987. [PMID: 36847008 PMCID: PMC10693475 DOI: 10.3233/jad-221151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Physical activity (PA) has emerged as a promising approach to delay Alzheimer's disease and related dementias, but the optimal intensity of PA to improve cognitive health remains unknown. OBJECTIVE To evaluate the association between duration and intensity of PA and cognitive domains (executive function, processing speed, and memory) in aging Americans. METHODS Linear regressions in hierarchical blocks for variable adjustment and the size of effect (η2) were analyzed by using the data of 2,377 adults (age = 69.3±6.7 years) from the NHANES 2011-2014. RESULTS Participants with 3-6 h/week of vigorous- and > 1 h/week of moderate-intensity PA scored significantly higher in executive function and processing speed domains of cognition compared to inactive peers (η2 = 0.005 & 0.007 respectively, p < 0.05). After adjustment, the beneficial effects of 1-3 h /week of vigorous-intensity PA became trivial for delayed recall memory domain test scores (β= 0.33; 95% CI: -0.01,0.67; η2 = 0.002; p = 0.56). There was no linear dose-response relationship between the cognitive test scores and weekly moderate-intensity of PA. Interestingly, higher handgrip strength and higher late-life body mass index were associated with a higher performance across all cognitive domains. CONCLUSION Our study supports habitual PA with superior cognition health in some but not all domains among older adults. Furthermore, increased muscle strength and higher late-life adiposity may also impact cognition.
Collapse
Affiliation(s)
- Imtiaz Masfique Dowllah
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Juan Lopez-Alvarenga
- Department of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Gladys E. Maestre
- Department of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Ulku Karabulut
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Michael Lehker
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Murat Karabulut
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
15
|
Casaletto KB, Kornack J, Paolillo EW, Rojas JC, VandeBunte A, Staffaroni AS, Lee S, Heuer H, Forsberg L, Ramos EM, Miller BL, Kramer JH, Yaffe K, Petrucelli L, Boxer A, Boeve B, Gendron TF, Rosen H. Association of Physical Activity With Neurofilament Light Chain Trajectories in Autosomal Dominant Frontotemporal Lobar Degeneration Variant Carriers. JAMA Neurol 2023; 80:82-90. [PMID: 36374516 PMCID: PMC9664369 DOI: 10.1001/jamaneurol.2022.4178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
Importance Physical activity is associated with cognitive health, even in autosomal dominant forms of dementia. Higher physical activity is associated with slowed cognitive and functional declines over time in adults carrying autosomal dominant variants for frontotemporal lobar degeneration (FTLD), but whether axonal degeneration is a potential neuroprotective target of physical activity in individuals with FTLD is unknown. Objective To examine the association between physical activity and longitudinal neurofilament light chain (NfL) trajectories in individuals with autosomal dominant forms of FTLD. Design, Setting, and Participants This cohort study included individuals from the ALLFTD Consortium, which recruited patients from sites in the US and Canada. Symptomatic and asymptomatic adults with pathogenic variants in one of 3 common genes associated with FTLD (GRN, C9orf72, or MAPT) who reported baseline physical activity levels and completed annual blood draws were assessed annually for up to 4 years. Genotype, clinical measures, and blood draws were collected between December 2014 and June 2019; data were analyzed from August 2021 to January 2022. Associations between reported baseline physical activity and longitudinal plasma NfL changes were assessed using generalized linear mixed-effects models adjusting for baseline age, sex, education, functional severity, and motor symptoms. Exposures Baseline physical activity levels reported via the Physical Activity Scale for the Elderly. To estimate effect sizes, marginal means were calculated at 3 levels of physical activity: 1 SD above the mean represented high physical activity, 0 SD represented average physical activity, and 1 SD below the mean represented low physical activity. Main Outcomes and Measures Annual plasma NfL concentrations were measured with single-molecule array technology. Results Of 160 included FTLD variant carriers, 84 (52.5%) were female, and the mean (SD) age was 50.7 (14.7) years. A total of 51 (31.8%) were symptomatic, and 77 carried the C9orf72 variant; 39, GRN variant; and 44, MAPT variant. Higher baseline physical activity was associated with slower NfL trajectories over time. On average, NfL increased 45.8% (95% CI, 22.5 to 73.7) over 4 years in variant carriers. Variant carriers with high physical activity demonstrated 14.0% (95% CI, -22.7 to -4.3) slower NfL increases compared with those with average physical activity and 30% (95% CI, -52.2 to -8.8) slower NfL increases compared with those with low physical activity. Within genotype, C9orf72 and MAPT carriers with high physical activity evidenced 18% to 21% (95% CI, -43.4 to -7.2) attenuation in NfL, while the association between physical activity and NfL trajectory was not statistically significant in GRN carriers. Activities associated with higher cardiorespiratory and cognitive demands (sports, housework, and yardwork) were most strongly correlated with slower NfL trajectories (vs walking and strength training). Conclusions and Relevance In this study, higher reported physical activity was associated with slower progression of an axonal degeneration marker in individuals with autosomal dominant FTLD. Physical activity may serve as a primary prevention target in FTLD.
Collapse
Affiliation(s)
- Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - John Kornack
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Emily W. Paolillo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Julio C. Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Anna VandeBunte
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Adam S. Staffaroni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Shannon Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Hilary Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Leah Forsberg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Eliana M. Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Kristine Yaffe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida
| | - Adam Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Brad Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| |
Collapse
|
16
|
Daly T, Henry V, Bourdenx M. From Association to Intervention: The Alzheimer's Disease-Associated Processes and Targets (ADAPT) Ontology. J Alzheimers Dis 2023; 94:S87-S96. [PMID: 36683508 PMCID: PMC10473068 DOI: 10.3233/jad-221004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Many putative causes and risk factors have been associated with outcomes in Alzheimer's disease (AD) but all attempts at disease-modifying treatment have failed to be clinically significant. Efforts to address this "association-intervention" mismatch have tended to focus on the novel design of interventions. OBJECTIVE Here, we instead deal with the notion of association in depth. We introduce the concept of disease-associated process (DAP) as a flexible concept that can unite different areas of study of AD from genetics to epidemiology to identify disease-modifying targets. METHODS We sort DAPs using three properties: specificity for AD, frequency in patients, and pathogenic intensity for dementia before using a literature review to apply these properties in three ways. Firstly, we describe and visualize known DAPs. Secondly, we exemplify qualitative specificity analysis with the DAPs of tau protein pathology and autophagy to reveal their differential implication in AD. Finally, we use DAP properties to define the terms "risk factor," "cause," and "biomarker." RESULTS We show how DAPs fit into our collaborative disease ontology, the Alzheimer's Disease-Associated Processes and Targets (ADAPT) ontology. We argue that our theoretical system can serve as a democratic research forum, offering a more biologically adequate view of dementia than reductionist models. CONCLUSION The ADAPT ontology is a tool that could help to ground debates around priority setting using objective criteria for the identifying of targets in AD. Further efforts are needed to address issues of how biomedical research into AD is prioritized and funded.
Collapse
Affiliation(s)
- Timothy Daly
- Sorbonne Université, Science Norms Democracy UMR, Paris, France
| | - Vincent Henry
- Sorbonne Université, Brain and Spine Institute, Paris, France
| | - Mathieu Bourdenx
- University College London, UK Dementia Research Institute, London, UK
| |
Collapse
|
17
|
Galle SA, Liu J, Bonnechère B, Amin N, Milders MM, Deijen JB, Scherder EJA, Drent ML, Voortman T, Ikram MA, van Duijn CM. The long-term relation between physical activity and executive function in the Rotterdam Study. Eur J Epidemiol 2023; 38:71-81. [PMID: 36166135 DOI: 10.1007/s10654-022-00902-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/24/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Research on the association between physical inactivity and cognitive decline and dementia is dominated by studies with short-term follow-up, that might be biased by reverse causality. OBJECTIVE Investigate the long-term association between physical activity, cognition, and the rate of age-associated cognitive decline. METHODS We investigated the association between late-life physical activity and executive functioning and rate of decline of executive abilities during follow-up of up to 16 years, in 3553 participants of the prospective Rotterdam Study cohort. Measurement took place in 1997-1999, 2002-2004, 2009-2011, and 2014-2015. RESULTS At baseline (age ± 72 years), higher levels of physical activity were associated with higher levels of executive functioning (adjusted mean difference = 0.03, 95% CI: 0.00 ; 0.06, p = 0.03). This difference remained intact up to 16 years of follow-up. The level of physical activity at baseline was unrelated to the rate of decline of executive abilities over time, in the whole group (adjusted mean difference in changetime*physical activity = 0.00, 95% CI: -0.00 ; 0.01, p = 0.31). However, stratification by APOE genotype showed that the accelerated decline of executive abilities observed in those with the ApoE-ε4 allele might be attenuated by higher levels of physical activity in late adulthood (ApoE-ε4 carriers: Btime*physical activity = 0.01, 95% CI: 0.00 ; 0.01, p = 0.03). CONCLUSION Higher levels of physical activity in late adulthood are related to higher levels of executive functioning, up to 16 years of follow-up. Accelerated decline of executive abilities observed in those with the ApoE-ε4 allele might be mitigated by higher levels of physical activity.
