1
|
Moppel I, Elliott B, Chen S. Intermolecular hydrogen bonding behavior of amino acid radical cations. Org Biomol Chem 2024; 22:3966-3978. [PMID: 38690804 DOI: 10.1039/d4ob00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.
Collapse
Affiliation(s)
- Isabella Moppel
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| | - BarbaraAnn Elliott
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| |
Collapse
|
2
|
Tiefenthaler L, Scheier P, Erdmann E, Aguirre NF, Díaz-Tendero S, Luxford TFM, Kočišek J. Non-ergodic fragmentation upon collision-induced activation of cysteine-water cluster cations. Phys Chem Chem Phys 2023; 25:5361-5371. [PMID: 36647750 PMCID: PMC9930733 DOI: 10.1039/d2cp04172c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023]
Abstract
Cysteine-water cluster cations Cys(H2O)3,6+ and Cys(H2O)3,6H+ are assembled in He droplets and probed by tandem mass spectrometry with collision-induced activation. Benchmark experimental data for this biologically important system are complemented with theory to elucidate the details of the collision-induced activation process. Experimental energy thresholds for successive release of water are compared to water dissociation energies from DFT calculations showing that clusters do not only fragment exclusively by sequential emission of single water molecules but also by the release of small water clusters. Release of clustered water is observed also in the ADMP (atom centered density matrix propagation) molecular dynamics model of small Cys(H2O)3+ and Cys(H2O)3H+ clusters. For large clusters Cys(H2O)6+ and Cys(H2O)6H+ the less computationally demanding statistical Microcanonical Metropolis Monte-Carlo method (M3C) is used to model the experimental fragmentation patterns. We are able to detail the energy redistribution in clusters upon collision activation. In the present case, about two thirds of the collision energy redistribute via an ergodic process, while the remaining one third is transferred into a non-ergodic channel leading to ejection of a single water molecule from the cluster. In contrast to molecular fragmentation, which can be well described by statistical models, modelling of collision-induced activation of weakly bound clusters requires inclusion of non-ergodic processes.
Collapse
Affiliation(s)
- Lukas Tiefenthaler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria.
| | - Paul Scheier
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria.
| | - Ewa Erdmann
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
- Departamento de Química, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Néstor F Aguirre
- Software for Chemistry and Materials (SCM), Amsterdam, The Netherlands
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in ChemicalSciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Thomas F M Luxford
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia.
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia.
| |
Collapse
|
3
|
Zhang P, Chan W, Ang IL, Wei R, Lam MMT, Lei KMK, Poon TCW. Revisiting Fragmentation Reactions of Protonated α-Amino Acids by High-Resolution Electrospray Ionization Tandem Mass Spectrometry with Collision-Induced Dissociation. Sci Rep 2019; 9:6453. [PMID: 31015571 PMCID: PMC6478932 DOI: 10.1038/s41598-019-42777-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
Fragmentation reactions of protonated α-amino acids (AAs) were studied previously using tandem mass spectrometry (MS/MS) of unit mass resolution. Isobaric fragmentation products and minor fragmentation products could have been overlooked or misannotated. In the present study, we examined the fragmentation patterns of 19 AAs using high-resolution electrospray ionization MS/MS (HR-ESI-MS/MS) with collision-induced dissociation (CID). Isobaric fragmentation products from protonated Met and Trp were resolved and identified for the first time. Previously unreported fragmentation products from protonated Met, Cys, Gln, Arg, and Lys were observed. Additionally, the chemical identity of a fragmentation product from protonated Trp that was incorrectly annotated in previous investigations was corrected. All previously unreported fragmentation products and reactions were verified by pseudo MS3 experiments and/or MS/MS analyses of deuterated AAs. Clearer pictures of the fragmentation reactions for Met, Cys, Trp, Gln, Arg and Lys were obtained in the present study.
Collapse
Affiliation(s)
- Pengwei Zhang
- Pilot Laboratory, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Wan Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene L Ang
- Pilot Laboratory, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Rui Wei
- Pilot Laboratory, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Melody M T Lam
- Proteomics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Kate M K Lei
- Pilot Laboratory, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Terence C W Poon
- Pilot Laboratory, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
4
|
Gaspar K, Fabijanczuk K, Otegui T, Acosta J, Gao J. Development of Novel Free Radical Initiated Peptide Sequencing Reagent: Application to Identification and Characterization of Peptides by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:548-556. [PMID: 30547308 PMCID: PMC6417990 DOI: 10.1007/s13361-018-2114-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 05/19/2023]
Abstract
By incorporating a high proton affinity moiety to the charge localized free radical-initiated peptide sequencing (CL-FRIPS) reagent, FRIPS-MS technique has extended the applicability to hydrophobic peptides and peptides without basic amino acid residues (lysine, arginine, and histidine). Herein, the CL-FRIPS reagent has three moieties: (1) pyridine acting as the basic site to locate the proton, (2) 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, a stable free radical) acting as the free radical precursor to generate the nascent free radical in the gas phase, and (3) N-hydroxysuccinimide (NHS) activated carboxylic acid acting as the coupling site to derivatize the N-terminus of peptides. The CL-FRIPS reagent allows for the characterization of peptides by generating sequencing ions, enzymatic cleavage-like radical-induced side chain losses, and the loss of TEMPO simultaneously via one-step collisional activation. Further collisional activation of enzymatic cleavage-like radical-induced side chain loss ions provides more information for the structure determination of peptides. The application of CL-FRIPS reagent to characterize peptides is proved by employing bovine insulin as the model peptide. Both scaffold structure of bovine insulin and sequencing information of each chain are achieved. Graphical Abstract.
Collapse
Affiliation(s)
- Kaylee Gaspar
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Tara Otegui
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Jose Acosta
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA.
