1
|
Ivanova MM, Dao J, Slayeh OA, Friedman A, Goker-Alpan O. Circulated TGF-β1 and VEGF-A as Biomarkers for Fabry Disease-Associated Cardiomyopathy. Cells 2023; 12:2102. [PMID: 37626912 PMCID: PMC10453505 DOI: 10.3390/cells12162102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Fabry disease (FD) is a lysosomal disorder caused by α-galactosidase A deficiency, resulting in the accumulation of globotriaosylceramide (Gb-3) and its metabolite globotriaosylsphingosine (Lyso-Gb-3). Cardiovascular complications and hypertrophic cardiomyopathy (HCM) are the most frequent manifestations of FD. While an echocardiogram and cardiac MRI are clinical tools to assess cardiac involvement, hypertrophic pattern variations and fibrosis make it crucial to identify biomarkers to predict early cardiac outcomes. This study aims to investigate potential biomarkers associated with HCM in FD: transforming growth factor-β1 (TGF-β1), TGF-β active form (a-TGF-β), vascular endothelial growth factor (VEGF-A), and fibroblast growth factor (FGF2) in 45 patients with FD, categorized into cohorts based on the HCM severity. TGF-β1, a-TGF-β, FGF2, and VEGF-A were elevated in FD. While the association of TGF-β1 with HCM was not gender-related, VEGF was elevated in males with FD and HCM. Female patients with abnormal electrocardiograms but without overt HCM also have elevated TGF-β1. Lyso-Gb3 is correlated with TGF-β1, VEGF-A, and a-TGF-β1. Elevation of TGF-β1 provides evidence of the chronic inflammatory state as a cause of myocardial fibrosis in FD patients; thus, it is a potential marker of early cardiac fibrosis detected even prior to hypertrophy. TGF-β1 and VEGF biomarkers may be prognostic indicators of adverse cardiovascular events in FD.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal & Rare Disorders Research and Treatment Center, 3702 Pender Drive, Ste 170, Fairfax, VA 22030, USA
| | | | | | | | - Ozlem Goker-Alpan
- Lysosomal & Rare Disorders Research and Treatment Center, 3702 Pender Drive, Ste 170, Fairfax, VA 22030, USA
| |
Collapse
|
2
|
Hall C, Law JP, Reyat JS, Cumberland MJ, Hang S, Vo NTN, Raniga K, Weston CJ, O'Shea C, Townend JN, Gehmlich K, Ferro CJ, Denning C, Pavlovic D. Chronic activation of human cardiac fibroblasts in vitro attenuates the reversibility of the myofibroblast phenotype. Sci Rep 2023; 13:12137. [PMID: 37495732 PMCID: PMC10372150 DOI: 10.1038/s41598-023-39369-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Activation of cardiac fibroblasts and differentiation to myofibroblasts underlies development of pathological cardiac fibrosis, leading to arrhythmias and heart failure. Myofibroblasts are characterised by increased α-smooth muscle actin (α-SMA) fibre expression, secretion of collagens and changes in proliferation. Transforming growth factor-beta (TGF-β) and increased mechanical stress can initiate myofibroblast activation. Reversibility of the myofibroblast phenotype has been observed in murine cells but has not been explored in human cardiac fibroblasts. In this study, chronically activated adult primary human ventricular cardiac fibroblasts and human induced pluripotent stem cell derived cFbs (hiPSC-cFbs) were used to investigate the potential for reversal of the myofibroblast phenotype using either subculture on soft substrates or TGF-β receptor inhibition. Culture on softer plates (25 or 2 kPa Young's modulus) did not alter proliferation or reduce expression of α-SMA and collagen 1. Similarly, culture of myofibroblasts in the presence of TGF-β inhibitor did not reverse myofibroblasts back to a quiescent phenotype. Chronically activated hiPSC-cFbs also showed attenuated response to TGF-β receptor inhibition and inability to reverse to quiescent fibroblast phenotype. Our data demonstrate substantial loss of TGF-β signalling plasticity as well as a loss of feedback from the surrounding mechanical environment in chronically activated human myofibroblasts.