Collapse
Affiliation(s)
- Sara A Galle
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Bruno Bonnechère
- REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Sciences Institute, Hasselt University, Diepenbeek, Belgium
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Maarten M Milders
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Berend Deijen
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Hersencentrum Mental Health Institute, Amsterdam, The Netherlands
| | - Erik J A Scherder
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Madeleine L Drent
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Endocrinology Section, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, Oxford, UK
| |
Collapse
|
18
|
Manckoundia P, Dipanda M, Mourey F. [Physical activity in the elderly with other major neurocognitive disorders]. SOINS. GERONTOLOGIE 2022; 27:37-40. [PMID: 36280370 DOI: 10.1016/j.sger.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For decades, the literature was skeptical about the feasibility of motor rehabilitation and its impact, as well as that of physical activity (PA), in subjects with major neurocognitive disorders (MNCD), including Alzheimer's disease. Now, authors report several benefits of PA, both physical and cognitive, by promoting brain perfusion, neurogenesis and synaptic plasticity, as well as decreasing oxidative stress and inflammation. PA should be recommended in cases of TNCM.
Collapse
Affiliation(s)
- Patrick Manckoundia
- Pôle personnes âgées, centre hospitalier universitaire de Dijon, 2 rue Jules Violle, 21079 Dijon, France; Unité mixte de recherche Institut national de la santé et de la recherche médicale/U1093 Cognition, action et plasticité sensori-motrice, université de Bourgogne, 21078 Dijon Cedex, France.
| | - Mélanie Dipanda
- Pôle personnes âgées, centre hospitalier universitaire de Dijon, 2 rue Jules Violle, 21079 Dijon, France
| | - France Mourey
- Unité mixte de recherche Institut national de la santé et de la recherche médicale/U1093 Cognition, action et plasticité sensori-motrice, université de Bourgogne, 21078 Dijon Cedex, France
| |
Collapse
|
19
|
Luo L, Wang G, Zhou H, Zhang L, Ma CXN, Little JP, Yu Z, Teng H, Yin JY, Wan Z. Sex-specific longitudinal association between baseline physical activity level and cognitive decline in Chinese over 45 years old: Evidence from the China health and retirement longitudinal study. Aging Ment Health 2022; 26:1721-1729. [PMID: 34166602 DOI: 10.1080/13607863.2021.1935456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To examine whether sex-specific associations between baseline PA level and follow up cognitive performance in Chinese subjects exist from the China Health and Retirement Longitudinal study (CHARLS). METHOD A total of 3395 adults aged 45 or old from the CHARLS were used for analysis. The combined scores of measurements of mental status and verbal episodic memory were utilized for assessing cognitive function at baseline in 2011 and the follow-up survey in 2015. Baseline PA level was quantified as the total PA score. Multiple linear regression and logistic regression models were used to examine the association between baseline PA status and global cognitive function and cognitive domains. RESULTS In the female subjects (n = 1748), compared with individuals of PA level in the lower tertile, those grouped into the upper tertile had the lowest risk of global cognitive decline [odds ratio (OR) =0.273, 95% confidence interval (CI) =0.077-0.960; p = 0.043] and verbal episodic memory decline [OR)=0.257, 95% CI =0.066-1.003; p = 0.051] from 2011 to 2015. However, no significant associations were observed in the male subjects (n = 1647). CONCLUSION In the female subjects, higher PA level was associated with reduced risk of cognitive decline within 4 years, this might be associated with reduced decline of verbal episodic memory. Our findings confirmed that female sex would positively affect the association between PA levels and cognitive decline.
Collapse
Affiliation(s)
- Lan Luo
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Guiping Wang
- School of Physical Education, Soochow University, Suzhou, China.,Laboratory Animal Center, Medical college of Soochow University, Suzhou, China
| | - Huanhuan Zhou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lin Zhang
- School of Physical Education, Soochow University, Suzhou, China
| | - Chen-Xi-Nan Ma
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haoyue Teng
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jie-Yun Yin
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhongxiao Wan
- School of Public Health, Medical College of Soochow University, Suzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Grossmann K. Direct Oral Anticoagulants (DOACs) for Therapeutic Targeting of Thrombin, a Key Mediator of Cerebrovascular and Neuronal Dysfunction in Alzheimer's Disease. Biomedicines 2022; 10:1890. [PMID: 36009437 PMCID: PMC9405823 DOI: 10.3390/biomedicines10081890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Although preclinical research and observer studies on patients with atrial fibrillation concluded that direct oral anticoagulants (DOACs) can protect against dementia like Alzheimer's disease (AD), clinical investigation towards therapeutical approval is still pending. DOACs target pathological thrombin, which is, like toxic tau and amyloid-ß proteins (Aß), an early hallmark of AD. Especially in hippocampal and neocortical areas, the release of parenchymal Aß into the blood induces thrombin and proinflammatory bradykinin synthesis by activating factor XII of the contact system. Thrombin promotes platelet aggregation and catalyzes conversion of fibrinogen to fibrin, leading to degradation-resistant, Aß-containing fibrin clots. Together with oligomeric Aß, these clots trigger vessel constriction and cerebral amyloid angiopathy (CAA) with vessel occlusion and hemorrhages, leading to vascular and blood-brain barrier (BBB) dysfunction. As consequences, brain blood flow, perfusion, and supply with oxygen (hypoxia) and nutrients decrease. In parenchymal tissue, hypoxia stimulates Aß synthesis, leading to Aß accumulation, which is further enhanced by BBB-impaired perivascular Aß clearance. Aß trigger neuronal damage and promote tau pathologies. BBB dysfunction enables thrombin and fibrin(ogen) to migrate into parenchymal tissue and to activate glial cells. Inflammation and continued Aß production are the results. Synapses and neurons die, and cognitive abilities are lost. DOACs block thrombin by inhibiting its activity (dabigatran) or production (FXa-inhibitors, e.g., apixaban, rivaroxaban). Therefore, DOAC use could preserve vascular integrity and brain perfusion and, thereby, could counteract vascular-driven neuronal and cognitive decline in AD. A conception for clinical investigation is presented, focused on DOAC treatment of patients with diagnosed AD in early-stage and low risk of major bleeding.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Using a two-sample mendelian randomization analysis to explore the relationship between physical activity and Alzheimer's disease. Sci Rep 2022; 12:12976. [PMID: 35902670 PMCID: PMC9334579 DOI: 10.1038/s41598-022-17207-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Evidence from previous epidemiological studies on the effect of physical activity on the risk of Alzheimer's disease (AD) is conflicting. We performed a two-sample Mendelian randomization analysis to verify whether physical activity is causally associated with AD. This study used two-sample Mendelian randomization (MR) analysis to estimate the association between physical activity (including overall activity, sedentary behavior, walking, and moderate-intensity activity) and AD. Genetic instruments for physical activity were obtained from published genome-wide association studies (GWAS) including 91,105 individuals from UK Biobank. Summary-level GWAS data were extracted from the International Genomics of Alzheimer's Project IGAP (21,982 patients with AD and 41,944 controls). Inverse Variance Weighted (IVW) was used to estimate the effect of physical activity on AD. Sensitivity analyses including weighted median, MR-Egger, MR-PRESSO, and leave-one-out analysis were used to estimate pleiotropy and heterogeneity. Mendelian randomization evidences suggested a protective relationship between walking and AD (odds ratio (OR) = 0.30, 95% confidence interval (CI), 0.13-0.68, P = 0.0039). Genetically predicted overall activity, sedentary behavior, and moderate-intensity activity were not associated with AD. In summary, this study provided evidence that genetically predicted walking might associate with a reduced risk of AD. Further research into the causal association between physical activity and AD could help to explore the real relationship and provide more measures to reduce AD risk.
Collapse
|
22
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
23
|
Daly T, Mastroleo I, Migliaccio R. Avoiding Over-Reliance on Multi-Domain Interventions for Dementia Prevention. J Alzheimers Dis 2022; 90:989-992. [PMID: 35275544 DOI: 10.3233/jad-215647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Given the unknown therapeutic value of targeting Alzheimer's disease pathology and the discovery of robust risk factors for dementia, non-pharmacological risk reduction (RR) is increasingly offered as an alternative to targeting Alzheimer's disease pathology. While RR will surely be a useful tool to make public health gains, we propose solutions to three possible issues with over-reliance on multi-domain interventions to achieve RR: limited individual impact, an exclusive focus on later life, and overlooking social determinants of dementia. We argue in favor of a broader debate within the research community and greater society about how different therapeutic avenues should be explored.