| |
Collapse
|
5
|
Iacobucci C, Schäfer M, Sinz A. Free radical-initiated peptide sequencing (FRIPS)-based cross-linkers for improved peptide and protein structure analysis. MASS SPECTROMETRY REVIEWS 2019; 38:187-201. [PMID: 29660147 DOI: 10.1002/mas.21568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Free radical-initiated peptide sequencing (FRIPS) has recently been introduced as an analytical strategy to create peptide radical ions in a predictable and effective way by collisional activation of specifically modified peptides ions. FRIPS is based on the unimolecular dissociation of open-shell ions and yields fragments that resemble those obtained by electron capture dissociation (ECD) or electron transfer dissociation (ETD). In this review article, we describe the fundamentals of FRIPS and highlight its fruitful combination with chemical cross-linking/mass spectrometry (MS) as a highly promising option to derive complementary structural information of peptides and proteins. FRIPS does not only yield exhaustive sequence information of cross-linked peptides, but also defines the exact cross-linking sites of the connected peptides. The development of more advanced FRIPS cross-linkers that extend the FRIPS-based cross-linking/MS approach to the study of large protein assemblies and protein interaction networks can be eagerly anticipated.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Cologne, D-50939, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| |
Collapse
|
6
|
Guo M, Wu H, Zhang H, Luo Z. Furthering the Diverse Hydrogen Atom Transfer and Carbon Bond Dissociation of Amino Acids under Vacuum Ultraviolet. ChemistrySelect 2019. [DOI: 10.1002/slct.201803564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| |
Collapse
|
7
|
Kempkes LJM, Martens J, Berden G, Oomens J. w-Type ions formed by electron transfer dissociation of Cys-containing peptides investigated by infrared ion spectroscopy. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1207-1213. [PMID: 30281881 PMCID: PMC6283004 DOI: 10.1002/jms.4298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
In mass spectrometry-based peptide sequencing, electron transfer dissociation (ETD) and electron capture dissociation (ECD) have become well-established fragmentation methods complementary to collision-induced dissociation. The dominant fragmentation pathways during ETD and ECD primarily involve the formation of c- and z• -type ions by cleavage of the peptide backbone at the N─Cα bond, although neutral losses from amino acid side chains have also been observed. Residue-specific neutral side chain losses provide useful information when conducting database searching and de novo sequencing. Here, we use a combination of infrared ion spectroscopy and quantum-chemical calculations to assign the structures of two ETD-generated w-type fragment ions. These ions are spontaneously formed from ETD-generated z• -type fragments by neutral loss of 33 Da in peptides containing a cysteine residue. Analysis of the infrared ion spectra confirms that these z• -ions expel a thiol radical (SH• ) and that a vinyl C═C group is formed at the cleavage site. z• -type fragments containing a Cys residue but not at the cleavage site do not spontaneously expel a thiol radical, but only upon additional collisional activation after ETD.
Collapse
Affiliation(s)
- Lisanne J. M. Kempkes
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Scott JA, Angeloski A, Aharonovich I, Lobo CJ, McDonagh A, Toth M. In situ study of the precursor conversion reactions during solventless synthesis of Co 9S 8, Ni 3S 2, Co and Ni nanowires. NANOSCALE 2018; 10:15669-15676. [PMID: 30091764 DOI: 10.1039/c8nr02093k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthesis of Co9S8, Ni3S2, Co and Ni nanowires by solventless thermolysis of a mixture of metal(ii) acetate and cysteine in vacuum is reported. The simple precursor system enables the nanowire phase to be tuned from pure metal (Co or Ni) to metal sulfide (Co9S8, Ni3S2) by varying the relative concentration of the metal(ii) acetate. The growth environment facilitates new insights through in situ characterization using field-emission scanning electron microscopy (FESEM) and thermogravimetric analysis with gas chromatography-mass spectrometry (TGA-GC-MS). Direct observation by FESEM shows the temperature at which nanowire growth occurs and suggests adatoms are incorporated into the base of the growing nanowire. TGA-GC-MS reveals the rates of precursor decomposition and identity of the volatilized ligand fragments during heat-up and at the nanowire growth temperature. Our results constitute a new approach for the selective fabrication of high quality Co9S8 and Ni3S2 nanowires and more importantly provides new understanding of precursor decomposition reactions that support symmetry-breaking growth in nanocrystals by heat-up synthesis.
Collapse
Affiliation(s)
- John A Scott
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo 2007, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Mu X, Lau JKC, Lai CK, Siu KWM, Hopkinson AC, Chu IK. Isomerization versus dissociation of phenylalanylglycyltryptophan radical cations. Phys Chem Chem Phys 2017. [PMID: 28631796 DOI: 10.1039/c7cp02355c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four isomers of the radical cation of tripeptide phenylalanylglycyltryptophan, in which the initial location of the radical center is well defined, have been isolated and their collision-induced dissociation (CID) spectra examined. These ions, the π-centered [FGWπ˙]+, α-carbon- [FGα˙W]+, N-centered [FGWN˙]+ and ζ-carbon- [Fζ˙GW]+ radical cations, were generated via collision-induced dissociation (CID) of transition metal-ligand-peptide complexes, side chain fragmentation of a π-centered radical cation, homolytic cleavage of a labile nitrogen-nitrogen single bond, and laser induced dissociation of an iodinated peptide, respectively. The π-centered and tryptophan N-centered peptide radical cations produced almost identical CID spectra, despite the different locations of their initial radical sites, which indicated that interconversion between the π-centered and tryptophan N-centered radical cations is facile. By contrast, the α-carbon-glycyl radical [FGα˙W]+, and ζ-phenyl radical [Fζ˙GW]+, featured different dissociation product ions, suggesting that the interconversions among α-carbon, π-centered (or tryptophan N-centered) and ζ-carbon-radical cations have higher barriers than those to dissociation. Density functional theory calculations have been used to perform systematic mechanistic investigations on the interconversions between these isomers and to study selected fragmentation pathways for these isomeric peptide radical cations. The results showed that the energy barrier for interconversion between [FGWπ˙]+ and [FGWN˙]+ is only 31.1 kcal mol-1, much lower than the barriers to their dissociation (40.3 kcal mol-1). For the [FGWπ˙]+, [FGα˙W]+, and [Fζ˙GW]+, the barriers to interconversion are higher than those to dissociation, suggesting that interconversions among these isomers are not competitive with dissociations. The [z3 - H]˙+ ions isolated from [FGα˙W]+ and [Fζ˙GW]+ show distinctly different fragmentation patterns, indicating that the structures of these ions are different and this result is supported by the DFT calculations.
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
10
|
Mu X, Song T, Siu CK, Chu IK. Tautomerization and Dissociation of Molecular Peptide Radical Cations. CHEM REC 2017. [DOI: 10.1002/tcr.201700013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Tao Song
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Kowloon Tong, Hong Kong SAR P. R. China
| | - Ivan K. Chu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| |
Collapse
|
11
|
Osburn S, Chan B, Ryzhov V, Radom L, O'Hair RAJ. Role of Hydrogen Bonding on the Reactivity of Thiyl Radicals: A Mass Spectrometric and Computational Study Using the Distonic Radical Ion Approach. J Phys Chem A 2016; 120:8184-8189. [PMID: 27726360 DOI: 10.1021/acs.jpca.6b08544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental and computational quantum chemistry investigations of the gas-phase ion-molecule reactions between the distonic ions +H3N(CH2)nS• (n = 2-4) and the reagents dimethyl disulfide, allyl bromide, and allyl iodide demonstrate that intramolecular hydrogen bonding can modulate the reactivity of thiyl radicals. Thus, the 3-ammonium-1-propanethiyl radical (n = 3) exhibits the lowest reactivity of these distonic ions toward all substrates. Theoretical calculations on this distonic ion highlight that its most stable conformation involves a six-membered ring configuration, and that it has the strongest intramolecular hydrogen bond. In addition, the calculations indicate that the barrier heights for radical abstraction by this hydrogen-bond-stabilized 3-ammonium-1-propanethiyl radical are the highest among the systems examined, consistent with the experimental observations.
