1
|
Takagi S, Suzuki N, Ishihama Y. Revisiting Protein Reversed-Phase Chromatography for Bottom-Up Proteomics. J Proteome Res 2024; 23:4704-4714. [PMID: 39293027 DOI: 10.1021/acs.jproteome.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
We revisited protein reversed-phase chromatography (RP), using state-of-the-art RP columns developed for biopharmaceuticals, such as monoclonal antibodies, in order to evaluate the suitability of this methodology as a prefractionation step for bottom-up proteomics. The protein RP prefractionation (Prot-RP) method was compared with two other widely used prefractionation methods, SDS-PAGE and high-pH peptide RP (Pept-RP) by using cell lysates as samples. The overlap between fractions of Prot-RP was comparable to that of SDS-PAGE, and the protein recovery was approximately 2-fold higher. On the other hand, the overlap between fractions of Prot-RP was slightly larger than that of Pept-RP, but Prot-RP was able to identify more protein termini and more isoform-specific peptides than Pept-RP. Our results indicate that the combination of highly efficient protein prefractionation with modern mass spectrometers is particularly effective for proteoform profiling from cellular samples.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Nobuyuki Suzuki
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
2
|
Coorssen JR, Padula MP. Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience. Proteomes 2024; 12:14. [PMID: 38651373 PMCID: PMC11036260 DOI: 10.3390/proteomes12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
With growing recognition and acknowledgement of the genuine complexity of proteomes, we are finally entering the post-proteogenomic era. Routine assessment of proteomes as inferred correlates of gene sequences (i.e., canonical 'proteins') cannot provide the necessary critical analysis of systems-level biology that is needed to understand underlying molecular mechanisms and pathways or identify the most selective biomarkers and therapeutic targets. These critical requirements demand the analysis of proteomes at the level of proteoforms/protein species, the actual active molecular players. Currently, only highly refined integrated or integrative top-down proteomics (iTDP) enables the analytical depth necessary to provide routine, comprehensive, and quantitative proteome assessments across the widest range of proteoforms inherent to native systems. Here we provide a broad perspective of the field, taking in historical and current realities, to establish a more balanced understanding of where the field has come from (in particular during the ten years since Proteomes was launched), current issues, and how things likely need to proceed if necessary deep proteome analyses are to succeed. We base this in our firm belief that the best proteomic analyses reflect, as closely as possible, the native sample at the moment of sampling. We also seek to emphasise that this and future analytical approaches are likely best based on the broad recognition and exploitation of the complementarity of currently successful approaches. This also emphasises the need to continuously evaluate and further optimize established approaches, to avoid complacency in thinking and expectations but also to promote the critical and careful development and introduction of new approaches, most notably those that address proteoforms. Above all, we wish to emphasise that a rigorous focus on analytical quality must override current thinking that largely values analytical speed; the latter would certainly be nice, if only proteoforms could thus be effectively, routinely, and quantitatively assessed. Alas, proteomes are composed of proteoforms, not molecular species that can be amplified or that directly mirror genes (i.e., 'canonical'). The problem is hard, and we must accept and address it as such, but the payoff in playing this longer game of rigorous deep proteome analyses is the promise of far more selective biomarkers, drug targets, and truly personalised or even individualised medicine.
Collapse
Affiliation(s)
- Jens R. Coorssen
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
- Institute for Globally Distributed Open Research and Education (IGDORE), St. Catharines, ON L2N 4X2, Canada
| | - Matthew P. Padula
- School of Life Sciences and Proteomics, Lipidomics and Metabolomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Kaulich PT, Cassidy L, Tholey A. Identification of proteoforms by top-down proteomics using two-dimensional low/low pH reversed-phase liquid chromatography-mass spectrometry. Proteomics 2024; 24:e2200542. [PMID: 36815320 DOI: 10.1002/pmic.202200542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
In top-down (TD) proteomics, efficient proteoform separation is crucial to reduce the sample complexity and increase the depth of the analysis. Here, we developed a two-dimensional low pH/low pH reversed-phase liquid chromatography separation scheme for TD proteomics. The first dimension for offline fractionation was performed using a polymeric reversed-phase (PLRP-S) column with trifluoroacetic acid as ion-pairing reagent. The second dimension, a C4 nanocolumn with formic acid as ion-pairing reagent, was coupled online with a high-field asymmetric ion mobility spectrometry (FAIMS) Orbitrap Tribrid mass spectrometer. For both dimensions several parameters were optimized, such as the adaption of the LC gradients in the second dimension according to the elution time (i.e., fraction number) in the first dimension. Avoidance of elevated temperatures and prolonged exposure to acidic conditions minimized cleavage of acid labile aspartate-proline peptide bonds. Furthermore, a concatenation strategy was developed to reduce the total measurement time. We compared our low/low pH with a previously published high pH (C4, ammonium formate)/low pH strategy and found that both separation strategies led to complementary proteoform identifications, mainly below 20 kDa, with a higher number of proteoforms identified by the low/low pH separation. With the optimized separation scheme, more than 4900 proteoforms from 1250 protein groups were identified in Caco-2 cells.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
Po A, Eyers CE. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J Proteome Res 2023; 22:3663-3675. [PMID: 37937372 PMCID: PMC10696603 DOI: 10.1021/acs.jproteome.3c00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Top-down proteomics (TDP) aims to identify and profile intact protein forms (proteoforms) extracted from biological samples. True proteoform characterization requires that both the base protein sequence be defined and any mass shifts identified, ideally localizing their positions within the protein sequence. Being able to fully elucidate proteoform profiles lends insight into characterizing proteoform-unique roles, and is a crucial aspect of defining protein structure-function relationships and the specific roles of different (combinations of) protein modifications. However, defining and pinpointing protein post-translational modifications (PTMs) on intact proteins remains a challenge. Characterization of (heavily) modified proteins (>∼30 kDa) remains problematic, especially when they exist in a population of similarly modified, or kindred, proteoforms. This issue is compounded as the number of modifications increases, and thus the number of theoretical combinations. Here, we present our perspective on the challenges of analyzing kindred proteoform populations, focusing on annotation of protein modifications on an "average" protein. Furthermore, we discuss the technical requirements to obtain high quality fragmentation spectral data to robustly define site-specific PTMs, and the fact that this is tempered by the time requirements necessary to separate proteoforms in advance of mass spectrometry analysis.
