1
|
Jia Y, Liu Y, Wang Y, Li J, Li G. Sialylation-induced stabilization of dynamic glycoprotein conformations unveiled by time-aligned parallel unfolding and glycan release mass spectrometry. Chem Sci 2024:d4sc03672g. [PMID: 39165727 PMCID: PMC11331314 DOI: 10.1039/d4sc03672g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Sialylation, a critical post-translational modification, regulates glycoprotein structure and function by tuning their molecular heterogeneity. However, characterizing its subtle and dynamic conformational effects at the intact glycoprotein level remains challenging. We introduce a glycoform-resolved unfolding approach based on a high-throughput ion mobility-mass spectrometry (IM-MS) platform. This method integrates high-throughput unfolding with parallel fragmentation, enabling simultaneous analysis of sialylation patterns, stoichiometries, and their impact on conformational stability. Applying this approach to fetuin, we identified distinct sialylation patterns and their differential influence on protein conformation, namely sialylation-induced stabilization during early unfolding and increased flexibility in later unfolding stages. IM-MS-guided molecular dynamics simulations revealed that increased sialylation enhances the initial conformational stability, likely through enhanced electrostatic interactions and hydrogen bonding. These findings highlight the complex interplay between sialylation and protein dynamics and establish glycoform-resolved unfolding IM-MS as a powerful tool for characterizing glycoprotein conformational landscapes.
Collapse
Affiliation(s)
- Yifei Jia
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yichang Liu
- School of Pharmacy, Nantong University Nantong 226001 Jiangsu China
| | - Yamei Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jinyu Li
- College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
2
|
Ewonde Ewonde R, Böttinger K, De Vos J, Lingg N, Jungbauer A, Pohl CA, Huber CG, Desmet G, Eeltink S. Selectivity and Resolving Power of Hydrophobic Interaction Chromatography Targeting the Separation of Monoclonal Antibody Variants. Anal Chem 2024; 96:1121-1128. [PMID: 38190620 PMCID: PMC10809212 DOI: 10.1021/acs.analchem.3c04011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
This study presents a comprehensive investigation of the mechanistic understanding of retention and selectivity in hydrophobic interaction chromatography. It provides valuable insights into crucial method-development parameters involved in achieving chromatographic resolution for profiling molecular variants of trastuzumab. Retention characteristics have been assessed for three column chemistries, i.e., butyl, alkylamide, and long-stranded multialkylamide ligands, while distinguishing column hydrophobicity and surface area. Salt type and specifically chloride ions proved to be the key driver for improving chromatographic selectivity, and this was attributed to the spatial distribution of ions at the protein surface, which is ion-specific. The effect was notably more pronounced on the multialkylamide column, as proteins intercalated between the multiamide polymer strands, enabling steric effects. Column coupling proved to be an effective approach for maximizing resolution between molecular variants present in the trastuzumab reference sample and trastuzumab variants induced by forced oxidation. Liquid chromatography-mass spectrometry (LC-MS)/MS peptide mapping experiments after fraction collection indicate that the presence of chloride in the mobile phase enables the selectivity of site-specific deamidation (N30) situated at the heavy chain. Moreover, site-specific oxidation of peptides (M255, W420, and M431) was observed for peptides situated at the Fc region close to the CH2-CH3 interface, previously reported to activate unfolding of trastuzumab, increasing the accessible surface area and hence resulting in an increase in chromatographic retention.
Collapse
Affiliation(s)
- Raphael Ewonde Ewonde
- Department
of Chemical Engineering, Vrije Universiteit
Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Katharina Böttinger
- Department
of Biosciences and Medical Biology, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Jelle De Vos
- Department
of Chemical Engineering, Vrije Universiteit
Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Nico Lingg
- Department
of Biotechnology, Institute of Bioprocess
Science and Engineering, University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alois Jungbauer
- Department
of Biotechnology, Institute of Bioprocess
Science and Engineering, University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria
| | | | - Christian G. Huber
- Department
of Biosciences and Medical Biology, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Gert Desmet
- Department
of Chemical Engineering, Vrije Universiteit
Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Sebastiaan Eeltink
- Department
of Chemical Engineering, Vrije Universiteit
Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
4
|
Chon H, Kanamori S, Hibino K, Nagahara T, Suzuki T, Ohara K, Narumi H. ez-ADiCon: A novel glyco-remodeling based strategy that enables preparation of homogenous antibody-drug conjugates via one-step enzymatic transglycosylation with payload-preloaded bi-antennary glycan complexes. Bioorg Med Chem Lett 2023; 80:129117. [PMID: 36584791 DOI: 10.1016/j.bmcl.2022.129117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
The conserved N-linked glycan at the Fc domain of recombinant monoclonal antibodies is an attractive target for site-specific payload conjugation for preparation of homogenous antibody-drug conjugates (ADCs). Here, we report a novel ADC constructing strategy, named "ez-ADiCon", that is achieved by one-step enzymatic transglycosylation of a payload-preloaded bi-antennary glycan oxazoline onto a deglycosylated antibody. In this method, a mixture of different glycoforms of the Fc-glycan is replaced with a pre-defined payload-linked glycan. Since two payloads are linked on each donor glycan substrate, efficient conjugation results in a highly homogenous ADC with mostly-four drug molecules per antibody, facilitating hydrophobic interaction chromatography analysis and purification. We validated this conjugation strategy using Monomethyl auristatin E (MMAE) and an anti-Human epidermal growth factor receptor 2 (anti-Her2) antibody as the model ADC components and demonstrated its target-specific in vitro cytotoxicity. Our novel conjugation strategy, ez-ADiCon, provides a new approach for the preparation of next generation ADCs.
Collapse
Affiliation(s)
- Hyongi Chon
- MicroBiopharm Japan Co., Ltd, 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Satoshi Kanamori
- MicroBiopharm Japan Co., Ltd, 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kazuhiro Hibino
- MicroBiopharm Japan Co., Ltd, 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Takashi Nagahara
- MicroBiopharm Japan Co., Ltd, 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Tomohiko Suzuki
- MicroBiopharm Japan Co., Ltd, 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Keiichiro Ohara
- MicroBiopharm Japan Co., Ltd, 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Hideki Narumi
- MicroBiopharm Japan Co., Ltd, 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan.
| |
Collapse
|
5
|
Kellie JF, Schneck NA, Causon JC, Baba T, Mehl JT, Pohl KI. Top-Down Characterization and Intact Mass Quantitation of a Monoclonal Antibody Drug from Serum by Use of a Quadrupole TOF MS System Equipped with Electron-Activated Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:17-26. [PMID: 36459688 DOI: 10.1021/jasms.2c00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Time-of-flight MS systems for biopharmaceutical and protein characterization applications may play an even more pivotal role in the future as biotherapeutics increase in drug pipelines and as top-down MS approaches increase in use. Here, a recently developed TOF MS system is examined for monoclonal antibody (mAb) characterization from serum samples. After immunocapture, purified drug material spiked into monkey serum or dosed for an in-life study is analyzed by top-down MS. While characterization aspects are a distinct advantage of the MS platform, MS system and software capabilities are also shown regarding intact protein quantitation. Such applications are demonstrated to help enable comprehensive protein molecule quantitation and characterization by use of TOF MS instrumentation.
