1
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
2
|
Zheng J, Wu F, Wang F, Cheng J, Zou H, Li Y, Du J, Kan J. Biomarkers of Micronutrients and Phytonutrients and Their Application in Epidemiological Studies. Nutrients 2023; 15:nu15040970. [PMID: 36839326 PMCID: PMC9959711 DOI: 10.3390/nu15040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Nutritional biomarkers can be used as important indicators of nutritional status and play crucial roles in the prevention as well as prognosis optimization of various metabolism-related diseases. Measuring dietary with the deployment of biomarker assessments provides quantitative nutritional information that can better predict the health outcomes. With the increased availability of nutritional biomarkers and the development of assessment tools, the specificity and sensitivity of nutritional biomarkers have been greatly improved. This enables efficient disease surveillance in nutrition research. A wide range of biomarkers have been used in different types of studies, including clinical trials, observational studies, and qualitative studies, to reflect the relationship between diet and health. Through a comprehensive literature search, we reviewed the well-established nutritional biomarkers of vitamins, minerals, and phytonutrients, and their association with epidemiological studies, to better understand the role of nutrition in health and disease.
Collapse
Affiliation(s)
- Jianheng Zheng
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Feng Wu
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Feijie Wang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hong Zou
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Yuan Li
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
- Correspondence: ; Tel.: +86-21-2305-6982
| |
Collapse
|
3
|
Mahadev M, Dubey A, Shetty A. Ultrasonically Fabricated Beta-Carotene Nanoemulsion: Optimization, Characterization and Evaluation of Combinatorial Effect with Quercetin on Streptozotocin-Induced Diabetic Rat Model. Pharmaceutics 2023; 15:pharmaceutics15020574. [PMID: 36839896 PMCID: PMC9962907 DOI: 10.3390/pharmaceutics15020574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (D.M.) is a metabolic disease that has affected over 500 million people globally. Bioactive compounds such as β-carotene and Quercetin have gained research interest for their potential antidiabetic properties, and bioactives have reported superior combinatorial effects in several ailments, including D.M. However, poor oral bioavailability has limited their potential application. Thus, the present study was focused on developing ultrasonically fabricated β-Carotene nanoemulsion (βC-NE) by employing capmul as the oil phase, Gelucire 44/14 as surfactant and Acconon MCM C8 as co-surfactant. The 3 factor- 3 level Box-Behnken design (BBD) was applied to optimise the βC-NE and study the impact of selected independent variables such as % Smix (5 to 9%), amplitude (20-30%) and sonication time (2.5-7.5 min) on responses including globule size (G.S.), poly dispersibility Index (PDI) and entrapment efficiency (E.E.). Further, the combinatorial effect of βC-NE with Quercetin Nanoemulsion (QU-NE) in the streptozotocin-induced diabetic rat model was evaluated. The results exhibited that 7% Smix at 25% amplitude for 5 min produced βC-NE with a droplet size of 153.1 ± 12.25 nm, 0.200 ± 0.04 PDI, and 73.25 ± 3.25% E.E. The βC-NE showed superior in-vivo bioavailability by 5.38 folds. The βC-NE, combined with QU-NE, exhibited potential therapeutic benefits in controlling body weight, blood sugar level, lipid levels, and tissue damage markers. Additionally, the pancreatic cells and hepatic cells were well protected. These results demonstrate the potential benefits of βC-NE and QU-NE in combination and recommend them as a substitute strategy for diabetes.
