1
|
Shi M, Tang C, Wu JX, Ji BW, Gong BM, Wu XH, Wang X. Mass Spectrometry Detects Sphingolipid Metabolites for Discovery of New Strategy for Cancer Therapy from the Aspect of Programmed Cell Death. Metabolites 2023; 13:867. [PMID: 37512574 PMCID: PMC10384871 DOI: 10.3390/metabo13070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingolipids, a type of bioactive lipid, play crucial roles within cells, serving as integral components of membranes and exhibiting strong signaling properties that have potential therapeutic implications in anti-cancer treatments. However, due to the diverse group of lipids and intricate mechanisms, sphingolipids still face challenges in enhancing the efficacy of different therapy approaches. In recent decades, mass spectrometry has made significant advancements in uncovering sphingolipid biomarkers and elucidating their impact on cancer development, progression, and resistance. Primary sphingolipids, such as ceramide and sphingosine-1-phosphate, exhibit contrasting roles in regulating cancer cell death and survival. The evasion of cell death is a characteristic hallmark of cancer cells, leading to treatment failure and a poor prognosis. The escape initiates with long-established apoptosis and extends to other programmed cell death (PCD) forms when patients experience chemotherapy, radiotherapy, and/or immunotherapy. Gradually, supportive evidence has uncovered the fundamental molecular mechanisms underlying various forms of PCD leading to the development of innovative molecular, genetic, and pharmacological tools that specifically target sphingolipid signaling nodes. In this study, we provide a comprehensive overview of the sphingolipid biomarkers revealed through mass spectrometry in recent decades, as well as an in-depth analysis of the six main forms of PCD (apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis) in aspects of tumorigenesis, metastasis, and tumor response to treatments. We review the corresponding small-molecule compounds associated with these processes and their potential implications in cancer therapy.
Collapse
Affiliation(s)
- Ming Shi
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Chao Tang
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jia-Xing Wu
- SINO-SWISS Institute of Advanced Technology, School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Bao-Wei Ji
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Bao-Ming Gong
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao-Hui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xue Wang
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Gutiérrez Y, Fresch M, Scherber C, Brockmeyer J. The lipidome of an omnivorous insect responds to diet composition and social environment. Ecol Evol 2022; 12:e9497. [PMID: 36381391 PMCID: PMC9643132 DOI: 10.1002/ece3.9497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Lipids are biomolecules with essential roles in metabolic processes, signaling, and cellular architecture. In this study, we investigated changes in the lipidome of the house cricket Acheta domesticus subjected to diets of different nutritional composition (i.e., protein to carbohydrate ratio) and two distinct social environments (i.e., solitary or in groups). We measured relative abundances of 811 lipid species in whole-body cricket samples using flow injection analysis coupled to tandem mass spectrometry. We assessed differences in the relative abundances of lipid species induced by diet composition and social environment in female and male A. domesticus. Additionally, we performed a functional analysis of the lipids with significant differences using a recently developed database. We found that most differences in the relative abundances of lipid species were explained by sex alone. Furthermore, the lipidome of female A. domesticus was responsive to diet composition. Females fed with the balanced diet had an even higher abundance of lipids involved in lipid storage than their counterparts fed with a protein-rich diet. Interestingly, the male cricket lipidome was not responsive to diet composition. In addition, the social environment did not induce significant changes in the lipid profile neither in female nor in male crickets.
Collapse
Affiliation(s)
- Yeisson Gutiérrez
- Centro de Bioinformática y Biología Computacional de Colombia – BIOSManizalesColombia
| | - Marion Fresch
- Institute for Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Christoph Scherber
- Institute of Landscape EcologyUniversity of MünsterMünsterGermany
- Centre for Biodiversity MonitoringZoological Research Museum Alexander KoenigBonnGermany
| | - Jens Brockmeyer
- Institute for Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| |
Collapse
|
3
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
4
|
Liu H, Wang S, Lin JM, Lin Z, Li HF. Investigation of the lipidomic changes in differentiated glioblastoma cells after drug treatment using MALDI-MS. Talanta 2021; 233:122570. [PMID: 34215066 DOI: 10.1016/j.talanta.2021.122570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
Lipids differences between tumor and normal tissue have been proved to be of diagnostic and therapeutic significance. The research of lipidomics in tumor is more and more important. Mass spectrometry like matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) can be more convenient and informative for lipids researching in biological and clinical researches. Most of malignant tumors like glioblastoma are characterized by incomplete differentiation, so differentiation therapy has made important progress in tumor treatment. Lipid profiles changes after therapy are worthy investigating. In our study, glioblastoma cell line U87-MG cells were treated by inducers of sodium phenylbutyrate (SPB) and all-trans retinoic acid (ATRA). The changes in lipids on cell membrane were profiled by MALDI-MS. The differentiation degree was assessed by cell proliferation, cell cycle, morphology and protein expression before MALDI-MS analysis. Comparing the inducer treated and untreated U87-MG cells, reduced proliferation rate, blocked cell cycle, benign nucleus morphology and changed expression of protein CD133 and glial fibrillary acidic protein (GFAP), were found after drug treatment. Moreover, the lipids of cell membrane presented distinguished differences in the drug treated cells. Most of the glycerophosphocholines (PC) with an increasing abundance are unsaturated PCs (PC (38:1), 816 m/z; PC (36:1), 788 m/z; PC (31:1), 725 m/z), and those decreasing are saturated PCs (PC (32:0), 734 m/z). These results provide the lipidomic differentiation which may be a significant guidance for evaluating the therapeutic effect of tumor therapy.
Collapse
Affiliation(s)
- Hongxing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Shiqi Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Zhixiong Lin
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| | - Hai-Fang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Molecular characterization of water extractable Euglena gracilis cellular material composition using asymmetrical flow field-flow fractionation and high-resolution mass spectrometry. Anal Bioanal Chem 2020; 412:4143-4153. [PMID: 32306068 DOI: 10.1007/s00216-020-02650-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Asymmetrical flow field-flow fractionation (AF4) and high-resolution Orbitrap mass spectrometry (HRMS) were used to separate and characterize cellular fractions of the dark- and light-grown Euglena gracilis cellular material. Biological replicates analyzed by HRMS shared 21-73% of commonly detected m/z values. Greater variability in shared features was found in light-grown cellular fractions (p < 0.05), likely due to small variations in growth stage. Significant differences in molecular composition were observed between AF4 cellular fractions, with dark cell fractions showing a propensity towards carbohydrate-like and tannin-like compounds, and higher double-bond equivalent (DBE) and modified aromatic index (AImod) were associated with light-grown cell fractions. Fractionation and high-resolution mass spectrometry aided characterization demonstrated the power of the AF4 to selectively cater to certain compounds/cellular entities with distinct compositional classes and double-bond equivalents and aromaticity index characteristics. Graphical abstract.
Collapse
|
6
|
Cho E, Riches E, Palmer M, Giles K, Ujma J, Kim S. Isolation of Crude Oil Peaks Differing by m/z ∼0.1 via Tandem Mass Spectrometry Using a Cyclic Ion Mobility-Mass Spectrometer. Anal Chem 2019; 91:14268-14274. [DOI: 10.1021/acs.analchem.9b02255] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eunji Cho
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eleanor Riches
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Martin Palmer
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Visscher M, Moerman AM, Burgers PC, Van Beusekom HMM, Luider TM, Verhagen HJM, Van der Steen AFW, Van der Heiden K, Van Soest G. Data Processing Pipeline for Lipid Profiling of Carotid Atherosclerotic Plaque with Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1790-1800. [PMID: 31250318 PMCID: PMC6695360 DOI: 10.1007/s13361-019-02254-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/25/2019] [Accepted: 05/20/2019] [Indexed: 05/09/2023]
Abstract
Atherosclerosis is a lipid and inflammation-driven disease of the arteries that is characterized by gradual buildup of plaques in the vascular wall. A so-called vulnerable plaque, consisting of a lipid-rich necrotic core contained by a thin fibrous cap, may rupture and trigger thrombus formation, which can lead to ischemia in the heart (heart attack) or in the brain (stroke). In this study, we present a protocol to investigate the lipid composition of advanced human carotid plaques using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI), providing a framework that should enable the discrimination of vulnerable from stable plaques based on lipid composition. We optimized the tissue preparation and imaging methods by systematically analyzing data from three specimens: two human carotid endarterectomy samples (advanced plaque) and one autopsy sample (early stage plaque). We show a robust data reduction method and evaluate the variability of the endarterectomy samples. We found diacylglycerols to be more abundant in a thrombotic area compared to other plaque areas and could distinguish advanced plaque from early stage plaque based on cholesteryl ester composition. We plan to use this systematic approach to analyze a larger dataset of carotid atherosclerotic plaques.