Collapse
Affiliation(s)
- Caitlin Hall
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jonathan P Law
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jasmeet S Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Max J Cumberland
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Shaun Hang
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nguyen T N Vo
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Kavita Raniga
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Chris J Weston
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jonathan N Townend
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, B15 2GW, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Charles J Ferro
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Renal Medicine, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, B15 2GW, UK
| | - Chris Denning
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
4
|
Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E. Cardiac Fibrosis in the Pressure Overloaded Left and Right Ventricle as a Therapeutic Target. Front Cardiovasc Med 2022; 9:886553. [PMID: 35600469 PMCID: PMC9120363 DOI: 10.3389/fcvm.2022.886553] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Myocardial fibrosis is a remodeling process of the extracellular matrix (ECM) following cardiac stress. "Replacement fibrosis" is a term used to describe wound healing in the acute phase of an injury, such as myocardial infarction. In striking contrast, ECM remodeling following chronic pressure overload insidiously develops over time as "reactive fibrosis" leading to diffuse interstitial and perivascular collagen deposition that continuously perturbs the function of the left (L) or the right ventricle (RV). Examples for pressure-overload conditions resulting in reactive fibrosis in the LV are systemic hypertension or aortic stenosis, whereas pulmonary arterial hypertension (PAH) or congenital heart disease with right sided obstructive lesions such as pulmonary stenosis result in RV reactive fibrosis. In-depth phenotyping of cardiac fibrosis has made it increasingly clear that both forms, replacement and reactive fibrosis co-exist in various etiologies of heart failure. While the role of fibrosis in the pathogenesis of RV heart failure needs further assessment, reactive fibrosis in the LV is a pathological hallmark of adverse cardiac remodeling that is correlated with or potentially might even drive both development and progression of heart failure (HF). Further, LV reactive fibrosis predicts adverse outcome in various myocardial diseases and contributes to arrhythmias. The ability to effectively block pathological ECM remodeling of the LV is therefore an important medical need. At a cellular level, the cardiac fibroblast takes center stage in reactive fibrotic remodeling of the heart. Activation and proliferation of endogenous fibroblast populations are the major source of synthesis, secretion, and deposition of collagens in response to a variety of stimuli. Enzymes residing in the ECM are responsible for collagen maturation and cross-linking. Highly cross-linked type I collagen stiffens the ventricles and predominates over more elastic type III collagen in pressure-overloaded conditions. Research has attempted to identify pro-fibrotic drivers causing fibrotic remodeling. Single key factors such as Transforming Growth Factor β (TGFβ) have been described and subsequently targeted to test their usefulness in inhibiting fibrosis in cultured fibroblasts of the ventricles, and in animal models of cardiac fibrosis. More recently, modulation of phenotypic behaviors like inhibition of proliferating fibroblasts has emerged as a strategy to reduce pathogenic cardiac fibroblast numbers in the heart. Some studies targeting LV reactive fibrosis as outlined above have successfully led to improvements of cardiac structure and function in relevant animal models. For the RV, fibrosis research is needed to better understand the evolution and roles of fibrosis in RV failure. RV fibrosis is seen as an integral part of RV remodeling and presents at varying degrees in patients with PAH and animal models replicating the disease of RV afterload. The extent to which ECM remodeling impacts RV function and thus patient survival is less clear. In this review, we describe differences as well as common characteristics and key players in ECM remodeling of the LV vs. the RV in response to pressure overload. We review pre-clinical studies assessing the effect of anti-fibrotic drug candidates on LV and RV function and their premise for clinical testing. Finally, we discuss the mode of action, safety and efficacy of anti-fibrotic drugs currently tested for the treatment of left HF in clinical trials, which might guide development of new approaches to target right heart failure. We touch upon important considerations and knowledge gaps to be addressed for future clinical testing of anti-fibrotic cardiac therapies.