Collapse
Affiliation(s)
- John F Kellie
- GSK, Collegeville, Pennsylvania 19426, United States
| | | | | | | | - John T Mehl
- GSK, Collegeville, Pennsylvania 19426, United States
| | | |
Collapse
|
6
|
Reinders LMH, Klassen MD, Teutenberg T, Jaeger M, Schmidt TC. Comparison of originator and biosimilar monoclonal antibodies using HRMS, Fc affinity chromatography, and 2D-HPLC. Anal Bioanal Chem 2022; 414:6761-6769. [PMID: 35895102 DOI: 10.1007/s00216-022-04236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Due to the complex manufacturing process of therapeutic monoclonal antibodies, it is hardly possible to produce an identical copy of the original product (originator). Consequently, follow-on products (biosimilars) must demonstrate their efficacy being similar to the originator in terms of structure and function. During this process, a variety of analytical methods are required for this purpose. This study focuses on three particularly relevant analytical techniques: high-resolution mass spectrometry, fragment crystallisable (Fc) affinity chromatography, and two-dimensional peptide mapping. Each analytical method proved able to identify specific differences between originator and biosimilar. High-resolution mass spectrometry was used to characterize the glycan pattern. It was shown that a trastuzumab biosimilar did not have the G0:G0F sugar modification identified in the originator. The application of affinity chromatography to rituximab showed that originator and biosimilar interacted differently with the immobilized Fc receptor. Furthermore, 2D-HPLC peptide mapping demonstrated the influence of orthogonality of separation dimensions, leading to differentiation of a rituximab originator and biosimilar.
Collapse
Affiliation(s)
- Lars M H Reinders
- Institut Für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
- Hochschule Niederrhein (University of Applied Science), Reinarzstr. 49, 47805, Krefeld, Germany
- Instrumental Analytical Chemistry, Faculty of Chemistry, University Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Martin D Klassen
- Institut Für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Thorsten Teutenberg
- Institut Für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany.
| | - Martin Jaeger
- Hochschule Niederrhein (University of Applied Science), Reinarzstr. 49, 47805, Krefeld, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
7
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
8
|
Commercial-scale Economic Comparison of Different Batch Modes for Upstream and Downstream Processing of Monoclonal Antibody. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Arndt JR, Wormwood Moser KL, Van Aken G, Doyle RM, Talamantes T, DeBord D, Maxon L, Stafford G, Fjeldsted J, Miller B, Sherman M. High-Resolution Ion-Mobility-Enabled Peptide Mapping for High-Throughput Critical Quality Attribute Monitoring. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2019-2032. [PMID: 33835810 DOI: 10.1021/jasms.0c00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Characterization and monitoring of post-translational modifications (PTMs) by peptide mapping is a ubiquitous assay in biopharmaceutical characterization. Often, this assay is coupled to reversed-phase liquid chromatographic (LC) separations that require long gradients to identify all components of the protein digest and resolve critical modifications for relative quantitation. Incorporating ion mobility (IM) as an orthogonal separation that relies on peptide structure can supplement the LC separation by providing an additional differentiation filter to resolve isobaric peptides, potentially reducing ambiguity in identification through mobility-aligned fragmentation and helping to reduce the run time of peptide mapping assays. A next-generation high-resolution ion mobility (HRIM) technique, based on structures for lossless ion manipulations (SLIM) technology with a 13 m ion path, provides peak capacities and higher resolving power that rivals traditional chromatographic separations and, owing to its ability to resolve isobaric peptides that coelute in faster chromatographic methods, allows for up to 3× shorter run times than conventional peptide mapping methods. In this study, the NIST monoclonal antibody IgG1κ (NIST RM 8671, NISTmAb) was characterized by LC-HRIM-MS and LC-HRIM-MS with collision-induced dissociation (HRIM-CID-MS) using a 20 min analytical method. This approach delivered a sequence coverage of 96.5%. LC-HRIM-CID-MS experiments provided additional confidence in sequence determination. HRIM-MS resolved critical oxidations, deamidations, and isomerizations that coelute with their native counterparts in the chromatographic dimension. Finally, quantitative measurements of % modification were made using only the m/z-extracted HRIM arrival time distributions, showing good agreement with the reference liquid-phase separation. This study shows, for the first time, the analytical capability of HRIM using SLIM technology for enhancing peptide mapping workflows relevant to biopharmaceutical characterization.
Collapse
Affiliation(s)
- James R Arndt
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Kelly L Wormwood Moser
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Gregory Van Aken
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Rory M Doyle
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Tatjana Talamantes
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Laura Maxon
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - George Stafford
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - John Fjeldsted
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Bryan Miller
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Melissa Sherman
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
10
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
11
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
12
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
13
|
Wang H, Todd DA, Chiu NHL. Enhanced differentiation of isomeric RNA modifications by reducing the size of ions in ion mobility mass spectrometric measurements. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00243-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractWith the ability to differentiate different molecular sizes, ion mobility spectrometry (IMS) has great potentials in the analysis of isomeric compounds. However, due to the lack of sensitivity and resolution, IMS has not been commonly used. To address the issue on resolution, the goals of this study are to explore a more effective way to perform IMS by reducing the size of ions prior to the IM measurements, and apply the new approach to the differentiation of isomeric RNA modifications. The size reduction of ribonucleoside ions was effectively accomplished by using the collision-induced dissociation process, in which the N-glycosidic bond in ribonucleoside was cleaved and split the ions into two parts—a smaller nucleobase ion and a neutral molecule of ribose sugar. Since the chemical group that corresponds to most of the RNA modifications makes up a relatively small part of the molecular structure of nucleobases, the differentiation of the dissociated nucleobase ions is expected to require a lower ion mobility resolution than the differentiation of bigger isomeric ribonucleoside ions. By using RNA methylation as a model in this study, the proposed method lowered the required resolution by 16% for the differentiation of 1-methyladenosine and N6-methyladenosine. Similar results were also obtained from the differentiation of methylated cytidine isomers. In comparison to the results obtained from using the conventional tandem mass spectrometric method, there was no significant loss of signals when the proposed method was used. The proposed method is expected to be applicable to other types of isomeric compounds. Also, the same approach is applicable on other IMS platforms.
Collapse
|
14
|
Källsten M, Hartmann R, Kovac L, Lehmann F, Lind SB, Bergquist J. Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody-Drug Conjugates. Antibodies (Basel) 2020; 9:antib9030046. [PMID: 32911603 PMCID: PMC7551423 DOI: 10.3390/antib9030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are heterogeneous biotherapeutics and differ vastly in their physicochemical properties depending on their design. The number of small drug molecules covalently attached to each antibody molecule is commonly referred to as the drug-to-antibody ratio (DAR). Established analytical protocols for mass spectrometry (MS)-investigation of antibodies and ADCs often require sample treatment such as desalting or interchain disulfide bond reduction prior to analysis. Herein, the impact of the desalting and reduction steps-as well as the sample concentration and elapsed time between synthesis and analysis of DAR-values (as acquired by reversed phase liquid chromatography MS (RPLC-MS))-was investigated. It was found that the apparent DAR-values could fluctuate by up to 0.6 DAR units due to changes in the sample preparation workflow. For methods involving disulfide reduction by means of dithiothreitol (DTT), an acidic quench is recommended in order to increase DAR reliability. Furthermore, the addition of a desalting step was shown to benefit the ionization efficiencies in RPLC-MS. Finally, in the case of delayed analyses, samples can be stored at four degrees Celsius for up to one week but are better stored at -20 °C for longer periods of time. In conclusion, the results demonstrate that commonly used sample preparation procedures and storage conditions themselves may impact MS-derived DAR-values, which should be taken into account when evaluating analytical procedures.