Collapse
Affiliation(s)
- Mirjam Visscher
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
| | - Astrid M Moerman
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Heleen M M Van Beusekom
- Department of Experimental Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular and Endovascular Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Antonius F W Van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, Rotterdam, The Netherlands
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kim Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gijs Van Soest
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Antireflection Surfaces for Biological Analysis Using Laser Desorption Ionization Mass Spectrometry. RESEARCH 2018; 2018:5439729. [PMID: 31549031 PMCID: PMC6750120 DOI: 10.1155/2018/5439729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Laser desorption ionization mass spectrometry (LDI-MS) is a primary tool for biological analysis. Its success relies on the use of chemical matrices that facilitate soft desorption and ionization of the biomolecules, which, however, also limits its application for metabolomics study due to the chemical interference by the matrix compounds. The requirement for sample pretreatment is also undesirable for direct sampling analysis or tissue imaging. In this study, antireflection (AR) metal surfaces were investigated as sample substrates for matrix-free LDI-MS. They were prepared through ultrafast laser processing, with high light-to-heat energy conversion efficiency. The morphology and micro/nanostructures on the metal surfaces could be adjusted and optimized by tuning the laser fabrication process. The super-high UV absorption at 97% enabled highly efficient thermal desorption and ionization of analytes. The analytical performance for the matrix-free LDI was explored by analyzing a variety of biological compounds, including carbohydrates, drugs, metabolites, and amino acids. Its applicability for direct analysis of complex biological samples was also demonstrated by direct analysis of metabolites in yeast cells.
Collapse
|
9
|
Rebollo-Ramirez S, Krokowski S, Lobato-Márquez D, Thomson M, Pennisi I, Mostowy S, Larrouy-Maumus G. Intact Cell Lipidomics Reveal Changes to the Ratio of Cardiolipins to Phosphatidylinositols in Response to Kanamycin in HeLa and Primary Cells. Chem Res Toxicol 2018; 31:688-696. [PMID: 29947513 PMCID: PMC6103485 DOI: 10.1021/acs.chemrestox.8b00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 01/03/2023]
Abstract
Antimicrobial resistance is a major threat the world is currently facing. Development of new antibiotics and the assessment of their toxicity represent important challenges. Current methods for addressing antibiotic toxicity rely on measuring mitochondrial damage using ATP and/or membrane potential as a readout. In this study, we propose an alternative readout looking at changes in the lipidome on intact and unprocessed cells by matrix-assisted laser desorption ionization mass spectrometry. As a proof of principle, we evaluated the impact of known antibiotics (levofloxacin, ethambutol, and kanamycin) on the lipidome of HeLa cells and mouse bone marrow-derived macrophages. Our methodology revealed that clinically relevant concentrations of kanamycin alter the ratio of cardiolipins to phosphatidylinositols. Unexpectedly, only kanamycin had this effect even though all antibiotics used in this study led to a decrease in the maximal mitochondrial respiratory capacity. Altogether, we report that intact cell-targeted lipidomics can be used as a qualitative method to rapidly assess the toxicity of aminoglycosides in HeLa and primary cells. Moreover, these results demonstrate there is no direct correlation between the ratio of cardiolipins to phosphatidylinositols and the maximal mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Sonia Rebollo-Ramirez
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Sina Krokowski
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Damian Lobato-Márquez
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Michael Thomson
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Ivana Pennisi
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Serge Mostowy
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Gerald Larrouy-Maumus
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| |
Collapse
|
10
|
Sandrin TR, Demirev PA. Characterization of microbial mixtures by mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:321-349. [PMID: 28509357 DOI: 10.1002/mas.21534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 05/27/2023]
Abstract
MS applications in microbiology have increased significantly in the past 10 years, due in part to the proliferation of regulator-approved commercial MALDI MS platforms for rapid identification of clinical infections. In parallel, with the expansion of MS technologies in the "omics" fields, novel MS-based research efforts to characterize organismal as well as environmental microbiomes have emerged. Successful characterization of microorganisms found in complex mixtures of other organisms remains a major challenge for researchers and clinicians alike. Here, we review recent MS advances toward addressing that challenge. These include sample preparation methods and protocols, and established, for example, MALDI, as well as newer, for example, atmospheric pressure ionization (API) techniques. MALDI mass spectra of intact cells contain predominantly information on the highly expressed house-keeping proteins used as biomarkers. The API methods are applicable for small biomolecule analysis, for example, phospholipids and lipopeptides, and facilitate species differentiation. MS hardware and techniques, for example, tandem MS, including diverse ion source/mass analyzer combinations are discussed. Relevant examples for microbial mixture characterization utilizing these combinations are provided. Chemometrics and bioinformatics methods and algorithms, including those applied to large scale MS data acquisition in microbial metaproteomics and MS imaging of biofilms, are highlighted. Select MS applications for polymicrobial culture analysis in environmental and clinical microbiology are reviewed as well.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland
| |
Collapse
|
11
|
Pourshahian S. Mass Defect from Nuclear Physics to Mass Spectral Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1836-1843. [PMID: 28733967 DOI: 10.1007/s13361-017-1741-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/29/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Mass defect is associated with the binding energy of the nucleus. It is a fundamental property of the nucleus and the principle behind nuclear energy. Mass defect has also entered into the mass spectrometry terminology with the availability of high resolution mass spectrometry and has found application in mass spectral analysis. In this application, isobaric masses are differentiated and identified by their mass defect. What is the relationship between nuclear mass defect and mass defect used in mass spectral analysis, and are they the same? Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Soheil Pourshahian
- Alios BioPharma, Inc., Part of the Janssen Pharmaceutical Companies, South San Francisco, CA, 94080, USA.
| |
Collapse
|
12
|
Hong JH, Kang JW, Kim DK, Baik SH, Kim KH, Shanta SR, Jung JH, Mook-Jung I, Kim KP. Global changes of phospholipids identified by MALDI imaging mass spectrometry in a mouse model of Alzheimer's disease. J Lipid Res 2015; 57:36-45. [PMID: 26538545 DOI: 10.1194/jlr.m057869] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia; however, at the present time there is no disease-modifying drug for AD. There is increasing evidence supporting the role of lipid changes in the process of normal cognitive aging and in the etiology of age-related neurodegenerative diseases. AD is characterized by the presence of intraneuronal protein clusters and extracellular aggregates of β-amyloid (Aβ). Disrupted Aβ kinetics may activate intracellular signaling pathways, including tau hyperphosphorylation and proinflammatory pathways. We analyzed and visualized the lipid profiles of mouse brains using MALDI-TOF MS. Direct tissue analysis by MALDI-TOF imaging MS (IMS) can determine the relative abundance and spatial distribution of specific lipids in different tissues. We used 5XFAD mice that almost exclusively generate and rapidly accumulate massive cerebral levels of Aβ-42 (1). Our data showed changes in lipid distribution in the mouse frontal cortex, hippocampus, and subiculum, where Aβ plaques are first generated in AD. Our results suggest that MALDI-IMS is a powerful tool for analyzing the distribution of various phospholipids and that this application might provide novel insight into the prediction of disease.