Collapse
Affiliation(s)
- Manohar Mahadev
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore 575018, India
- Department of Pharmaceutics, JSS College of Pharmacy, JSS AHER, Mysuru 570015, India
- Correspondence: ; Tel.: +91-81054-94968
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore 575018, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore 575018, India
| |
Collapse
|
4
|
Saleh R, Abbey L, Ofoe R, Ampofo J, Gunupuru LR. Effects of preharvest factors on antidiabetic potential of some foods and herbal plants. BRAZ J BIOL 2023; 84:e269583. [PMID: 36722681 DOI: 10.1590/1519-6984.269583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 02/02/2023] Open
Abstract
Diabetes is a metabolic disorder with no definite treatment, but it can be controlled by changing lifestyle and diet. Consumption of high-fiber and nutrient-rich foods including vegetables have been shown to reduce risks of obesity and Type II Diabetes Mellitus (T2DM). Also, many herbal plants have been associated with reduced risks of T2DM because of their composition of secondary metabolites. Antioxidant activities of some secondary metabolites have potent inhibitory effects against inflammation linked with insulin resistance and oxidative stress. More than 800 known medicinal plants are used to control diabetes and its relevant complications. However, variations in preharvest factors including plant genotype, growing medium properties, climatic factors, and management practices can influence plant growth and their accumulation of phytochemicals with health-promoting properties. However, the effects of these preharvest factors on the antidiabetic properties of plant secondary metabolites are neither explicit nor easily accessible in the literature. Therefore, this review aims to document recent studies that reported on under-exploited medicinal plants with antidiabetic properties. We reviewed several important preharvest factors that can potentially affect the synthesis of phytoconstituents which possess antidiabetic properties. This review will help identify gaps for future research in phytomedicine and functional foods.
Collapse
Affiliation(s)
- R Saleh
- Dalhousie University, Faculty of Agriculture, Department of Plant, Food, Environmental Sciences, Truro, Nova Scotia, Canada
| | - L Abbey
- Dalhousie University, Faculty of Agriculture, Department of Plant, Food, Environmental Sciences, Truro, Nova Scotia, Canada
| | - R Ofoe
- Dalhousie University, Faculty of Agriculture, Department of Plant, Food, Environmental Sciences, Truro, Nova Scotia, Canada
| | - J Ampofo
- McGill University, Department of Bioresource Engineering, Ste-Anne-de-Bellevue, Quebec, Canada
| | - L R Gunupuru
- Dalhousie University, Faculty of Agriculture, Department of Plant, Food, Environmental Sciences, Truro, Nova Scotia, Canada
| |
Collapse
|
5
|
Metibemu DS, Ogungbe IV. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022; 27:6005. [PMID: 36144741 PMCID: PMC9503763 DOI: 10.3390/molecules27186005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Carotenoids are isoprenoid-derived natural products produced in plants, algae, fungi, and photosynthetic bacteria. Most animals cannot synthesize carotenoids because the biosynthetic machinery to create carotenoids de novo is absent in animals, except arthropods. Carotenoids are biosynthesized from two C20 geranylgeranyl pyrophosphate (GGPP) molecules made from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) via the methylerythritol 4-phosphate (MEP) route. Carotenoids can be extracted by a variety of methods, including maceration, Soxhlet extraction, supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF)-assisted extraction, and enzyme-assisted extraction (EAE). Carotenoids have been reported to exert various biochemical actions, including the inhibition of the Akt/mTOR, Bcl-2, SAPK/JNK, JAK/STAT, MAPK, Nrf2/Keap1, and NF-κB signaling pathways and the ability to increase cholesterol efflux to HDL. Carotenoids are absorbed in the intestine. A handful of carotenoids and carotenoid-based compounds are in clinical trials, while some are currently used as medicines. The application of metabolic engineering techniques for carotenoid production, whole-genome sequencing, and the use of plants as cell factories to produce specialty carotenoids presents a promising future for carotenoid research. In this review, we discussed the biosynthesis and extraction of carotenoids, the roles of carotenoids in human health, the metabolism of carotenoids, and carotenoids as a source of drugs and supplements.