Collapse
Affiliation(s)
- Sandra Osburn
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University , Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry and Center for Biochemical and Biophysical studies, Northern Illinois University , Dekalb, Illinois 60115, United States
| | - Leo Radom
- School of Chemistry, University of Sydney , Sydney, NSW 2006, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , 30 Flemington Rd, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Butler M, Michael Siu KW, Hopkinson AC. Transnitrosylation products of the dipeptide cysteinyl-cysteine: an examination by tandem mass spectrometry and density functional theory. Phys Chem Chem Phys 2016; 18:6047-52. [PMID: 26841083 DOI: 10.1039/c5cp08014b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fragmentation pathways of protonated mono- and di-nitrosylated derivatives from the dipeptide Cys-Cys obtained by electrospray were examined. Protonated mononitrosylated dipeptide upon loss of ˙NO formed a radical cation, which in turn shows two fragment ions, one from the loss of HS˙ and the other from a neutral loss giving a radical cation of formula C2H5NS˙(+). Protonated dinitrosylated dipeptide dissociated by losing both ˙NO molecules, forming a cyclic structure with a vicinal disulfide bridge whose major dissociation channel was the loss of CO. After CO loss, two pathways were observed (loss of NH3 and C2H3NS) which were preceded by proton exchange occurring between one β-carbon and the nitrogen atom. DFT calculations did not show significant differences in the energies involved for the loss of the NO radical from either of the cysteine residues of the protonated di-nitrosylated dipeptide. Upon loss of the first NO radical, the thiyl radical afforded the vicinal disulfide product with a small barrier through radical substitution of the remaining NO moiety. The calculated relative energy barriers for the different channels are in good agreement with experimental observations. Structures of the ions obtained after dissociation are suggested on the basis of the proposed mechanisms.
Collapse
Affiliation(s)
- Matias Butler
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3. and Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4
| | - Alan C Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
13
|
Lesslie M, Lau JKC, Lawler JT, Siu KWM, Steinmetz V, Maître P, Hopkinson AC, Ryzhov V. Cysteine Radical/Metal Ion Adducts: A Gas-Phase Structural Elucidation and Reactivity Study. Chempluschem 2016; 81:444-452. [DOI: 10.1002/cplu.201500558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| | - Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto ON M3J 1P3 Canada
- Department of Chemistry and Biochemistry; University of Windsor; Windsor ON N9B 3P4 Canada
| | - John T. Lawler
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| | - K. W. Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto ON M3J 1P3 Canada
- Department of Chemistry and Biochemistry; University of Windsor; Windsor ON N9B 3P4 Canada
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique; Université Paris-Sud; UMR8000 CNRS; 91405 Orsay France
| | - Philippe Maître
- Laboratoire de Chimie Physique; Université Paris-Sud; UMR8000 CNRS; 91405 Orsay France
| | - Alan C. Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto ON M3J 1P3 Canada
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| |
Collapse
|
14
|
Lesslie M, Lau JKC, Lawler JT, Siu KWM, Oomens J, Berden G, Hopkinson AC, Ryzhov V. Alkali-Metal-Ion-Assisted Hydrogen Atom Transfer in the Homocysteine Radical. Chemistry 2016; 22:2243-6. [DOI: 10.1002/chem.201504631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| | - Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto Ontario M3J 1P3 Canada
- Department of Chemistry and Biochemistry; University of Windsor; Windsor Ontario N9B 3P4 Canada
| | - John T. Lawler
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| | - K. W. Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto Ontario M3J 1P3 Canada
- Department of Chemistry and Biochemistry; University of Windsor; Windsor Ontario N9B 3P4 Canada
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory; Radboud University; Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory; Radboud University; Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Alan C. Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto Ontario M3J 1P3 Canada
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| |
Collapse
|
15
|
Lin Z, Tan L, Yang Y, Dai M, Tureček F, Ouyang Z, Xia Y. Gas-phase reactions of cyclopropenylidene with protonated alkyl amines. Analyst 2016; 141:2412-7. [PMID: 26978226 DOI: 10.1039/c6an00235h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reactions of c-C3H2 with protonated amines are driven by its high gas-phase basicity, forming proton-bound dimer as the first step.
Collapse
Affiliation(s)
- Ziqing Lin
- Weldon School of Biomedical Engineering
- Purdue University
- West Lafayette
- USA
| | - Lei Tan
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - Yang Yang
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - Mingji Dai
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | | | - Zheng Ouyang
- Weldon School of Biomedical Engineering
- Purdue University
- West Lafayette
- USA
- Department of Chemistry
| | - Yu Xia
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
16
|
Lu M, Liu Y, Helmy R, Martin GE, Dewald HD, Chen H. Online Investigation of Aqueous-Phase Electrochemical Reactions by Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1676-1685. [PMID: 26242804 DOI: 10.1007/s13361-015-1210-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/16/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Electrochemistry (EC) combined with mass spectrometry (MS) is a powerful tool for elucidation of electrochemical reaction mechanisms. However, direct online analysis of electrochemical reaction in aqueous phase was rarely explored. This paper presents the online investigation of several electrochemical reactions with biological relevance in the aqueous phase, such as nitrosothiol reduction, carbohydrate oxidation, and carbamazepine oxidation using desorption electrospray ionization mass spectrometry (DESI-MS). It was found that electroreduction of nitrosothiols [e.g., nitrosylated insulin B (13-23)] leads to free thiols by loss of NO, as confirmed by online MS analysis for the first time. The characteristic mass shift of 29 Da and the reduced intensity provide a quick way to identify nitrosylated species. Equally importantly, upon collision-induced dissociation (CID), the reduced peptide ion produces more fragment ions than its nitrosylated precursor ion (presumably the backbone fragmentation cannot compete with the facile NO loss for the precursor ion), thus facilitating peptide sequencing. In the case of saccharide oxidation, it was found that glucose undergoes electro-oxidation to produce gluconic acid at alkaline pH, but not at neutral and acidic pHs. Such a pH-dependent electrochemical behavior was also observed for disaccharides such as maltose and cellobiose. Upon electrochemical oxidation, carbamazepine was found to undergo ring contraction and amide bond cleavage, which parallels the oxidative metabolism observed for this drug in leucocytes. The mechanistic information of these redox reactions revealed by EC/DESI-MS would be of value in nitroso-proteome research and carbohydrate/drug metabolic studies.