Collapse
Affiliation(s)
- Ji Hye Hong
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Jeong Won Kang
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Dong Kyu Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hoon Baik
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Ho Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Selina Rahman Shanta
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Jae Hun Jung
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
13
|
Godzien J, Ciborowski M, Martínez-Alcázar MP, Samczuk P, Kretowski A, Barbas C. Rapid and Reliable Identification of Phospholipids for Untargeted Metabolomics with LC-ESI-QTOF-MS/MS. J Proteome Res 2015; 14:3204-16. [PMID: 26080858 DOI: 10.1021/acs.jproteome.5b00169] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipids are important components of biological systems, and their role can be currently investigated by the application of untargeted, holistic approaches such as metabolomics and lipidomics. Acquired data are analyzed to find significant signals responsible for the differentiation between the investigated conditions. Subsequently, identification has to be performed to bring biological meaning to the obtained results. Lipid identification seems to be relatively easy due to the known characteristic fragments; however, the large number of structural isomers and the formation of different adducts makes it challenging and at risk of misidentification. The inspection of data, acquired for plasma samples by a standard metabolic fingerprinting method, revealed multisignal formations for phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins by the formation of ions such as [M + H](+), [M + Na](+), and [M + K](+) in positive ionization mode and [M - H](-), [M + HCOO](-), and [M + Cl](-) in negative mode. Moreover, sodium formate cluster formation was found for [M + H·HCOONa](+) and [H-H·HCOONa](-). The MS/MS spectrum obtained for each of the multi-ions revealed significant differences in the fragmentation, which were confirmed by the analysis of the samples in two independent research centers. After the inspection of an acquired spectra, a list of characteristic and diagnostic fragments was proposed that allowed for easy, quick, and robust lipid identification that provides information about the headgroup, formed adduct, and fatty acyl composition. This ensures successful identification, which is of great importance for the contextualization of data and results validation.
Collapse
Affiliation(s)
- Joanna Godzien
- †CEMBIO, Centre for Metabolomics and Bioanalysis, San Pablo CEU University, 28668 Boadilla del Monte, Spain
| | - Michal Ciborowski
- ‡Clinical Research Centre, Medical University of Bialystok, 15-089 Białystok, Poland
| | - María Paz Martínez-Alcázar
- †CEMBIO, Centre for Metabolomics and Bioanalysis, San Pablo CEU University, 28668 Boadilla del Monte, Spain
| | - Paulina Samczuk
- ‡Clinical Research Centre, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Adam Kretowski
- ‡Clinical Research Centre, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Coral Barbas
- †CEMBIO, Centre for Metabolomics and Bioanalysis, San Pablo CEU University, 28668 Boadilla del Monte, Spain
| |
Collapse
|
14
|
Wörmer L, Lipp JS, Hinrichs KU. Comprehensive Analysis of Microbial Lipids in Environmental Samples Through HPLC-MS Protocols. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Labas V, Spina L, Belleannee C, Teixeira-Gomes AP, Gargaros A, Dacheux F, Dacheux JL. Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry. J Proteomics 2015; 113:226-43. [DOI: 10.1016/j.jprot.2014.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
|
16
|
Smolira A, Wessely-Szponder J. Importance of the matrix and the matrix/sample ratio in MALDI-TOF-MS analysis of cathelicidins obtained from porcine neutrophils. Appl Biochem Biotechnol 2014; 175:2050-65. [PMID: 25432341 PMCID: PMC4322226 DOI: 10.1007/s12010-014-1405-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
Qualitative and quantitative mass spectrometric studies of biomolecules for example proteins, peptides, or lipids contained in biological samples like physiologic fluids are very important for many fields of science such as medicine, veterinary medicine, biology, biochemistry, molecular biology, or environmental sciences. In the last two decades, MALDI TOF MS — matrix-assisted laser desorption mass spectrometry, proved to be an especially convenient tool for these analyses. The main advantages of this method are its rapidity and high sensitivity which is particularly appreciated in the case of studies of complex biological specimen. A major challenge for many researchers is to maximize this sensitivity, among others, by appropriate procedures of sample preparation for the measurement. The objective of this work was to optimize these procedures, selecting the optimal matrix and optimum proportions of the sample and the matrix solution in a mixture of both solutions, aiming at the achievement of the maximum intensity of ion current. In this respect, five low molecular mass cathelicidins were studied: prophenin-2, protegrins 1–3, PR-39. All of them were obtained directly from the porcine blood. As a result of studies, the authors determined such experimental conditions when the intensity of investigated ionic current had the highest value.
Collapse
Affiliation(s)
- Anna Smolira
- Department of Molecular Physics, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland,
| | | |
Collapse
|
17
|
Timmer MSM, Sauvageau J, Foster AJ, Ryan J, Lagutin K, Shaw O, Harper JL, Sims IM, Stocker BL. Discovery of Lipids from B. longum subsp. infantis using Whole Cell MALDI Analysis. J Org Chem 2014; 79:7332-41. [DOI: 10.1021/jo501016c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mattie S. M. Timmer
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Janelle Sauvageau
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Amy J. Foster
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Jason Ryan
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kirill Lagutin
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Odette Shaw
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| | - Jacquie L. Harper
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| | - Ian M. Sims
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Bridget L. Stocker
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| |
Collapse
|
18
|
Calvano CD, Monopoli A, Ditaranto N, Palmisano F. 1,8-bis(dimethylamino)naphthalene/9-aminoacridine: a new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry. Anal Chim Acta 2013; 798:56-63. [PMID: 24070484 DOI: 10.1016/j.aca.2013.08.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box-Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity.
Collapse
Affiliation(s)
- C D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
19
|
Robichaud G, Barry JA, Garrard KP, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24. [PMID: 23208743 PMCID: PMC3689149 DOI: 10.1007/s13361-012-0505-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) allows for the direct monitoring of the abundance and spatial distribution of chemical compounds over the surface of a tissue sample. This technology has opened the field of mass spectrometry to numerous innovative applications over the past 15 years. First used with SIMS and MALDI MS that operate under vacuum, interest has grown for mass spectrometry ionization sources that allow for effective imaging but where the analysis can be performed at ambient pressure with minimal or no sample preparation. We introduce here a versatile source for MALDESI imaging analysis coupled to a hybrid LTQ-FT-ICR mass spectrometer. The imaging source offers single shot or multi-shot capability per pixel with full control over the laser repetition rate and mass spectrometer scanning cycle. Scanning rates can be as fast as 1 pixel/second and a spatial resolution of 45 μm was achieved with oversampling. Design and integration of a versatile IR-MALDESI imaging source offering multi-shot capability with a commercial FT-ICR mass spectrometer.
Collapse
Affiliation(s)
- Guillaume Robichaud
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Jeremy A. Barry
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Kenneth P. Garrard
- Precision Engineering Center, North Carolina State University, Campus Box 7918, Raleigh, North Carolina 27695
| | - David C. Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
- Author for Correspondence: David C. Muddiman, Ph.D., W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, Phone: 919-513-0084, Fax: 919-513-7993,
| |
Collapse
|
20
|
Busik JV, Esselman WJ, Reid GE. Examining the role of lipid mediators in diabetic retinopathy. ACTA ACUST UNITED AC 2012; 7:661-675. [PMID: 23646066 DOI: 10.2217/clp.12.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy is the most disabling complication of diabetes, affecting 65% of patients after 10 years of the disease. Current treatment options for diabetic retinopathy are highly invasive and fall short of complete amelioration of the disease. Understanding the pathogenesis of diabetic retinopathy is critical to the development of more effective treatment options. Diabetic hyperglycemia and dyslipidemia are the main metabolic insults that affect retinal degeneration in diabetes. Although the role of hyperglycemia in inducing diabetic retinopathy has been studied in detail, much less attention has been paid to dyslipidemia. Recent clinical studies have demonstrated a strong association between dyslipidemia and development of diabetic retinopathy, highlighting the importance of understanding the exact changes in retinal lipid metabolism in diabetes. This review describes what is known on the role of dyslipidemia in the development of diabetic retinopathy, with a focus on retinal-specific lipid metabolism and its dysregulation in diabetes.
Collapse
Affiliation(s)
- Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
21
|
Yang HJ, Park KH, Lim DW, Kim HS, Kim J. Analysis of cancer cell lipids using matrix-assisted laser desorption/ionization 15-T Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:621-630. [PMID: 22328215 DOI: 10.1002/rcm.6140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A combination of methodologies using the extremely high mass accuracy and resolution of 15-T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) was introduced for the identification of intact cancer cell phospholipids. Lipids from a malignant glioma cell line were initially analyzed at a resolution of >200,000 and identified by setting the mass tolerance to ±1 mDa using matrix-assisted laser desorption/ionization (MALDI) 15-T FT-ICR MS in positive ion mode. In most cases, a database search of potential lipid candidates using the exact masses of the lipids yielded only one possible chemical composition. Extremely high mass accuracy (<0.1 ppm) was then attained by using previously identified lipids as internal standards. This, combined with an extremely high resolution (>800,000), yielded well-resolved isotopic fine structures allowing for the identification of lipids by MALDI 15-T FT-ICR MS without using tandem mass spectrometric (MS/MS) analysis. Using this method, a total of 38 unique lipids were successfully identified.