Collapse
Affiliation(s)
- Katharina Schimmel
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Kenzo Ichimura
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sushma Reddy
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Pediatric Cardiology, Stanford University, Stanford, CA, United States
| | - Francois Haddad
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,*Correspondence: Edda Spiekerkoetter,
| |
Collapse
|
5
|
Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med 2020; 12:e10865. [PMID: 32955172 PMCID: PMC7539225 DOI: 10.15252/emmm.201910865] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is central to the pathology of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). Irrespective of the underlying profibrotic condition (e.g. ageing, diabetes, hypertension), maladaptive cardiac fibrosis is defined by the transformation of resident fibroblasts to matrix-secreting myofibroblasts. Numerous profibrotic factors have been identified at the molecular level (e.g. TGFβ, IL11, AngII), which activate gene expression programs for myofibroblast activation. A number of existing HF therapies indirectly target fibrotic pathways; however, despite multiple clinical trials in HFpEF, a specific clinically effective antifibrotic therapy remains elusive. Therapeutic inhibition of TGFβ, the master-regulator of fibrosis, has unfortunately proven toxic and ineffective in clinical trials to date, and new approaches are needed. In this review, we discuss the pathophysiology and clinical implications of interstitial fibrosis in HFpEF. We provide an overview of trials targeting fibrosis in HFpEF to date and discuss the promise of potential new therapeutic approaches and targets in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- Wellcome Trust 4i/NIHR Clinical Research FellowImperial CollegeLondonUK
| | - Ben Corden
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Stuart A Cook
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
6
|
Csósza G, Karlócai K, Losonczy G, Müller V, Lázár Z. Growth factors in pulmonary arterial hypertension: Focus on preserving right ventricular function. Physiol Int 2020; 107:177-194. [PMID: 32692713 DOI: 10.1556/2060.2020.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease, characterized by increased vascular resistance leading to right ventricle (RV) failure. The extent of right ventricular dysfunction crucially influences disease prognosis; however, currently no therapies have specific cardioprotective effects. Besides discussing the pathophysiology of right ventricular adaptation in PAH, this review focuses on the roles of growth factors (GFs) in disease pathomechanism. We also summarize the involvement of GFs in the preservation of cardiomyocyte function, to evaluate their potential as cardioprotective biomarkers and novel therapeutic targets in PAH.
Collapse
Affiliation(s)
- G Csósza
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - K Karlócai
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - G Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - V Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Z Lázár
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int J Mol Sci 2019; 20:ijms20184374. [PMID: 31489895 PMCID: PMC6770001 DOI: 10.3390/ijms20184374] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.
Collapse
|
8
|
Braschi A. Potential Protective Role of Blood Pressure-Lowering Drugs on the Balance between Hemostasis and Fibrinolysis in Hypertensive Patients at Rest and During Exercise. Am J Cardiovasc Drugs 2019; 19:133-171. [PMID: 30714087 DOI: 10.1007/s40256-018-00316-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In patients with hypertension, the triad represented by endothelial dysfunction, platelet hyperactivity, and altered fibrinolytic function disturbs the equilibrium between hemostasis and fibrinolysis and translates into a hypercoagulable state, which underlies the risk of thrombotic complications. This article reviews the scientific evidence regarding some biological effects of antihypertensive drugs, which can protect patients from the adverse consequences of hypertensive disease, improving endothelial function, enhancing antioxidant activity, and restoring equilibrium between hemostatic and fibrinolytic factors. These protective effects appear not to be mediated through blood pressure reduction and are not shared by all molecules of the same pharmacological class.
Collapse
Affiliation(s)
- Annabella Braschi
- Ambulatory of Cardiovascular Diseases, Via col. Romey n.10, 91100, Trapani, Italy.
| |
Collapse
|
9
|
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 2019; 23:733-758. [PMID: 29862462 DOI: 10.1007/s10741-018-9716-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.
