1
|
Xu L, He C, Yang S, Zhu Y, Wang P, Wu S, Guo F, Wang Y. Phase-transited lysozyme nanofilm with co-immobilized copper ion and heparin as cardiovascular stent multifunctional coating. Colloids Surf B Biointerfaces 2023; 230:113530. [PMID: 37683323 DOI: 10.1016/j.colsurfb.2023.113530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Cardiovascular metal stents have shown potential in the treatment of coronary artery disease using percutaneous coronary intervention. However, thrombosis, endothelialization, and new atherosclerosis after stent implantation remain unsolved problems. Herein, a multifunctional coating material based on phase-transited lysozyme was developed to promote stent endothelialization and simultaneously reduce thrombus events by embedding moieties of heparin and co-immobilized copper ions for in-situ catalyzing nitric oxide (NO) generation. The lysozyme-based biomimetic coating is compatible with blood and enables facile loading and sustainable release of copper ions to produce NO with donors via catalytic reaction. The novel coating strategy displayed several bio-effects of anti-thrombosis; it synergistically promoted endothelial cell growth and inhibited smooth muscle cell growth. Thus, this systemic in vitro study will provide a foundation for developing multifunctional cardiovascular stents in clinical settings.
Collapse
Affiliation(s)
- Lehua Xu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Chenlong He
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Shusheng Yang
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, PR China
| | - Yunxia Zhu
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, PR China
| | - Peng Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Shengming Wu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Fangfang Guo
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Porto AA, Gonzaga LA, Benjamim CJR, Valenti VE. Absence of Effects of L-Arginine and L-Citrulline on Inflammatory Biomarkers and Oxidative Stress in Response to Physical Exercise: A Systematic Review with Meta-Analysis. Nutrients 2023; 15:nu15081995. [PMID: 37111214 DOI: 10.3390/nu15081995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The repercussions on oxidative and inflammatory stress markers under the effects of arginine and citrulline in response to exercise are not fully reached. We completed a systematic review to investigate the effects of L-Citrulline or L-Arginine on oxidative stress and inflammatory biomarkers following exercise. EMBASE, MEDLINE (PubMed), Cochrane Library, CINAHL, LILACS, and Web of Science databases were used to record the trials. This study includes randomized controlled trials (RCTs) and non-RCTs with subjects over 18 years old. Those under the intervention protocol consumed L-Citrulline or L-Arginine, and the controls ingested placebo. We recognized 1080 studies, but only 7 were included (7 studies in meta-analysis). We observed no difference between pre- vs. post-exercise for oxidative stress (subtotal = -0.21 [CI: -0.56, 0.14], p = 0.24, and heterogeneity = 0%. In the sub-group "L-Arginine" we found a subtotal = -0.29 [-0.71, 0.12], p = 0.16, and heterogeneity = 0%. For the "L-Citrulline" subgroup we observed a subtotal = 0.00 [-0.67, 0.67], p = 1.00, and heterogeneity was not applicable. No differences were observed between groups (p = 0.47), and I² = 0%) or in antioxidant activity (subtotal = -0.28 [-1.65, 1.08], p = 0.68, and heterogeneity = 0%). In the "L-Arginine" sub-group, we found a subtotal = -3.90 [-14.18, 6.38], p = 0.46, and heterogeneity was not applicable. For the "L-Citrulline" subgroup, we reported a subtotal = -0.22 [-1.60, 1.16], p = 0.75, and heterogeneity was not applicable. No differences were observed between groups (p = 0.49), and I² = 0%), inflammatory markers (subtotal = 8.38 [-0.02, 16.78], p = 0.05, and heterogeneity = 93%. Tests for subgroup differences were not applicable, and anti-inflammatory markers (subtotal = -0.38 [-1.15, 0.39], p = 0.34 and heterogeneity = 15%; testing for subgroup differences was not applicable). In conclusion, our systematic review and meta-analysis found that L-Citrulline and L-Arginine did not influence inflammatory biomarkers and oxidative stress after exercise.