Collapse
Affiliation(s)
- Malin Källsten
- Department of Chemistry-BMC, Uppsala University, S-75124 Uppsala, Sweden;
- Recipharm OT Chemistry AB, S-75450 Uppsala, Sweden;
- Correspondence: (M.K.); (J.B.); Tel.: +46-(0)18-4713696 (M.K.); +46-(0)18-4713675 (J.B.)
| | - Rafael Hartmann
- Department of Medicinal Chemistry, Uppsala University, S-75123 Uppsala, Sweden;
| | - Lucia Kovac
- Recipharm OT Chemistry AB, S-75450 Uppsala, Sweden;
| | | | | | - Jonas Bergquist
- Department of Chemistry-BMC, Uppsala University, S-75124 Uppsala, Sweden;
- Correspondence: (M.K.); (J.B.); Tel.: +46-(0)18-4713696 (M.K.); +46-(0)18-4713675 (J.B.)
| |
Collapse
|
15
|
Kenderdine T, Nemati R, Baker A, Palmer M, Ujma J, FitzGibbon M, Deng L, Royzen M, Langridge J, Fabris D. High-resolution ion mobility spectrometry-mass spectrometry of isomeric/isobaric ribonucleotide variants. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4465. [PMID: 31697854 PMCID: PMC8363168 DOI: 10.1002/jms.4465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 10/22/2019] [Indexed: 06/01/2023]
Abstract
In this report, we explored the benefits of cyclic ion mobility (cIM) mass spectrometry in the analysis of isomeric post-transcriptional modifications of RNA. Standard methyl-cytidine samples were initially utilized to test the ability to correctly distinguish different structures sharing the same elemental composition and thus molecular mass. Analyzed individually, the analytes displayed characteristic arrival times (tD ) determined by the different positions of the modifying methyl groups onto the common cytidine scaffold. Analyzed in mixture, the widths of the respective signals resulted in significant overlap that initially prevented their resolution on the tD scale. The separation of the four isomers was achieved by increasing the number of passes through the cIM device, which enabled to fully differentiate the characteristic ion mobility behaviors associated with very subtle structural variations. The placement of the cIM device between the mass-selective quadrupole and the time-of-flight analyzer allowed us to perform gas-phase activation of each of these ion populations, which had been first isolated according to a common mass-to-charge ratio and then separated on the basis of different ion mobility behaviors. The observed fragmentation patterns confirmed the structures of the various isomers thus substantiating the benefits of complementing unique tD information with specific fragmentation data to reach more stringent analyte identification. These capabilities were further tested by analyzing natural mono-nucleotide mixtures obtained by exonuclease digestion of total RNA extracts. In particular, the combination of cIM separation and post-mobility dissociation allowed us to establish the composition of methyl-cytidine and methyl-adenine components present in the entire transcriptome of HeLa cells. For this reason, we expect that this technique will benefit not only epitranscriptomic studies requiring the determination of identity and expression levels of RNA modifications, but also metabolomics investigations involving the analysis of natural extracts that may possibly contain subsets of isomeric/isobaric species.
Collapse
Affiliation(s)
| | | | - A. Baker
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - M. Palmer
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - J. Ujma
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - M FitzGibbon
- University at Albany, Albany, NY 12222
- University of California San Diego, La Jolla, CA 92093
| | - L. Deng
- University at Albany, Albany, NY 12222
| | - M. Royzen
- University at Albany, Albany, NY 12222
| | | | - D. Fabris
- University at Albany, Albany, NY 12222
| |
Collapse
|
16
|
Quaranta A, Spasova M, Passarini E, Karlsson I, Ndreu L, Thorsén G, Ilag LL. N-Glycosylation profiling of intact target proteins by high-resolution mass spectrometry (MS) and glycan analysis using ion mobility-MS/MS. Analyst 2020; 145:1737-1748. [DOI: 10.1039/c9an02081k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation characterization could lead to the discovery of biomarkers and is crucial in quality control of biopharmaceuticals. Here we present a method to quantify glycoforms on intact proteins, with parallel glycan identification by IMS-MS/MS.
Collapse
Affiliation(s)
- Alessandro Quaranta
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Maya Spasova
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Elena Passarini
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Isabella Karlsson
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Lorena Ndreu
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Gunnar Thorsén
- IVL Swedish Environmental Research Institute
- 11428 Stockholm
- Sweden
| | - Leopold L. Ilag
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| |
Collapse
|
17
|
Historical, current and future developments of travelling wave ion mobility mass spectrometry: A personal perspective. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Hingorani DV, Doan MK, Camargo MF, Aguilera J, Song SM, Pizzo D, Scanderbeg DJ, Cohen EEW, Lowy AM, Adams SR, Advani SJ. Precision Chemoradiotherapy for HER2 Tumors Using Antibody Conjugates of an Auristatin Derivative with Reduced Cell Permeability. Mol Cancer Ther 2019; 19:157-167. [PMID: 31597712 DOI: 10.1158/1535-7163.mct-18-1302] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/07/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
Abstract
The most successful therapeutic strategies for locally advanced cancers continue to combine decades-old classical radiosensitizing chemotherapies with radiotherapy. Molecular targeted radiosensitizers offer the potential to improve the therapeutic ratio by increasing tumor-specific kill while minimizing drug delivery and toxicity to surrounding normal tissue. Auristatins are a potent class of anti-tubulins that sensitize cells to ionizing radiation damage and are chemically amenable to antibody conjugation. To achieve tumor-selective radiosensitization, we synthesized and tested anti-HER2 antibody-drug conjugates of two auristatin derivatives with ionizing radiation. Monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) were attached to the anti-HER2 antibodies trastuzumab and pertuzumab through a cleavable linker. While MMAE is cell permeable, MMAF has limited cell permeability as free drug resulting in diminished cytotoxicity and radiosensitization. However, when attached to trastuzumab or pertuzumab, MMAF was as efficacious as MMAE in blocking HER2-expressing tumor cells in G2-M. Moreover, MMAF anti-HER2 conjugates selectively killed and radiosensitized HER2-rich tumor cells. Importantly, when conjugated to targeting antibody, MMAF had the advantage of decreased bystander and off-target effects compared with MMAE. In murine xenograft models, MMAF anti-HER2 antibody conjugates had less drug accumulated in the normal tissue surrounding tumors compared with MMAE. Therapeutically, systemically injected MMAF anti-HER2 conjugates combined with focal ionizing radiation increased tumor control and improved survival of mice with HER2-rich tumor xenografts. In summary, our results demonstrate the potential of cell-impermeable radiosensitizing warheads to improve the therapeutic ratio of radiotherapy by leveraging antibody-drug conjugate technology.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Matthew K Doan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Maria F Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Joseph Aguilera
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Seung M Song
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Daniel J Scanderbeg
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Ezra E W Cohen
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego, La Jolla, California
- University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Andrew M Lowy
- University of California San Diego, Moores Cancer Center, La Jolla, California
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
- University of California San Diego, Moores Cancer Center, La Jolla, California
| |
Collapse
|
19
|
Brown KA, Rajendran S, Dowd J, Wilson DJ. Rapid characterization of structural and functional similarity for a candidate bevacizumab (Avastin) biosimilar using a multipronged mass‐spectrometry‐based approach. Drug Test Anal 2019; 11:1207-1217. [DOI: 10.1002/dta.2609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Kerene A. Brown
- Chemistry DepartmentYork University Toronto ON Canada
- The Centre for Research in Mass SpectrometryYork University Toronto ON Canada
| | | | - Jason Dowd
- Apobiologix (division of Apotex Inc.) Toronto ON Canada
| | - Derek J. Wilson
- Chemistry DepartmentYork University Toronto ON Canada
- The Centre for Research in Mass SpectrometryYork University Toronto ON Canada
| |
Collapse
|
20
|
Upton R, Migas LG, Pacholarz KJ, Beniston RG, Estdale S, Firth D, Barran PE. Hybrid mass spectrometry methods reveal lot-to-lot differences and delineate the effects of glycosylation on the tertiary structure of Herceptin®. Chem Sci 2019; 10:2811-2820. [PMID: 30997002 PMCID: PMC6425993 DOI: 10.1039/c8sc05029e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/12/2019] [Indexed: 12/23/2022] Open
Abstract
To quantify the measurable variations in the structure of a biopharmaceutical product we systematically evaluate three lots of Herceptin®, two mAb standards and an intact Fc-hinge fragment. Each mAb is examined in three states; glycan intact, truncated (following endoS2 treatment) and fully deglycosylated. Despite equivalence at the intact protein level, each lot of Herceptin® gives a distinctive signature in three different mass spectrometry approaches. Ion mobility mass spectrometry (IM-MS) shows that in the API, the attached N-glycans reduce the conformational spread of each mAb by 10.5-25%. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) data support this, with lower global deuterium uptake in solution when comparing intact to the fully deglycosylated protein. HDX-MS and activated IM-MS map the influence of glycans on the mAb and reveal allosteric effects which extend far beyond the Fc domains into the Fab region. Taken together, these findings and the supplied interactive data sets establish acceptance criteria with application for MS based characterisation of biosimilars and novel therapeutic mAbs.