Collapse
Affiliation(s)
- Allen Po
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| |
Collapse
|
5
|
Guo Y, Cupp‐Sutton KA, Zhao Z, Anjum S, Wu S. Multidimensional Separations in Top-Down Proteomics. ANALYTICAL SCIENCE ADVANCES 2023; 4:181-203. [PMID: 38188188 PMCID: PMC10769458 DOI: 10.1002/ansa.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 01/09/2024]
Abstract
Top-down proteomics (TDP) identifies, quantifies, and characterizes proteins at the intact proteoform level in complex biological samples to understand proteoform function and cellular mechanisms. However, analyzing complex biological samples using TDP is still challenging due to high sample complexity and wide dynamic range. High-resolution separation methods are often applied prior to mass spectrometry (MS) analysis to decrease sample complexity and increase proteomics throughput. These separation methods, however, may not be efficient enough to characterize low abundance intact proteins in complex samples. As such, multidimensional separation techniques (combination of two or more separation methods with high orthogonality) have been developed and applied that demonstrate improved separation resolution and more comprehensive identification in TDP. A suite of multidimensional separation methods that couple various types of liquid chromatography (LC), capillary electrophoresis (CE), and/or gel electrophoresis-based separation approaches have been developed and applied in TDP to analyze complex biological samples. Here, we reviewed multidimensional separation strategies employed for TDP, summarized current applications, and discussed the gaps that may be addressed in the future.
Collapse
Affiliation(s)
- Yanting Guo
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | | | - Zhitao Zhao
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Samin Anjum
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Si Wu
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| |
Collapse
|
6
|
Martin EA, Fulcher JM, Zhou M, Monroe ME, Petyuk VA. TopPICR: A Companion R Package for Top-Down Proteomics Data Analysis. J Proteome Res 2023; 22:399-409. [PMID: 36631391 DOI: 10.1021/acs.jproteome.2c00570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Top-down proteomics is the analysis of proteins in their intact form without proteolysis, thus preserving valuable information about post-translational modifications, isoforms, and proteolytic processing. However, it is still a developing field due to limitations in the instrumentation, difficulties with the interpretation of complex mass spectra, and a lack of well-established quantification approaches. TopPIC is one of the popular tools for proteoform identification. We extended its capabilities into label-free proteoform quantification by developing a companion R package (TopPICR). Key steps in the TopPICR pipeline include filtering identifications, inferring a minimal set of protein accessions explaining the observed sequences, aligning retention times, recalibrating measured masses, clustering features across data sets, and finally compiling feature intensities using the match-between-runs approach. The output of the pipeline is an MSnSet object which makes downstream data analysis seamlessly compatible with packages from the Bioconductor project. It also provides the capability for visualizing proteoforms within the context of the parent protein sequence. The functionality of TopPICR is demonstrated on top-down LC-MS/MS data sets of 10 human-in-mouse xenografts of luminal and basal breast tumor samples.
Collapse
Affiliation(s)
- Evan A Martin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - James M Fulcher
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Mowei Zhou
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| |
Collapse
|
7
|
Kellie JF, Schneck NA, Causon JC, Baba T, Mehl JT, Pohl KI. Top-Down Characterization and Intact Mass Quantitation of a Monoclonal Antibody Drug from Serum by Use of a Quadrupole TOF MS System Equipped with Electron-Activated Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:17-26. [PMID: 36459688 DOI: 10.1021/jasms.2c00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Time-of-flight MS systems for biopharmaceutical and protein characterization applications may play an even more pivotal role in the future as biotherapeutics increase in drug pipelines and as top-down MS approaches increase in use. Here, a recently developed TOF MS system is examined for monoclonal antibody (mAb) characterization from serum samples. After immunocapture, purified drug material spiked into monkey serum or dosed for an in-life study is analyzed by top-down MS. While characterization aspects are a distinct advantage of the MS platform, MS system and software capabilities are also shown regarding intact protein quantitation. Such applications are demonstrated to help enable comprehensive protein molecule quantitation and characterization by use of TOF MS instrumentation.