Collapse
Affiliation(s)
- Hyo-Jik Yang
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Nefedov AV, Sadygov RG. A parallel method for enumerating amino acid compositions and masses of all theoretical peptides. BMC Bioinformatics 2011; 12:432. [PMID: 22059886 PMCID: PMC3270061 DOI: 10.1186/1471-2105-12-432] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/07/2011] [Indexed: 11/16/2022] Open
Abstract
Background Enumeration of all theoretically possible amino acid compositions is an important problem in several proteomics workflows, including peptide mass fingerprinting, mass defect labeling, mass defect filtering, and de novo peptide sequencing. Because of the high computational complexity of this task, reported methods for peptide enumeration were restricted to cover limited mass ranges (below 2 kDa). In addition, implementation details of these methods as well as their computational performance have not been provided. The increasing availability of parallel (multi-core) computers in all fields of research makes the development of parallel methods for peptide enumeration a timely topic. Results We describe a parallel method for enumerating all amino acid compositions up to a given length. We present recursive procedures which are at the core of the method, and show that a single task of enumeration of all peptide compositions can be divided into smaller subtasks that can be executed in parallel. The computational complexity of the subtasks is compared with the computational complexity of the whole task. Pseudocodes of processes (a master and workers) that are used to execute the enumerating procedure in parallel are given. We present computational times for our method executed on a computer cluster with 12 Intel Xeon X5650 CPUs (72 cores) running Windows HPC Server. Our method has been implemented as a 32- and 64-bit Windows application using Microsoft Visual C++ and the Message Passing Interface. It is available for download at https://ispace.utmb.edu/users/rgsadygo/Proteomics/ParallelMethod. Conclusion We describe implementation of a parallel method for generating mass distributions of all theoretically possible amino acid compositions.
Collapse
Affiliation(s)
- Alexey V Nefedov
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | | |
Collapse
|
23
|
Ho YP, Reddy PM. Advances in mass spectrometry for the identification of pathogens. MASS SPECTROMETRY REVIEWS 2011; 30:1203-24. [PMID: 21557290 PMCID: PMC7168406 DOI: 10.1002/mas.20320] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 05/25/2023]
Abstract
Mass spectrometry (MS) has become an important technique to identify microbial biomarkers. The rapid and accurate MS identification of microorganisms without any extensive pretreatment of samples is now possible. This review summarizes MS methods that are currently utilized in microbial analyses. Affinity methods are effective to clean, enrich, and investigate microorganisms from complex matrices. Functionalized magnetic nanoparticles might concentrate traces of target microorganisms from sample solutions. Therefore, nanoparticle-based techniques have a favorable detection limit. MS coupled with various chromatographic techniques, such as liquid chromatography and capillary electrophoresis, reduces the complexity of microbial biomarkers and yields reliable results. The direct analysis of whole pathogenic microbial cells with matrix-assisted laser desorption/ionization MS without sample separation reveals specific biomarkers for taxonomy, and has the advantages of simplicity, rapidity, and high-throughput measurements. The MS detection of polymerase chain reaction (PCR)-amplified microbial nucleic acids provides an alternative to biomarker analysis. This review will conclude with some current applications of MS in the identification of pathogens.
Collapse
Affiliation(s)
- Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
| | | |
Collapse
|
24
|
Lee H, An HJ, Lerno LA, German JB, Lebrilla CB. Rapid Profiling of Bovine and Human Milk Gangliosides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 305:138-150. [PMID: 21860602 PMCID: PMC3158620 DOI: 10.1016/j.ijms.2010.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments. We found that only in human milk gangliosides was the ceramide carbon always even numbered, which is consistent with the notion that differences in the oligosaccharide and the ceramide moieties confer to their physiological distinctions.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
| | - Hyun Joo An
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Larry A. Lerno
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
- Nestle Research Center, Lausanne, Switzerland
- To whom correspondence should be addressed: Carlito B. Lebrilla, ; Tel: +1-530-752-0504; Fax: +1-530-752-8995, J. Bruce German, ; Tel: +1-530-752-1486; Fax: +1-530-752-4759
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, United States
- To whom correspondence should be addressed: Carlito B. Lebrilla, ; Tel: +1-530-752-0504; Fax: +1-530-752-8995, J. Bruce German, ; Tel: +1-530-752-1486; Fax: +1-530-752-4759
| |
Collapse
|
25
|
Sullards MC, Liu Y, Chen Y, Merrill AH. Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:838-53. [PMID: 21749933 DOI: 10.1016/j.bbalip.2011.06.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 02/04/2023]
Abstract
Sphingolipids are a highly diverse category of molecules that serve not only as components of biological structures but also as regulators of numerous cell functions. Because so many of the structural features of sphingolipids give rise to their biological activity, there is a need for comprehensive or "sphingolipidomic" methods for identification and quantitation of as many individual subspecies as possible. This review defines sphingolipids as a class, briefly discusses classical methods for their analysis, and focuses primarily on liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Recently, a set of evolving and expanding methods have been developed and rigorously validated for the extraction, identification, separation, and quantitation of sphingolipids by LC-MS/MS. Quantitation of these biomolecules is made possible via the use of an internal standard cocktail. The compounds that can be readily analyzed are free long-chain (sphingoid) bases, sphingoid base 1-phosphates, and more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides, sulfatides, and novel compounds such as the 1-deoxy- and 1-(deoxymethyl)-sphingoid bases and their N-acyl-derivatives. These methods can be altered slightly to separate and quantitate isomeric species such as glucosyl/galactosylceramide. Because these techniques require the extraction of sphingolipids from their native environment, any information regarding their localization in histological slices is lost. Therefore, this review also describes methods for TIMS. This technique has been shown to be a powerful tool to determine the localization of individual molecular species of sphingolipids directly from tissue slices.
Collapse
Affiliation(s)
- M Cameron Sullards
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| | | | | | | |
Collapse
|
26
|
Wang HY, Chu X, Zhao ZX, He XS, Guo YL. Analysis of low molecular weight compounds by MALDI-FTICR-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1166-79. [DOI: 10.1016/j.jchromb.2011.03.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
|
27
|
Yu SH, Lee YJ, Park SJ, Lee YW, Cho K, Kim YH, Oh HB. High Accuracy Mass Measurement Approach in the Identification of Phospholipids in Lipid Extracts: 7 T Fourier-transform Mass Spectrometry and MS/MS Validation. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.4.1170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Zhang JI, Costa AB, Tao WA, Cooks RG. Direct detection of fatty acid ethyl esters using low temperature plasma (LTP) ambient ionization mass spectrometry for rapid bacterial differentiation. Analyst 2011; 136:3091-7. [DOI: 10.1039/c0an00940g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
McDonnell LA, van Remoortere A, de Velde N, van Zeijl RJM, Deelder AM. Imaging mass spectrometry data reduction: automated feature identification and extraction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1969-78. [PMID: 20850341 DOI: 10.1016/j.jasms.2010.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/10/2010] [Accepted: 08/13/2010] [Indexed: 05/18/2023]
Abstract
Imaging MS now enables the parallel analysis of hundreds of biomolecules, spanning multiple molecular classes, which allows tissues to be described by their molecular content and distribution. When combined with advanced data analysis routines, tissues can be analyzed and classified based solely on their molecular content. Such molecular histology techniques have been used to distinguish regions with differential molecular signatures that could not be distinguished using established histologic tools. However, its potential to provide an independent, complementary analysis of clinical tissues has been limited by the very large file sizes and large number of discrete variables associated with imaging MS experiments. Here we demonstrate data reduction tools, based on automated feature identification and extraction, for peptide, protein, and lipid imaging MS, using multiple imaging MS technologies, that reduce data loads and the number of variables by >100×, and that highlight highly-localized features that can be missed using standard data analysis strategies. It is then demonstrated how these capabilities enable multivariate analysis on large imaging MS datasets spanning multiple tissues.