Collapse
Affiliation(s)
- Timothy Daly
- Sorbonne Université, Science Norms Democracy, UMR 8011, Paris, France.,Programa de Bioética, Facultad Latinoamericana de Ciencias Sociales (FLACSO), Argentina
| | - Ignacio Mastroleo
- Programa de Bioética, Facultad Latinoamericana de Ciencias Sociales (FLACSO), Argentina.,National Scientific and Technical Research Council (CONICET), Argentina
| | - Raffaella Migliaccio
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,FrontLab, ICM, Paris, France.,AP-HP, Hôpital de la Pitié Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Centre of Excellence of Neurodegenerative Disease (CoEN), National Reference Centre for Rare and Early Dementias, Department of Neurology, Paris, France
| |
Collapse
|
24
|
Luo J, Zou H, Guo Y, Huang K, Ngan ESW, Li P. BACE2 variant identified from HSCR patient causes AD-like phenotypes in hPSC-derived brain organoids. Cell Death Discov 2022; 8:47. [PMID: 35110536 PMCID: PMC8811022 DOI: 10.1038/s41420-022-00845-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
β-site APP-cleaving enzyme 2 (BACE2) is a homolog of BACE1, which is considered as the most promising therapeutic target for Alzheimer's disease (AD). However, the expression and functional role of BACE2 in central nervous system (CNS) remain obscured. Previously, we identified several BACE2 rare variants in Hirschsprung disease (HSCR) patients and proved that BACE2-mediated APP cleavage might represent a novel HSCR pathogenesis mechanism in enteric nervous system. Here, we validated that these HSCR-associated BACE2 variants were loss-of-function mutations. Using the human pluripotent stem cell (hPSC)-derived brain organoids (BOs), we further demonstrated that BACE2 was mainly expressed in the ventricular zone and cortical plate of BOs, and its expression level was gradually increased along with the BO maturation. Functionally, we found that the BOs carrying the BACE2 loss-of-function mutation (BACE2G446R) showed greater apoptosis and increased levels of Aβ oligomers compared to the control BOs, resembling with the AD-associated phenotypes. All these phenotypes could be rescued via the removal of APP protein in BACE2G446R BOs. Furthermore, rather than BACE2G446R, BACE2WT overexpression in BOs carrying the APP Swedish/Indiana mutations attenuated the AD-associated phenotypes, including Aβ accumulation and neuronal cell death. Taken together, our results unravel that BACE2 can protect the neuronal cell from apoptosis caused by Aβ accumulation, and the deficiency of BACE2-mediated APP cleavage may represent a common pathological mechanism for both HSCR and AD.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Ke Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Casaletto KB, Lindbergh CA, VandeBunte A, Neuhaus J, Schneider JA, Buchman AS, Honer WG, Bennett DA. Microglial Correlates of Late Life Physical Activity: Relationship with Synaptic and Cognitive Aging in Older Adults. J Neurosci 2022; 42:288-298. [PMID: 34810231 PMCID: PMC8802938 DOI: 10.1523/jneurosci.1483-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 02/02/2023] Open
Abstract
Physical activity relates to reduced dementia risk, but the cellular and molecular mechanisms are unknown. We translated animal and in vitro studies demonstrating a causal link between physical activity and microglial homeostasis into humans. Decedents from Rush Memory and Aging Project completed actigraphy monitoring (average daily activity) and cognitive evaluation in life, and neuropathological examination at autopsy. Brain tissue was analyzed for microglial activation via immunohistochemistry (anti-human HLA-DP-DQ-DR) and morphology (% Stage I, II, or III), and synaptic protein levels (SNAP-25, synaptophysin, complexin-I, VAMP, syntaxin, synaptotagmin-1). Proportion of morphologically activated microglia (PAM) was estimated in ventromedial caudate, posterior putamen, inferior temporal (IT), and middle frontal gyrus. The 167 decedents averaged 90 years at death, two-thirds were nondemented, and 60% evidenced pathologic Alzheimer's disease (AD). Adjusting for age, sex, education, and motor performances, greater physical activity associated with lower PAM in the ventromedial caudate and IT. Relationships between physical activity and PAM in the ventromedial caudate or IT were particularly prominent in adults evidencing microinfarcts or AD pathology, respectively. Mediational analyses indicated that PAM IT mediated ∼30% of the relationships between (1) physical activity and synaptic protein in IT, and (2) physical activity and global cognition, in separate models. However, the size of the mediation depended on AD pathology ranging from >40% in adults with high AD burden, but <10% in adults with low AD burden. Lower microglial activation may be a pathway linking physical activity to age-related brain health in humans. Physical activity may promote AD-related synaptic and cognitive resilience through reduction of pro-inflammatory microglial states.SIGNIFICANCE STATEMENT Physical activity relates to better cognitive aging and reduced risk of neurodegenerative disease, yet the cellular and molecular pathways linking behavior-to-brain in humans are unknown. Animal studies indicate that increasing physical activity leads to decreased microglial activation and corresponding increases in synaptogenesis and neurogenesis. We objectively monitored physical activity (accelerometer-based actigraphy) and cognitive performances in life, and quantified microglial activation and synaptic markers in brain tissue at death in older adults. These are the first data supporting microglial activation as a physiological pathway by which physical activity relates to brain heath in humans. Although more interventional work is needed, we suggest that physical activity may be a modifiable behavior leveraged to reduce pro-inflammatory microglial states in humans.
Collapse
Affiliation(s)
- Kaitlin B Casaletto
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California 94158
| | - Cutter A Lindbergh
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut 06030
| | - Anna VandeBunte
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California 94158
| | - John Neuhaus
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California 94158
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - William G Honer
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, V6T 1Z4, British Columbia Canada
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 1Z4, British Columbia Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| |
Collapse
|
26
|
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 2022; 23:53-66. [PMID: 34815562 PMCID: PMC8840505 DOI: 10.1038/s41583-021-00533-w] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
The current conceptualization of Alzheimer disease (AD) is driven by the amyloid hypothesis, in which a deterministic chain of events leads from amyloid deposition and then tau deposition to neurodegeneration and progressive cognitive impairment. This model fits autosomal dominant AD but is less applicable to sporadic AD. Owing to emerging information regarding the complex biology of AD and the challenges of developing amyloid-targeting drugs, the amyloid hypothesis needs to be reconsidered. Here we propose a probabilistic model of AD in which three variants of AD (autosomal dominant AD, APOE ε4-related sporadic AD and APOE ε4-unrelated sporadic AD) feature decreasing penetrance and decreasing weight of the amyloid pathophysiological cascade, and increasing weight of stochastic factors (environmental exposures and lower-risk genes). Together, these variants account for a large share of the neuropathological and clinical variability observed in people with AD. The implementation of this model in research might lead to a better understanding of disease pathophysiology, a revision of the current clinical taxonomy and accelerated development of strategies to prevent and treat AD.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rik van der Kant
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Cinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences; University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Life Science Partners, Amsterdam, Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Institut du Cerveau et de la Moelle Épinière, UMR-S975, INSERM, Paris, France
| |
Collapse
|
27
|
Xu B, He Y, Liu L, Ye G, Chen L, Wang Q, Chen M, Chen Y, Long D. The Effects of Physical Running on Dendritic Spines and Amyloid-beta Pathology in 3xTg-AD Male Mice. Aging Dis 2022; 13:1293-1310. [PMID: 35855335 PMCID: PMC9286906 DOI: 10.14336/ad.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/10/2022] [Indexed: 11/01/2022] Open
Abstract
Memory loss is the key symptom of Alzheimer's disease (AD). As successful drug treatments have not yet been identified, non-pharmaceutical interventions such as physical exercise and training have been employed to improve the memory function of people with dementia. We investigated the effect of prolonged physical running on hippocampal-dependent spatial memory and its underlying mechanisms using a well-established rodent model of AD. 3xTg-AD transgenic mice and non-transgenic mice were subjected to voluntary wheel running for 5 months (1 hour per day, 5 days per week), followed by spatial memory testing. After the behavioral testing, dendritic spines, synapses, and synaptic proteins as well as amyloid-beta (Aβ) pathology were analyzed in the dorsal hippocampi. Running improved hippocampal-dependent spatial memory in 3xTg-AD mice. This running strategy prevented both thin and mushroom-type spines on CA1 pyramidal cells in 3xTg-AD mice, whereas the effects of running in non-transgenic mice were limited to thin spines. The enormous effects of running on spines were accompanied by an increased number of synapses and upregulated expression of synaptic proteins. Notably, running downregulated the processing of amyloid precursor protein, decreasing intracellular APP expression and extracellular Aβ accumulation, and spatial memory performance correlated with levels of Aβ peptides Aβ1-40 and Aβ1-42. These data suggest that prolonged running may improve memory in preclinical AD via slowing down the amyloid pathology and preventing the loss of synaptic contacts.
Collapse
Affiliation(s)
- Benke Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Yun He
- Department of Human Anatomy, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Lian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Guosheng Ye
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lulu Chen
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Qingning Wang
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Michael Chen
- University of California, Los Angeles, CA 90095, USA.
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA 92697, USA.