Collapse
Affiliation(s)
- John F Kellie
- GSK, Collegeville, Pennsylvania 19426, United States
| | | | | | | | - John T Mehl
- GSK, Collegeville, Pennsylvania 19426, United States
| | | |
Collapse
|
8
|
Drown BS, Jooß K, Melani RD, Lloyd-Jones C, Camarillo JM, Kelleher NL. Mapping the Proteoform Landscape of Five Human Tissues. J Proteome Res 2022; 21:1299-1310. [PMID: 35413190 PMCID: PMC9087339 DOI: 10.1021/acs.jproteome.2c00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A functional understanding of the human body requires structure-function studies of proteins at scale. The chemical structure of proteins is controlled at the transcriptional, translational, and post-translational levels, creating a variety of products with modulated functions within the cell. The term "proteoform" encapsulates this complexity at the level of chemical composition. Comprehensive mapping of the proteoform landscape in human tissues necessitates analytical techniques with increased sensitivity and depth of coverage. Here, we took a top-down proteomics approach, combining data generated using capillary zone electrophoresis (CZE) and nanoflow reversed-phase liquid chromatography (RPLC) hyphenated to mass spectrometry to identify and characterize proteoforms from the human lungs, heart, spleen, small intestine, and kidneys. CZE and RPLC provided complementary post-translational modification and proteoform selectivity, thereby enhancing the overall proteome coverage when used in combination. Of the 11,466 proteoforms identified in this study, 7373 (64%) were not reported previously. Large differences in the protein and proteoform level were readily quantified, with initial inferences about proteoform biology operative in the analyzed organs. Differential proteoform regulation of defensins, glutathione transferases, and sarcomeric proteins across tissues generate hypotheses about how they function and are regulated in human health and disease.
Collapse
Affiliation(s)
- Bryon S Drown
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Kevin Jooß
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Cameron Lloyd-Jones
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeannie M Camarillo
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Tucholski T, Ge Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. MASS SPECTROMETRY REVIEWS 2022; 41:158-177. [PMID: 32894796 PMCID: PMC7936991 DOI: 10.1002/mas.21653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Proteoforms contribute functional diversity to the proteome and aberrant proteoforms levels have been implicated in biological dysfunction and disease. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with its ultrahigh mass-resolving power, mass accuracy, and versatile tandem MS capabilities, has empowered top-down, middle-down, and native MS-based approaches for characterizing proteoforms and their complexes in biological systems. Herein, we review the features which make FT-ICR MS uniquely suited for measuring proteoform mass with ultrahigh resolution and mass accuracy; obtaining in-depth proteoform sequence coverage with expansive tandem MS capabilities; and unambiguously identifying and localizing post-translational and noncovalent modifications. We highlight examples from our body of work in which we have quantified and comprehensively characterized proteoforms from cardiac and skeletal muscle to better understand conditions such as chronic heart failure, acute myocardial infarction, and sarcopenia. Structural characterization of monoclonal antibodies and their proteoforms by FT-ICR MS and emerging applications, such as native top-down FT-ICR MS and high-throughput top-down FT-ICR MS-based proteomics at 21 T, are also covered. Historically, the information gleaned from FT-ICR MS analyses have helped provide biological insights. We predict FT-ICR MS will continue to enable the study of proteoforms of increasing size from increasingly complex endogenous mixtures and facilitate the benchmarking of sensitive and specific assays for clinical diagnostics. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705
| |
Collapse
|
10
|
Abstract
Top-down proteomics methods have a distinct advantage over bottom-up methods in that they analyze intact proteins rather than digested peptides which can result in loss of information regarding the intact protein. However, the analysis of intact proteins using top-down proteomics methods has been impeded by the low resolution of typical separation approaches applied in bottom-up proteomics studies. To increase the coverage of intact proteomes, orthogonal, two-dimensional separation techniques have been developed to improve the separation efficiency; in this chapter, we describe a two-dimensional HPLC separation technique that utilizes a high-pH mobile phase in the first dimension followed by a low-pH mobile phase in the second dimension. This two-dimensional pH-based HPLC approach demonstrates increased separation efficiency of intact proteins and increased proteome coverage when compared to one-dimensional HPLC in the analysis of larger and lower abundance proteoforms.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
11
|
Bhardwaj J, Hong S, Jang J, Han CH, Lee J, Jang J. Recent advancements in the measurement of pathogenic airborne viruses. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126574. [PMID: 34252679 PMCID: PMC8256664 DOI: 10.1016/j.jhazmat.2021.126574] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 05/11/2023]
Abstract
Air-transmissible pathogenic viruses, such as influenza viruses and coronaviruses, are some of the most fatal strains and spread rapidly by air, necessitating quick and stable measurements from sample air volumes to prevent further spread of diseases and to take appropriate steps rapidly. Measurements of airborne viruses generally require their collection into liquids or onto solid surfaces, with subsequent hydrosolization and then analysis using the growth method, nucleic-acid-based techniques, or immunoassays. Measurements can also be performed in real time without sampling, where species-specific determination is generally disabled. In this review, we introduce some recent advancements in the measurement of pathogenic airborne viruses. Air sampling and measurement technologies for viral aerosols are reviewed, with special focus on the effects of air sampling on damage to the sampled viruses and their measurements. Measurement of pathogenic airborne viruses is an interdisciplinary research area that requires understanding of both aerosol technology and biotechnology to effectively address the issues. Hence, this review is expected to provide some useful guidelines regarding appropriate air sampling and virus detection methods for particular applications.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | | | - Junbeom Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chang-Ho Han
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaegil Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering & Department of Urban and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
12
|
Kellie JF, Tran JC, Jian W, Jones B, Mehl JT, Ge Y, Henion J, Bateman KP. Intact Protein Mass Spectrometry for Therapeutic Protein Quantitation, Pharmacokinetics, and Biotransformation in Preclinical and Clinical Studies: An Industry Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1886-1900. [PMID: 32869982 DOI: 10.1021/jasms.0c00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advancements in immunocapture methods and mass spectrometer technology have enabled intact protein mass spectrometry to be applied for the characterization of antibodies and other large biotherapeutics from in-life studies. Protein molecules have not been traditionally studied by intact mass or screened for catabolites in the same manner as small molecules, but the landscape has changed. Researchers have presented methods that can be applied to the drug discovery and development stages, and others are exploring the possibilities of the new approaches. However, a wide variety of options for assay development exists without clear recommendation on best practice, and data processing workflows may have limitations depending on the vendor. In this perspective, we share experiences and recommendations for current and future application of mass spectrometry for biotherapeutic molecule monitoring from preclinical and clinical studies.