Collapse
Affiliation(s)
- Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marek Jelemensky
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
10
|
Perrucci GL, Rurali E, Pompilio G. Cardiac fibrosis in regenerative medicine: destroy to rebuild. J Thorac Dis 2018; 10:S2376-S2389. [PMID: 30123577 DOI: 10.21037/jtd.2018.03.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulio Pompilio
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.,Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
11
|
Nelson JW, Ferdaus MZ, McCormick JA, Minnier J, Kaul S, Ellison DH, Barnes AP. Endothelial transcriptomics reveals activation of fibrosis-related pathways in hypertension. Physiol Genomics 2018; 50:104-116. [PMID: 29212850 PMCID: PMC5867617 DOI: 10.1152/physiolgenomics.00111.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
Hypertension poses a significant challenge to vasculature homeostasis and stands as the most common cardiovascular disease in the world. Its effects are especially profound on endothelial cells that form the inner lining of the vasculature and are directly exposed to the effects of excess pressure. Here, we characterize the in vivo transcriptomic response of cardiac endothelial cells to hypertension by rapidly isolating these cells from the spontaneous hypertension mouse model BPH/2J and its normotensive BPN/3J control strain and performing and RNA sequencing on both. Comparison of transcriptional differences between these groups reveals statistically significant changes in cellular pathways consistent with cardiac fibrosis found in hypertensive animals. Importantly, many of the fibrosis-linked genes identified also differ significantly between juvenile prehypertensive and adult hypertensive BPH/2J mice, suggesting that these transcriptional differences are hypertension related. We examined the dynamic nature of these transcriptional changes by testing whether blood pressure normalization using either a calcium channel blocker (amlodipine) or a angiotensin II receptor blocker (losartan) is able to reverse these expression patterns associated with hypertension. We find that blood pressure reduction is capable of reversing some gene-expression patterns, while other transcripts are recalcitrant to therapeutic intervention. This illuminates the possibility that unmanaged hypertension may irreversibly alter some endothelial transcriptional patterns despite later intervention. This study quantifies how endothelial cells are remodeled at the molecular level in cardiovascular pathology and advances our understanding of the transcriptional events associated with endothelial response to hypertensive challenge.
Collapse
Affiliation(s)
- Jonathan W Nelson
- The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Mohammed Z Ferdaus
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
| | - Jessica Minnier
- The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
- Department of Medicine, Oregon Clinical and Translational Research Institute, Oregon Health & Science University , Portland, Oregon
| | - Anthony P Barnes
- The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
12
|
Kabel AM, Elkhoely AA. Targeting proinflammatory cytokines, oxidative stress, TGF-β1 and STAT-3 by rosuvastatin and ubiquinone to ameliorate trastuzumab cardiotoxicity. Biomed Pharmacother 2017. [PMID: 28622591 DOI: 10.1016/j.biopha.2017.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Nakao E, Adachi H, Enomoto M, Fukami A, Kumagai E, Nakamura S, Nohara Y, Kono S, Sakaue A, Morikawa N, Tsuru T, Fukumoto Y. Elevated Plasma Transforming Growth Factor β1 Levels Predict the Development of Hypertension in Normotensives: The 14-Year Follow-Up Study. Am J Hypertens 2017; 30:808-814. [PMID: 28575138 DOI: 10.1093/ajh/hpx053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine. There is growing evidence that TGF-β1 is involved in the pathogenesis of hypertension and the development of target organ damage in hypertensives. Although several studies have shown that TGF-β1 induced vascular hypertrophy and remodelling in various vascular diseases, there are no longitudinal data on hypertension in the epidemiological studies. The present study tested the hypothesis whether elevated TGF-β1 levels can predict the development of hypertension. METHODS In 2002-2004, 528 subjects received health examinations in Uku town, southwestern Japan. We examined blood pressure (BP), body mass index, and blood test. Data on fasting plasma TGF-β1 were obtained from 528 individuals. Of these, 149 normotensives (BP <140/90 mm Hg without antihypertensive medications) at baseline were followed-up for 14 years. RESULTS The receiver-operating characteristic curve was used and the calculated cutoff value was 8.9 ng/ml. Of 149 normotensives at baseline, 59 subjects developed hypertension. Plasma TGF-β1 levels were significantly associated with the development of hypertension after adjustment for confounding factors. To further examine the association between them, we performed logistic regression analysis. We divided the baseline plasma TGF-β1 levels into 2 groups using a cutoff value. The significant high odds ratio [3.582 (95% confidence interval, 1.025-12.525)] for the development of hypertension was found in the highest group of TGF-β1 level vs. the lowest group after adjustment for confounders. CONCLUSIONS This is the first report demonstrating the causal relationship between them. Elevated plasma TGF-β1 levels predicted the development of hypertension in normotensives in a population of community-dwelling Japanese.