- Correspondence should be addressed to: Dr. Dahong Long, Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. E-mail: or Dr. Yuncai Chen, Department of Pediatrics, University of California-Irvine, Irvine, California 92697, USA. E-mail:
| | - Dahong Long
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
- Correspondence should be addressed to: Dr. Dahong Long, Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. E-mail: or Dr. Yuncai Chen, Department of Pediatrics, University of California-Irvine, Irvine, California 92697, USA. E-mail:
| |
Collapse
|
28
|
Memel M, Buchman AS, Bennett DA, Casaletto K. Relationship between objectively measured physical activity on neuropathology and cognitive outcomes in older adults: Resistance versus resilience? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12245. [PMID: 34692982 PMCID: PMC8515358 DOI: 10.1002/dad2.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Physical activity (PA) is associated with better cognitive and brain health. However, it remains unclear whether PA relates to accumulation of disease pathology ("resistance") or indirectly moderates adverse effects of pathology on cognition ("cognitive resilience"). METHODS Five hundred thirteen Rush Memory and Aging Project (MAP) decedents completed longitudinal actigraphy monitoring, cognitive testing, and neuropathological examination. Cross-sectional models tested the relationship between average PA and pathology, and the moderating effect of baseline PA on the association between pathology and cognition. Longitudinal models examined whether changes in PA moderated associations between pathology and cognition. RESULTS PA was negatively associated with Lewy body disease (LBD), but positively associated with Alzheimer's disease (AD) burdens. Baseline PA attenuated the association between cerebrovascular pathology and cognition, whereas longitudinal change in PA attenuated associations between AD, cerebral amyloid angiopathy, TAR DNA-binding protein 43, and atherosclerosis on cognitive decline. DISCUSSION Whereas PA relates to "cognitive resilience" against cerebrovascular disease, AD, and other neuropathologies, "resistance" effects were limited.
Collapse
Affiliation(s)
- Molly Memel
- San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- UCSF Memory and Aging CenterSan FranciscoCaliforniaUSA
| | - Aron S. Buchman
- Rush University Medical Center–Rush Alzheimer's Disease CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush University Medical Center–Rush Alzheimer's Disease CenterChicagoIllinoisUSA
| | | |
Collapse
|
29
|
Grossmann K. Alzheimer's Disease-Rationales for Potential Treatment with the Thrombin Inhibitor Dabigatran. Int J Mol Sci 2021; 22:ijms22094805. [PMID: 33946588 PMCID: PMC8125318 DOI: 10.3390/ijms22094805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by neurodegenerative, but also vascular and hemostatic changes in the brain. The oral thrombin inhibitor dabigatran, which has been used for over a decade in preventing thromboembolism and has a well-known pharmacokinetic, safety and antidote profile, can be an option to treat vascular dysfunction in early AD, a condition known as cerebral amyloid angiopathy (CAA). Recent results have revealed that amyloid-β proteins (Aβ), thrombin and fibrin play a crucial role in triggering vascular and parenchymal brain abnormalities in CAA. Dabigatran blocks soluble thrombin, thrombin-mediated formation of fibrin and Aβ-containing fibrin clots. These clots are deposited in brain parenchyma and blood vessels in areas of CAA. Fibrin-Aβ deposition causes microvascular constriction, occlusion and hemorrhage, leading to vascular and blood-brain barrier dysfunction. As a result, blood flow, perfusion and oxygen and nutrient supply are chronically reduced, mainly in hippocampal and neocortical brain areas. Dabigatran has the potential to preserve perfusion and oxygen delivery to the brain, and to prevent parenchymal Aβ-, thrombin- and fibrin-triggered inflammatory and neurodegenerative processes, leading to synapse and neuron death, and cognitive decline. Beneficial effects of dabigatran on CAA and AD have recently been shown in preclinical studies and in retrospective observer studies on patients. Therefore, clinical studies are warranted, in order to possibly expand dabigatran approval for repositioning for AD treatment.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
30
|
Hou XH, Xu W, Bi YL, Shen XN, Ma YH, Dong Q, Tan L, Yu JT. Associations of healthy lifestyles with cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: the CABLE study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:81. [PMID: 33875016 PMCID: PMC8056495 DOI: 10.1186/s13195-021-00822-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We aimed to investigate the associations between healthy lifestyles and Alzheimer's disease (AD) biomarkers in cerebrospinal fluid (CSF). METHODS A total of 1108 cognitively intact individuals from Chinese Alzheimer's Biomarker and LifestylE (CABLE) study were examined to evaluate the associations of AD biomarkers with healthy lifestyle factors, including no current smoking, no harmful drinking, absence of social isolation, and regular physical activity. The participants were categorized into groups of favorable, intermediate, and unfavorable lifestyles according to the lifestyle factors. The associations between overall lifestyle and CSF biomarkers were also analyzed. RESULTS Among cognitively intact older adults, those having more social engagement had lower CSF tau (p = 0.009) and p-tau (p < 0.001) than those who had social isolation. Regular physical activity was associated with higher CSF Aβ42 (p = 0.013) and lower levels of CSF tau (p = 0.036) and p-tau (p = 0.007). However, no significant associations were found of smoking status or alcohol intake with CSF biomarkers. When the overall lifestyle of the participants was evaluated by all the four lifestyle factors, favorable lifestyle profiles were related to lower levels of CSF tau (p < 0.001) and p-tau (p < 0.001). CONCLUSIONS These findings suggest that healthy lifestyles had a beneficial effect on AD pathology among cognitively intact elders.
Collapse
Affiliation(s)
- Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
31
|
Liu Y, Wei K, Cao X, Jiang L, Gu N, Feng L, Li C. Development and Validation of a Nomogram Based on Motoric Cognitive Risk Syndrome for Cognitive Impairment. Front Aging Neurosci 2021; 13:618833. [PMID: 33935682 PMCID: PMC8086554 DOI: 10.3389/fnagi.2021.618833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To develop and validate a prediction nomogram based on motoric cognitive risk syndrome for cognitive impairment in healthy older adults. Methods Using two longitudinal cohorts of participants (aged ≥ 60 years) with 4-year follow-up, we developed (n = 1,177) and validated (n = 2,076) a prediction nomogram. LASSO (least absolute shrinkage and selection operator) regression model and multivariable Cox regression analysis were used for variable selection and for developing the prediction model, respectively. The performance of the nomogram was assessed with respect to its calibration, discrimination, and clinical usefulness. Results The individualized prediction nomogram was assessed based on the following: motoric cognitive risk syndrome, education, gender, baseline cognition, and age. The model showed good discrimination [Harrell’s concordance index (C-index) of 0.814; 95% confidence interval, 0.782–0.835] and good calibration. Comparable results were also seen in the validation cohort, which includes good discrimination (C-index, 0.772; 95% confidence interval, 0.776–0.818) and good calibration. Decision curve analysis demonstrated that the prediction nomogram was clinically useful. Conclusion This prediction nomogram provides a practical tool with all necessary predictors, which are accessible to practitioners. It can be used to estimate the risk of cognitive impairment in healthy older adults.
Collapse
Affiliation(s)
- Yong Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Neurocognitive Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Gu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Jiang H, Niu F, Zheng Y, Xu Y. CART mitigates oxidative stress and DNA damage in memory deficits of APP/PS1 mice via upregulating β‑amyloid metabolism‑associated enzymes. Mol Med Rep 2021; 23:280. [PMID: 33604684 PMCID: PMC7905330 DOI: 10.3892/mmr.2021.11919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that is primarily characterized by progressive cognitive deficits. The toxicity of amyloid β-protein (Aβ) serves an important role in the progression of AD, resulting in neuronal loss via a number of possible mechanisms, including oxidative stress, mitochondrial dysfunction, energy depletion, apoptosis and neuroinflammation. Previous studies have reported that cocaine amphetamine regulated transcript (CART) treatment improves memory and synaptic structure in APP/PS1 mice. Therefore, the present study aimed to investigate whether CART served a protective role against memory deficits in AD. APP/PS1 mice were treated with CART or PBS. Spatial memory was assessed using the Morris water maze. Oxidative stress and DNA damage were compared among wild-type, APP/PS1 and CART-treated APP/PS1 mice. The mRNA and protein expression levels of Aβ metabolism-associated enzymes, including neprilysin (NEP), insulin-degrading enzyme (IDE), receptor for advanced glycation end products (RAGE) and low-density lipoprotein receptor-related protein 1 (LRP-1), in the hippocampus were measured via reverse transcription-quantitative PCR and western blotting, respectively. CART improved the memory impairment of APP/PS1 mice by reducing oxidative stress, inhibiting DNA damage and protecting against mitochondrial dysfunction in the cerebral cortex and hippocampus. CART also reduced cell senescence and oxidative stress in Aβ1-42-exposed primary cortical neurons in APP/PS1 mice. Moreover, CART promoted Aβ degradation via modulating Aβ metabolism-associated enzymes, including IDE, NEP, LRP-1 and RAGE. Collectively, the present study indicated that CART improved the learning and memory capacity of APP/PS mice, thus may have potential to serve as a novel therapeutic agent for AD.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Neurology, Affiliated Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Fengnan Niu
- Department of Neurology, Affiliated Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yan Zheng
- Departnment of Neurology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
33
|
Loeffler DA. Modifiable, Non-Modifiable, and Clinical Factors Associated with Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1-27. [PMID: 33459643 DOI: 10.3233/jad-201182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is an extensive literature relating to factors associated with the development of Alzheimer's disease (AD), but less is known about factors which may contribute to its progression. This review examined the literature with regard to 15 factors which were suggested by PubMed search to be positively associated with the cognitive and/or neuropathological progression of AD. The factors were grouped as potentially modifiable (vascular risk factors, comorbidities, malnutrition, educational level, inflammation, and oxidative stress), non-modifiable (age at clinical onset, family history of dementia, gender, Apolipoprotein E ɛ4, genetic variants, and altered gene regulation), and clinical (baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs). Although conflicting results were found for the majority of factors, a positive association was found in nearly all studies which investigated the relationship of six factors to AD progression: malnutrition, genetic variants, altered gene regulation, baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs. Whether these or other factors which have been suggested to be associated with AD progression actually influence the rate of decline of AD patients is unclear. Therapeutic approaches which include addressing of modifiable factors associated with AD progression should be considered.