Collapse
Affiliation(s)
- Rosie Upton
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Lukasz G Migas
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Kamila J Pacholarz
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | | | - Sian Estdale
- Covance Laboratories Ltd. , Otley Road , Harrogate , HG3 1PY , UK
| | - David Firth
- Covance Laboratories Ltd. , Otley Road , Harrogate , HG3 1PY , UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| |
Collapse
|
21
|
Kaur U, Johnson DT, Chea EE, Deredge DJ, Espino JA, Jones LM. Evolution of Structural Biology through the Lens of Mass Spectrometry. Anal Chem 2019; 91:142-155. [PMID: 30457831 PMCID: PMC6472977 DOI: 10.1021/acs.analchem.8b05014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Danté T. Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Emily E. Chea
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jessica A. Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
22
|
Kolli V, Schumacher KN, Dodds ED. Ion mobility-resolved collision-induced dissociation and electron transfer dissociation of N-glycopeptides: gathering orthogonal connectivity information from a single mass-selected precursor ion population. Analyst 2018; 142:4691-4702. [PMID: 29119999 DOI: 10.1039/c7an01196b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycopeptide-level mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses are commonly performed to establish site-specific protein glycosylation profiles that are of central importance to gaining structure-function insights on glycoproteins. Confoundingly, the complete characterization of glycopeptide connectivity usually requires the acquisition of multiple MS/MS fragmentation spectra. Complementary ion fragmentation techniques such as collision-induced dissociation (CID) and electron transfer dissociation (ETD) are often applied in concert to address this need. While structurally informative, the requirement for acquisition of two MS/MS spectra per analyte places considerable limitations upon the breadth and depth of large-scale glycoproteomic inquiry. Here, a previously developed method of multiplexing CID and ETD is applied to the study of glycopeptides for the first time. Integration of the two dissociation methods was accomplished through addition of an ion mobility (IM) dimension that disperses the two stages of MS/MS in time. This allows the two MS/MS spectra to be acquired within a few milliseconds of one another, and to be deconvoluted in post-processing. Furthermore, the method allows both fragmentation readouts to be obtained from the same precursor ion packet, thus reducing the inefficiencies imposed by separate CID and ETD acquisitions and the relatively poor precursor ion to fragment ion conversion typical of ETD. N-Linked glycopeptide ions ranging in molecular weight from 1.8 to 6.5 kDa were generated from four model glycoproteins that collectively encompassed paucimannosidic, high mannose, and complex types of N-glycosylation. In each case, IM-resolved CID and ETD events provided complete coverage of the glycan topology and peptide sequence coverages ranging from 48.4% (over 32 amino acid residues) to 85.7% (over eight amino acid residues). The potential of this method for large-scale glycoproteomic analysis is discussed.
Collapse
Affiliation(s)
- Venkata Kolli
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | | | |
Collapse
|
23
|
Hammura K, Ishikawa A, H. V. RK, Miyoshi R, Yokoi Y, Tanaka M, Hinou H, Nishimura SI. Synthetic Glycopeptides Allow for the Quantitation of Scarce Nonfucosylated IgG Fc N-Glycans of Therapeutic Antibody. ACS Med Chem Lett 2018; 9:889-894. [PMID: 30258536 DOI: 10.1021/acsmedchemlett.8b00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023] Open
Abstract
Glycans attached to the IgG Fc domain affect strongly biological activities such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) of therapeutic antibodies. However, molecular mechanism in the glycoform-dependent functional modulation of the IgGs remains elusive. The present study communicates that selected reaction monitoring (SRM)-based assay of tryptic IgG Fc glycopeptides is a promising approach for the characterization of antibodies when combined with structure-defined synthetic Fc peptides having a focused N-glycoform as a calibration standard. We describe a novel synthetic approach to the human IgG1 Fc peptide having a bisected decasaccharide and its nonbisected counterpart compound, the signatures of antibodies involving Fc domain with rare N-glycans expected to show much higher ADCC/CDC than abundant IgG N-glycans, and their application to the SRM-based quantitative glycoproteomics. Use of a key intermediate, phenyl (2-O-benzyl-4,6-O-benzylidine-β-d-mannopyranosyl)-(1 → 4)-3,6-di-O-benzyl-2-azido-2-deoxy-1-thio-β-d-glucopyranoside, derived from locust bean gum galactomannan, facilitated greatly the synthesis of a bisected nonasaccharide as a stable precursor of oxazoline derivative needed for the enzymatic trans-glycosylation with Fc nonapeptide carrying a GlcNAc at Asn297 residue, while the coupling reaction catalyzed by mutant endo-M-N175Q proceeded very slowly. Strikingly, SRM assay using the synthetic Fc glycopeptides as calibration standards uncovered the occurrence of the targeted IgG1 Fc fragment carrying a nonfucosylated and bisected (315 fmol, 0.20%) and its nonbisected counterpart (1154 fmol, 0.73%) in the tryptic digests from 158 pmol of anticancer antibody Herceptin (trastuzumab). The results suggest that aberrantly glycosylated IgG Fc variants may contribute to the total biological activities of the therapeutic antibodies.
Collapse
Affiliation(s)
- Kazuki Hammura
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Akari Ishikawa
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Ravi Kumar H. V.
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals, Co., Ltd.,
N9, W15, Chuo-ku, Sapporo 060-0009, Japan
| | - Yasuhiro Yokoi
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Masakazu Tanaka
- Medicinal Chemistry Pharmaceuticals, Co., Ltd.,
N9, W15, Chuo-ku, Sapporo 060-0009, Japan
| | - Hiroshi Hinou
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd.,
N9, W15, Chuo-ku, Sapporo 060-0009, Japan
| | - Shin-Ichiro Nishimura
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd.,
N9, W15, Chuo-ku, Sapporo 060-0009, Japan
| |
Collapse
|
24
|
Aboufazeli F, Dodds ED. Precursor ion survival energies of protonated N-glycopeptides and their weak dependencies on high mannose N-glycan composition in collision-induced dissociation. Analyst 2018; 143:4459-4468. [PMID: 30151520 PMCID: PMC6131044 DOI: 10.1039/c8an00830b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fully realizing the capabilities of tandem mass spectrometry (MS/MS) for analysis of glycosylated peptides will require further understanding of the unimolecular dissociation chemistry that dictates their fragmentation pathways. In this context, the overall composition of a given glycopeptide ion is a key characteristic; however, the extent to which the carbohydrate moiety influences the preferred dissociation channels has received relatively little study. Here, the effect of glycan composition on energy-resolved collision-induced dissociation (CID) behavior was studied for a select menu of 30 protonated high mannose type N-linked glycopeptide ions. Groups of analytes which shared a common charge state, polypeptide sequence, and glycosylation site exhibited 50% precursor ion survival energies that varied only slightly as the size and composition of the oligosaccharide was varied. This was found to be true regardless of whether the precursor ion survival energies were normalized for the number of available vibrational degrees of freedom. The practical consequence of this was that a given collision energy brought about highly similar levels of precursor ion depletion and structural information despite systematic variation of the glycan identity. This lack of sensitivity to oligosaccharide composition stands in contrast to other physicochemical properties of glycopeptide ions (e.g., polypeptide composition, charge state, charge carrier) which sharply influence their energy-resolved CID characteristics. On the whole, these findings imply that the deliberate selection of CID energies to bring about a desired range of fragmentation pathways does not necessarily hinge on the nature of the glycan.