Collapse
Affiliation(s)
- Erika Nakao
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hisashi Adachi
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
- Department of Community Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Mika Enomoto
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ako Fukami
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Eita Kumagai
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sachiko Nakamura
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yume Nohara
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shoko Kono
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Akiko Sakaue
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Nagisa Morikawa
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoko Tsuru
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
14
|
Padmanabhan Iyer R, Chiao YA, Flynn ER, Hakala K, Cates CA, Weintraub ST, de Castro Brás LE. Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart. Proteomics Clin Appl 2015; 10:92-107. [PMID: 26415707 DOI: 10.1002/prca.201500038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/12/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) collectively degrade all extracellular matrix (ECM) proteins. Of the MMPs, MMP-9 has the strongest link to the development of cardiac dysfunction. Aging associates with increased MMP-9 expression in the left ventricle (LV) and reduced cardiac function. We investigated the effect of MMP-9 deletion on the cardiac ECM in aged animals. EXPERIMENTAL DESIGN We used male and female middle-aged (10- to16-month old) and old (20- to 24-month old) wild-type (WT) and MMP-9 null mice (n = 6/genotype/age). LVs were decellularized to remove highly abundant mitochondrial proteins that could mask identification of relative lower abundant components, analyzed by shotgun proteomics, and proteins of interest validated by immunoblot. RESULTS Elastin microfibril interface-located protein 1 (EMILIN-1) decreased with age in WT (p < 0.05), but not in MMP-9 null. EMILIN-1 promotes integrin-dependent cell adhesion and EMILIN-1 deficiency has been associated with vascular stiffening. Talin-2, a cytoskeletal protein, was elevated with age in WT (p < 0.05), and MMP-9 deficiency blunted this increase. Talin-2 is highly expressed in adult cardiac myocytes, transduces mechanical force to the ECM, and is activated by increases in substrate stiffness. Our results suggest that MMP-9 deletion may reduce age-related myocardial stiffness, which may explain improved cardiac function in MMP-9 null animals. CONCLUSIONS We identified age-related changes in the cardiac proteome that are MMP-9 dependent, suggesting MMP-9 as a possible therapeutic target for the aging patient.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elizabeth R Flynn
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Kevin Hakala
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Courtney A Cates
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Susan T Weintraub
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lisandra E de Castro Brás
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
15
|
Ayça B, Sahin I, Kucuk SH, Akin F, Kafadar D, Avşar M, Avci II, Gungor B, Okuyan E, Dinckal MH. Increased Transforming Growth Factor-β Levels Associated With Cardiac Adverse Events in Hypertrophic Cardiomyopathy. Clin Cardiol 2015; 38:371-7. [PMID: 25973737 DOI: 10.1002/clc.22404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common genetic heart disease characterized by ventricular hypertrophy, myocardial fibrosis, and impaired ventricular relaxation. The exact mechanisms by which fibrosis is caused remain unknown. HYPOTHESIS Circulating TGF-β is related to poor prognosis in HCM. METHODS We compared TGF-β levels of 49 HCM patients with those of 40 non-HCM patients. We followed the patients with HCM for 18 months and divided them into 2 groups: low TGF-β (≤ 4877 pg/mL) and high TGF-β (> 4877 pg/mL). We compared the 2 groups in terms of brain natriuretic peptide (BNP), echocardiographic parameters, and clinical outcomes including myocardial infarction, arrhythmias, implantable cardioverter-defibrillator implantation, hospitalization, New York Heart Association (NYHA) class, acute heart failure, and mortality. RESULTS The HCM patients had higher TGF-β levels than those in the control group (P = 0.005). In the follow-up, those in the high TGF-β group had higher BNP levels, larger left-atrial size, thicker interventricular septum, NYHA class, more hospitalizations, and a greater number of clinical adverse events (P < 0.001, P = 0.01, P < 0.001, P = 0.002, P < 0.001 and P = 0.003, respectively). TGF-β level of > 4877 pg/mL can predict adverse events with a specificity of 75% and a sensitivity of 72% (P = 0.014). In multivariate regression analysis, TGF-β, BNP, and interventricular septum thickness were significantly associated with adverse events (P = 0.028, P = 0.030, and P = 0.034, respectively). CONCLUSIONS The TGF-β level is higher in HCM patients and associated with a poor prognosis in HCM.