Collapse
Affiliation(s)
- David A Loeffler
- Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
34
|
Lenzen S, Gannon B, Rose C. A dynamic microeconomic analysis of the impact of physical activity on cognition among older people. ECONOMICS AND HUMAN BIOLOGY 2020; 39:100933. [PMID: 33166873 DOI: 10.1016/j.ehb.2020.100933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
This microeconomic study explores the dynamic relationship between physical activity and cognition, using longitudinal data from 6 waves of the Survey of Health, Ageing and Retirement in Europe (SHARE) between 2004 and 2017. Physical activity has drawn significant attention as a potentially successful action for protecting brain health and cognition in the aging population, but the empirical evidence in observational studies is inconclusive to date. We add to the literature by estimating the effect of physical activity on cognition, tackling many sources of bias, which have previously not been addressed consistently. The challenge in estimating the effect of physical activity on cognition is the dynamics of cognition and the endogeneity of physical activity caused by unobserved heterogeneity, reverse causality and measurement error. To address this endogeneity and at the same time control for lagged cognition, we propose a system - generalized method of moments (GMM) estimator, using lagged levels and differences of the endogenous explanatory variables as instruments, while transforming out the fixed effects. We find that being moderately & vigorously physically active at least once a week increases memory status by 0.282 and 0.552 standard deviations for men and women respectively. We find different effects for varying physical activity intensity.
Collapse
Affiliation(s)
- Sabrina Lenzen
- School of Economics, The University of Queensland, Faculty of Business, Economics and Law, QLD, St Lucia 4072, Australia; Centre for the Business and Economics of Health, The University of Queensland, Faculty of Business, Economics and Law, QLD, St Lucia 4072, Australia.
| | - Brenda Gannon
- School of Economics, The University of Queensland, Faculty of Business, Economics and Law, QLD, St Lucia 4072, Australia; Centre for the Business and Economics of Health, The University of Queensland, Faculty of Business, Economics and Law, QLD, St Lucia 4072, Australia
| | - Christiern Rose
- School of Economics, The University of Queensland, Faculty of Business, Economics and Law, QLD, St Lucia 4072, Australia
| |
Collapse
|
35
|
Delrieu J, Voisin T, Saint-Aubert L, Carrie I, Cantet C, Vellas B, Payoux P, Andrieu S. The impact of a multi-domain intervention on cerebral glucose metabolism: analysis from the randomized ancillary FDG PET MAPT trial. ALZHEIMERS RESEARCH & THERAPY 2020; 12:134. [PMID: 33076983 PMCID: PMC7574215 DOI: 10.1186/s13195-020-00683-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023]
Abstract
Background The Multidomain Alzheimer Preventive Trial (MAPT) was designed to assess the efficacy of omega-3 fatty acid supplementation, multidomain intervention (MI), or a combination of both on cognition. Although the MAPT study was negative, an effect of MI in maintaining cognitive functions compared to placebo group was showed in positive amyloid subjects. A FDG PET study (MAPT-NI) was implemented to test the impact of MI on brain glucose metabolism. Methods MAPT-NI was a randomized, controlled parallel-group single-center study, exploring the effect of MI on brain glucose metabolism. Participants were non-demented and had memory complaints, limitation in one instrumental activity of daily living, or slow gait. Participants were randomly assigned (1:1) to “MI group” or “No MI group.” The MI consisted of group sessions focusing on 3 domains: cognitive stimulation, physical activity, nutrition, and a preventive consultation. [18F]FDG PET scans were performed at baseline, 6 months, and 12 months, and cerebral magnetic resonance imaging scans at baseline. The primary objective was to evaluate the MI effect on brain glucose metabolism assessed by [18F]FDG PET imaging at 6 months. The primary outcome was the quantification of regional metabolism rate for glucose in cerebral regions involved early in Alzheimer disease by relative semi-quantitative SUVr (FDG-based AD biomarker). An exploratory voxel-wise analysis was performed to assess the effect of MI on brain glucose metabolism without anatomical hypothesis. Results The intention-to-treat population included 67 subjects (34 in the MI group and 33 in the No MI group. No significant MI effect was observed on primary outcome at 6 months. In the exploratory voxel-wise analysis, we observed a difference in favor of MI group on the change of cerebral glucose metabolism in limbic lobe (right hippocampus, right posterior cingulate, left posterior parahippocampal gyrus) at 6 months. Conclusions MI failed to show an effect on metabolism in FDG-based AD biomarker, but exploratory analysis suggested positive effect on limbic system metabolism. This finding could suggest a delay effect of MI on AD progression. Trial registration ClinicalTrials.gov Identifier, NCT01513252.
Collapse
Affiliation(s)
- Julien Delrieu
- Pôle gériatrie, Cité de la santé, Place Lange - TSA 60033, 31059, Toulouse Cedex 9, France. .,INSERM UMR 1027, Toulouse, France; University of Toulouse III, Toulouse, France. .,Gérontopôle, Department of Geriatrics, Toulouse (University Hospital) CHU, Purpan University Hospital, Toulouse, France.
| | - Thierry Voisin
- INSERM UMR 1027, Toulouse, France; University of Toulouse III, Toulouse, France.,Gérontopôle, Department of Geriatrics, Toulouse (University Hospital) CHU, Purpan University Hospital, Toulouse, France
| | - Laure Saint-Aubert
- Toulouse NeuroImaging Center, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Isabelle Carrie
- Gérontopôle, Department of Geriatrics, Toulouse (University Hospital) CHU, Purpan University Hospital, Toulouse, France
| | - Christelle Cantet
- INSERM UMR 1027, Toulouse, France; University of Toulouse III, Toulouse, France.,Gérontopôle, Department of Geriatrics, Toulouse (University Hospital) CHU, Purpan University Hospital, Toulouse, France
| | - Bruno Vellas
- INSERM UMR 1027, Toulouse, France; University of Toulouse III, Toulouse, France.,Gérontopôle, Department of Geriatrics, Toulouse (University Hospital) CHU, Purpan University Hospital, Toulouse, France
| | - Pierre Payoux
- Department of Nuclear Medicine, Toulouse CHU, Purpan University Hospital, Toulouse, France.,Toulouse NeuroImaging Center, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Sandrine Andrieu
- INSERM UMR 1027, Toulouse, France; University of Toulouse III, Toulouse, France.,Department of Epidemiology and Public Health, Toulouse CHU, Toulouse, France
| |
Collapse
|
36
|
Gonneaud J, Bedetti C, Pichet Binette A, Benzinger TLS, Morris JC, Bateman RJ, Poirier J, Breitner JCS, Villeneuve S. Association of education with Aβ burden in preclinical familial and sporadic Alzheimer disease. Neurology 2020; 95:e1554-e1564. [PMID: 32759192 PMCID: PMC7713743 DOI: 10.1212/wnl.0000000000010314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/23/2020] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To determine whether years of education and the ε4 risk allele at APOE influence β-amyloid (Aβ) pathology similarly in asymptomatic individuals with a family history of sporadic Alzheimer disease (AD) and presymptomatic autosomal dominant AD mutation carriers. METHODS We analyzed cross-sectional data from 106 asymptomatic individuals with a parental history of sporadic AD (PREVENT-AD cohort; age 67.28 ± 4.72 years) and 117 presymptomatic autosomal dominant AD mutation carriers (DIAN cohort; age 35.04 ± 9.43 years). All participants underwent structural MRI and Aβ-PET imaging. In each cohort we investigated the influence of years of education, APOE ε4 status, and their interaction on Aβ-PET. RESULTS Asymptomatic individuals with a parental history of sporadic AD showed increased Aβ burden associated with APOE ε4 carriage and lower level of education, but no interaction between these. Presymptomatic mutation carriers of autosomal dominant AD showed no relation between APOE ε4 and Aβ burden, but increasing level of education was associated with reduced Aβ burden. The association between educational attainment and Aβ burden was similar in the 2 cohorts. CONCLUSIONS While the APOE ε4 allele confers increased tendency toward Aβ accumulation in sporadic AD only, protective environmental factors, like increased education, may promote brain resistance against Aβ pathology in both sporadic and autosomal dominant AD.