Collapse
Affiliation(s)
- Liam A McDonnell
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Lerno LA, German JB, Lebrilla CB. Method for the identification of lipid classes based on referenced Kendrick mass analysis. Anal Chem 2010; 82:4236-45. [PMID: 20426402 DOI: 10.1021/ac100556g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A rapid method for the determination of lipid classes with high sensitivity is described. The referenced Kendrick mass defect (RKMD) and RKMD plots are novel adaptations of the Kendrick mass defect analysis that allows for the rapid identification of members of a homologous series in addition to identifying the lipid class. Assignment of lipid classes by the RKMD method is accomplished by conversion of the lipid masses to the Kendrick mass scale and then referencing the converted masses to each lipid class. Referencing of the masses to a given lipid class is achieved by first subtracting the heteroatom and lipid backbone contributions to the mass defect, leaving behind the contribution to the mass by the fatty acid constituents. The final step in the referencing makes use of spacing differences in mass defects between members of the same Kendrick class to identify members of the lipid class being referenced. The end result of this is that a lipid belonging to the class being referenced will have an integer RKMD with the value of the integer being the degrees of unsaturation in the lipid. The RKMD method was able to successfully identify the lipids in an idealized data set consisting of 160 lipids drawn from the glyceride and phosphoglyceride classes. As a real world example the lipid extract from bovine milk was analyzed using both accurate mass measurements and the RKMD method.
Collapse
Affiliation(s)
- Larry A Lerno
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
31
|
Hübner G, Crone C, Lindner B. lipID--a software tool for automated assignment of lipids in mass spectra. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1676-1683. [PMID: 19816875 DOI: 10.1002/jms.1673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new software tool called lipID is reported, which supports the identification of glycerophospholipids, glycosphingolipids, fatty acids and small oligosaccharides in mass spectra. The user-extendable software is a Microsoft (MS) Excel Add-In developed using Visual Basic for Applications and is compatible with all Versions of MS Excel since MS Excel 97. It processes singly given mass-to-charge values as well as mass lists considering a number of user-defined options. The software's mode of operation, usage and options are explained and the benefits and limitations of the tool are illustrated by means of three typical analytical examples of lipid analyses.
Collapse
Affiliation(s)
- Göran Hübner
- Division of Immunochemistry, Research Center Borstel, Parkallee 1-40, D-23845 Borstel, Germany.
| | | | | |
Collapse
|
32
|
Lydic TA, Renis R, Busik JV, Reid GE. Analysis of Retina and Erythrocyte Glycerophospholipid Alterations in a Rat Model of Type 1 Diabetes. JALA (CHARLOTTESVILLE, VA.) 2009; 14:383-399. [PMID: 20161420 PMCID: PMC2786180 DOI: 10.1016/j.jala.2009.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An automated tandem mass spectrometry based analysis employing precursor ion and neutral loss scans in a triple quadrupole mass spectrometer has been employed to identify and quantify changes in the abundances of glycerophospholipids extracted from retina and erythrocytes in a rat streptozotocin model of type 1 diabetes, 6 weeks and 36 weeks following induction of diabetes, compared to age matched nondiabetic controls. The utility of an 'internal standard' method compared to an 'internal standard free' method for quantification of differences in the abundances of specific lipid ions was evaluated in both retina and erythrocyte lipid extracts. In retina, equivalent results were obtained by using the internal standard and 'internal standard free' methods for quantification. In erythrocytes, the two methods of analysis yielded significantly different results, suggesting that factors intrinsic to particular sample types may influence the outcome of label-free lipidome quantification approaches.Overall increases (~25% to ~35%) in the abundances of major retina glycerophospholipid classes were demonstrated in rats at 6 weeks of diabetes, relative to control animals. However, at 36 weeks of diabetes, subsequent overall decreases in retina glycerophosphocholine and glycerophosphoethanolamine abundances of 16% and 33%, respectively, were observed. Additionally, retina and erythrocyte glycerophosphocholine lipids at both 6 week and 36 weeks of diabetes exhibited increased incorporation of linoleic acid((18:2n6)) and a decrease in docosahexaenoic acid (DHA((22:6n3))) content. Finally, an approximately 5-fold increase in the abundances of specific glycated glycerophosphoethanolamine (Amadori-GPEtn) lipids were observed in the retina of 36 week diabetic rats, with a corresponding 1.6 fold increase of Amadori-GPEtn lipids in diabetic erythrocytes.
Collapse
Affiliation(s)
- Todd A. Lydic
- Department of Physiology, Michigan State University. East Lansing, MI, 48824
| | - Rebecca Renis
- Department of Chemistry, Michigan State University. East Lansing, MI, 48824
| | - Julia V. Busik
- Department of Physiology, Michigan State University. East Lansing, MI, 48824
| | - Gavin E. Reid
- Department of Chemistry, Michigan State University. East Lansing, MI, 48824
- Department of Biochemistry and Molecular Biology, Michigan State University. East Lansing, MI, 48824
| |
Collapse
|
33
|
Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2696-708. [PMID: 19147416 PMCID: PMC2765038 DOI: 10.1016/j.jchromb.2008.12.057] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Sphingolipids comprise a highly diverse and complex class of molecules that serve as both structural components of cellular membranes and signaling molecules capable of eliciting apoptosis, differentiation, chemotaxis, and other responses in mammalian cells. Comprehensive or "sphingolipidomic" analyses (structure specific, quantitative analyses of all sphingolipids, or at least all members of a critical subset) are required in order to elucidate the role(s) of sphingolipids in a given biological context because so many of the sphingolipids in a biological system are inter-converted structurally and metabolically. Despite the experimental challenges posed by the diversity of sphingolipid-regulated cellular responses, the detection and quantitation of multiple sphingolipids in a single sample has been made possible by combining classical analytical separation techniques such as high-performance liquid chromatography (HPLC) with state-of-the-art tandem mass spectrometry (MS/MS) techniques. As part of the Lipid MAPS consortium an internal standard cocktail was developed that comprises the signaling metabolites (i.e. sphingoid bases, sphingoid base-1-phosphates, ceramides, and ceramide-1-phosphates) as well as more complex species such as mono- and di-hexosylceramides and sphingomyelin. Additionally, the number of species that can be analyzed is growing rapidly with the addition of fatty acyl Co-As, sulfatides, and other complex sphingolipids as more internal standards are becoming available. The resulting LC-MS/MS analyses are one of the most analytically rigorous technologies that can provide the necessary sensitivity, structural specificity, and quantitative precision with high-throughput for "sphingolipidomic" analyses in small sample quantities. This review summarizes historical and state-of-the-art analytical techniques used for the identification, structure determination, and quantitation of sphingolipids from free sphingoid bases through more complex sphingolipids such as sphingomyelins, lactosylceramides, and sulfatides including those intermediates currently considered sphingolipid "second messengers". Also discussed are some emerging techniques and other issues remaining to be resolved for the analysis of the full sphingolipidome.
Collapse
Affiliation(s)
- Christopher A. Haynes
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-5048, U.S.A
| | - Hyejung Park
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| | - M. Cameron Sullards
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| |
Collapse
|
34
|
Hein EM, Blank LM, Heyland J, Baumbach JI, Schmid A, Hayen H. Glycerophospholipid profiling by high-performance liquid chromatography/mass spectrometry using exact mass measurements and multi-stage mass spectrometric fragmentation experiments in parallel. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1636-1646. [PMID: 19408252 DOI: 10.1002/rcm.4042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A profiling method for glycerophospholipids (GPs) in biological samples was developed using reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry (LIT-FTICRMS) with electrospray ionization (ESI) in the negative ionization mode. The method allowed qualitative (identification and structure elucidation) and relative quantitative determination of various classes of GPs including phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylserines, phosphatidic acids, phosphatidylglycerols, and cardiolipins in a single experiment. Chromatographic separation was optimized by the examination of different buffer systems and special emphasis was paid on the detection by ESI-MS. The hybrid LIT-FTICRMS system was operated in the data-dependent mode, switching automatically between FTICRMS survey scans and LIT-MS/MS experiments. Thereby, exact masses for elemental composition determination and fragmentation data for identification and assignment of fatty acid residues are provided at the same time. The low absolute instrumental limits of detection (0.05 pmol for phosphatidylglycerol to 1 pmol for phosphatidic acid) complemented by a linear dynamic range of 1.5 to 2.5 orders of magnitude facilitated the relative quantification of GP species in a lipid extract from Saccharomyces cerevisiae. The developed method is a valuable tool for in-depth GP profiling of biological systems.