Collapse
Affiliation(s)
- John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - John C Tran
- Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, California 94080, United States
| | - Wenying Jian
- DMPK, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Barry Jones
- Q Squared Solutions, 19 Brown Road, Ithaca, New York 14850, United States
| | - John T Mehl
- Bioanalytical Research, Bristol-Myers Squibb, Princeton, New Jersey 08648, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jack Henion
- Advion, Inc., 61 Brown Road, Ithaca, New York 14850, United States
| | - Kevin P Bateman
- PPDM, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
13
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
14
|
Ibata N, Terentjev EM. Development of Nascent Focal Adhesions in Spreading Cells. Biophys J 2020; 119:2063-2073. [PMID: 33068539 DOI: 10.1016/j.bpj.2020.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/11/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic cell develops organelles to sense and respond to the mechanical properties of its surroundings. These mechanosensing organelles aggregate into symmetry-breaking patterns to mediate cell motion and differentiation on substrate. The spreading of a cell plated onto a substrate is one of the simplest paradigms in which angular symmetry-breaking assemblies of mechanical sensors are seen to develop. We review evidence for the importance of the edge of the cell-extracellular matrix adhesion area in the aggregation of mechanosensors and develop a theoretical model for the clustering of mechanosensors into nascent focal adhesions on this contact ring. To study the spatial patterns arising on this topological feature, we use a one-dimensional lattice model with a nearest-neighbor interaction between individual integrin-mediated mechanosensors. We find the effective Ginzburg-Landau free energy for this model and determine the spectrum of spatial modes as the cell spreads and increases its contact area with the substrate. To test our model, we compare its predictions with measured distributions of paxillin in spreading fibroblasts.
Collapse
Affiliation(s)
- Neil Ibata
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eugene M Terentjev
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Dupré M, Duchateau M, Malosse C, Borges-Lima D, Calvaresi V, Podglajen I, Clermont D, Rey M, Chamot-Rooke J. Optimization of a Top-Down Proteomics Platform for Closely Related Pathogenic Bacterial Discrimination. J Proteome Res 2020; 20:202-211. [PMID: 32929970 DOI: 10.1021/acs.jproteome.0c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current technique used for microbial identification in hospitals is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). However, it suffers from important limitations, in particular, for closely related species or when the database used for the identification lacks the appropriate reference. In this work, we set up a liquid chromatography (LC)-MS/MS top-down proteomics platform, which aims at discriminating closely related pathogenic bacteria through the identification of specific proteoforms. Using Escherichia coli as a model, all steps of the workflow were optimized: protein extraction, on-line LC separation, MS method, and data analysis. Using optimized parameters, about 220 proteins, corresponding to more than 500 proteoforms, could be identified in a single run. We then used this platform for the discrimination of enterobacterial pathogens undistinguishable by MALDI-TOF, although leading to very different clinical outcomes. For each pathogen, we identified specific proteoforms that could potentially be used as biomarkers. We also improved the characterization of poorly described bacterial strains. Our results highlight the advantage of addressing proteoforms rather than peptides for accurate bacterial characterization and qualify top-down proteomics as a promising tool in clinical microbiology. Data are available via ProteomeXchange with the identifier PXD019247.
Collapse
Affiliation(s)
- Mathieu Dupré
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Christian Malosse
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Diogo Borges-Lima
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Valeria Calvaresi
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Isabelle Podglajen
- Microbiology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Dominique Clermont
- Collection of the Institut Pasteur (CIP), Institut Pasteur, Paris 75015, France
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| |
Collapse
|
16
|
Mass spectrometric analysis of protein deamidation – A focus on top-down and middle-down mass spectrometry. Methods 2020; 200:58-66. [DOI: 10.1016/j.ymeth.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
|
17
|
Haudum C, Lindheim L, Ascani A, Trummer C, Horvath A, Münzker J, Obermayer-Pietsch B. Impact of Short-Term Isoflavone Intervention in Polycystic Ovary Syndrome (PCOS) Patients on Microbiota Composition and Metagenomics. Nutrients 2020; 12:E1622. [PMID: 32492805 PMCID: PMC7656308 DOI: 10.3390/nu12061622] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide and is associated with disorders of glucose metabolism. Hormone and metabolic signaling may be influenced by phytoestrogens, such as isoflavones. Their endocrine effects may modify symptom penetrance in PCOS. Equol is one of the most active isoflavone metabolites, produced by intestinal bacteria, and acts as a selective estrogen receptor modulator. METHOD In this interventional study of clinical and biochemical characterization, urine isoflavone levels were measured in PCOS and control women before and three days after a defined isoflavone intervention via soy milk. In this interventional study, bacterial equol production was evaluated using the log(equol: daidzein ratio) and microbiome, metabolic, and predicted metagenome analyses were performed. RESULTS After isoflavone intervention, predicted stool metagenomic pathways, microbial alpha diversity, and glucose homeostasis in PCOS improved resembling the profile of the control group at baseline. In the whole cohort, larger equol production was associated with lower androgen as well as fertility markers. CONCLUSION The dynamics in our metabolic, microbiome, and predicted metagenomic profiles underline the importance of external phytohormones on PCOS characteristics and a potential therapeutic approach or prebiotic in the future.