Collapse
Affiliation(s)
- Julie Gonneaud
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO.
| | - Christophe Bedetti
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO
| | - Alexa Pichet Binette
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO
| | - Tammie L S Benzinger
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO
| | - John C Morris
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO
| | - Randall J Bateman
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO
| | - Judes Poirier
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO
| | - John C S Breitner
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO
| | - Sylvia Villeneuve
- From the Department of Psychiatry (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), McGill University; Douglas Mental Health University Institute (J.G., C.B., A.P.B., J.P., J.C.S.B., S.V.), StoP-AD Centre, Montreal, Canada; Knight Alzheimer's Disease Research Center (T.L.S.B., J.C.M., R.J.B.); and Washington University School of Medicine (T.L.S.B., J.C.M., R.J.B.), St. Louis, MO.
| |
Collapse
|
37
|
Newman M, Nik HM, Sutherland GT, Hin N, Kim WS, Halliday GM, Jayadev S, Smith C, Laird AS, Lucas CW, Kittipassorn T, Peet DJ, Lardelli M. Accelerated loss of hypoxia response in zebrafish with familial Alzheimer's disease-like mutation of presenilin 1. Hum Mol Genet 2020; 29:2379-2394. [PMID: 32588886 PMCID: PMC8604272 DOI: 10.1093/hmg/ddaa119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ageing is the major risk factor for Alzheimer's disease (AD), a condition involving brain hypoxia. The majority of early-onset familial AD (EOfAD) cases involve dominant mutations in the gene PSEN1. PSEN1 null mutations do not cause EOfAD. We exploited putative hypomorphic and EOfAD-like mutations in the zebrafish psen1 gene to explore the effects of age and genotype on brain responses to acute hypoxia. Both mutations accelerate age-dependent changes in hypoxia-sensitive gene expression supporting that ageing is necessary, but insufficient, for AD occurrence. Curiously, the responses to acute hypoxia become inverted in extremely aged fish. This is associated with an apparent inability to upregulate glycolysis. Wild-type PSEN1 allele expression is reduced in post-mortem brains of human EOfAD mutation carriers (and extremely aged fish), possibly contributing to EOfAD pathogenesis. We also observed that age-dependent loss of HIF1 stabilization under hypoxia is a phenomenon conserved across vertebrate classes.
Collapse
Affiliation(s)
- Morgan Newman
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Hani Moussavi Nik
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Greg T Sutherland
- Discipline of Pathology, School of Medical Sciences and Charles
Perkins Centre, Faculty of Medicine and Health, The University of
Sydney, Camperdown, New South Wales 2006, Australia
| | - Nhi Hin
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
- Bioinformatics Hub, University of
Adelaide, Adelaide, South Australia, Australia
| | - Woojin S Kim
- Brain and Mind Centre, Central Clinical School, Faculty of
Medicine and Health, The University of Sydney, Camperdown, New
South Wales 2052, Australia
- School of Medical Sciences, University of New South
Wales and Neuroscience Research Australia, Randwick, New South Wales,
Australia
| | - Glenda M Halliday
- Brain and Mind Centre, Central Clinical School, Faculty of
Medicine and Health, The University of Sydney, Camperdown, New
South Wales 2052, Australia
- School of Medical Sciences, University of New South
Wales and Neuroscience Research Australia, Randwick, New South Wales,
Australia
| | - Suman Jayadev
- Department of Neurology, University of
Washington, Seattle, Washington 98195, USA
| | - Carole Smith
- Department of Neurology, University of
Washington, Seattle, Washington 98195, USA
| | - Angela S Laird
- Centre for MND Research, Department of Biomedical Sciences,
Faculty of Medicine and Health Sciences, Macquarie University,
New South Wales 2109, Australia
| | - Caitlin W Lucas
- Centre for MND Research, Department of Biomedical Sciences,
Faculty of Medicine and Health Sciences, Macquarie University,
New South Wales 2109, Australia
| | - Thaksaon Kittipassorn
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
- Department of Physiology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Bangkok 10700, Thailand
| | - Dan J Peet
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
38
|
Horowitz AM, Fan X, Bieri G, Smith LK, Sanchez-Diaz CI, Schroer AB, Gontier G, Casaletto KB, Kramer JH, Williams KE, Villeda SA. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 2020; 369:167-173. [PMID: 32646997 PMCID: PMC7879650 DOI: 10.1126/science.aaw2622] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 10/15/2019] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
Reversing brain aging may be possible through systemic interventions such as exercise. We found that administration of circulating blood factors in plasma from exercised aged mice transferred the effects of exercise on adult neurogenesis and cognition to sedentary aged mice. Plasma concentrations of glycosylphosphatidylinositol (GPI)-specific phospholipase D1 (Gpld1), a GPI-degrading enzyme derived from liver, were found to increase after exercise and to correlate with improved cognitive function in aged mice, and concentrations of Gpld1 in blood were increased in active, healthy elderly humans. Increasing systemic concentrations of Gpld1 in aged mice ameliorated age-related regenerative and cognitive impairments by altering signaling cascades downstream of GPI-anchored substrate cleavage. We thus identify a liver-to-brain axis by which blood factors can transfer the benefits of exercise in old age.
Collapse
Affiliation(s)
- Alana M Horowitz
- Department of Anatomy, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Xuelai Fan
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Gregor Bieri
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Lucas K Smith
- Department of Anatomy, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | | | - Adam B Schroer
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Geraldine Gontier
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Kaitlin B Casaletto
- Department of Neurology, University of California, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Joel H Kramer
- Department of Neurology, University of California, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Katherine E Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA, USA
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
| |
Collapse
|
39
|
Gerberding AL, Zampar S, Stazi M, Liebetanz D, Wirths O. Physical Activity Ameliorates Impaired Hippocampal Neurogenesis in the Tg4-42 Mouse Model of Alzheimer's Disease. ASN Neuro 2020; 11:1759091419892692. [PMID: 31818124 PMCID: PMC6906584 DOI: 10.1177/1759091419892692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There is growing evidence from epidemiological studies that especially midlife physical activity might exert a positive influence on the risk and progression of Alzheimer’s disease. In this study, the Tg4-42 mouse model of Alzheimer’s disease has been utilized to assess the effect of different housing conditions on structural changes in the hippocampus. Focusing on the dentate gyrus, we demonstrate that 6-month-old Tg4-42 mice have a reduced number of newborn neurons in comparison to age-matched wild-type mice. Housing these mice for 4 months with either unlimited or intermittent access to a running wheel resulted in a significant rescue of dentate gyrus neurogenesis. Although neither dentate gyrus volume nor neuron number could be modified in this Alzheimer’s disease mouse model, unrestricted access to a running wheel significantly increased dentate gyrus volume and granule cell number in wild-type mice.
Collapse
Affiliation(s)
- Anna-Lina Gerberding
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Martina Stazi
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
40
|
Iso-Markku P, Waller K, Hautasaari P, Kaprio J, Kujala UM, Tarkka IM. Twin studies on the association of physical activity with cognitive and cerebral outcomes. Neurosci Biobehav Rev 2020; 114:1-11. [PMID: 32325068 DOI: 10.1016/j.neubiorev.2020.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Regular physical activity (PA) offers positive effects on the human body. However, the effects of PA on cognition and in the brain are less clear. In this paper, we narratively review the relationship of PA with cognition and dementia, first from general perspective and then through genetically informed studies on the topic. Then we move on to imaging studies on exercise and brain anatomy first by presenting an overall picture of the topic and then discussing brain imaging studies addressing PA and brain structure in twins in more detailed way. Regarding PA and cognition or dementia, genetically informed studies are uncommon, even though the relationship between PA and cognitive ageing has been extensively studied. It is challenging to find twin pairs discordant for PA and dementia. Concerning brain imaging studies, among PA discordant young adult twin pairs, the more active co-twins showed larger gray matter volumes in striatal, prefrontal, and hippocampal regions and in electrophysiological studies automatic deviance-detection processes differed in brain regions involved with sensorimotor, visual and memory functions.