Collapse
Affiliation(s)
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217-0095, USA
| |
Collapse
|
6
|
Maradagi T, Kumar R, Ponesakki G. Hyperglycaemia-induced human hepatocellular carcinoma (HepG2) cell proliferation through ROS-mediated P38 activation is effectively inhibited by a xanthophyll carotenoid, lutein. Diabet Med 2022; 39:e14713. [PMID: 34614244 DOI: 10.1111/dme.14713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
AIMS Diabetic population have a twofold to threefold increased risk of developing liver cancer, and hyperglycaemia is a prime causative factor that propends the tumour cells to undergo aggressive metabolic growth. In this study, we aimed to examine the molecular mechanism by which lutein inhibits hyperglycaemia-induced human hepatocarcinoma (HepG2) cell proliferation. METHODS The effect of lutein on high glucose-induced proliferation was measured using the WST-1 reagent. Its effect on intracellular reactive oxygen species (ROS) levels was measured by DCF assay. The effect on the expression of antioxidant enzymes, cell cycle regulatory proteins and intracellular protein kinases was analysed by western blotting. The modulatory effect of lutein on different phases of the cell cycle was analysed by flow cytometry. RESULTS The data showed that lutein at 5 µM concentration significantly blocked glucose-promoted HepG2 cell proliferation. Suppression of high glucose-induced cell proliferation by lutein was not associated with apoptosis induction, but it was linked with inhibition of hyperglycaemia-mediated elevated ROS and upregulated expression of high glucose-mediated repressed heme oxygenase 1 (HO1). Furthermore, G2/M phase cell cycle arrest and associated phosphorylation of Cdk1 and P53 were found to be linked with suppressed hyperglycaemia-mediated cell proliferation by lutein. In addition, lutein inhibited hyperglycaemia-induced activation of P38 which relates to high glucose-induced ROS-mediated growth suppression and modulated the phosphorylation of Erk, JNK and Akt in hyperglycaemic HepG2 cells. CONCLUSION Our findings portray that sufficient intake of lutein may offer a negative impact on diabetes-associated tumour growth.
Collapse
Affiliation(s)
- Tehreem Maradagi
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ravi Kumar
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| |
Collapse
|
7
|
Qi FF, Tao LM, Dai YM, Zhang BM, Wang X, Yu Y. Optimization and application of high-throughput supported liquid extraction for simultaneous determination of carotenoids and fat-soluble vitamins in serum. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122672. [PMID: 33984631 DOI: 10.1016/j.jchromb.2021.122672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022]
Abstract
The demand for analysis of carotenoids (CAR) and fat-soluble vitamins (FSV) is continuously expanding, but currently used sample preparation methods either require complicated extraction procedure or large sample volume, let alone the reliability of the results. This study aimed to develop a fast, high-efficient, and high-throughput method based on supported liquid extraction (SLE) for the simultaneous extraction of FSV and CAR from human serum before using high-performance liquid chromatography-diode array detector (HPLC-DAD) analysis. The optimization of SLE parameters was achieved through response surface methodology (RSM) based on the Box-Behnken design (BBD) and included serum-water-extraction solvent ratio and eluent volume. Under optimal conditions, the proposed method gives acceptable limits of detection (LOD) (0.005-0.3 μg/mL), good recovery (89.6-110.9%) as well as relative standard deviation (RSD) of less than 10.1% by consuming lower serum sample (100 μL) and less sample preparation time (2 min per sample). Compared with liquid-phase extraction (LLE), the SLE delivers rapid extraction with higher recovery, better reproducibility, and lower matrix effect for CAR and FSV analysis. The method has been successfully applied to quantify CAR and FSV levels in serum of healthy individuals and age-related macular degeneration (AMD) patients, demonstrating the feasibility of the proposed method for epidemiology and routine applications.
Collapse
Affiliation(s)
- Fei-Fei Qi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China
| | - Li-Mei Tao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China
| | - Yi-Ming Dai
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China
| | - Bao-Ming Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China; Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shanxi 710004, PR China
| | - Xin Wang
- Chemical Engineering Institute, Northwest University for Nationalities, Lanzhou, Gansu 730000, PR China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China.