Collapse
Affiliation(s)
- Mei Lu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yong Liu
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA.
| | - Roy Helmy
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Gary E Martin
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Howard D Dewald
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
17
|
Iftikhar I, Brajter-Toth A. Solution or Gas Phase? Oxidation and Radical Formation in Electrospray Ionization Mass Spectrometry (ESI MS). ELECTROANAL 2015. [DOI: 10.1002/elan.201500297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Luo J, Theron R, Sewell LJ, Hooper TN, Weller AS, Oliver AG, McIndoe JS. Rhodium-Catalyzed Selective Partial Hydrogenation of Alkynes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00322] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingwei Luo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W3 V6, Canada
| | - Robin Theron
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W3 V6, Canada
| | - Laura J. Sewell
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Thomas N. Hooper
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Andrew S. Weller
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Allen G. Oliver
- Molecular
Structure Facility, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - J. Scott McIndoe
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W3 V6, Canada
| |
Collapse
|
19
|
Oh HB, Moon B. Radical-driven peptide backbone dissociation tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:116-132. [PMID: 24863492 DOI: 10.1002/mas.21426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 05/06/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
In recent years, a number of novel tandem mass spectrometry approaches utilizing radical-driven peptide gas-phase fragmentation chemistry have been developed. These approaches show a peptide fragmentation pattern quite different from that of collision-induced dissociation (CID). The peptide fragmentation features of these approaches share some in common with electron capture dissociation (ECD) or electron transfer dissociation (ETD) without the use of sophisticated equipment such as a Fourier-transform mass spectrometer. For example, Siu and coworkers showed that CID of transition metal (ligand)-peptide ternary complexes led to the formation of peptide radical ions through dissociative electron transfer (Chu et al., 2000. J Phys Chem B 104:3393-3397). The subsequent collisional activation of the generated radical ions resulted in a number of characteristic product ions, including a, c, x, z-type fragments and notable side-chain losses. Another example is the free radical initiated peptide sequencing (FRIPS) approach, in which Porter et al. and Beauchamp et al. independently introduced a free radical initiator to the primary amine group of the lysine side chain or N-terminus of peptides (Masterson et al., 2004. J Am Chem Soc 126:720-721; Hodyss et al., 2005 J Am Chem Soc 127: 12436-12437). Photodetachment of gaseous multiply charged peptide anions (Joly et al., 2008. J Am Chem Soc 130:13832-13833) and UV photodissociation of photolabile radical precursors including a C-I bond (Ly & Julian, 2008. J Am Chem Soc 130:351-358; Ly & Julian, 2009. J Am Soc Mass Spectrom 20:1148-1158) also provide another route to generate radical ions. In this review, we provide a brief summary of recent results obtained through the radical-driven peptide backbone dissociation tandem mass spectrometry approach.
Collapse
Affiliation(s)
- Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 121-742, Republic of Korea
| | | |
Collapse
|
20
|
Nam J, Kwon H, Jang I, Jeon A, Moon J, Lee SY, Kang D, Han SY, Moon B, Oh HB. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:378-387. [PMID: 25800020 DOI: 10.1002/jms.3539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/04/2014] [Accepted: 11/02/2014] [Indexed: 06/04/2023]
Abstract
We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing.
Collapse
Affiliation(s)
- Jungjoo Nam
- Department of Chemistry, Sogang University, Seoul, 121-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lesslie M, Osburn S, van Stipdonk MJ, Ryzhov V. Gas-phase tyrosine-to-cysteine radical migration in model systems. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:589-597. [PMID: 26307738 DOI: 10.1255/ejms.1341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Radical migration, both intramolecular and intermolecular, from the tyrosine phenoxyl radical Tyr(O(∙)) to the cysteine radical Cys(S(∙)) in model peptide systems was observed in the gas phase. Ion-molecule reactions (IMRs) between the radical cation of homotyrosine and propyl thiol resulted in a fast hydrogen atom transfer. In addition, radical cations of the peptide LysTyrCys were formed via two different methods, affording regiospecific production of Tyr(O(∙)) or Cys(S(∙)) radicals. Collision-induced dissociation of these isomeric species displayed evidence of radical migration from the oxygen to sulfur, but not for the reverse process. This was supported by theoretical calculations, which showed the Cys(S(∙)) radical slightly lower in energy than the Tyr(O(∙)) isomer. IMRs of the LysTyrCys radical cation with allyl iodide further confirmed these findings. A mechanism for radical migration involving a proton shuttle by the C-terminal carboxylic group is proposed.
Collapse
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA.
| | - Sandra Osburn
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania15282, USA.
| | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA.
| |
Collapse
|
22
|
Gregori B, Guidoni L, Chiavarino B, Scuderi D, Nicol E, Frison G, Fornarini S, Crestoni ME. Vibrational Signatures of S-Nitrosoglutathione as Gaseous, Protonated Species. J Phys Chem B 2014; 118:12371-82. [DOI: 10.1021/jp5072742] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Leonardo Guidoni
- Dipartimento
di Scienza Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio 2, Coppito, L’Aquila I-64100, Italy
| | | | - Debora Scuderi
- Laboratoire
de Chimie Physique, UMR8000 CNRS, Faculté des Sciences, Université Paris-Sud, Batiment 350, 91405 Orsay Cedex, France
| | - Edith Nicol
- Laboratoire
de Chimie Moléculaire, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | - Gilles Frison
- Laboratoire
de Chimie Moléculaire, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | | | | |
Collapse
|
23
|
Mädler S, Kai-Chi Lau J, Williams D, Wang Y, Saminathan IS, Zhao J, Siu KWM, Hopkinson AC. Fragmentation of Peptide Radical Cations Containing a Tyrosine or Tryptophan Residue: Structural Features That Favor Formation of [x(n–1) + H]•+ and [z(n–1) + H]•+ Ions. J Phys Chem B 2014; 118:6123-33. [DOI: 10.1021/jp5030087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Stefanie Mädler
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - Justin Kai-Chi Lau
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
- Department
of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario Canada N9B 3P4
| | - Declan Williams
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - Yating Wang
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - Irine S. Saminathan
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - Junfang Zhao
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - K. W. Michael Siu
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
- Department
of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario Canada N9B 3P4
| | - Alan C. Hopkinson
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| |
Collapse
|
24
|
Thomas DA, Sohn CH, Gao J, Beauchamp JL. Hydrogen Bonding Constrains Free Radical Reaction Dynamics at Serine and Threonine Residues in Peptides. J Phys Chem A 2014; 118:8380-92. [DOI: 10.1021/jp501367w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel A. Thomas
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Chang Ho Sohn
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jinshan Gao
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - J. L. Beauchamp
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
25
|
Kwon G, Kwon H, Lee J, Han SY, Moon B, Oh HB, Sung BJ. Density Functional Theory (DFT) Study of Gas-phase O.C Bond Dissociation Energy of Models for o-TEMPO-Bz-C(O)-Peptide: A Model Study for Free Radical Initiated Peptide Sequencing. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.3.770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Luo J, Oliver AG, McIndoe JS. A detailed kinetic analysis of rhodium-catalyzed alkyne hydrogenation. Dalton Trans 2014; 42:11312-8. [PMID: 23817327 DOI: 10.1039/c3dt51212f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuous monitoring using electrospray ionisation mass spectrometry (ESI-MS) shows that Wilkinson's catalyst hydrogenates a charge-tagged alkyne to the corresponding alkene, and at only a marginally slower rate, to the alkane. No rhodium-containing intermediates were observed during the reaction, consistent with the established mechanism which points at the initial dissociation of triphenylphosphine from Rh(PPh₃)₃Cl as being the key step in the reaction. A numerical model was constructed that the closely matched the experimental data, and correctly predicted the response of the reaction to the addition of excess PPh₃.