Collapse
Affiliation(s)
- Christoph Haudum
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Lisa Lindheim
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Angelo Ascani
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University Graz, 8010 Graz, Austria;
| | - Julia Münzker
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
18
|
Abstract
Top-down mass spectrometry (MS) analyzes intact proteins at the proteoform level, which allows researchers to better understand the functions of protein modifications. Recently, top-down proteomics has increased in popularity due to advancements in high-resolution mass spectrometers, increased efficiency in liquid chromatography (LC) separation, and advances in data analysis software. Some unique protein proteoforms, which have been distinguished using top-down MS, have even been shown to exhibit marked variation in biological function compared to similar proteoforms. However, the qualitative identification of a particular proteoform may not be enough to determine the biological relevance of that proteoform. Quantitative top-down MS methods have been notably applied to the study of the differing biological functions of protein proteoforms and have allowed researchers to explore proteomes at the proteoform, rather than the peptide, level. Here, we review the top-down MS methods that have been used to quantitatively identify intact proteins, discuss current applications of quantitative top-down MS analysis, and present new areas where quantitative top-down MS analysis may be implemented.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK 73019-5251, USA.
| | | |
Collapse
|
19
|
Locard-Paulet M, Parra J, Albigot R, Mouton-Barbosa E, Bardi L, Burlet-Schiltz O, Marcoux J. VisioProt-MS: interactive 2D maps from intact protein mass spectrometry. Bioinformatics 2019; 35:679-681. [PMID: 30084957 PMCID: PMC6378940 DOI: 10.1093/bioinformatics/bty680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
SUMMARY VisioProt-MS is designed to summarize and analyze intact protein and top-down proteomics data. It plots the molecular weights of eluting proteins as a function of their retention time, thereby allowing inspection of runs from liquid chromatography coupled to mass spectrometry (LC-MS). It also overlays MS/MS identification results. VisioProt-MS is compatible with outputs from many different top-down dedicated software. To our knowledge, this is the only open source standalone application that allows the dynamic comparison of several MS files, a prerequisite for comparative analysis of different biological conditions. With its dynamic rendering, this user-friendly web application facilitates inspection, comparison and export of publication quality 2 D maps from deconvoluted LC-MS run(s) and top-down proteomics data. AVAILABILITY AND IMPLEMENTATION The Shiny-based web application VisioProt-MS is suitable for non-R users. It can be found at https://masstools.ipbs.fr/mstools/visioprot-ms/ and the corresponding scripts are downloadable at https://github.com/mlocardpaulet/VisioProt-MS. It is governed by the CeCILL license (http://www.cecill.info).
Collapse
Affiliation(s)
- Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Albigot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Bardi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
20
|
Top-Down Proteomics Applied to Human Cerebrospinal Fluid. Methods Mol Biol 2019. [PMID: 31432414 DOI: 10.1007/978-1-4939-9706-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cerebrospinal fluid (CSF) is the fluid of choice to study pathologies and disorders of the central nervous system (CNS). Its composition, especially its proteins and peptides, holds the promise that it may reflect the pathological state of an individual. Traditionally, proteins and peptides in CSF have been analyzed using bottom-up proteomics technologies in the search of high proteome coverage. However, the limited protein sequence coverage of this technology means that information regarding post-translational modifications (PTMs) and alternative splice variants is lost. As an alternative technology, top-down proteomics offers low to medium proteome coverage, but high protein coverage enabling almost a full characterization of the proteins' primary structure. This allows us to precisely identify distinct molecular forms of proteins (proteoforms) as well as naturally occurring bioactive peptide fragments, which could be of critical biological relevance and would otherwise remain undetected with a classical proteomics approach.Here, we describe various strategies including sample preparation protocols, off-line intact protein prefractionation, and LC-MS/MS methods together with data analysis pipelines to analyze cerebrospinal fluid (CSF) by top-down proteomics. However, there is not a unique or standardized method and the selection of the top-down strategy will depend on the exact goal of the study. Here, we describe various top-down proteomics methods that enable rapid protein characterization and may be an excellent companion analytical workflow in the search for new protein biomarkers in neurodegenerative diseases.
Collapse
|
21
|
Schaffer LV, Millikin RJ, Miller RM, Anderson LC, Fellers RT, Ge Y, Kelleher NL, LeDuc RD, Liu X, Payne SH, Sun L, Thomas PM, Tucholski T, Wang Z, Wu S, Wu Z, Yu D, Shortreed MR, Smith LM. Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics 2019; 19:e1800361. [PMID: 31050378 PMCID: PMC6602557 DOI: 10.1002/pmic.201800361] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/07/2019] [Indexed: 12/29/2022]
Abstract
A proteoform is a defined form of a protein derived from a given gene with a specific amino acid sequence and localized post-translational modifications. In top-down proteomic analyses, proteoforms are identified and quantified through mass spectrometric analysis of intact proteins. Recent technological developments have enabled comprehensive proteoform analyses in complex samples, and an increasing number of laboratories are adopting top-down proteomic workflows. In this review, some recent advances are outlined and current challenges and future directions for the field are discussed.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Ryan T Fellers
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Cell and Regenerative Biology and Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry and Molecular Biosciences and the Division of Hematology and Oncology, Northwestern University, Evanston, IL, 60208, USA
| | - Richard D LeDuc
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT, 84602
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
22
|
Lakshmanan R, Loo JA. Top-Down Protein Identification using a Time-of-Flight Mass Spectrometer and Data Independent Acquisition. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 435:136-144. [PMID: 31105465 PMCID: PMC6519736 DOI: 10.1016/j.ijms.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Top-down mass spectrometry and direct dissociation of gas phase intact proteins have been demonstrated to be a powerful platform for identifying proteins from complex mixtures and for elucidating post-translational modifications (PTMs). Fragmentation of proteins in the atmospheric pressure/vacuum interface of the electrospray ionization mass spectrometer is an effective dissociation technique that can be utilized for on-line HPLC top-down analysis. We demonstrate the capability to perform intact protein identifications in a single-stage time-of- flight (TOF) mass spectrometer in a data independent (DIA) acquisition fashion by rapidly switching the in-source dissociation (ISD) energy during protein elution from a liquid chromatography (LC) column. The intact protein and product ion masses obtained at low and high ISD energies, respectively, were measured using a TOF mass analyzer. By coupling on-line protein separations to dissociation in the atmospheric pressure/vacuum interface region of the mass spectrometer, we identified proteins in simple complexity mixtures, including subunits from the human 20S proteasome complex, and PTMs such as phosphorylation and N-terminal acetylation events. This proof-of-principle study demonstrates that a data-independent pseudo- MS/MS method could be a relatively in-expensive platform for top-down MS.