Collapse
Affiliation(s)
- Paula Iso-Markku
- Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki 42, University Central Hospital and University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Katja Waller
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Hautasaari
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
41
|
Casaletto KB, Staffaroni AM, Wolf A, Appleby B, Brushaber D, Coppola G, Dickerson B, Domoto-Reilly K, Elahi FM, Fields J, Fong JC, Forsberg L, Ghoshal N, Graff-Radford N, Grossman M, Heuer HW, Hsiung GY, Huey ED, Irwin D, Kantarci K, Kaufer D, Kerwin D, Knopman D, Kornak J, Kramer JH, Litvan I, Mackenzie IR, Mendez M, Miller B, Rademakers R, Ramos EM, Rascovsky K, Roberson ED, Syrjanen JA, Tartaglia MC, Weintraub S, Boeve B, Boxer AL, Rosen H, Yaffe K. Active lifestyles moderate clinical outcomes in autosomal dominant frontotemporal degeneration. Alzheimers Dement 2020; 16:91-105. [PMID: 31914227 PMCID: PMC6953618 DOI: 10.1002/alz.12001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Leisure activities impact brain aging and may be prevention targets. We characterized how physical and cognitive activities relate to brain health for the first time in autosomal dominant frontotemporal lobar degeneration (FTLD). METHODS A total of 105 mutation carriers (C9orf72/MAPT/GRN) and 69 non-carriers reported current physical and cognitive activities at baseline, and completed longitudinal neurobehavioral assessments and brain magnetic resonance imaging (MRI) scans. RESULTS Greater physical and cognitive activities were each associated with an estimated >55% slower clinical decline per year among dominant gene carriers. There was also an interaction between leisure activities and frontotemporal atrophy on cognition in mutation carriers. High-activity carriers with frontotemporal atrophy (-1 standard deviation/year) demonstrated >two-fold better cognitive performances per year compared to their less active peers with comparable atrophy rates. DISCUSSION Active lifestyles were associated with less functional decline and moderated brain-to-behavior relationships longitudinally. More active carriers "outperformed" brain volume, commensurate with a cognitive reserve hypothesis. Lifestyle may confer clinical resilience, even in autosomal dominant FTLD.
Collapse
Affiliation(s)
- K B Casaletto
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - A M Staffaroni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - A Wolf
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - B Appleby
- Case Western Reserve University, Cleveland, Ohio, USA
| | | | - G Coppola
- University of California, Los Angeles, California, USA
| | - B Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - F M Elahi
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - J Fields
- Mayo Clinic, Rochester, Minnesota, USA
| | - J C Fong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - L Forsberg
- Case Western Reserve University, Cleveland, Ohio, USA
| | - N Ghoshal
- Washington University, St. Louis, Illinois, USA
| | | | - M Grossman
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - H W Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - G-Y Hsiung
- University of British Columbia, Vancouver, British Columbia, Canada
| | - E D Huey
- Columbia University, New York, New York, USA
| | - D Irwin
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - D Kaufer
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - D Kerwin
- University of Texas Southwestern, Dallas, Texas, USA
| | - D Knopman
- Mayo Clinic, Rochester, Minnesota, USA
| | - J Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - J H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - I Litvan
- Parkinson and Other Movement Disorder Center, Department of Neuroscience, University of California, San Diego, San Diego, California, USA
| | - I R Mackenzie
- University of British Columbia, Vancouver, British Columbia, Canada
| | - M Mendez
- University of California, Los Angeles, California, USA
| | - B Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | | | - E M Ramos
- University of California, Los Angeles, USA
| | - K Rascovsky
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - S Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, Illinois, USA
| | - B Boeve
- Mayo Clinic, Rochester, Minnesota, USA
| | - A L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - H Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - K Yaffe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- San Francisco Department of Psychiatry, University of California, San Francisco, California, USA
| |
Collapse
|
42
|
Casaletto KB, Renteíıa MA, Pa J, Tom SE, Harrati A, Armstrong NM, Rajan KB, Mungas D, Walters S, Kramer J, Zahodne LB. Late-Life Physical and Cognitive Activities Independently Contribute to Brain and Cognitive Resilience. J Alzheimers Dis 2020; 74:363-376. [PMID: 32039854 PMCID: PMC7233450 DOI: 10.3233/jad-191114] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Active lifestyles are related to better cognitive aging outcomes, yet the unique role of different types of activity are unknown. OBJECTIVE To examine the independent contributions of physical (PA) versus cognitive (CA) leisure activities to brain and cognitive aging. METHODS Independent samples of non-demented older adults from University of California, San Francisco Hillblom Aging Network (UCSF; n = 344 typically aging) and University of California, Davis Diversity cohort (UCD; n = 485 normal to MCI) completed: 1) self-reported engagement in current PA and CA (UCSF: Physical Activity Scale for the Elderly and Cognitive Activity Scale; UCD: Life Experiences Assessment Form); 2) neuropsychological batteries; and 3) neuroimaging total gray matter volume, white matter hyperintensities, and/or global fractional anisotropy. PA and CA were simultaneously entered into multivariable linear regression models, adjusting for demographic characteristics and functional impairment severity. RESULTS Brain outcomes: In UCSF, only PA was positively associated with gray matter volume and attenuated the relationship between age and fractional anisotropy. In UCD, only CA was associated with less white matter hyperintensities and attenuated the relationship between age and gray matter volume. Cognitive outcomes: In both cohorts, greater CA, but not PA, related to better cognition, independent of age and brain structure. In UCSF, CA attenuated the relationship between fractional anisotropy and cognition. In UCD, PA attenuated the association between white matter hyperintensities and cognition. CONCLUSIONS Although their specificity was not easily teased apart, both PA and CA are clearly related to better brain and cognitive resilience markers across cohorts with differing educational, racial, and disease statuses. PA and CA may independently contribute to converging neuroprotective pathways for brain and cognitive aging.
Collapse
Affiliation(s)
- Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Miguel Arce Renteíıa
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Judy Pa
- Department of Neurology, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sarah E. Tom
- Department of Neurology, Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Amal Harrati
- Department of Primary Care and Population Health, Center for Population Health Sciences, Stanford University, Stanford, CA, USA
| | - Nicole M. Armstrong
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | | | - Dan Mungas
- University of California, Davis, Davis, CA, USA
| | - Samantha Walters
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Joel Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Laura B. Zahodne
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Abstract
Alzheimer's disease (AD) is a multifactorial syndrome with a plethora of progressive, degenerative changes in the brain parenchyma, but also in the cerebrovascular and hemostatic system. A therapeutic approach for AD is reviewed, which is focused on the role of amyloid-β protein (Aβ) and fibrin in triggering intra-brain vascular dysfunction and connected, cognitive decline. It is proposed that direct oral anticoagulants (DOACs) counteract Aβ-induced pathological alterations in cerebral blood vessels early in AD, a condition, known as cerebral amyloid angiopathy (CAA). By inhibiting thrombin for fibrin formation, anticoagulants can prevent accumulations of proinflammatory thrombin and fibrin, and deposition of degradation-resistant, Aβ-containing fibrin clots. These fibrin-Aβ clots are found in brain parenchyma between neuron cells, and in and around cerebral blood vessels in areas of CAA, leading to decreased cerebral blood flow. Consequently, anticoagulant treatment could reduce hypoperfusion and restricted supply of brain tissue with oxygen and nutrients. Concomitantly, hypoperfusion-enhanced neurodegenerative processes, such as progressive Aβ accumulation via synthesis and reduced perivascular clearance, neuroinflammation, and synapse and neuron cell loss, could be mitigated. Given full cerebral perfusion and reduced Aβ- and fibrin-accumulating and inflammatory milieu, anticoagulants could be able to decrease vascular-driven progression in neurodegenerative and cognitive changes, present in AD, when treated early, therapeutically, or prophylactically.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Rabin JS, Klein H, Kirn DR, Schultz AP, Yang HS, Hampton O, Jiang S, Buckley RF, Viswanathan A, Hedden T, Pruzin J, Yau WYW, Guzmán-Vélez E, Quiroz YT, Properzi M, Marshall GA, Rentz DM, Johnson KA, Sperling RA, Chhatwal JP. Associations of Physical Activity and β-Amyloid With Longitudinal Cognition and Neurodegeneration in Clinically Normal Older Adults. JAMA Neurol 2019; 76:1203-1210. [PMID: 31312836 DOI: 10.1001/jamaneurol.2019.1879] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Importance In the absence of disease-modifying therapies for Alzheimer disease, there is a critical need to identify modifiable risk factors that may delay the progression of Alzheimer disease. Objective To examine whether physical activity moderates the association of β-amyloid (Aβ) burden with longitudinal cognitive decline and neurodegeneration in clinically normal individuals and to examine whether these associations are independent of vascular risk. Design, Setting, and Participants This longitudinal observational study included clinically normal participants from the Harvard Aging Brain Study. Participants were required to have baseline Aβ positron emission tomography data, baseline medical data to quantify vascular risk, and longitudinal neuropsychological and structural magnetic resonance imaging data. Data were collected from April 2010 to June 2018. Data were analyzed from August to December 2018. Main Outcomes and Measures Baseline physical activity was quantified with a pedometer (mean steps per day). Baseline Aβ burden was measured with carbon 11-labeled Pittsburgh Compound B positron emission tomography. Cognition was measured annually with the Preclinical Alzheimer Cognitive Composite (PACC; median [interquartile range] follow-up, 6.0 [4.3-6.3] years). Neurodegeneration was assessed with longitudinal structural magnetic resonance imaging (2 to 5 scans per participant; median [interquartile range] follow-up, 4.5 [3.0-5.0] years), with a focus on total gray matter volume and regional cortical thickness. Physical activity and Aβ burden were examined as interactive predictors of PACC decline and volume loss in separate linear mixed models, adjusting for age, sex, education, apolipoprotein E ε4 status, and, where appropriate, intracranial volume. Secondary models adjusted for vascular risk and its interaction with Aβ burden. Results Of the 182 included participants, 103 (56.6%) were female, and the mean (SD) age was 73.4 (6.2) years. In models examining PACC decline and volume loss, there was a significant interaction of physical activity with Aβ burden, such that greater physical activity was associated with slower Aβ-related cognitive decline (β, 0.03; 95% CI, 0.02-0.05; P < .001) and volume loss (β, 482.07; 95% CI, 189.40-774.74; P = .002). Adjusting for vascular risk did not alter these associations. In these models, lower vascular risk was independently associated with slower Aβ-related PACC decline (β, -0.04; 95% CI, -0.06 to -0.02; P < .001) and volume loss (β, -483.41; 95% CI, -855.63 to -111.20; P = .01). Conclusions and Relevance Greater physical activity and lower vascular risk independently attenuated the negative association of Aβ burden with cognitive decline and neurodegeneration in asymptomatic individuals. These findings suggest that engaging in physical activity and lowering vascular risk may have additive protective effects on delaying the progression of Alzheimer disease.