Collapse
Affiliation(s)
- Burak Ayça
- Department of Cardiology, Bağcılar Education Research Hospital, Bağcılar, Istanbul, Turkey
| | - Irfan Sahin
- Department of Cardiology, Bağcılar Education Research Hospital, Bağcılar, Istanbul, Turkey
| | - Suat Hayri Kucuk
- Department of Biochemistry, Bağcılar Education and Research Hospital, Bağcılar, Istanbul, Turkey
| | - Fatih Akin
- Medical Faculty, Department of Cardiology, Muğla Sıtkı Kocman University, Muğla, Turkey
| | - Didem Kafadar
- Department of Cardiology, Bağcılar Education Research Hospital, Bağcılar, Istanbul, Turkey
| | - Murat Avşar
- Department of Cardiology, Bağcılar Education Research Hospital, Bağcılar, Istanbul, Turkey
| | - Ilker Ilhan Avci
- Department of Cardiology, Bağcılar Education Research Hospital, Bağcılar, Istanbul, Turkey
| | - Barış Gungor
- Department of Cardiology, Siyami Ersek Education and Research Hospital, Istanbul, Turkey
| | - Ertugrul Okuyan
- Department of Cardiology, Bağcılar Education Research Hospital, Bağcılar, Istanbul, Turkey
| | - Mustafa Hakan Dinckal
- Department of Cardiology, Bağcılar Education Research Hospital, Bağcılar, Istanbul, Turkey
| |
Collapse
|
16
|
Traditional formula, modern application: chinese medicine formula sini tang improves early ventricular remodeling and cardiac function after myocardial infarction in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:141938. [PMID: 24971143 PMCID: PMC4058176 DOI: 10.1155/2014/141938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/26/2014] [Indexed: 12/19/2022]
Abstract
SINI TANG (SNT) IS A TRADITIONAL CHINESE HERBAL FORMULA CONSISTING OF FOUR DIFFERENT HERBS: the root of Aconitum carmichaelii, the bark of Cinnamomum cassia, the rhizome of Zingiber officinale, and the root of Glycyrrhiza uralensis. This study aims to evaluate the improvement of early ventricular remodeling and cardiac function in myocardial infarction (MI) rats by SNT. A MI model was established by ligation of the left anterior descending coronary artery. Following treatment for 4 weeks, ultrasonic echocardiography was performed. Myocardial histopathological changes were observed using haematoxylin and eosin staining. Collagens (type I and type III), transforming growth factor- β 1 (TGF- β 1), and Toll-like receptors (TLR-2 and TLR-4) were measured in plasma, serum, and myocardial tissue. SNT treatment decreased the infarct size, the left ventricular cavity area/heart cavity area ratio, and the left ventricle dimension at end systole and increased the left ventricular ejection fraction. SNT reduced the levels of TLR-2 and TLR-4 in myocardial tissue significantly and decreased the collagens content in serum and in myocardial tissue. SNT could partially reduce the level of TGF- β 1 in serum and in myocardial tissue. Our data suggest that the Chinese medicine formula SNT has the potential to improve early ventricular remodeling and cardiac function after MI.