| |
Collapse
|
8
|
Marcelino G, Machate DJ, Freitas KDC, Hiane PA, Maldonade IR, Pott A, Asato MA, Candido CJ, Guimarães RDCA. β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules 2020; 25:molecules25245803. [PMID: 33316948 PMCID: PMC7763535 DOI: 10.3390/molecules25245803] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
Carotenoids are vital antioxidants for plants and animals. They protect cells from oxidative events and act against the inflammatory process and carcinogenesis. Among the most abundant carotenoids in human and foods is β-carotene. This carotenoid has the highest level of provitamin A activity, as it splits into two molecules of retinol through the actions of the cytosolic enzymes: β-carotene-15,15′-monooxygenase (β-carotene-15,15′-oxygenase 1) and β-carotene-9′,10′-dioxygenase (β-carotene-9′,10′-oxygenase 2). The literature supports the idea that β-carotene acts against type 2 diabetes mellitus, cardiovascular diseases, obesity, and metabolic syndrome. Due to the many processes involved in β-carotene biosynthesis and metabolic function, little is known about such components, since many mechanisms have not yet been fully elucidated. Therefore, our study concisely described the relationships between the consumption of carotenoids, with emphasis on β-carotene, and obesity and type 2 diabetes mellitus and its associated parameters in order to understand the preventive role of carotenoids better and encourage their consumption.
Collapse
Affiliation(s)
- Gabriela Marcelino
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
| | - David Johane Machate
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Graduate Program in Science of Materials, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Karine de Cássia Freitas
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
- Correspondence:
| | - Priscila Aiko Hiane
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
| | - Iriani Rodrigues Maldonade
- Laboratory of Food Science and Technology, Brazilian Agricultural Research Corporation (Embrapa Vegetables), Brasília 70275-970, Brazil;
| | - Arnildo Pott
- Laboratory of Botany, Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Marcel Arakaki Asato
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Camila Jordão Candido
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
| |
Collapse
|
9
|
Olmedilla-Alonso B, Rodríguez-Rodríguez E, Beltrán-de-Miguel B, Estévez-Santiago R. Dietary β-Cryptoxanthin and α-Carotene Have Greater Apparent Bioavailability Than β-Carotene in Subjects from Countries with Different Dietary Patterns. Nutrients 2020; 12:E2639. [PMID: 32872544 PMCID: PMC7551262 DOI: 10.3390/nu12092639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 02/01/2023] Open
Abstract
β-carotene, α-carotene and β-cryptoxanthin are greater contributors to vitamin A intake than retinol in the human diet for most people around the world. Their contribution depends on several factors, including bioavailability and capacity of conversion into retinol. There is an increasing body of research showing that the use of retinol activity equivalents or retinol equivalents could lead to the underestimation of the contribution of β-cryptoxanthin and of α-carotene. The aim is to assess their apparent bioavailability by comparing concentrations in blood to their dietary intakes and identifying the major food contributors to their dietary intake. Dietary intake (3-day 24-h records) and serum concentrations (by HPLC) were calculated in normolipemic subjects with adequate retinol status (≥1.1 µmol/L) from our studies (n = 633) and apparent bioavailability calculated from 22 other studies (n = 29,700). Apparent bioavailability was calculated as the ratio of concentration in the blood to carotenoid intake. Apparent bioavailabilities for α-carotene and β-cryptoxanthin were compared to those for β-carotene. Eating comparable amounts of α-carotene, β-cryptoxanthin and β-carotene foods resulted in 55% greater α-carotene (95% CI 35, 90) and 686% higher β-cryptoxanthin (95% CI 556, 1016) concentrations than β-carotene in blood. This suggests differences in the apparent bioavailability of α-carotene and β-cryptoxanthin and even larger differences with β-cryptoxanthin, greater than that of β-carotene. Four fruits (tomato, orange, tangerine, red pepper) and two vegetables (carrot, spinach) are the main contributors to their dietary intake (>50%) in Europeans.
Collapse
Affiliation(s)
- Begoña Olmedilla-Alonso
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain;
| | - Elena Rodríguez-Rodríguez
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Beatriz Beltrán-de-Miguel
- Department of Nutrition and Food Science, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Rocío Estévez-Santiago
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain;
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Faculty of Experimental Science, Francisco de Vitoria University, 28223 Madrid, Spain
| |
Collapse
|