Collapse
Affiliation(s)
- Jingwei Luo
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W3V6, Canada
| | | | | |
Collapse
|
27
|
Marshall DL, Hansen CS, Trevitt AJ, Oh HB, Blanksby SJ. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules. Phys Chem Chem Phys 2014; 16:4871-9. [DOI: 10.1039/c3cp54825b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Lai CK, Mu X, Hao Q, Hopkinson AC, Chu IK. Formation, isomerization, and dissociation of ε- and α-carbon-centered tyrosylglycylglycine radical cations. Phys Chem Chem Phys 2014; 16:24235-43. [DOI: 10.1039/c4cp03119a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CID spectra of [Yε˙GG]+ and [YGGα˙]+ are identical, showing that interconversion occurs prior to dissociation. For [Yε˙GG]+, [Yπ˙GG]+ and [YGα˙G]+, the dissociation products are all distinctly different, indicating that dissociation occurs more readily than isomerization.
Collapse
Affiliation(s)
- Cheuk-Kuen Lai
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, China
| | - Xiaoyan Mu
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, China
| | - Qiang Hao
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, China
| | - Alan C. Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry
- York University
- Toronto, Canada
| | - Ivan K. Chu
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, China
| |
Collapse
|
29
|
Osburn S, O'Hair RAJ. Unleashing radical sites in non-covalent complexes: the case of the protonated S-nitrosocysteine/18-crown-6 complex. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2783-2788. [PMID: 24214864 DOI: 10.1002/rcm.6745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Introducing radicals onto gas-phase non-covalent complexes and studying their chemistry is a relatively unexplored frontier. In generating these radicals via bond homolysis reactions, it is important that the energy necessary for forming the radical does not exceed the energy required for dissociating the complex itself. Based on this consideration, new approaches for creating these radicals will probably have to involve incorporation of weak bonds that can easily undergo homolysis. METHODS The formation of a radical cation, via collision-induced dissociation, of protonated S-nitrosocysteine non-covalently bound to the crown ether 18-crown-6 is described here. The radical cation of this complex was isolated and subjected to collisional activation and ion-molecule reactions with allyl iodide. The results were compared with those of the radical cation of 'bare' cysteine. RESULTS Collisional activation of the radical cation of the cysteine/crown complex led to fragmentation of cysteine as well as of the crown ether. Ion-molecule reactions of the radical cation of the complex with allyl iodide led to products arising from I and allyl abstraction. Isolation and CID of the former product ion led to the loss of iodocysteine. CONCLUSIONS Cleavage of the weak S-NO bond has allowed the formation of a radical site onto a non-covalent complex. Ion-molecule reactions and collisional activation were utilized to probe the chemistry of this radical cation. The approach adopted here for incorporating a radical onto a cysteine/crown complex shows promise for the introduction of radical sites onto other biological non-covalent complexes.
Collapse
Affiliation(s)
- Sandra Osburn
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, 3010, Australia; ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| | | |
Collapse
|
30
|
Lee J, Park H, Kwon H, Kwon G, Jeon A, Kim HI, Sung BJ, Moon B, Oh HB. One-Step Peptide Backbone Dissociations in Negative-Ion Free Radical Initiated Peptide Sequencing Mass Spectrometry. Anal Chem 2013; 85:7044-51. [DOI: 10.1021/ac303517h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jihye Lee
- Department
of Chemistry, Sogang University, Seoul
121-742, Korea
| | - Hyeyeon Park
- Department
of Chemistry, Sogang University, Seoul
121-742, Korea
| | - Hyuksu Kwon
- Department
of Chemistry, Sogang University, Seoul
121-742, Korea
| | - Gyemin Kwon
- Department
of Chemistry, Sogang University, Seoul
121-742, Korea
| | - Aeran Jeon
- Department
of Chemistry, Sogang University, Seoul
121-742, Korea
| | - Hugh I. Kim
- Department
of Chemistry, Pohang University of Science and Technology, Pohang
790-784, Korea
| | - Bong June Sung
- Department
of Chemistry, Sogang University, Seoul
121-742, Korea
| | - Bongjin Moon
- Department
of Chemistry, Sogang University, Seoul
121-742, Korea
| | - Han Bin Oh
- Department
of Chemistry, Sogang University, Seoul
121-742, Korea
| |
Collapse
|
31
|
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, University of Washington , Seattle, Washington 98195-1700, United States
| | | |
Collapse
|
32
|
Osburn S, Berden G, Oomens J, Gulyuz K, Polfer NC, O'Hair RAJ, Ryzhov V. Structure and Reactivity of the Glutathione Radical Cation: Radical Rearrangement from the Cysteine Sulfur to the Glutamic Acid α-Carbon Atom. Chempluschem 2013; 78:970-978. [DOI: 10.1002/cplu.201300057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Indexed: 12/19/2022]
|
33
|
Love CB, Tan L, Francisco JS, Xia Y. Competition of Charge- versus Radical-Directed Fragmentation of Gas-Phase Protonated Cysteine Sulfinyl Radicals. J Am Chem Soc 2013; 135:6226-33. [PMID: 23527556 DOI: 10.1021/ja4008744] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chasity B. Love
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| | - Lei Tan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| | - Joseph S. Francisco
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| | - Yu Xia
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| |
Collapse
|
34
|
Piatkivskyi A, Osburn S, Jaderberg K, Grzetic J, Steill JD, Oomens J, Zhao J, Lau JKC, Verkerk UH, Hopkinson AC, Siu KWM, Ryzhov V. Structure and reactivity of the distonic and aromatic radical cations of tryptophan. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:513-523. [PMID: 23512424 DOI: 10.1007/s13361-013-0594-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
In this work, we regiospecifically generate and compare the gas-phase properties of two isomeric forms of tryptophan radical cations-a distonic indolyl N-radical (H3N(+) - TrpN(•)) and a canonical aromatic π (Trp(•+)) radical cation. The distonic radical cation was generated by nitrosylating the indole nitrogen of tryptophan in solution followed by collision-induced dissociation (CID) of the resulting protonated N-nitroso tryptophan. The π-radical cation was produced via CID of the ternary [Cu(II)(terpy)(Trp)](•2+) complex. CID spectra of the two isomeric species were found to be very different, suggesting no interconversion between the isomers. In gas-phase ion-molecule reactions, the distonic radical cation was unreactive towards n-propylsulfide, whereas the π radical cation reacted by hydrogen atom abstraction. DFT calculations revealed that the distonic indolyl radical cation is about 82 kJ/mol higher in energy than the π radical cation of tryptophan. The low reactivity of the distonic nitrogen radical cation was explained by spin delocalization of the radical over the aromatic ring and the remote, localized charge (at the amino nitrogen). The lack of interconversion between the isomers under both trapping and CID conditions was explained by the high rearrangement barrier of ca.137 kJ/mol. Finally, the two isomers were characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy in the ~1000-1800 cm(-1) region. It was found that some of the main experimental IR features overlap between the two species, making their distinction by IRMPD spectroscopy in this region problematic. In addition, DFT theoretical calculations showed that the IR spectra are strongly conformation-dependent.