Collapse
|
17
|
Zhang Y, Huang XR, Wei LH, Chung AC, Yu CM, Lan HY. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther 2014; 22:974-85. [PMID: 24569834 DOI: 10.1038/mt.2014.25] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 02/10/2014] [Indexed: 12/17/2022] Open
Abstract
Loss of miR-29 is associated with cardiac fibrosis. This study examined the role and therapeutic potential of miR-29 in mouse model of hypertension induced by angiotensin II (AngII). By using microRNA microarray, in situ hybridization, and real-time polymerase chain reaction, we found that AngII-induced cardiac fibrosis in the hypertensive heart and in cultured cardiac fibroblasts were associated with downregulation of miR-29a-c via a Smad3-dependent mechanism. In vitro knockdown of miR-29b enhanced but overexpression of miR-29b inhibited AngII-induced fibrosis, revealing a protective role of miR-29b in cardiac fibrosis in response to AngII. This was further demonstrated in vivo by the ability of overexpressing miR-29b in the mouse heart to prevent AngII-mediated cardiac fibrosis and cardiac dysfunction. Importantly, we also found that restored miR-29b in the established hypertensive heart was capable of blocking progressive cardiac fibrosis and improving cardiac dysfunction, demonstrating a therapeutic potential of miR-29b for chronic heart disease. Further studies revealed that targeting the transforming growth factor (TGF)-β1 coding sequence region, thereby inhibiting TGF-β/Smad3 signaling, could be a new mechanism by which miR-29b inhibited AngII-induced cardiac fibrosis. In conclusion, miR-29b plays a protective role in AngII-mediated cardiac remodeling and may be a therapeutic agent for cardiac fibrosis by targeting the TGF-β/Smad3 pathway.
Collapse
Affiliation(s)
- Yang Zhang
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Hua Wei
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Arthur Ck Chung
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk-Man Yu
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Tanabe T, Rozycki HJ, Kanoh S, Rubin BK. Cardiac asthma: new insights into an old disease. Expert Rev Respir Med 2013; 6:705-14. [PMID: 23234454 DOI: 10.1586/ers.12.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiac asthma has been defined as wheezing, coughing and orthopnea due to congestive heart failure. The clinical distinction between bronchial asthma and cardiac asthma can be straight forward, except in patients with chronic lung disease coexisting with left heart disease. Pulmonary edema and pulmonary vascular congestion have been thought to be the primary causes of cardiac asthma but most patients have a poor response to diuretics. There appears to be limited effectiveness of classical asthma medications like bronchodilators or corticosteroids in treating cardiac asthma. Evidence suggests that circulating inflammatory factors and tissue growth factors also lead to airway obstruction suggesting the possibility of developing novel therapies.
Collapse
Affiliation(s)
- Tsuyoshi Tanabe
- Department of Pediatrics, Virginia Commonwealth University School of Medicine and the Children's Hospital of Richmond at VCU, Richmond, VA, USA
| | | | | | | |
Collapse
|
19
|
Tanabe T, Kanoh S, Moskowitz WB, Rubin BK. Cardiac asthma: transforming growth factor-β from the failing heart leads to squamous metaplasia in human airway cells and in the murine lung. Chest 2013; 142:1274-1283. [PMID: 22505689 DOI: 10.1378/chest.11-1710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cardiac asthma describes symptoms of airflow obstruction due to heart failure. Chronic heart failure is associated with decreased FEV 1 , and FEV 1 improves after heart transplantation. Fibrotic remodeling of the heart and airways is mediated, in part, through transforming growth factor (TGF)- β . Blood TGF- b 1 concentration correlates with ventricular remodeling in cardiac disease, and TGF- β decreases after repair. METHODS We established a coculture of normal human bronchial epithelial (NHBE) cells differentiated at air-liquid interface with submerged basal cardiomyoblasts. Airway cells were immunostained with cytokeratin, actin, and involucrin. TGF- β synthesis was assayed using enzyme-linked immunosorbent assay. Phosphorylation of Smad in NHBE cells was determined by Western blotting.Mice given doxorubicin developed cardiac failure, and their airways were histologically examined. RESULTS Coculture induced involucrin-positive squamous metaplasia of NHBE cells, and this was attenuated by TGF- β antibody. Total TGF- β 1 was increased in coculture conditioned medium( P < .001). After 14 days of exposure to recombinant TGF- β 1 , there was squamous transformation of NHBE cells. One week after removing cardiomyoblasts from culture, squamous metaplasia resolved into normal ciliated epithelia. Smad was phosphorylated in NHBE cells with cardiomyoblasts or with recombinant TGF- β 1 exposure. The airways of mice with heart failure also demonstrated involucrin-positive squamous transformation. CONCLUSIONS TGF- β from cardiomyoblasts or from the failing heart can cause airway squamous metaplasia via Smad signaling, and this is blocked by anti-TGF- b antibody and reversed when cardiac cells are removed from culture. This appears to be an important mechanism for airflow obstruction with heart failure, sometimes described as cardiac asthma.