Collapse
Affiliation(s)
- Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
23
|
Inventory of proteoforms as a current challenge of proteomics: Some technical aspects. J Proteomics 2019; 191:22-28. [DOI: 10.1016/j.jprot.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023]
|
24
|
Cleland TP, DeHart CJ, Fellers RT, VanNispen AJ, Greer JB, LeDuc RD, Parker WR, Thomas PM, Kelleher NL, Brodbelt JS. High-Throughput Analysis of Intact Human Proteins Using UVPD and HCD on an Orbitrap Mass Spectrometer. J Proteome Res 2017; 16:2072-2079. [PMID: 28412815 DOI: 10.1021/acs.jproteome.7b00043] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The analysis of intact proteins (top-down strategy) by mass spectrometry has great potential to elucidate proteoform variation, including patterns of post-translational modifications (PTMs), which may not be discernible by analysis of peptides alone (bottom-up approach). To maximize sequence coverage and localization of PTMs, various fragmentation modes have been developed to produce fragment ions from deep within intact proteins. Ultraviolet photodissociation (UVPD) has recently been shown to produce high sequence coverage and PTM retention on a variety of proteins, with increasing evidence of efficacy on a chromatographic time scale. However, utilization of UVPD for high-throughput top-down analysis to date has been limited by bioinformatics. Here we detected 153 proteins and 489 proteoforms using UVPD and 271 proteins and 982 proteoforms using higher energy collisional dissociation (HCD) in a comparative analysis of HeLa whole-cell lysate by qualitative top-down proteomics. Of the total detected proteoforms, 286 overlapped between the UVPD and HCD data sets, with 68% of proteoforms having C scores greater than 40 for UVPD and 63% for HCD. The average sequence coverage (28 ± 20% for UVPD versus 17 ± 8% for HCD, p < 0.0001) was found to be higher for UVPD than HCD and with a trend toward improvement in q value for the UVPD data set. This study demonstrates the complementarity of UVPD and HCD for more extensive protein profiling and proteoform characterization.
Collapse
Affiliation(s)
- Timothy P Cleland
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Alexandra J VanNispen
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Joseph B Greer
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - W Ryan Parker
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University , Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University , Evanston, Illinois 60208, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
25
|
Yamada H, Matsumura C, Yamada K, Teshima K, Hiroshima T, Kinoshita M, Suzuki S, Kakehi K. Combination of SDS-PAGE and intact mass analysis for rapid determination of heterogeneities in monoclonal antibody therapeutics. Electrophoresis 2017; 38:1344-1352. [DOI: 10.1002/elps.201700014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Hideaki Yamada
- Pharmaceutical Sciences; Takeda Pharmaceutical Company Limited; Yodogawa-ku Osaka Japan
| | - Chiemi Matsumura
- School of Pharmacy; Kindai University; Higashi-Osaka Osaka Japan
| | - Keita Yamada
- School of Pharmacy; Kindai University; Higashi-Osaka Osaka Japan
| | - Koichiro Teshima
- Pharmaceutical Sciences; Takeda Pharmaceutical Company Limited; Yodogawa-ku Osaka Japan
| | - Takashi Hiroshima
- Pharmaceutical Sciences; Takeda Pharmaceutical Company Limited; Yodogawa-ku Osaka Japan
| | | | - Shigeo Suzuki
- School of Pharmacy; Kindai University; Higashi-Osaka Osaka Japan
| | - Kazuaki Kakehi
- School of Pharmacy; Kindai University; Higashi-Osaka Osaka Japan
| |
Collapse
|
26
|
Shortreed MR, Frey BL, Scalf M, Knoener RA, Cesnik AJ, Smith LM. Elucidating Proteoform Families from Proteoform Intact-Mass and Lysine-Count Measurements. J Proteome Res 2016; 15:1213-21. [PMID: 26941048 PMCID: PMC4917391 DOI: 10.1021/acs.jproteome.5b01090] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Proteomics
is presently dominated by the “bottom-up”
strategy, in which proteins are enzymatically digested into peptides
for mass spectrometric identification. Although this approach is highly
effective at identifying large numbers of proteins present in complex
samples, the digestion into peptides renders it impossible to identify
the proteoforms from which they were derived. We present here a powerful
new strategy for the identification of proteoforms and the elucidation
of proteoform families (groups of related proteoforms) from the experimental
determination of the accurate proteoform mass and number of lysine
residues contained. Accurate proteoform masses are determined by standard
LC–MS analysis of undigested protein mixtures in an Orbitrap
mass spectrometer, and the lysine count is determined using the NeuCode
isotopic tagging method. We demonstrate the approach in analysis of
the yeast proteome, revealing 8637 unique proteoforms and 1178 proteoform
families. The elucidation of proteoforms and proteoform families afforded
here provides an unprecedented new perspective upon proteome complexity
and dynamics.