Collapse
Affiliation(s)
- Forouzan Aboufazeli
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | |
Collapse
|
25
|
Tong X, Li T, Li C, Wang LX. Generation and Comparative Kinetic Analysis of New Glycosynthase Mutants from Streptococcus pyogenes Endoglycosidases for Antibody Glycoengineering. Biochemistry 2018; 57:5239-5246. [PMID: 30102520 PMCID: PMC6202118 DOI: 10.1021/acs.biochem.8b00719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemoenzymatic glycan remodeling by endoglycosidase-catalyzed deglycosylation and reglycosylation is emerging as an attractive approach for producing homogeneous glycoforms of antibodies, and the success of this approach depends on the discovery of efficient endoglycosidases and their glycosynthase mutants. We report in this paper a systematic site-directed mutagenesis of an endoglycosidase from Streptococcus pyogenes (Endo-S) at the critical Asp-233 (D233) site and evaluation of the hydrolysis and transglycosylation activities of the resulting mutants. We found that in addition to the previously identified D233A and D233Q mutants of Endo-S, most of the Asp-233 mutants discovered here were also glycosynthases that demonstrated glycosylation activity using glycan oxazoline as the donor substrate with diminished hydrolytic activity. The glycosynthase activity of the resultant mutants varied significantly depending on the nature of the amino acid substituents. Among them, the D233M mutant was identified as the most efficient glycosynthase variant with the highest transglycosylation/hydrolysis ratio, which is similar to the recently reported D184M mutant of Endo-S2, another S. pyogenes endoglycosidase. Kinetic studies of the D233M and D233A mutants of Endo-S, as well as glycosynthase mutants D184M and D184A of Endo-S2, indicated that the enhanced catalytic efficacy of the Asp-to-Met mutants of both enzymes was mainly due to an increased turnover number (increased kcat) for the glycan oxazoline substrate and the significantly enhanced substrate affinity (as judged by the reduced KM value) for the antibody acceptor.
Collapse
Affiliation(s)
- Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Tiezheng Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
26
|
De Vijlder T, Fissers J, Van Broeck B, Wyffels L, Mercken M, Pemberton DJ. Mass spectrometric characterization of intact desferal-conjugated monoclonal antibodies for immuno-PET imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1643-1650. [PMID: 29943865 DOI: 10.1002/rcm.8209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Immuno-PET imaging may prove to be a diagnostic and progression/intervention biomarker for Alzheimer's disease (AD) with improved sensitivity and specificity. Immuno-PET imaging is based on the coupling of an antibody with a chelator that captures a radioisotope thus serving as an in-vivo PET ligand. A robust and quality controlled process for linking the chelator to the-antibody is fundamental for the success of this approach. METHODS The structural integrities of two monoclonal antibodies (trastuzumab and JRF/AβN/25) and the quantity of desferal-based chelator attached following modification of the antibodies were assessed by online desalting and intact mass analysis. Enzymatic steps for the deglycosylation and removal of C-terminal lysine was performed sequentially and in a single tube to improve intact mass data. RESULTS Intact mass analysis demonstrated that inclusion of enzymatic processing was critical to correctly derive the quantity of chelator linked to the monoclonal antibodies. For trastuzumab, enzymatic cleaving of the glycans was sufficient, whilst additional removal of the C-terminal lysine was necessary for JRF/AβN/25 to ensure reproducible assessment of the relatively low amount of attached chelator. CONCLUSIONS An efficient intact mass analysis-based process was developed to reproducibly determine the integrity of monoclonal antibodies and the quantity of attached chelator. This technique could serve as an essential quality control approach for the development and production of immuno-PET tracers.
Collapse
Affiliation(s)
- Thomas De Vijlder
- Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jens Fissers
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Bianca Van Broeck
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Marc Mercken
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Darrel J Pemberton
- Neuroscience Experimental Medicine, Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
27
|
Khan S, Liu J, Szabo Z, Kunnummal B, Han X, Ouyang Y, Linhardt RJ, Xia Q. On-line capillary electrophoresis/laser-induced fluorescence/mass spectrometry analysis of glycans labeled with Teal™ fluorescent dye using an electrokinetic sheath liquid pump-based nanospray ion source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:882-888. [PMID: 29575162 DOI: 10.1002/rcm.8116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. METHODS Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. RESULTS Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. CONCLUSIONS This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shaheer Khan
- Pharma Analytics, BioProduction Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Jenkuei Liu
- Pharma Analytics, BioProduction Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Zoltan Szabo
- Pharma Analytics, BioProduction Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Baburaj Kunnummal
- Pharma Analytics, BioProduction Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Xiaorui Han
- Rensselaer Polytechnic Institute, Biotech 4005, 110 8th Street, Troy, NY, 12180, USA
| | - Yilan Ouyang
- Rensselaer Polytechnic Institute, Biotech 4005, 110 8th Street, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Rensselaer Polytechnic Institute, Biotech 4005, 110 8th Street, Troy, NY, 12180, USA
| | - Qiangwei Xia
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| |
Collapse
|
28
|
Mazzoccanti G, Pierri G, Ciogli A, Ismail OH, Giorgi F, De Santis R, Villani C, Gasparrini F. Stepwise “bridge-to-bridge” reduction of monoclonal antibodies and light chain detection: Case studies of tenatumomab and trastuzumab. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | - Giuseppe Pierri
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | - Omar H. Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | | | | | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; Roma Italy
| |
Collapse
|
29
|
Lee J, Kang HA, Bae JS, Kim KD, Lee KH, Lim KJ, Choo MJ, Chang SJ. Evaluation of analytical similarity between trastuzumab biosimilar CT-P6 and reference product using statistical analyses. MAbs 2018; 10:547-571. [PMID: 29482416 PMCID: PMC5973688 DOI: 10.1080/19420862.2018.1440170] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The evaluation of analytical similarity has been a challenging issue for the biosimilar industry because the number of lots for reference and biosimilar products available at the time of development are limited, whilst measurable quality attributes of target molecule are numerous, which can lead to potential bias or false negative/positive conclusions regarding biosimilarity. Therefore, appropriate statistical analyses are highly desirable to achieve a high level of confidence in the similarity evaluation. A recent guideline for the risk-based statistical approaches recommended by the US Food and Drug Administration provides useful tools to systematically evaluate analytical similarity of biosimilar products compared with reference products. Here, we evaluated analytical similarity of CT-P6, a biosimilar product of trastuzumab, with the reference products (EU-Herceptin® or US-Herceptin®) following these statistical approaches. Various quality attributes of trastuzumab were first ranked based on the clinical impact of each attribute and subsequently adjusted to one of three tiers (Tier 1, Tier 2 and Tier 3) considering the characteristics of the assay, the level of attribute present and the feasibility of statistical analysis. Two biological activities with highest potential clinical impact were evaluated by an equivalent test (Tier 1), and other bioactivities and structural/physicochemical properties relevant to the clinical impact were evaluated by a quality range approach (Tier 2). The attributes with low risk ranking or qualitative assay were evaluated by visual comparison (Tier 3). Analytical similarity assessment analyzed by the three tiers clearly demonstrated that CT-P6 exhibits highly similar structural and physicochemical properties, as well as functional activities, compared with the reference products. There were small differences observed in a few quality attributes between CT-P6 and the reference products, but the differences were very minor, and unlikely to impact on clinical outcome. The recently reported equivalent clinical efficacy of CT-P6 with the reference product further supports that CT-P6 is highly similar compared with the reference product in the view of totality-of-evidence.