Collapse
Affiliation(s)
- Tsuyoshi Tanabe
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Soichiro Kanoh
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - William B Moskowitz
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bruce K Rubin
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA.
| |
Collapse
|
20
|
Osmancik P, Herman D, Stros P, Linkova H, Vondrak K, Paskova E. Changes and Prognostic Impact of Apoptotic and Inflammatory Cytokines in Patients Treated with Cardiac Resynchronization Therapy. Cardiology 2013; 124:190-8. [DOI: 10.1159/000346621] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022]
|
21
|
Devaux Y, Bousquenaud M, Rodius S, Marie PY, Maskali F, Zhang L, Azuaje F, Wagner DR. Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction. BMC Med Genomics 2011; 4:83. [PMID: 22136666 PMCID: PMC3240818 DOI: 10.1186/1755-8794-4-83] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/05/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers. METHODS Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months. RESULTS In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months. CONCLUSIONS We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.
Collapse
Affiliation(s)
- Yvan Devaux
- Laboratory of Cardiovascular Research Centre de Recherche Public-Santé, Luxembourg, L-1150, Luxembourg.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lei B, Hitomi H, Mori T, Nagai Y, Deguchi K, Mori H, Masaki T, Nakano D, Kobori H, Kitaura Y, Nishiyama A. Effect of Efonidipine on TGF-β1–Induced Cardiac Fibrosis Through Smad2-Dependent Pathway in Rat Cardiac Fibroblasts. J Pharmacol Sci 2011; 117:98-105. [DOI: 10.1254/jphs.11065fp] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
23
|
Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 2010; 51:600-6. [PMID: 21059352 DOI: 10.1016/j.yjmcc.2010.10.033] [Citation(s) in RCA: 732] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 12/12/2022]
Abstract
Myocardial TGF-β expression is upregulated in experimental models of myocardial infarction and cardiac hypertrophy, and in patients with dilated or hypertrophic cardiomyopathy. Through its effects on cardiomyocytes, mesenchymal and immune cells, TGF-β plays an important role in the pathogenesis of cardiac remodeling and fibrosis. TGF-β overexpression in the mouse heart is associated with fibrosis and hypertrophy. Endogenous TGF-β plays an important role in the pathogenesis of cardiac fibrotic and hypertrophic remodeling, and modulates matrix metabolism in the pressure-overloaded heart. In the infarcted heart, TGF-β deactivates inflammatory macrophages, while promoting myofibroblast transdifferentiation and matrix synthesis through Smad3-dependent pathways. Thus, TGF-β may serve as the "master switchThis article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure". for the transition of the infarct from the inflammatory phase to formation of the scar. Because of its crucial role in cardiac remodeling, the TGF-β system may be a promising therapeutic target for patients with heart failure. However, efforts to translate these concepts into therapeutic strategies, in order to prevent cardiac hypertrophy and fibrosis, are hampered by the complex, pleiotropic and diverse effects of TGF-β signaling, by concerns regarding deleterious actions of TGF-β inhibition and by the possibility of limited benefit in patients receiving optimal treatment with ACE inhibitors and β-adrenergic blockers. Dissection of the pathways responsible for specific TGF-β-mediated actions and understanding of cell-specific actions of TGF-β are needed to design optimal therapeutic strategies. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure".
Collapse
Affiliation(s)
- Marcin Dobaczewski
- Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|