Collapse
Affiliation(s)
- Andrey A Porto
- São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil
- Autonomic Nervous System Center, São Paulo State University (UNESP), Marília 17525-900, SP, Brazil
| | - Luana A Gonzaga
- São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil
- Autonomic Nervous System Center, São Paulo State University (UNESP), Marília 17525-900, SP, Brazil
| | - Cicero Jonas R Benjamim
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Vitor E Valenti
- São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil
| |
Collapse
|
3
|
Gao J, Li C, Wang X, Sun X, Zhang R, chen C, Yu M, Liu Y, Zhu Y, Chen J. Oridonin attenuates lung inflammation and fibrosis in silicosis via covalent targeting iNOS. Biomed Pharmacother 2022; 153:113532. [DOI: 10.1016/j.biopha.2022.113532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
|
4
|
Liu Z, Kaliaperumal K, Chen H, Zhang J. Anti-inflammatory activity of the water extract of Semiliquidambar cathayensis leaf. Nat Prod Res 2022; 36:6143-6149. [PMID: 35337221 DOI: 10.1080/14786419.2022.2056892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, the anti-inflammatory effect of the water extract of Semiliquidambar cathayensis leaf (WESCL) was evaluated for the first time. WESCL exhibited anti-inflammatory activity by significantly reducing the cell metamorphosis, the production of nitric oxide (NO), and reactive oxygen species (ROS) in LPS-stimulated RAW 264.7 macrophages while showing no cytotoxic effect to the cells. Furthermore, an in vivo study revealed that WESCL could alleviate the disease development of osteoarthritis (OA) and decrease the level of interleukin-6 (IL-6) in mice. Chemical composition analysis indicated that WESCL contained high amounts of phenolic compounds, flavonoids, and triterpenoid saponins, with the total content being 30.6 mg gallic acid equivalent (GAE)/g, 38.2 mg quercetin equivalent (QE)/g, 100.5 mg oleanolic acid equivalent (OAE)/g, respectively. The present study successfully identified WESCL as a naturally-occurring anti-inflammatory agent, supporting its potent application for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Ziyue Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Science, Guangzhou, China.,National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kumaravel Kaliaperumal
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Hongfeng Chen
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Science, Guangzhou, China.,National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| |
Collapse
|
5
|
da Silva ET, da Silva TU, de Carvalho Pougy K, da Silveira RB, da Silva RS, Machado SDP. A DFT study of cis-[Ru(NO)(NO2)bpy(dye)2]+ complexes as NO donors. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Moon TM, Sheehe JL, Nukareddy P, Nausch LW, Wohlfahrt J, Matthews DE, Blumenthal DK, Dostmann WR. An N-terminally truncated form of cyclic GMP-dependent protein kinase Iα (PKG Iα) is monomeric and autoinhibited and provides a model for activation. J Biol Chem 2018; 293:7916-7929. [PMID: 29602907 DOI: 10.1074/jbc.ra117.000647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers.
Collapse
Affiliation(s)
- Thomas M Moon
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405.
| | - Jessica L Sheehe
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Praveena Nukareddy
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405
| | - Lydia W Nausch
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jessica Wohlfahrt
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Dwight E Matthews
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112
| | - Wolfgang R Dostmann
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
7
|
Synthetic Peptides as cGMP-Independent Activators of cGMP-Dependent Protein Kinase Iα. ACTA ACUST UNITED AC 2016; 22:1653-61. [PMID: 26687482 DOI: 10.1016/j.chembiol.2015.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/02/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022]
Abstract
PKG is a multifaceted signaling molecule and potential pharmaceutical target due to its role in smooth muscle function. A helix identified in the structure of the regulatory domain of PKG Iα suggests a novel architecture of the holoenzyme. In this study, a set of synthetic peptides (S-tides), derived from this helix, was found to bind to and activate PKG Iα in a cyclic guanosine monophosphate (cGMP)-independent manner. The most potent S-tide derivative (S1.5) increased the open probability of the potassium channel KCa1.1 to levels equivalent to saturating cGMP. Introduction of S1.5 to smooth muscle cells in isolated, endothelium-denuded cerebral arteries through a modified reversible permeabilization procedure inhibited myogenic constriction. In contrast, in endothelium-intact vessels S1.5 had no effect on myogenic tone. This suggests that PKG Iα activation by S1.5 in vascular smooth muscle would be sufficient to inhibit augmented arterial contractility that frequently occurs following endothelial damage associated with cardiovascular disease.