Collapse
Affiliation(s)
- Andrii Piatkivskyi
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tan L, Xia Y. Gas-phase reactivity of peptide thiyl (RS•), perthiyl (RSS•), and sulfinyl (RSO•) radical ions formed from atmospheric pressure ion/radical reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:534-542. [PMID: 23354473 DOI: 10.1007/s13361-012-0548-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
In this study, we demonstrated the formation of gas-phase peptide perthiyl (RSS•) and thiyl (RS•) radical ions besides sulfinyl radical (RSO•) ions from atmospheric pressure (AP) ion/radical reactions of peptides containing inter-chain disulfide bonds. The identity of perthiyl radical was verified from characteristic 65 Da (•SSH) loss in collision-induced dissociation (CID). This signature loss was further used to assess the purity of peptide perthiyl radical ions formed from AP ion/radical reactions. Ion/molecule reactions combined with CID were carried out to confirm the formation of thiyl radical. Transmission mode ion/molecule reactions in collision cell (q2) were developed as a fast means to estimate the population of peptide thiyl radical ions. The reactivity of peptide thiyl, perthiyl, and sulfinyl radical ions was evaluated based on ion/molecule reactions toward organic disulfides, allyl iodide, organic thiol, and oxygen, which followed in order of thiyl (RS•) > perthiyl (RSS•) > sulfinyl (RSO•). The gas-phase reactivity of these three types of sulfur-based radicals is consistent with literature reports from solution studies.
Collapse
Affiliation(s)
- Lei Tan
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
36
|
Lu M, Campbell JL, Chauhan R, Grapperhaus CA, Chen H. Probing the reactivity and radical nature of oxidized transition metal-thiolate complexes by mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:502-512. [PMID: 23315345 DOI: 10.1007/s13361-012-0537-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 06/01/2023]
Abstract
Transition metal thiolate complexes such as [PPN](+)[RuL3](-) (PPN = bis(triphenylphosphoranylidene) ammonium and L = diphenylphosphinobenzenethiolate) are known to undergo addition reactions with unsaturated hydrocarbons via the formation of new C-S bonds in solution upon oxidation. The reaction mechanism is proposed to involve metal-stabilized thiyl radical intermediates, a new type of distonic ions such as [RuL3](+) ion in the case of [PPN](+)[RuL3](-). This study presents the reactivity and structure investigation of [RuL3](+) by mass spectrometry (MS) in conjunction with ion/molecule reactions. The addition reactions of [RuL3](+) with alkenes or methyl ketones in the gas phase are indeed observed, in agreement with the proposed mechanism. Such reactivity is also maintained by several fragment ions of [RuL3](+), indicating the preserved thiyl diradical core structure is responsible for the addition reaction. The thiyl radical nature of [RuL3](+) was further verified by the ion/molecule reaction of [RuL3](+) with dimethyl disulfide, in which the characteristic CH3S• transfer occurs, both at atmospheric pressure and also at low pressure (~mTorr). These results provide, for the first time, clear mass spectrometric evidence of the radical nature of [RuL3](+) (i.e., the distonic ion structure of [RuL3](+)), arising from the oxidation of non-innocent thiolate ligands of the complex [PPN](+)[RuL3](-). Similar thiolate complexes, including ReL3 and NiL2, were also examined. Although reactions of oxidized ReL3 or NiL2 with CH3SSCH3 take place at atmospheric pressure, the corresponding reaction did not occur in vacuum. Consistent with these data, the addition of ethylene was not observed either, indicating lower reactivities of [ReL3](+) and [NiL2](+) in comparison to [RuL3](+).
Collapse
Affiliation(s)
- Mei Lu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | |
Collapse
|
37
|
Jones AW, Winn PJ, Cooper HJ. The radical ion chemistry of S-nitrosylated peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2063-2074. [PMID: 23055078 DOI: 10.1007/s13361-012-0492-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/11/2012] [Accepted: 07/20/2012] [Indexed: 06/01/2023]
Abstract
The radical ion chemistry of a suite of S-nitrosopeptides has been investigated. Doubly and triply-protonated ions of peptides NYCGLPGEYWLGNDK, NYCGLPGEYWLGNDR, NYCGLPGERWLGNDR, NACGAPGEKWAGNDK, NYCGLPGEKYLGNDK, NYGLPGCEKWYGNDK and NYGLPGEKWYGCNDK were subjected to electron capture dissociation (ECD), and collision-induced dissociation (CID). The peptide sequences were selected such that the effect of the site of S-nitrosylation, the nature and position of the basic amino acid residues, and the nature of the other amino acid side chains, could be interrogated. The ECD mass spectra were dominated by a peak corresponding to loss of (•)NO from the charge-reduced precursor, which can be explained by a modified Utah-Washington mechanism. Some backbone fragmentation in which the nitrosyl modification was preserved was also observed in the ECD of some peptides. Molecular dynamics simulations of peptide ion structure suggest that the ECD behavior was dependent on the surface accessibility of the protonated residue. CID of the S-nitrosylated peptides resulted in homolysis of the S-N bond to form a long-lived radical with loss of (•)NO. The radical peptide ions were isolated and subjected to ECD and CID. ECD of the radical peptide ions provided an interesting comparison to ECD of the unmodified peptides. The dominant process was electron capture without further dissociation (ECnoD). CID of the radical peptide ions resulted in cysteine, leucine, and asparagine side chain losses, and radical-induced backbone fragmentation at tryptophan, tyrosine, and asparagine residues, in addition to charge-directed backbone fragmentation.