Collapse
Affiliation(s)
- Jihun Lee
- a Biotechnology Research Institute, R&D Division, Celltrion Inc. , Incheon , Korea
| | - Hyun Ah Kang
- a Biotechnology Research Institute, R&D Division, Celltrion Inc. , Incheon , Korea
| | - Jin Soo Bae
- a Biotechnology Research Institute, R&D Division, Celltrion Inc. , Incheon , Korea
| | - Kyu Dae Kim
- a Biotechnology Research Institute, R&D Division, Celltrion Inc. , Incheon , Korea
| | - Kyoung Hoon Lee
- a Biotechnology Research Institute, R&D Division, Celltrion Inc. , Incheon , Korea
| | - Ki Jung Lim
- a Biotechnology Research Institute, R&D Division, Celltrion Inc. , Incheon , Korea
| | - Min Joo Choo
- a Biotechnology Research Institute, R&D Division, Celltrion Inc. , Incheon , Korea
| | - Shin Jae Chang
- a Biotechnology Research Institute, R&D Division, Celltrion Inc. , Incheon , Korea
| |
Collapse
|
30
|
Ion mobility in the pharmaceutical industry: an established biophysical technique or still niche? Curr Opin Chem Biol 2018; 42:147-159. [DOI: 10.1016/j.cbpa.2017.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023]
|
31
|
Tian Y, Ruotolo BT. The growing role of structural mass spectrometry in the discovery and development of therapeutic antibodies. Analyst 2018; 143:2459-2468. [DOI: 10.1039/c8an00295a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The comprehensive structural characterization of therapeutic antibodies is of critical importance for the successful discovery and development of such biopharmaceuticals, yet poses many challenges to modern measurement science. Here, we review the current state-of-the-art mass spectrometry technologies focusing on the characterization of antibody-based therapeutics.
Collapse
Affiliation(s)
- Yuwei Tian
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | |
Collapse
|
32
|
Neupane R, Bergquist J. Analytical techniques for the characterization of Antibody Drug Conjugates: Challenges and prospects. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:417-426. [PMID: 29183195 DOI: 10.1177/1469066717733919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibody drug conjugates are increasingly being researched for the treatment of cancer. Accurate and reliable characterization of ADCs is inevitable for their development as potential therapeutic agent. Different analytical techniques have been used in order to decipher heterogeneous nature of antibody drug conjugates, enabling successful characterization. This review will summarize specially three major analytical tools i.e. UV-Vis spectroscopy, liquid chromatography, and mass spectrometry used in characterization of antibody drug conjugates. In this review, major challenges during analysis due to the inherent features of analytical techniques and antibody drug conjugates are summarized along with the modifications intended to address each challenge.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Qu M, An B, Shen S, Zhang M, Shen X, Duan X, Balthasar JP, Qu J. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. MASS SPECTROMETRY REVIEWS 2017; 36:734-754. [PMID: 27097288 DOI: 10.1002/mas.21500] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
In the last decade, the advancement of liquid chromatography mass spectrometry (LC/MS) techniques has enabled their broad application in protein characterization, both quantitatively and qualitatively. Owing to certain important merits of LC/MS techniques (e.g., high selectivity, flexibility, and rapid method development), LC/MS assays are often deemed as preferable alternatives to conventional methods (e.g., ligand-binding assays) for the analysis of protein biotherapeutics. At the discovery and development stages, LC/MS is generally employed for two purposes absolute quantification of protein biotherapeutics in biological samples and qualitative characterization of proteins. For absolute quantification of a target protein in bio-matrices, recent work has led to improvements in the efficiency of LC/MS method development, sample treatment, enrichment and digestion, and high-performance low-flow-LC separation. These advances have enhanced analytical sensitivity, specificity, and robustness. As to qualitative analysis, a range of techniques have been developed to characterize intramolecular disulfide bonds, glycosylation, charge variants, primary sequence heterogeneity, and the drug-to-antibody ratio of antibody drug conjugate (ADC), which has enabled a refined ability to assess product quality. In this review, we will focus on the discussion of technical challenges and strategies of LC/MS-based quantification and characterization of biotherapeutics, with the emphasis on the analysis of antibody-based biotherapeutics such as monoclonal antibodies (mAbs) and ADCs. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:734-754, 2017.
Collapse
Affiliation(s)
- Miao Qu
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Bo An
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Ming Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Xiaomeng Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| |
Collapse
|
34
|
Cao L, Qu Y, Zhang Z, Wang Z, Prytkova I, Wu S. Intact glycopeptide characterization using mass spectrometry. Expert Rev Proteomics 2017; 13:513-22. [PMID: 27140194 DOI: 10.1586/14789450.2016.1172965] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.
Collapse
Affiliation(s)
- Li Cao
- a Pharma Research and Development , R&D Platform Technology & Science, GSK , King of Prussia , PA , USA
| | - Yi Qu
- b ChemEco Division , Evans Analytical Group , Hercules , CA , USA
| | - Zhaorui Zhang
- c Process Research & Development , AbbVie , North Chicago , IL , USA
| | - Zhe Wang
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| | - Iya Prytkova
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| | - Si Wu
- d Department of Chemistry and Biochemistry , University of Oklahoma , Norman , OK , USA
| |
Collapse
|
35
|
Furuki K, Toyo'oka T. Retention of glycopeptides analyzed using hydrophilic interaction chromatography is influenced by charge and carbon chain length of ion-pairing reagent for mobile phase. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/15/2017] [Accepted: 04/06/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Kenichiro Furuki
- Process Lab II, Biotechnology Labs, Astellas Pharma Inc; Ibaraki Japan
- School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| | - Toshimasa Toyo'oka
- School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| |
Collapse
|
36
|
Hofmann J, Pagel K. Glykananalyse mittels Ionenmobilitäts-Massenspektrometrie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Johanna Hofmann
- Abteilung Molekülphysik; Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Kevin Pagel
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 Deutschland
| |
Collapse
|
37
|
Hofmann J, Pagel K. Glycan Analysis by Ion Mobility-Mass Spectrometry. Angew Chem Int Ed Engl 2017; 56:8342-8349. [DOI: 10.1002/anie.201701309] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Johanna Hofmann
- Abteilung Molekülphysik; Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 Germany
| |
Collapse
|
38
|
Montacir O, Montacir H, Eravci M, Springer A, Hinderlich S, Saadati A, Parr MK. Comparability study of Rituximab originator and follow-on biopharmaceutical. J Pharm Biomed Anal 2017; 140:239-251. [DOI: 10.1016/j.jpba.2017.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
39
|
Mulagapati S, Koppolu V, Raju TS. Decoding of O-Linked Glycosylation by Mass Spectrometry. Biochemistry 2017; 56:1218-1226. [PMID: 28196325 DOI: 10.1021/acs.biochem.6b01244] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein glycosylation (N- and O-linked) plays an important role in many biological processes, including protein structure and function. However, the structural elucidation of glycans, specifically O-linked glycans, remains a major challenge and is often overlooked during protein analysis. Recently, mass spectrometry (MS) has matured as a powerful technology for high-quality analytical characterization of O-linked glycans. This review summarizes the recent developments and insights of MS-based glycomics technologies, with a focus on mucin-type O-glycan analysis. Three main MS-based approaches are outlined: O-glycan profiling (structural analysis of released O-glycan), a "bottom-up" approach (analysis of an O-glycan covalently attached to a glycopeptide), and a "top-down" approach (analysis of a glycan attached to an intact glycoprotein). In addition, the most widely used MS ionization techniques, i.e., matrix-assisted laser desorption ionization and electrospray ionization, as well as ion activation techniques like collision-induced dissociation, electron capture dissociation, and electron transfer dissociation during O-glycan analysis are discussed. The MS technical approaches mentioned above are already major improvements for studying O-linked glycosylation and appear to be valuable for in-depth analysis of the type of O-glycan attached, branching patterns, and the occupancy of O-glycosylation sites.