Collapse
Affiliation(s)
- Michael R Shortreed
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States.,Genome Center of Wisconsin, University of Wisconsin , 425G Henry Mall, Room 3420, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Cheon DH, Nam EJ, Park KH, Woo SJ, Lee HJ, Kim HC, Yang EG, Lee C, Lee JE. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry. J Proteome Res 2015; 15:229-44. [DOI: 10.1021/acs.jproteome.5b00773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dong Huey Cheon
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
- Interdisciplinary
Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Republic of Korea
| | - Eun Ji Nam
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
- Department
of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyu Hyung Park
- Department
of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Se Joon Woo
- Department
of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Hye Jin Lee
- Department
of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hee Cheol Kim
- Department
of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Eun Gyeong Yang
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Cheolju Lee
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
- Department
of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Ji Eun Lee
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| |
Collapse
|
28
|
McNulty SN, Rosa BA, Fischer PU, Rumsey JM, Erdmann-Gilmore P, Curtis KC, Specht S, Townsend RR, Weil GJ, Mitreva M. An Integrated Multiomics Approach to Identify Candidate Antigens for Serodiagnosis of Human Onchocerciasis. Mol Cell Proteomics 2015; 14:3224-33. [PMID: 26472727 PMCID: PMC4762623 DOI: 10.1074/mcp.m115.051953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/10/2015] [Indexed: 11/27/2022] Open
Abstract
Improved diagnostic methods are needed to support ongoing efforts to eliminate onchocerciasis (river blindness). This study used an integrated approach to identify adult female Onchocerca volvulus antigens that can be explored for developing serodiagnostic tests. The first step was to develop a detailed multi-omics database of all O. volvulus proteins deduced from the genome, gene transcription data for different stages of the parasite including eight individual female worms (providing gene expression information for 94.8% of all protein coding genes), and the adult female worm proteome (detecting 2126 proteins). Next, female worm proteins were purified with IgG antibodies from onchocerciasis patients and identified using LC-MS with a high-resolution hybrid quadrupole-time-of-flight mass spectrometer. A total of 241 immunoreactive proteins were identified among those bound by IgG from infected individuals but not IgG from uninfected controls. These included most of the major diagnostic antigens described over the past 25 years plus many new candidates. Proteins of interest were prioritized for further study based on a lack of conservation with orthologs in the human host and other helminthes, their expression pattern across the life cycle, and their consistent expression among individual female worms. Based on these criteria, we selected 33 proteins that should be carried forward for testing as serodiagnostic antigens to supplement existing diagnostic tools. These candidates, together with the extensive pan-omics dataset generated in this study are available to the community (http://nematode.net) to facilitate basic and translational research on onchocerciasis.
Collapse
Affiliation(s)
- Samantha N McNulty
- From the ‡McDonnell Genome Institute, Washington University in St Louis, Missouri 63108
| | - Bruce A Rosa
- From the ‡McDonnell Genome Institute, Washington University in St Louis, Missouri 63108
| | - Peter U Fischer
- §Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeanne M Rumsey
- ¶Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Petra Erdmann-Gilmore
- ¶Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kurt C Curtis
- §Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sabine Specht
- **Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany 53127
| | - R Reid Townsend
- ¶Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110; ‖Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Gary J Weil
- §Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Makedonka Mitreva
- From the ‡McDonnell Genome Institute, Washington University in St Louis, Missouri 63108; §Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
29
|
Carter DM, Westdorp K, Noon KR, Terhune SS. Proteomic identification of nuclear processes manipulated by cytomegalovirus early during infection. Proteomics 2015; 15:1995-2005. [PMID: 25758553 DOI: 10.1002/pmic.201400599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/20/2015] [Accepted: 03/07/2015] [Indexed: 11/07/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that is ubiquitously distributed worldwide and causes life-threating disease upon immunosuppression. HCMV expresses numerous proteins that function to establish an intracellular environment that supports viral replication. Like most DNA viruses, HCMV manipulates processes within the nucleus. We have quantified changes in the host cell nuclear proteome at 24 h post infection following infection with a clinical viral isolate. We have combined SILAC with multiple stages of fractionation to define changes. Tryptic peptides were analyzed by RP-HPLC combined with LC-MS/MS on an LTQ Orbitrap Velos mass spectrometer. Data from three biological replicates were processed with MaxQuant. A total of 1281 cellular proteins were quantified and 77 were found to be significantly differentially expressed. In addition, we observed 36 viral proteins associated with the nucleus. Diverse biological processes were significantly altered, including increased aspects of cell cycling, mRNA metabolism, and nucleocytoplasmic transport and decreased immune responses. We validated changes for several proteins including a subset of classical nuclear transport proteins. In addition, we demonstrated that disruption of these import factors is inhibitory to HCMV replication. Overall, we have identified HCMV-induced changes in the nuclear proteome and uncovered several processes that are important for infection. All MS data have been deposited in the ProteomeXchange with identifier PXD001909 (http://proteomecentral.proteomexchange.org/dataset/PXD001909).