Collapse
Affiliation(s)
- Jennifer S Rabin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Hannah Klein
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dylan R Kirn
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Olivia Hampton
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Shu Jiang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Florey Institute, University of Melbourne, Parkville, Victoria, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Anand Viswanathan
- Kistler Stroke Research Center, Massachusetts General Hospital, Boston
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeremy Pruzin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Edmarie Guzmán-Vélez
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gad A Marshall
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Multidomain intervention and/or omega-3 in nondemented elderly subjects according to amyloid status. Alzheimers Dement 2019; 15:1392-1401. [PMID: 31558366 DOI: 10.1016/j.jalz.2019.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The Multidomain Alzheimer Preventive Trial (MAPT) assessed the efficacy of omega-3 fatty acid supplementation, a multidomain intervention (MI), or a combination of both on cognition. Impact according to cerebral amyloid status was evaluated by PET scan. METHODS Participants were nondemented and had memory complaints, limitation in one instrumental activity of daily living, or slow gait. The primary outcome was a change from baseline in 36 months measured with a cognitive composite Z score. RESULTS No effect was observed on cognition in the negative amyloid group (n = 167). In the positive amyloid group (n = 102), we observed a difference of 0.708 and 0.471 in the cognitive composite score between the MI plus omega-3 fatty acid group, the MI alone group, and the placebo group, respectively. DISCUSSION MI alone or in combination with omega-3 fatty acids was associated with improved primary cognitive outcome in subjects with positive amyloid status. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01513252.
Collapse
|
46
|
McCarter SJ, Boeve BF, Graff-Radford NR, Silber MH, St Louis EK. Neuroprotection in idiopathic REM sleep behavior disorder: a role for exercise? Sleep 2019; 42:5513724. [PMID: 31184756 DOI: 10.1093/sleep/zsz064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/14/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stuart J McCarter
- Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Bradley F Boeve
- Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Michael H Silber
- Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Erik K St Louis
- Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
47
|
Meyer PF, McSweeney M, Gonneaud J, Villeneuve S. AD molecular: PET amyloid imaging across the Alzheimer's disease spectrum: From disease mechanisms to prevention. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:63-106. [PMID: 31481172 DOI: 10.1016/bs.pmbts.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of amyloid-beta (Aβ) positron emission tomography (PET) imaging has transformed the field of Alzheimer's disease (AD) by enabling the quantification of cortical Aβ accumulation and propagation in vivo. This revolutionary tool has made it possible to measure direct associations between Aβ and other AD biomarkers, to identify factors that influence Aβ accumulation and to redefine entry criteria into clinical trials as well as measure drug target engagement. This chapter summarizes the main findings on the associations of Aβ with other biomarkers of disease progression across the AD spectrum. It discusses investigations of the timing at which Aβ pathology starts to accumulate, demonstrates the clinical utility of Aβ PET imaging and discusses some ethical implications. Finally, it presents genetic and potentially modifiable lifestyle factors that might influence Aβ accumulation and therefore be targets for AD prevention.
Collapse
Affiliation(s)
- Pierre-François Meyer
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Melissa McSweeney
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Julie Gonneaud
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada.
| |
Collapse
|
48
|
Prato FS, Pavlosky WF, Foster SC, Thiessen JD, Beaujot RP. Screening for Dementia Caused by Modifiable Lifestyle Choices Using Hybrid PET/MRI. J Alzheimers Dis Rep 2019; 3:31-45. [PMID: 30842996 PMCID: PMC6400112 DOI: 10.3233/adr-180098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Significant advances in positron emission tomography (PET) and magnetic resonance imaging (MRI) brain imaging in the early detection of dementia indicate that hybrid PET/MRI would be an effective tool to screen for dementia in the population living with lifestyle risk factors. Here we investigate the associated costs and benefits along with the needed imaging infrastructure. A demographic analysis determined the prevalence of dementia and its incidence. The expected value of the screening program was calculated assuming a sensitivity and specificity of 0.9, a prevalence of 0.1, a QALY factor of 0.348, a willingness to pay $114,000 CAD and the cost per PET/MRI scan of $2,000 CAD. It was assumed that each head PET/MRI could screen 3,000 individuals per year. The prevalence of dementia is increasing by almost two-fold every 20 years due to the increased population at ages where dementia is more prevalent. It has been shown that a five-year delay in the incidence of dementia would decrease the prevalence by some 45%. In Canada, a five-year delay corresponds to a health care savings of $27,000 CAD per subject per year. The expected value for screening was estimated at $23,745 CAD. The number of subjects to be screened per year in Canada, USA, and China between 60 and 79 was 11,405,000. The corresponding number of head-only hybrid PET/MRI systems needed is 3,800. A brain PET/MRI screening program is financially justifiable with respect to health care costs and justifies the continuing development of MRI compatible brain PET technology.
Collapse
Affiliation(s)
- Frank S. Prato
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | - William F. Pavlosky
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | | | - Jonathan D. Thiessen
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | | |
Collapse
|
49
|
Mortimer JA, Stern Y. Physical exercise and activity may be important in reducing dementia risk at any age. Neurology 2019; 92:362-363. [DOI: 10.1212/wnl.0000000000006935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
50
|
Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, Gonçalves RA, Clarke JR, Beckman D, Staniszewski A, Berman H, Guerra LA, Forny-Germano L, Meier S, Wilcock DM, de Souza JM, Alves-Leon S, Prado VF, Prado MAM, Abisambra JF, Tovar-Moll F, Mattos P, Arancio O, Ferreira ST, De Felice FG. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nat Med 2019; 25:165-175. [PMID: 30617325 PMCID: PMC6327967 DOI: 10.1038/s41591-018-0275-4] [Citation(s) in RCA: 539] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/02/2018] [Indexed: 01/19/2023]
Abstract
Defective brain hormonal signaling has been associated with Alzheimer’s disease (AD), a disorder characterized by synapse and memory failure. Irisin is an exercise-induced myokine released upon cleavage of membrane-bound precursor protein FNDC5, also expressed in the hippocampus. Here we show that FNDC5/irisin levels are reduced in AD hippocampi and cerebrospinal fluid, and in experimental AD models. Knockdown of brain FNDC5/irisin impaired long-term potentiation and novel object recognition memory in mice. Conversely, boosting brain levels of FNDC5/irisin rescued synaptic plasticity and memory in AD mouse models. Peripheral overexpression of FNDC5/irisin rescued memory impairment, whereas blockade of either peripheral or brain FNDC5/irisin attenuated the neuroprotective actions of physical exercise on synaptic plasticity and memory in AD mice. By showing that FNDC5/irisin is an important mediator of the beneficial effects of exercise in AD models, our findings place FNDC5/irisin as a novel agent capable of opposing synapse failure and memory impairment in AD.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Rudimar L Frozza
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Guilherme B de Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Hong Zhang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Grasielle C Kincheski
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Julia R Clarke
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Hanna Berman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Lorena A Guerra
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shelby Meier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Jorge M de Souza
- Division of Neurosurgery, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Soniza Alves-Leon
- Division of Neurosurgery, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vania F Prado
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Jose F Abisambra
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education , Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Mattos
- D'Or Institute for Research and Education , Rio de Janeiro, Brazil.,Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA. .,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA. .,Department of Medicine, Columbia University, New York, NY, USA.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada. .,Department of Psychiatry, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|