Collapse
|
8
|
Puga GM, de P Novais I, Katsanos CS, Zanesco A. Combined effects of aerobic exercise and l-arginine ingestion on blood pressure in normotensive postmenopausal women: A crossover study. Life Sci 2016; 151:323-329. [PMID: 26972606 DOI: 10.1016/j.lfs.2016.02.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 12/23/2022]
Abstract
After menopause the incidence of cardiovascular diseases increases in women. A decrease in nitric oxide (NO) bioavailability has been pointed out to play a major role in this phenomenon. Since it is believed that l-arginine administration could improve NO bioavailability, the aim of this study was to examine the effects of acute l-arginine administration associated with aerobic exercise on blood pressure (BP), redox state and inflammatory biomarkers in normotensive postmenopausal women (NPW). Sixteen volunteers (57±6yr) were subjected to four experimental sessions (crossover design): arginine+exercise (A-E); arginine (ARG); exercise+placebo (EXE); control (CON). Each session was initiated with either 9g of l-arginine ingestion (ARG or A-E days), placebo (EXE day), or nothing (CON day). The participants performed 30min of aerobic exercise (A-E and EXE days) or sitting rest (CON and ARG days). Blood samples were collected before each session and 45min after the intervention. Office BP and ambulatory blood pressure monitoring (ABPM) were evaluated. NO/cGMP pathway, redox state and inflammatory biomarkers were measured. Systolic BP decreased during the 24-hour in A-E and EXE sessions. However, diastolic BP reduced only in A-E session. No changes were found in the biomarkers concentrations. In conclusion, the association was effective in lowering diastolic BP in NPW. Additionally, physical exercise alone promoted a long lasting effect on systolic BP measured by ABPM in this population, although this beneficial effect was not associated with changes in the cardio-inflammatory biomarkers. Possibly, other factors such as neural influences could be mediating this effect.
Collapse
Affiliation(s)
- Guilherme M Puga
- Laboratory of Cardiovascular Physiology and Exercise Science, Institute of Biosciences, UNESP, Rio Claro, SP, Brazil; Department of Physical Education, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil.
| | - Iane de P Novais
- Laboratory of Cardiovascular Physiology and Exercise Science, Institute of Biosciences, UNESP, Rio Claro, SP, Brazil.
| | | | - Angelina Zanesco
- Laboratory of Cardiovascular Physiology and Exercise Science, Institute of Biosciences, UNESP, Rio Claro, SP, Brazil.