Collapse
Affiliation(s)
- Andrew W Jones
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
38
|
Affiliation(s)
- Sandra Osburn
- Department of Chemistry and Biochemistry and Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | |
Collapse
|
39
|
Tan L, Xia Y. Gas-phase peptide sulfinyl radical ions: formation and unimolecular dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2011-2019. [PMID: 22911098 DOI: 10.1007/s13361-012-0465-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 06/01/2023]
Abstract
A variety of peptide sulfinyl radical (RSO•) ions with a well-defined radical site at the cysteine side chain were formed at atmospheric pressure (AP), sampled into a mass spectrometer, and investigated via collision-induced dissociation (CID). The radical ion formation was based on AP reactions between oxidative radicals and peptide ions containing single inter-chain disulfide bond or free thiol group generated from nanoelectrospray ionization (nanoESI). The radical induced reactions allowed large flexibility in forming peptide radical ions independent of ion polarity (protonated or deprotonated) or charge state (singly or multiply charged). More than 20 peptide sulfinyl radical ions in either positive or negative ion mode were subjected to low energy collisional activation on a triple-quadrupole/linear ion trap mass spectrometer. The competition between radical- and charge-directed fragmentation pathways was largely affected by the presence of mobile protons. For peptide sulfinyl radical ions with reduced proton mobility (i.e., singly protonated, containing basic amino acid residues), loss of 62 Da (CH(2)SO), a radical-initiated dissociation channel, was dominant. For systems with mobile protons, this channel was suppressed, while charge-directed amide bond cleavages were preferred. The polarity of charge was found to significantly alter the radical-initiated dissociation channels, which might be related to the difference in stability of the product ions in different ion charge polarities.
Collapse
Affiliation(s)
- Lei Tan
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | | |
Collapse
|
40
|
Osburn S, Burgie T, Berden G, Oomens J, O’Hair RAJ, Ryzhov V. Structure and Reactivity of Homocysteine Radical Cation in the Gas Phase Studied by Ion–Molecule Reactions and Infrared Multiple Photon Dissociation. J Phys Chem A 2012; 117:1144-50. [DOI: 10.1021/jp304769y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Osburn
- Department of Chemistry and
Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, Dekalb, Illinois 60115,
United States
| | - Ticia Burgie
- Department of Chemistry and
Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, Dekalb, Illinois 60115,
United States
| | - Giel Berden
- FOM Institute for Plasma Physics Rijnhuizen, Nieuwegein, The Netherlands
| | - Jos Oomens
- FOM Institute for Plasma Physics Rijnhuizen, Nieuwegein, The Netherlands
- University of Amsterdam, Amsterdam, The Netherlands
| | - Richard A. J. O’Hair
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010,
Australia
- Bio21 Institute
of Molecular
Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Melbourne,
Victoria 3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and
Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, Dekalb, Illinois 60115,
United States
| |
Collapse
|
41
|
Song T, Ma CY, Chu IK, Siu CK, Laskin J. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations. J Phys Chem A 2012; 117:1059-68. [PMID: 22697598 DOI: 10.1021/jp303562e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Song
- Department
of Chemistry and ‡School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ching-Yung Ma
- Department
of Chemistry and ‡School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ivan K. Chu
- Department
of Chemistry and ‡School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi-Kit Siu
- Department
of Biology and Chemistry, City University of Hong Kong, Hong Kong,
China
| | - Julia Laskin
- Chemical
and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99354, United States
| |
Collapse
|
42
|
Hao Q, Song T, Ng DCM, Quan Q, Siu CK, Chu IK. Arginine-Facilitated Isomerization: Radical-Induced Dissociation of Aliphatic Radical Cationic Glycylarginyl(iso)leucine Tripeptides. J Phys Chem B 2012; 116:7627-34. [DOI: 10.1021/jp301882p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiang Hao
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department
of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Tao Song
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Dominic C. M. Ng
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chi-Kit Siu
- Department
of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ivan K. Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Osburn S, Berden G, Oomens J, O'Hair RAJ, Ryzhov V. S-to-αC radical migration in the radical cations of Gly-Cys and Cys-Gly. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1019-1023. [PMID: 22371052 DOI: 10.1007/s13361-012-0356-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/24/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
The radical cations of Cys-Gly and Gly-Cys were studied using ion-molecule reactions (IMR), infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. Homolytic cleavage of the S-NO bond of nitrosylated precursors generated radical cations with the radical site initially located on the sulfur atom. Time-resolved ion-molecule reactions showed that radical site migration via hydrogen atom transfer (HAT) occurred much more quickly in Gly-Cys(•+) than in Cys-Gly(•+). IRMPD and DFT calculations indicated that for Gly-Cys, the radical migrated from the sulfur atom to the α-carbon of glycine, which is lower in energy than the sulfur radical (-53.5 kJ/mol). This migration does not occur for Cys-Gly because the glycine α-carbon is higher in energy than the sulfur radical (10.3 kJ/mol). DFT calculations showed that the highest energy barriers for rearrangement are 68.2 kJ/mol for Gly-Cys and 133.8 kJ/mol for Cys-Gly, which is in agreement with both the IMR and IRMPD data and explains the HAT in Gly-Cys.
Collapse
Affiliation(s)
- Sandra Osburn
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, IL, USA
| | | | | | | | | |
Collapse
|
44
|
Song T, Hao Q, Law CH, Siu CK, Chu IK. Novel Cβ-Cγ bond cleavages of tryptophan-containing peptide radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:264-273. [PMID: 22135037 PMCID: PMC3264861 DOI: 10.1007/s13361-011-0295-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/24/2011] [Accepted: 10/29/2011] [Indexed: 05/31/2023]
Abstract
In this study, we observed unprecedented cleavages of the C(β)-C(γ) bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M(•+)) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M - 116](+) ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent C(β)-C(γ) bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH - 43](+) and [WGGGH - 116](+), obtained from the CID of [LGGGH](•+) and [WGGGH](•+), respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind](•)-2), in agreement with the CID data for [WGGGH](•+) and [W(1-CH3)GGGH](•+); replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from C(β)-C(γ) bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the C(β)-C(γ) bond and, therefore, decreases the dissociation energy barrier dramatically.