Collapse
Affiliation(s)
- SriHariRaju Mulagapati
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Veerendra Koppolu
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - T Shantha Raju
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
40
|
Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein. Appl Microbiol Biotechnol 2016; 101:1889-1898. [PMID: 27853858 DOI: 10.1007/s00253-016-7973-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Demonstration of reproducibility and consistency of process and product quality is one of the most crucial issues in using transient gene expression (TGE) technology for biopharmaceutical development. In this study, we challenged the production consistency of TGE by expressing nine batches of recombinant IgG antibody in human embryonic kidney 293 cells to evaluate reproducibility including viable cell density, viability, apoptotic status, and antibody yield in cell culture supernatant. Product quality including isoelectric point, binding affinity, secondary structure, and thermal stability was assessed as well. In addition, major glycan forms of antibody from different batches of production were compared to demonstrate glycosylation consistency. Glycan compositions of the antibody harvested at different time periods were also measured to illustrate N-glycan distribution over the culture time. From the results, it has been demonstrated that different TGE batches are reproducible from lot to lot in overall cell growth, product yield, and product qualities including isoelectric point, binding affinity, secondary structure, and thermal stability. Furthermore, major N-glycan compositions are consistent among different TGE batches and conserved during cell culture time.
Collapse
|
41
|
Adams SR, Yang HC, Savariar EN, Aguilera J, Crisp JL, Jones KA, Whitney MA, Lippman SM, Cohen EEW, Tsien RY, Advani SJ. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat Commun 2016; 7:13019. [PMID: 27698471 PMCID: PMC5059467 DOI: 10.1038/ncomms13019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/25/2016] [Indexed: 12/25/2022] Open
Abstract
Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery. Drugs that sensitize tumour cells to ionizing radiation are prized because they can overcome resistance to radiotherapy. Here, the authors show that anti-tubulin drugs conjugated to cetuximab or trastuzumab can radiosensitize EGFR- or HER2-expressing tumors by increasing DNA damage and cell death due to ionizing radiation.
Collapse
Affiliation(s)
- Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Howard C Yang
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Elamprakash N Savariar
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Joe Aguilera
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Jessica L Crisp
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Karra A Jones
- Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | - Michael A Whitney
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Scott M Lippman
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| | - Ezra E W Cohen
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| | - Roger Y Tsien
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093, USA
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| |
Collapse
|
42
|
Brantley MR, Pettit ME, Harper B, Brown B, Solouki T. Automated peak width measurements for targeted analysis of ion mobility unresolved species. Anal Chim Acta 2016; 941:49-60. [DOI: 10.1016/j.aca.2016.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
|
43
|
Terral G, Beck A, Cianférani S. Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:79-90. [DOI: 10.1016/j.jchromb.2016.03.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
|
44
|
Planinc A, Dejaegher B, Vander Heyden Y, Viaene J, Van Praet S, Rappez F, Van Antwerpen P, Delporte C. Batch-to-batch N-glycosylation study of infliximab, trastuzumab and bevacizumab, and stability study of bevacizumab. Eur J Hosp Pharm 2016; 24:286-292. [PMID: 31156959 DOI: 10.1136/ejhpharm-2016-001022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 11/04/2022] Open
Abstract
Objectives Infliximab, trastuzumab and bevacizumab are among the most frequently prescribed therapeutic proteins, and like most other therapeutic proteins, are glycosylated. As differences in glycosylation may significantly change the safety and efficacy of therapeutic glycoproteins, it is extremely important to control N-glycosylation consistency. In the first part of this study, the batch-to-batch consistency of the N-glycosylation of infliximab, trastuzumab and bevacizumab was analysed. In the second part, the consistency of the N-glycosylation of bevacizumab stored in polycarbonate syringes (for off-label drug use) for 3 months was examined. Methods N-glycans were (i) enzymatically released using peptide-N-glycosidase F, (ii) reduced, and (iii) analysed using hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry. Mass spectrometry data were interpreted using principal component analysis combined with two-way analysis of variance and Tukey post hoc tests. The biological activity of infliximab and trastuzumab was examined using enzyme-linked immunosorbent assays. Results The results of both studies make important contributions to the field of hospital pharmacy. All batches of the studied therapeutic glycoproteins (infliximab, trastuzumab and bevacizumab) varied considerably (especially in galactosylation), while the N-glycosylation of bevacizumab remained unchanged during 3-month storage. Conclusions Threshold values for batch-to-batch N-glycosylation variations should be established and batch-to-batch glycosylation consistency should be regularly tested. In our study, samples with significantly different N-glycosylation profiles showed no significant variations in biological activity, suggesting that the differences are probably not therapeutically significant.
Collapse
Affiliation(s)
- Ana Planinc
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Joint Research Group ULB-VUB, Brussels, Belgium
| | - Bieke Dejaegher
- Joint Research Group ULB-VUB, Brussels, Belgium.,Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Faculty of Medicine and Pharmacy, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yvan Vander Heyden
- Joint Research Group ULB-VUB, Brussels, Belgium.,Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Faculty of Medicine and Pharmacy, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johan Viaene
- Joint Research Group ULB-VUB, Brussels, Belgium.,Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Faculty of Medicine and Pharmacy, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | - Pierre Van Antwerpen
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Joint Research Group ULB-VUB, Brussels, Belgium
| | - Cédric Delporte
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Joint Research Group ULB-VUB, Brussels, Belgium
| |
Collapse
|
45
|
Pye H, Butt MA, Reinert HW, Maruani A, Nunes JPM, Marklew JS, Qurashi M, Funnell L, May A, Stamati I, Hamoudi R, Baker JR, Smith MEB, Caddick S, Deonarain MP, Yahioglu G, Chudasama V, Lovat LB. A HER2 selective theranostic agent for surgical resection guidance and photodynamic therapy. Photochem Photobiol Sci 2016; 15:1227-1238. [PMID: 27501936 DOI: 10.1039/c6pp00139d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In many cancers early intervention involves surgical resection of small localised tumour masses. Inadequate resection leads to recurrence whereas overzealous treatment can lead to organ damage. This work describes production of a HER2 targeting antibody Fab fragment dual conjugated to achieve both real time near-infrared fluorescent imaging and photodynamic therapy. The use of fluorescence emission from a NIR-dye could be used to guide resection of tumour bulk, for example during endoscopic diagnosis for oesophago-gastric adenocarcinoma, this would then be followed by activation of the photodynamic therapeutic agent to destroy untreated localised areas of cancer infiltration and tumour infiltrated lymph nodes. This theranostic agent was prepared from the Fab fragment of trastuzumab initially by functional disulfide re-bridging and site-specific click reaction of a NIR-dye. This was followed by further reaction with a novel pre-activated form of the photosensitiser chlorin e6 with the exposed fragments' lysine residues. Specific binding of the theranostic agent was observed in vitro with a HER2 positive cell line and cellular near-infrared fluorescence was observed with flow cytometry. Specific photo-activity of the conjugates when exposed to laser light was observed with HER2 positive but not HER2 negative cell lines in vitro, this selectivity was not seen with the unconjugated drug. This theranostic agent demonstrates that two different photo-active functions can be coupled to the same antibody fragment with little interference to their independent activities.