| |
Collapse
|
9
|
Peng XX, Zhang SH, Wang XL, Ye TJ, Li H, Yan XF, Wei L, Wu ZP, Hu J, Zou CP, Wang YH, Hu XD. Panax Notoginseng flower saponins (PNFS) inhibit LPS-stimulated NO overproduction and iNOS gene overexpression via the suppression of TLR4-mediated MAPK/NF-kappa B signaling pathways in RAW264.7 macrophages. Chin Med 2015; 10:15. [PMID: 26155304 PMCID: PMC4493833 DOI: 10.1186/s13020-015-0045-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/25/2015] [Indexed: 01/29/2023] Open
Abstract
Background Panax Notoginseng flower saponins (PNFS) are the main active component of Panax notoginseng (Burk) F. H. Chen flower bud (PNF) and possess significant anti-inflammatory efficacy. This study aims to explore the mechanisms underlying PNFS’ antiflammatory action in RAW264.7 macrophages. Methods A cell counting kit-8 assay was used to determine the viability of RAW264.7 macrophages. Anti-inflammation effects of PNFS in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were measured based on the detection of nitric oxide (NO) overproduction (Griess method, DAF-FM DA fluorescence assay and NO2− scavenging assay), and interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha gene overexpression (real-time PCR and ELISA). Inducible nitric oxide synthase (iNOS) gene overexpression was determined by real-time PCR and western blotting. iNOS enzyme activity was also assayed. The mechanisms underlying the suppression of iNOS gene overexpression by PNFS were explored using real-time PCR and western blotting to assess mRNA and protein levels of components of the Toll-like receptor 4 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor-kappa B (NF-kappa B) signaling pathways. Results PNFS (50, 100, 200 μg/mL) significantly reduced LPS-induced overproduction of NO (P < 0.001, P < 0.001, P < 0.001) and IL-6 (P = 0.103, P < 0.001, P < 0.001), but did not affect TNF-alpha overproduction. PNFS (50, 100, 200 μg/mL) also markedly decreased LPS-activated iNOS (P < 0.001, P < 0.001, P < 0.001) and TLR4 gene overexpression (P = 0.858, P = 0.046, P = 0.005). Furthermore, treatment with PNFS (200 μg/mL) suppressed the phosphorylation of MAPKs including P38 (P = 0.001), c-Jun N-terminal kinase (JNK) (P = 0.036) and extracellular-signal regulated kinase (ERK) 1/2 (P = 0.021). PNFS (200 μg/mL) inhibited the activation of the NF-kappa B signaling pathway by preventing the phosphorylation of inhibitor of NF-kappa B alpha (I-kappa B alpha) (P = 0.004) and P65 (P = 0.023), but PNFS (200 μg/mL) could not activate the LPS-induced PI3K-Akt signaling pathway. Conclusions PNFS significantly down-regulated iNOS gene overexpression and thereby decreased NO overproduction via the inhibition of TLR4-mediated MAPK/NF-kappa B signaling pathways, but not the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao-Xu Peng
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Shu-Hui Zhang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People's Republic of China
| | - Xiao-Ling Wang
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Ting-Jie Ye
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Hua Li
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Xiao-Feng Yan
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Li Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Zhong-Ping Wu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Jing Hu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Chun-Pu Zou
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - You-Hua Wang
- Hypertension Laboratory, Cardiovascular Department, Long Hua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 People's Republic of China
| | - Xu-Dong Hu
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| |
Collapse
|
10
|
Larson MC, Hillery CA, Hogg N. Circulating membrane-derived microvesicles in redox biology. Free Radic Biol Med 2014; 73:214-28. [PMID: 24751526 PMCID: PMC4465756 DOI: 10.1016/j.freeradbiomed.2014.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/20/2023]
Abstract
Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation.
Collapse
Affiliation(s)
- Michael Craig Larson
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA; Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl A Hillery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
11
|
Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator. Nitric Oxide 2014; 41:27-37. [PMID: 24963795 DOI: 10.1016/j.niox.2014.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Homocysteine (Hcy) is a non-protein amino acid derived from dietary methionine. High levels of Hcy, known as hyperhomocysteinemia (HHcy) is known to cause vascular complications. In the mammalian tissue, Hcy is metabolized by transsulfuration enzymes to produce hydrogen sulfide (H2S). H2S, a pungent smelling gas was previously known for its toxic effects in the central nervous system, recent studies however has revealed protective effects in a variety of diseases including hypertension, diabetes, inflammation, atherosclerosis, and renal disease progression and failure. Interestingly, under stress conditions including hypoxia, H2S can reduce metabolic demand and also act as a substrate for ATP production. This review highlights some of the recent advances in H2S research as a potential therapeutic agent targeting renovascular diseases associated with HHcy.