Collapse
Affiliation(s)
- Eva-Maria Hein
- ISAS - Institute for Analytical Sciences, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Gidden J, Denson J, Liyanage R, Ivey DM, Lay JO. Lipid Compositions in Escherichia coli and Bacillus subtilis During Growth as Determined by MALDI-TOF and TOF/TOF Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2009; 283:178-184. [PMID: 20161304 PMCID: PMC2699300 DOI: 10.1016/j.ijms.2009.03.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Lipids in Escherichia coli and Bacillus subtilis were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and TOF/TOF tandem mass spectrometry. Lipids were extracted from bacterial cells using an equal volume mixture of dichloromethane, ethanol, and water, which formed a biphasic system with the lipids in the organic layer. The resulting mass spectra of the extracts from both bacteria showed a series of peaks corresponding to sodiated phospholipids - primarily phosphatidylethanolamines (PE) and phosphatidylglycerols (PG). The relative amounts of the phospholipids and the fatty acid compositions inferred from the spectra were in good agreement with previously reported values from GC/MS and thin-layer chromatography studies. E. coli and B. subtilis were easily differentiated by dissimilarities in the composition and relative amounts of the phospholipids present as well as by the presence of lysyl-phosphatidylglycerol and diglucosyl diglycerides solely in the B. subtilis mass spectra. Changes in lipid content in the bacteria during their growth phases were also monitored. In E. coli, the spectra indicated an increase in the amount of the unique C(cy-17) fatty acid (in which the fatty acid chain contains a cyclopropane ring) formed during exponential growth. During stationary growth, the spectra indicated an increase in the amount of saturated fatty acids. In B. subtilis, the phospholipid composition remained relatively unchanged during exponential growth, but the amount of PG slightly decreased while the amount of PE slightly increased during stationary growth. No significant changes were observed for the lysyl-phosphatidylglycerols or glycolipids during the exponential or stationary growth phases.
Collapse
Affiliation(s)
- Jennifer Gidden
- Arkansas Statewide Mass Spectrometry Facility, University of Arkansas, Fayetteville, AR 72701
| | | | | | | | | |
Collapse
|
36
|
Busik JV, Reid GE, Lydic TA. Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry. Methods Mol Biol 2009; 579:33-70. [PMID: 19763470 DOI: 10.1007/978-1-60761-322-0_3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite an increasing recognition of the causative and diagnostic role of lipids in the onset and progression of retinal disease, information on the global lipid profile of the normal retina is quite limited. Here, a "shotgun" tandem mass spectrometry approach involving the use of multiple lipid class-specific precursor ion and neutral loss scan mode experiments has been employed to analyze lipid extracts from normal rat retina, obtained with minimal sample handling prior to analysis. Redundant information for the identification and characterization of molecular species in each lipid class was obtained by complementary analysis of their protonated or deprotonated precursor ions, or by analysis of their various ionic adducts (e.g., Na+, NH4+, Cl-, CH3OCO2-). Notably, "alternative" precursor ion or neutral loss scan mode MS/MS experiments are introduced that were used to identify rat retina lipid molecular species that were not detected using "conventional" scan types typically employed in large-scale lipid-profiling experiments. This chapter outlines the principles and advantages of utilizing complementary/redundant identification of lipid species as a strategy to overcome inherent challenges and limitations of shotgun lipid analysis, and provides examples of the application of this strategy in the analysis of the retina lipidome.
Collapse
Affiliation(s)
- Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
37
|
Batoy SMAB, Borgmann S, Flick K, Griffith J, Jones JJ, Saraswathi V, Hasty AH, Kaiser P, Wilkins CL. Lipid and phospholipid profiling of biological samples using MALDI Fourier transform mass spectrometry. Lipids 2008; 44:367-71. [PMID: 19005715 DOI: 10.1007/s11745-008-3260-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/17/2008] [Indexed: 11/30/2022]
Abstract
Here we describe a study of the feasibility of lipid and phospholipid (PL) profiling using matrix assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) for two different applications. In this work PL profiles of different mammalian tissues as well as those of whole cell organisms were examined. In particular, comparative analysis of lipid and PL profiles of tissues from mice fed different diets was done and, in another application, MALDI FTMS was used to analyze PL profiles of genetically modified Saccharomyces cerevisiae. Computational sorting of the observed ions was done in order to group the lipid and PL ions from complex MALDI spectra. The PL profiles of liver tissues from mice fed different diets showed a cross correlation coefficient of 0.2580, indicating significant dissimilarity, and revealed more than 30 significantly different peaks at the 99.9% confidence level. Histogram plots derived from the spectra of wild type and genetically modified yeast resulted in a cross correlation coefficient 0.8941 showing greater similarity, but still revealing a number of significantly different peaks. Based on these results, it appears possible to use MALDI FTMS to identify PLs as potential biomarkers for metabolic processes in whole cells and tissues.
Collapse
Affiliation(s)
- S Mariccor A B Batoy
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Loftus N, Miseki K, Iida J, Gika HG, Theodoridis G, Wilson ID. Profiling and biomarker identification in plasma from different Zucker rat strains via high mass accuracy multistage mass spectrometric analysis using liquid chromatography/mass spectrometry with a quadrupole ion trap-time of flight mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2547-54. [PMID: 18655001 DOI: 10.1002/rcm.3640] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
High mass accuracy electrospray ionisation multistage tandem mass spectrometry (MS(n)) was applied to metabolite profiling studies on plasma samples derived from two strains of rat (the Zucker (fa/fa) obese strain and the normal wild type). Using a quadrupole ion trap time-of-flight (QIT-TOF) mass spectrometer, metabolite profiling software was applied to locate components of biological significance that could account for the differences between the two strains of rat and a formula prediction software tool was used to help identify individual components. The primary factor discriminating between the two populations was the concentration of endogenous lipids. In the Zucker (fa/fa) obese strain, the dominant ion signals and MS(n) spectra were in agreement with lysoglycerophosphocholine components such as palmitoyllysophosphatidylcholine, 1-oleoylglycerophosphocholine, 1-octadecyl-sn-glycero-3-phosphocholine and 1-stearoylglycerophosphocholine and these were found in relatively higher concentrations compared to the normal wild type. Components were identified using high mass accuracy MS(n) data, formula prediction software and by agreement with published mass spectra through internet databases, rather than using a conventional approach with authentic standards. This application shows that the use of high mass accuracy electrospray ionisation MS(n) together with a software tool can be used effectively to detect and characterise unknown analytes in complex matrices, and represents a promising approach for future profiling studies.
Collapse
Affiliation(s)
- Neil Loftus
- Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Pourshahian S, Limbach PA. Application of fractional mass for the identification of peptide-oligonucleotide cross-links by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1081-1088. [PMID: 18320553 PMCID: PMC3008158 DOI: 10.1002/jms.1391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A method has been developed to identify oligonucleotide-peptide heteroconjugates by accurate mass measurements using MS. The fractional mass (the decimal fraction mass value following the monoisotopic nominal mass) for peptides and oligonucleotides is different due to their differing molecular compositions. This property has been used to develop the general conditions necessary to differentiate peptides and oligonucleotides from oligonucleotide-peptide heteroconjugates. Peptides and oligonucleotides generated by the theoretical digestion of various proteins and nucleic acids were plotted as nominal mass versus fractional mass. Such plots reveal that three nucleotides cross-linked to a peptide produce enough change in the fractional mass to be recognized from non-cross-linked peptides at the same nominal mass. Experimentally, a Cytochrome c digest was spiked with an oligonucleotide-peptide heteroconjugate and conditions for analyzing the sample using liquid chromatography (LC)-MS were optimized. Upon analysis of this mixture, all detected masses were plotted on a fractional mass plot and the heteroconjugate could be readily distinguished from non-cross-linked peptides. The method developed here can be incorporated into a general proteomics-like scheme for identifying protein-nucleic acid cross-links, and this method is equally applicable to characterizing cross-links generated from protein-DNA and protein-RNA complexes.