Collapse
Affiliation(s)
- H Pye
- Department for Tissue & Energy, Division of Surgery & Interventional Science, University College London, Cruciform Building, Gower Street, London, WC1E 6AE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu J, Eris T, Li C, Cao S, Kuhns S. Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab. BioDrugs 2016; 30:321-38. [PMID: 27461107 PMCID: PMC4972872 DOI: 10.1007/s40259-016-0184-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND ABP 501 is being developed as a biosimilar to adalimumab. Comprehensive comparative analytical characterization studies have been conducted and completed. OBJECTIVE The objective of this study was to assess analytical similarity between ABP 501 and two adalimumab reference products (RPs), licensed by the United States Food and Drug Administration (adalimumab [US]) and authorized by the European Union (adalimumab [EU]), using state-of-the-art analytical methods. METHODS Comprehensive analytical characterization incorporating orthogonal analytical techniques was used to compare products. Physicochemical property comparisons comprised the primary structure related to amino acid sequence and post-translational modifications including glycans; higher-order structure; primary biological properties mediated by target and receptor binding; product-related substances and impurities; host-cell impurities; general properties of the finished drug product, including strength and formulation; subvisible and submicron particles and aggregates; and forced thermal degradation. RESULTS ABP 501 had the same amino acid sequence and similar post-translational modification profiles compared with adalimumab RPs. Primary structure, higher-order structure, and biological activities were similar for the three products. Product-related size and charge variants and aggregate and particle levels were also similar. ABP 501 had very low residual host-cell protein and DNA. The finished ABP 501 drug product has the same strength with regard to protein concentration and fill volume as adalimumab RPs. ABP 501 and the RPs had a similar stability profile both in normal storage and thermal stress conditions. CONCLUSION Based on the comprehensive analytical similarity assessment, ABP 501 was found to be similar to adalimumab with respect to physicochemical and biological properties.
Collapse
Affiliation(s)
- Jennifer Liu
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Tamer Eris
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Cynthia Li
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Shawn Cao
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Scott Kuhns
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| |
Collapse
|
47
|
Yang N, Goonatilleke E, Park D, Song T, Fan G, Lebrilla CB. Quantitation of Site-Specific Glycosylation in Manufactured Recombinant Monoclonal Antibody Drugs. Anal Chem 2016; 88:7091-100. [PMID: 27311011 PMCID: PMC4955800 DOI: 10.1021/acs.analchem.6b00963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the development of recombinant monoclonal antibody (rMAb) drugs, glycosylation receives particular focus because changes in the attached glycans can have a significant impact on the antibody effector functions. The vast heterogeneity of structures that exist across glycosylation sites hinders the in-depth analysis of glycan changes specific to an individual protein within a complex mixture. In this study, we established a sensitive and specific method for monitoring site-specific glycosylation in rMAbs using multiple reaction monitoring (MRM) on an ultrahigh-performance liquid chromatography-triple quadrupole MS (UHPLC-QqQ-MS). Our results showed that irrespective of the IgG subclass expressed in the drugs, the N-glycopeptide profiles are nearly the same but differ in abundances. In all rMAb drugs, a single subclass of IgG comprised over 97% of the total IgG content and showed over 97% N-glycan site occupancy. This study demonstrates the utility of an MRM-based method to rapidly characterize over 130 distinct glycopeptides and determine the extent of site occupancy within minutes. Such multilevel structural characterization is important for the successful development of therapeutic antibodies.
Collapse
Affiliation(s)
- Nan Yang
- School of Pharmacy, Second Military Medical University, Guohe Road, Shanghai, 200433, China
- Department of Pharmacy, Shanghai General Hospital, Haining Road, Shanghai, 200080, China
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Ting Song
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Guorong Fan
- School of Pharmacy, Second Military Medical University, Guohe Road, Shanghai, 200433, China
- Department of Pharmacy, Shanghai General Hospital, Haining Road, Shanghai, 200080, China
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
48
|
Rathore D, Aboufazeli F, Dodds ED. Obtaining complementary polypeptide sequence information from a single precursor ion packet via sequential ion mobility-resolved electron transfer and vibrational activation. Analyst 2016; 140:7175-83. [PMID: 26357706 DOI: 10.1039/c5an01225b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tandem mass spectrometry (MS/MS) is now well-known as a powerful tool for characterizing the primary structures of peptides and proteins; however, in many cases the use of but a single dissociation method provides only a partial view of the amino acid sequences and post-translational modification patterns of polypeptides. While the application of multiple fragmentation methods can be more informative, this introduces the burden of acquiring multiple MS/MS spectra per analyte, thus reducing the effective duty cycle of such methods. In this work, initial proof-of-concept is provided for a method designed to overcome these barriers. This method relies on the complementary fragmentation information that can be provided by performing collision-induced dissociation (CID) and electron transfer dissociation (ETD) in concert, while also taking advantage of an ion mobility (IM) dimension to temporally resolve the occurrence of CID and ETD when applied to a single accumulated packet of precursor ions. In this way, the significant proportion of the precursor ion population that remains unreacted in ETD experiments is subjected to CID rather than being fruitlessly discarded. In addition, the two distinct fragmentation spectra can be extracted from their corresponding IM domains to render readily interpretable individual fragmentation spectra. This scheme was demonstrated for several polypeptides ranging from 1.3 to 8.6 kDa in molecular weight. In each case, IM-resolved CID and ETD events resulted in b/y and c/z ions, respectively, which each covered both unique and overlapping sequence information. These findings demonstrate that the combination of CID and ETD can be achieved with greater utilization of the available ion population and little or no loss of duty cycle.
Collapse
Affiliation(s)
- Deepali Rathore
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | | | |
Collapse
|
49
|
Ferguson CN, Gucinski-Ruth AC. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:822-833. [PMID: 26988372 DOI: 10.1007/s13361-016-1369-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/12/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Carly N Ferguson
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Division of Pharmaceutical Analysis, 645 S. Newstead Ave., St. Louis, MO, 63110, USA
- Pfizer Inc., Chesterfield, MO, USA
| | - Ashley C Gucinski-Ruth
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Division of Pharmaceutical Analysis, 645 S. Newstead Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
50
|
Harvey DJ, Scarff CA, Edgeworth M, Struwe WB, Pagel K, Thalassinos K, Crispin M, Scrivens J. Travelling-wave ion mobility and negative ion fragmentation of high-mannose N-glycans. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:219-35. [PMID: 26956389 PMCID: PMC4821469 DOI: 10.1002/jms.3738] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 05/02/2023]
Abstract
The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility mass spectrometry for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra, and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed, but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers or anomers were being separated. Collision cross sections of the isomers in positive and negative fragmentation mode were estimated from travelling-wave ion mobility mass spectrometry data using dextran glycans as calibrant. More complete collision cross section data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross-sectional data, details of the negative ion collision-induced dissociation spectra of all resolved isomers are discussed.
Collapse
Affiliation(s)
- David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
| | - Charlotte A. Scarff
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
- Current address, Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Edgeworth
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
| | - Weston B. Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse. 3, 14159 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jim Scrivens
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
| |
Collapse
|