Collapse
|
12
|
Hu J, Whittaker MR, Duong H, Li Y, Boyer C, Davis TP. Biomimetic Polymers Responsive to a Biological Signaling Molecule: Nitric Oxide Triggered Reversible Self-assembly of Single Macromolecular Chains into Nanoparticles. Angew Chem Int Ed Engl 2014; 53:7779-84. [DOI: 10.1002/anie.201403147] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Indexed: 01/18/2023]
|
13
|
Hu J, Whittaker MR, Duong H, Li Y, Boyer C, Davis TP. Biomimetic Polymers Responsive to a Biological Signaling Molecule: Nitric Oxide Triggered Reversible Self-assembly of Single Macromolecular Chains into Nanoparticles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Alpha-Asarone Protects Endothelial Cells from Injury by Angiotensin II. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:682041. [PMID: 24757494 PMCID: PMC3976910 DOI: 10.1155/2014/682041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/25/2014] [Accepted: 02/04/2014] [Indexed: 11/18/2022]
Abstract
α -Asarone is the major therapeutical constituent of Acorus tatarinowii Schott. In this study, the potential protective effects of α -asarone against endothelial cell injury induced by angiotensin II were investigated in vitro. The EA.hy926 cell line derived from human umbilical vein endothelial cells was pretreated with α -asarone (10, 50, 100 µmol/L) for 1 h, followed by coincubation with Ang II (0.1 µmol/L) for 24 h. Intracellular nitric oxide (NO) and reactive oxygen species (ROS) were detected by fluorescent dyes, and phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser(1177) was determined by Western blotting. α -Asarone dose-dependently mitigated the Ang II-induced intracellular NO reduction (P < 0.01 versus model) and ROS production (P < 0.01 versus model). Furthermore, eNOS phosphorylation (Ser(1177)) by acetylcholine was significantly inhibited by Ang II, while pretreatment for 1 h with α -asarone partially prevented this effect (P < 0.05 versus model). Additionally, cell viability determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (105~114.5% versus control, P > 0.05) was not affected after 24 h of incubation with α -asarone at 1-100 µmol/L. Therefore, α -asarone protects against Ang II-mediated damage of endothelial cells and may be developed to prevent injury to cardiovascular tissues.
Collapse
|
15
|
Heikal L, Aaronson PI, Ferro A, Nandi M, Martin GP, Dailey LA. S-nitrosophytochelatins: investigation of the bioactivity of an oligopeptide nitric oxide delivery system. Biomacromolecules 2011; 12:2103-13. [PMID: 21480633 DOI: 10.1021/bm200159h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigates the in vitro bioactivity of S-nitrosophytochelatins (SNOPCs), oligopeptide analogues of S-nitrosoglutathione (GSNO), and their mechanisms of nitric oxide (NO) delivery. SNOPCs were more potent than GSNO in inhibiting platelet aggregation and stimulating vasorelaxation. Their potency was related to the number of S-nitrosated moieties per mole compound. Transnitrosation reactions with cell membrane surface components were shown to be the primary mode of NO delivery to intracellular targets for SNOPCs, while delivery via γ-glutamyl transpeptidase was unique to GSNO. Due to rapid NO release, larger SNOPCs elicited a more transitory effect compared to smaller compounds. The duration of effect was influenced by compound molecular weight, NO release kinetics, ability to undergo transnitrosation, and incubation time with tissues. In summary, a new oligopeptide NO delivery system based on SNOPCs was shown to be biologically active and can be used to investigate the mechanisms of NO delivery to intracellular targets.
Collapse
Affiliation(s)
- Lamia Heikal
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
16
|
Balakumar P, Koladiya RU, Ramasamy S, Rathinavel A, Singh M. Pharmacological Interventions to Prevent Vascular Endothelial Dysfunction: Future Directions. JOURNAL OF HEALTH SCIENCE 2008; 54:1-16. [DOI: 10.1248/jhs.54.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Pitchai Balakumar
- Cardiovascular Pharmacology Division, I.S.F. Institute of Pharmaceutical Sciences and Drug Research
| | | | - Subbiah Ramasamy
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University
| | - Andiappan Rathinavel
- Department of Cardio-Thoracic Surgery, Madurai Medical College and Government Rajaji Hospital
| | - Manjeet Singh
- Cardiovascular Pharmacology Division, I.S.F. Institute of Pharmaceutical Sciences and Drug Research
| |
Collapse
|