Collapse
Affiliation(s)
- Tao Song
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Qiang Hao
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chun-Hin Law
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chi-Kit Siu
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ivan K. Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Cole SR, Ma X, Zhang X, Xia Y. Electron transfer dissociation (ETD) of peptides containing intrachain disulfide bonds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:310-320. [PMID: 22161508 DOI: 10.1007/s13361-011-0300-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 05/31/2023]
Abstract
The fragmentation chemistry of peptides containing intrachain disulfide bonds was investigated under electron transfer dissociation (ETD) conditions. Fragments within the cyclic region of the peptide backbone due to intrachain disulfide bond formation were observed, including: c (odd electron), z (even electron), c-33 Da, z+33 Da, c+32 Da, and z-32 Da types of ions. The presence of these ions indicated cleavages both at the disulfide bond and the N-Cα backbone from a single electron transfer event. Mechanistic studies supported a mechanism whereby the N-Cα bond was cleaved first, and radical-driven reactions caused cleavage at either an S-S bond or an S-C bond within cysteinyl residues. Direct ETD at the disulfide linkage was also observed, correlating with signature loss of 33 Da (SH) from the charge-reduced peptide ions. Initial ETD cleavage at the disulfide bond was found to be promoted amongst peptides ions of lower charge states, while backbone fragmentation was more abundant for higher charge states. The capability of inducing both backbone and disulfide bond cleavages from ETD could be particularly useful for sequencing peptides containing intact intrachain disulfide bonds. ETD of the 13 peptides studied herein all showed substantial sequence coverage, accounting for 75%-100% of possible backbone fragmentation.
Collapse
Affiliation(s)
- Scott R Cole
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
46
|
Osburn S, O'Hair RA, Black SM, Ryzhov V. Post-translational modification in the gas phase: mechanism of cysteine S-nitrosylation via ion-molecule reactions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3216-22. [PMID: 22006383 PMCID: PMC3908822 DOI: 10.1002/rcm.5219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The gas-phase mechanism of S-nitrosylation of thiols was studied in a quadrupole ion trap mass spectrometer. This was done via ion-molecule reactions of protonated cysteine and many of its derivatives and other thiol ions with neutral tert-butyl nitrite or nitrous acid. Our results showed that the presence of the carboxylic acid functional group, -COOH, in the vicinity of the thiol group is essential for the gas-phase nitrosylation of thiols. When the carboxyl proton is replaced by a methyl group (cysteine methyl ester) no nitrosylation was observed. Other thiols lacking a carboxylic acid functional group displayed no S-nitrosylation, strongly suggesting that the carboxyl hydrogen plays a key role in the nitrosylation process. These results are in excellent agreement with a solution-phase mechanism proposed by Stamler et al. (J. S. Stamler, E. J. Toone, S. A. Lipton, N. J. Sucher. Neuron 1997, 18, 691-696) who suggested a catalytic role for the carboxylic acid group adjacent to cysteine residues and with later additions by Ascenzi et al. (P. Ascenzi, M. Colasanti, T. Persichini, M. Muolo, F. Polticelli, G. Venturini, D. Bordo, M. Bolognesi. Biol. Chem. 2000, 381, 623-627) who postulated that the presence of the carboxyl in the cysteine microenvironment in proteins is crucial for S-nitrosylation. A concerted mechanism for the gas-phase S-nitrosylation was proposed based on our results and was further studied using theoretical calculations. Our calculations showed that this proposed pathway is exothermic by 44.0 kJ mol(-1). This is one of the few recent examples when a gas-phase mechanism matches one in solution.
Collapse
Affiliation(s)
- Sandra Osburn
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, IL 60115, USA
| | - Richard A.J. O'Hair
- School of Chemistry, University of Melbourne; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne; and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Melbourne, VIC 3010, Australia
| | - Stephen M. Black
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, IL 60115, USA
- Correspondence to: V. Ryzhov, Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
47
|
Osburn S, Berden G, Oomens J, O'Hair RAJ, Ryzhov V. Structure and reactivity of the N-acetyl-cysteine radical cation and anion: does radical migration occur? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1794-1803. [PMID: 21952893 DOI: 10.1007/s13361-011-0198-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S-NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol(-1) lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011, 17, 873-879) and the study by Sinha et al. for cysteine radical cation (Phys. Chem. Chem. Phys. 2010, 12, 9794-9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M - 2H)( •- ). IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol(-1)) position, and does not rearrange.
Collapse
Affiliation(s)
- Sandra Osburn
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | | | |
Collapse
|
48
|
Ganisl B, Valovka T, Hartl M, Taucher M, Bister K, Breuker K. Electron detachment dissociation for top-down mass spectrometry of acidic proteins. Chemistry 2011; 17:4460-9. [PMID: 21433149 PMCID: PMC3120980 DOI: 10.1002/chem.201003709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Indexed: 02/01/2023]
Abstract
Electron detachment dissociation (EDD) is an emerging mass spectrometry (MS) technique for the primary structure analysis of peptides, carbohydrates, and oligonucleotides. Herein, we explore the potential of EDD for sequencing of proteins of up to 147 amino acid residues by using top-down MS. Sequence coverage ranged from 72% for Melittin, which lacks carboxylic acid functionalities, to 19% for an acidic 147-residue protein, to 12% for Ferredoxin, which showed unusual backbone fragmentation next to cysteine residues. A limiting factor for protein sequencing by EDD is the facile loss of small molecules from amino acid side chains, in particular CO(2). Based on the types of fragments observed and fragmentation patterns found, we propose detailed mechanisms for protein backbone cleavage and side chain dissociation in EDD. The insights from this study should further the development of EDD for top-down MS of acidic proteins.
Collapse
Affiliation(s)
- Barbara Ganisl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnrain 52a, 6020 Innsbruck (Austria), Fax: (+43) 512-507-2892 E-mail:
| | - Taras Valovka
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckPeter-Mayr-Strasse 1a, 6020 Innsbruck (Austria)
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckPeter-Mayr-Strasse 1a, 6020 Innsbruck (Austria)
| | - Monika Taucher
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnrain 52a, 6020 Innsbruck (Austria), Fax: (+43) 512-507-2892 E-mail:
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckPeter-Mayr-Strasse 1a, 6020 Innsbruck (Austria)
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnrain 52a, 6020 Innsbruck (Austria), Fax: (+43) 512-507-2892 E-mail:
| |
Collapse
|
49
|
Structural characterization by infrared multiple photon dissociation spectroscopy of protonated gas-phase ions obtained by electrospray ionization of cysteine and dopamine. Anal Bioanal Chem 2011; 399:2463-73. [DOI: 10.1007/s00216-010-4582-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 01/23/2023]
|
50
|
Song T, Ng DCM, Quan Q, Siu CK, Chu IK. Arginine-Facilitated α- and π-Radical Migrations in Glycylarginyltryptophan Radical Cations. Chem Asian J 2011; 6:888-98. [DOI: 10.1002/asia.201000677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Indexed: 12/16/2022]
|