Collapse
Affiliation(s)
| | - Patrick A. Limbach
- To whom correspondence should be addressed. Phone (513) 556-1871, Fax (513) 556-9239,
| |
Collapse
|
40
|
Zhang H, Zhu M, Ray KL, Ma L, Zhang D. Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite detection. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2082-2088. [PMID: 18512844 DOI: 10.1002/rcm.3585] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent examples have demonstrated that the high-resolution liquid chromatography/mass spectrometry (LC/MS)-based mass defect filtering (MDF) technique was effective in selectively detecting drug metabolites regardless of their molecular weights or fragmentation patterns. The main objective of the current study was to evaluate the general applicability of MDF for drug metabolite detection in typical biological matrices. Mass defect profiles of commonly used biological matrices including plasma, urine, bile, and feces were obtained using an LTQ FT mass spectrometer and were compared with those of 115 commonly prescribed drugs. The mass defect profiles were presented as two-dimensional Y-X plots with the determined mass defects of components on the y-axis versus the corresponding m/z values on the x-axis. The mass defect profiles of the matrices appeared to be similar for each type of matrix across species, yet marked differences were apparent between matrices of a given species. The mass defect profiles of components in plasma, bile, and feces showed significant separation from most of the 115 drugs. The mass defect profiles of urine did not show such clean separation from that of the 115 drugs. The results suggest that MDF has a broad applicability for selective detection of drug metabolites in plasma, bile and feces although the selectivity for detecting urinary drug metabolites is not as good as in the other matrices. In addition, the mass defect profiles of the biological matrices allow for prediction of the effectiveness of MDF for certain applications, and for designing specific MDF windows for selective detection of drug metabolites.
Collapse
Affiliation(s)
- Haiying Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543, USA
| | | | | | | | | |
Collapse
|
41
|
Tian YW, Sun SH, Xie JP, Zong YL, Nie C, Guo YL. Detection of Radical Adducts with Small Molecular Weights by Matrix-Assisted Laser Desorption/Ionization with Fourier Transform Mass Spectrometry. CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Abstract
Electrospray ionization mass spectrometry is becoming an established tool for the investigation of lipids. As the methods for lipid analysis become more mature and their throughput increases, computer algorithms for the interpretation of such data will become a necessity. Toward this end, an algorithm dedicated to the analysis of Fourier transform mass spectral data from lipid extracts has been developed. The algorithm, Fatty Acid Analysis Tool, termed FAAT, has been successfully used to investigate complex lipid extracts containing thousands of components, from various species of mycobacteria including M. tuberculosis and M. abscessus. FAAT is rapid, generally taking tens of seconds to interpret multiple spectra, and accessible to most users as it is implemented in Microsoft Excel Visual Basic Software. In the reduction of data, FAAT begins by scaling spectra (i.e., to account for dilution factors), identifying monoisotopic ions, and assigning isotope packets. Unique features of FAAT include the following: (1) overlapping saturated and unsaturated lipid species can be distinguished, (2) known ions are assigned from a user-defined library including species that possess methylene heterogeneity, (3) and isotopic shifts from stable isotope labeling experiments are identified and assigned (up to a user-defined maximum). In addition, abundance differences between samples grown under normal and stressed conditions can be determined. In the analysis of mycobacterial lipid extracts, FAAT has successfully identified isotopic shifts from incorporation of 15N in M. abscessus. Additionally, FAAT has been used to successfully determine differences in lipid abundances between M. tuberculosis wild-type and mutant strains.
Collapse
Affiliation(s)
- Michael D Leavell
- Genome and Biomedical Sciences Facility, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
43
|
Hernandez H, Niehauser S, Boltz SA, Gawandi V, Phillips RS, Amster IJ. Mass defect labeling of cysteine for improving peptide assignment in shotgun proteomic analyses. Anal Chem 2007; 78:3417-23. [PMID: 16689545 PMCID: PMC1482400 DOI: 10.1021/ac0600407] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A method for improving the identification of peptides in a shotgun proteome analysis using accurate mass measurement has been developed. The improvement is based upon the derivatization of cysteine residues with a novel reagent, 2,4-dibromo-(2'-iodo)acetanilide. The derivitization changes the mass defect of cysteine-containing proteolytic peptides in a manner that increases their identification specificity. Peptide masses were measured using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron mass spectrometry. Reactions with protein standards show that the derivatization of cysteine is rapid and quantitative, and the data suggest that the derivatized peptides are more easily ionized or detected than unlabeled cysteine-containing peptides. The reagent was tested on a 15N-metabolically labeled proteome from M. maripaludis. Proteins were identified by their accurate mass values and from their nitrogen stoichiometry. A total of 47% of the labeled peptides are identified versus 27% for the unlabeled peptides. This procedure permits the identification of proteins from the M. maripaludis proteome that are not usually observed by the standard protocol and shows that better protein coverage is obtained with this methodology.
Collapse
Affiliation(s)
| | | | | | | | | | - I. Jonathan Amster
- * To whom correspondence should be addressed. Phone: (706) 542-2001. E-mail:
| |
Collapse
|
44
|
Sullards MC, Allegood JC, Kelly S, Wang E, Haynes CA, Park H, Chen Y, Merrill AH. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics. Methods Enzymol 2007; 432:83-115. [PMID: 17954214 DOI: 10.1016/s0076-6879(07)32004-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to the large number of highly bioactive subspecies, elucidation of the roles of sphingolipids in cell structure, signaling, and function is beginning to require that one perform structure-specific and quantitative (i.e., "sphingolipidomic") analysis of all individual subspecies, or at least of those are relevant to the biologic system of interest. As part of the LIPID MAPS Consortium, methods have been developed and validated for the extraction, liquid chromatographic (LC) separation, and identification and quantitation by electrospray ionization (ESI), tandem mass spectrometry (MS/MS) using an internal standard cocktail that encompasses the signaling metabolites (e.g., ceramides, ceramide 1-phosphates, sphingoid bases, and sphingoid base 1-phosphates) as well as more complex species (sphingomyelins, mono- and di-hexosylceramides). The number of species that can be analyzed is growing rapidly with the addition of sulfatides and other complex sphingolipids as more internal standards become available. This review describes these methods as well as summarizes others from the published literature. Sphingolipids are an amazingly complex family of compounds that are found in all eukaryotes as well as some prokaryotes and viruses. The size of the sphingolipidome (i.e., all of the individual molecular species of sphingolipids) is not known, but must be immense considering mammals have over 400 headgroup variants (for a listing, see http://www.sphingomap.org), each of which is comprised of at least a few-and, in some cases, dozens-of lipid backbones. No methods have yet been developed that can encompass so many different compounds in a structurally specific and quantitative manner. Nonetheless, it is possible to analyze useful subsets of the sphingolipidome, such as the backbone sphingolipids involved in signaling (sphingoid bases, sphingoid base 1-phosphates, ceramides, and ceramide 1-phosphates) and metabolites at important branchpoints, such as the partitioning of ceramide into sphingomyelins, glucosylceramides, galactosylceramides, and ceramide 1-phosphate versus turnover to the backbone sphingoid base. This review describes methodology that has been developed as part of the LIPID MAPS Consortium (www.lipidmaps.org) as well as other methods that can be used for sphingolipidomic analysis to the extent that such is currently feasible. The focus of this review is primarily mammalian sphingolipids; hence, if readers are interested in methods to study other organisms, they should consult the excellent review by Stephen Levery in another volume of Methods in Enzymology (Levery, 2005), which covers additional species found in plants, fungi, and other organisms. It should be noted from the start that although many analytical challenges remain in the development of methods to analyze the full "sphingolipidome," the major impediment to progress is the limited availability of reliable internal standards for most of the compounds of interest. Because it is an intrinsic feature of mass spectrometry that ion yields tend to vary considerably among different compounds, sources, methods, and instruments, an analysis that purports to be quantitative will not be conclusive unless enough internal standards have been added to correct for these variables. Ideally, there should be some way of standardizing every compound in the unknown mixture; however, that is difficult, if not impossible, to do because the compounds are not available, and the inclusion of so many internal standards generates a spectrum that may be too complex to interpret. Therefore, a few representative internal standards are usually added, and any known differences in the ion yields of the analytes of interest versus the spiked standard are factored into the calculations. Identification of appropriate internal standards has been a major focus of the LIPID MAPS Consortium, and the methods described in this review are based on the development of a certified (i.e., compositionally and quantitatively defined by the supplier) internal standard cocktail that is now commercially available (Avanti Polar Lipids, Alabaster, AL). For practical and philosophical reasons, an internal standard cocktail was chosen over the process of an investigator adding individual standards for only the analytes of interest. On the practical level, addition of a single cocktail minimizes pipetting errors as well as keeping track of whether each internal standard is still usable (e.g., has it degraded while in solution?). Philosophically, the internal standard cocktail was chosen because an underlying premise of systems analysis asserts that, due to the high relevancy of unexpected interrelationships involving more distant components, one can only understand a biological system when factors outside the primary focus of the experiment have also been examined. Indeed, the first payoffs of "omics" and systems approaches involve the discoveries of interesting compounds in unexpected places when a "sphingolipidomic" analytical method was being used as routine practice instead of a simpler method that would have only measured the compound initially thought to be important (Zheng et al., 2006). Thus, routine addition of a broad internal standard cocktail at the outset of any analysis maximizes the opportunity for such discoveries, both at the time the original measurements are made and when one decides to return to the samples later, which can fortunately be done for many sphingolipids because they remain relatively stable in storage.
Collapse
Affiliation(s)
- M Cameron Sullards
- School of Biology, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bruce C, Shifman MA, Miller P, Gulcicek EE. Probabilistic enrichment of phosphopeptides by their mass defect. Anal Chem 2006; 78:4374-82. [PMID: 16808444 PMCID: PMC2547851 DOI: 10.1021/ac060046w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mass defect, that is, the difference between the nominal and actual monoisotopic masses, of a phosphorus in a phosphate group is greater than for most other atoms present in proteins. When the mass defects of tryptic peptides derived from the human proteome are plotted against their masses, phosphopeptides tend to fall off the regression line. By calculating the masses of all potential tryptic peptides from the human proteome, we show that regions of higher phosphorylation probability exist on such a plot. We developed a transformation function to estimate the mass defect of a peptide from its monoisotopic mass and empirically defined a simple formula for a user-selectable discriminant line that categorizes a peptide mass according to its probability of being phosphorylated. Our method performs similarly well on phosphopeptides derived from a database of experimentally validated phosphoproteins. The method is relatively insensitive to mass measurement error of up to 20 ppm. The approach can be used with a tandem mass spectrometer in real time to rapidly select and rank order the possible phosphopeptides from a mixture of unmodified peptides for subsequent phosphorylation site mapping and peptide sequence analysis.
Collapse
Affiliation(s)
- Can Bruce
- Center for Medical Informatics, Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut 06511, USA.
| | | | | | | |
Collapse
|
46
|
Su J, Rajapaksha TW, Peter ME, Mrksich M. Assays of Endogenous Caspase Activities: A Comparison of Mass Spectrometry and Fluorescence Formats. Anal Chem 2006; 78:4945-51. [PMID: 16841915 DOI: 10.1021/ac051974i] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes a label-free assay for measuring endogenous caspase protease activities in cell lysates. The assay format, termed SAMDI-MS (self-assembled monolayers for matrix assisted laser desorption ionization time-of-flight mass spectrometry), is based on the enzymatic modification of peptides immobilized to monolayer substrates, followed by direct detection of the products with mass spectrometry. Monolayers presenting peptide substrates for either caspase-3 or -8 were treated with lysates from Jurkat cells that were stimulated with staurosporine and SKW6.4 cells that were stimulated with LzCD95L. In both cases, the SAMDI assays reported on the activation of endogenous caspase enzymes with levels of detection that are similar to those observed using the commonly employed fluorogenic assays. The use of longer peptide substrates, which are not compatible with the fluorogenic assays, provided for a better resolution of the two caspase activities. This work is significant because it demonstrates that the SAMDI assay can be used to measure endogenous enzyme activities and because it avoids the loss of activity and specificity that often accompany label-dependent assay formats.
Collapse
Affiliation(s)
- Jing Su
- Howard Hughes Medical Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
47
|
Identification of Phospholipid Molecular Species in Porcine Brain Extracts Using High Mass Accuracy of 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.5.793] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Jones JJ, Borgmann S, Wilkins CL, O'Brien RM. Characterizing the Phospholipid Profiles in Mammalian Tissues by MALDI FTMS. Anal Chem 2006; 78:3062-71. [PMID: 16642994 DOI: 10.1021/ac0600858] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discussed here is an analytical method for profiling lipids and phospholipids directly from mammalian tissues excised from Mus musculus (house mouse). Biochemical analysis was accomplished through the use of matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry, where whole tissue sections of mouse brain, heart, and liver were investigated. Lipid and phospholipid ions create complex MALDI mass spectra containing multiple ions with different m/z values corresponding to the same fundamental chemical species. When a computational sorting approach is used to group these ions, the standard deviation for observed relative chemical abundance can be reduced to 6.02%. Relative standard deviations of 10% are commonly accepted for standard chromatographic phospholipid analyses. Average mass measurement accuracy for 232 spectra representing three tissue types from 12 specimens was calculated to be 0.0053 Da. Further it is observed, that the data and the analysis between all the animals have near-identical phospholipid contents in their brain, heart, and liver tissues, respectively. In addition to the need to accurately measure relative abundances of phospholipid species, it is essential to have adequate mass resolution for complete and accurate overall analysis. It is reasonable to make mass composition assignments with spectral resolving power greater than 8000. However, results from the present study reveal 14 instances (C12 carbon isotope) of multiple m/z ions having the same nominal value that require greater resolution in order that overlap will not occur. Spectra measured here have an average resolving power of 12 000. It is established that high mass resolution and mass accuracy coupled with MALDI ionization provide for rapid and accurate phospholipid analysis of mammalian tissue sections.
Collapse
Affiliation(s)
- Jeffrey J Jones
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | |
Collapse
|
49
|
Frahm JL, Howard BE, Heber S, Muddiman DC. Accessible proteomics space and its implications for peak capacity for zero-, one- and two-dimensional separations coupled with FT-ICR and TOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:281-8. [PMID: 16538648 DOI: 10.1002/jms.1024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The number and wide dynamic range of components found in biological matrixes present several challenges for global proteomics. In this perspective, we will examine the potential of zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) separations coupled with Fourier-transform ion cyclotron resonance (FT-ICR) and time-of-flight (TOF) mass spectrometry (MS) for the analysis of complex mixtures. We describe and further develop previous reports on the space occupied by peptides, to calculate the theoretical peak capacity available to each separations-mass spectrometry method examined. Briefly, the peak capacity attainable by each of the mass analyzers was determined from the mass resolving power (RP) and the m/z space occupied by peptides considered from the mass distribution of tryptic peptides from National Center for Biotechnology Information's (NCBI's) nonredundant database. Our results indicate that reverse-phase-nanoHPLC (RP-nHPLC) separation coupled with FT-ICR MS offers an order of magnitude improvement in peak capacity over RP-nHPLC separation coupled with TOF MS. The addition of an orthogonal separation method, strong cation exchange (SCX), for 2D LC-MS demonstrates an additional 10-fold improvement in peak capacity over 1D LC-MS methods. Peak capacity calculations for 0D LC, two different 1D RP-HPLC methods, and 2D LC (with various numbers of SCX fractions) for both RP-HPLC methods coupled to FT-ICR and TOF MS are examined in detail. Peak capacity production rates, which take into account the total analysis time, are also considered for each of the methods. Furthermore, the significance of the space occupied by peptides is discussed.
Collapse
Affiliation(s)
- Jennifer L Frahm
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | | | | | | |
Collapse
|
50
|
Estrada R, Borchman D, Reddan J, Hitt A, Yappert MC. In Vitro and In Situ Tracking of Choline-Phospholipid Biogenesis by MALDI TOF-MS. Anal Chem 2006; 78:1174-80. [PMID: 16478109 DOI: 10.1021/ac051540n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quantitative monitoring of newly synthesized species of phosphatidylcholines (PCs) and sphingomyelins (SMs) has been achieved in cultured human lens epithelial cells, both in situ and in vitro, with the use of MALDI TOF-MS. As the cells were cultured with deuterated choline-d(9), new peaks that differed from the hydrogenated species by 9.06 Da appeared in the mass spectra. The initial rates of appearance of all deuterated species of PCs were comparable and 4 times higher than those for SMs. After 12 h, those rates began to decrease for PCs but not for deuterated SMs, whose relative contents continued to increase throughout the 72 h of the experiment. The differences in initial rates are consistent with the reported initial generation of PCs, their subsequent degradation, and transfer of their headgroup, phosphorylcholine, to SMs. To further test the ability of MALDI TOF-MS to quantify changes in phospholipid (PL) metabolic pathways, myriocin, an inhibitor of SM synthesis, was added to the cells. In vitro and in situ results revealed a decrease in SMs and an unexpected increase in some PCs. With the use of other deuterated precursors and in combination with postsource decay or tandem MS/MS, this approach could allow the simultaneous tracking of the biosynthesis of multiple PL classes while providing details on their acyl chains.
Collapse
Affiliation(s)
- Rosendo Estrada
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|