Collapse
Affiliation(s)
- Dominique M Carter
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kristen Westdorp
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kathleen R Noon
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott S Terhune
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
30
|
Kim KH, Compton PD, Tran JC, Kelleher NL. Online matrix removal platform for coupling gel-based separations to whole protein electrospray ionization mass spectrometry. J Proteome Res 2015; 14:2199-206. [PMID: 25836738 DOI: 10.1021/pr501331q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A fractionation method called gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) has been used to dramatically increase the number of proteins identified in top-down proteomic workflows; however, the technique involves the use of sodium dodecyl sulfate (SDS), a surfactant that interferes with electrospray ionization. Therefore, an efficient removal of SDS is absolutely required prior to mass analysis. Traditionally, methanol/chloroform precipitation and spin columns have been used, but they lack reproducibility and are difficult to automate. Therefore, we developed an in-line matrix removal platform to enable the direct analysis of samples containing SDS and salts. Only small molecules like SDS permeate a porous membrane and are removed in a manner similar to cross-flow filtration. With this device, near-complete removal of SDS is accomplished within 5 min and proteins are subsequently mobilized into a mass spectrometer. The new platform was optimized for the analysis of GELFrEE fractions enriched for histones extracted from human HeLa cells. All four core histones and their proteoforms were detected in a single spectrum by high-resolution mass spectrometry. The new method versus protein precipitation/resuspension showed 2- to 10-fold improved signal intensities, offering a clear path forward to improve proteome coverage and the efficiency of top-down proteomics.
Collapse
Affiliation(s)
- Ki Hun Kim
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - John C Tran
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Eliuk S, Makarov A. Evolution of Orbitrap Mass Spectrometry Instrumentation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:61-80. [PMID: 26161972 DOI: 10.1146/annurev-anchem-071114-040325] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We discuss the evolution of Orbitrap mass spectrometry (MS) from its birth in the late 1990s to its current role as one of the most prominent techniques for MS. The Orbitrap mass analyzer is the first high-performance mass analyzer that employs trapping of ions in electrostatic fields. Tight integration with the ion injection process enables the high-resolution, mass accuracy, and sensitivity that have become essential for addressing analytical needs in numerous areas of research, as well as in routine analysis. We examine three major families of instruments (related to the LTQ Orbitrap, Q Exactive, and Orbitrap Fusion mass spectrometers) in the context of their historical development over the past ten eventful years. We discuss as well future trends and perspectives of Orbitrap MS. We illustrate the compelling potential of Orbitrap-based mass spectrometers as (ultra) high-resolution platforms, not only for high-end proteomic applications, but also for routine targeted analysis.
Collapse
Affiliation(s)
- Shannon Eliuk
- Thermo Fisher Scientific, San Jose, California 97232;
| | | |
Collapse
|
32
|
Han X, Wang Y, Aslanian A, Fonslow B, Graczyk B, Davis TN, Yates JR. In-line separation by capillary electrophoresis prior to analysis by top-down mass spectrometry enables sensitive characterization of protein complexes. J Proteome Res 2014; 13:6078-86. [PMID: 25382489 PMCID: PMC4262260 DOI: 10.1021/pr500971h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Intact
protein analysis via top-down mass spectrometry (MS) provides
a bird’s eye view over the protein complexes and complex protein
mixtures with the unique capability of characterizing protein variants,
splice isoforms, and combinatorial post-translational modifications
(PTMs). Here we applied capillary electrophoresis (CE) through a sheathless
CE–electrospray ionization interface coupled to an LTQ Velos
Orbitrap Elite mass spectrometer to analyze the Dam1 complex from Saccharomyces cerevisiae. We achieved a 100-fold
increase in sensitivity compared to a reversed-phase liquid chromatography
coupled MS analysis of recombinant Dam1 complex with a total loading
of 2.5 ng (12 amol). N-terminal processing forms of individual subunits
of the Dam1 complex were observed as well as their phosphorylation
stoichiometry upon Mps1p kinase treatment.
Collapse
Affiliation(s)
- Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
33
|
Han X, Wang Y, Aslanian A, Bern M, Lavallée-Adam M, Yates JR. Sheathless capillary electrophoresis-tandem mass spectrometry for top-down characterization of Pyrococcus furiosus proteins on a proteome scale. Anal Chem 2014; 86:11006-12. [PMID: 25346219 PMCID: PMC4238646 DOI: 10.1021/ac503439n] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Intact protein analysis via top-down
mass spectrometry (MS) provides
the unique capability of fully characterizing protein isoforms and
combinatorial post-translational modifications (PTMs) compared to
the bottom-up MS approach. Front-end protein separation poses a challenge
for analyzing complex mixtures of intact proteins on a proteomic scale.
Here we applied capillary electrophoresis (CE) through a sheathless
capillary electrophoresis-electrospray ionization (CESI) interface
coupled to an Orbitrap Elite mass spectrometer to profile the proteome
from Pyrococcus furiosus. CESI-top-down MS analysis
of Pyrococcus furiosus cell lysate identified 134
proteins and 291 proteoforms with a total sample consumption of 270
ng in 120 min of total analysis time. Truncations and various PTMs
were detected, including acetylation, disulfide bonds, oxidation,
glycosylation, and hypusine. This is the largest scale analysis of
intact proteins by CE-top-down MS to date.
Collapse
Affiliation(s)
- Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
34
|
Systems biology studies of adult paragonimus lung flukes facilitate the identification of immunodominant parasite antigens. PLoS Negl Trop Dis 2014; 8:e3242. [PMID: 25329661 PMCID: PMC4199545 DOI: 10.1371/journal.pntd.0003242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/04/2014] [Indexed: 01/05/2023] Open
Abstract
Background Paragonimiasis is a food-borne trematode infection acquired by eating raw or undercooked crustaceans. It is a major public health problem in the far East, but it also occurs in South Asia, Africa, and in the Americas. Paragonimus worms cause chronic lung disease with cough, fever and hemoptysis that can be confused with tuberculosis or other non-parasitic diseases. Treatment is straightforward, but diagnosis is often delayed due to a lack of reliable parasitological or serodiagnostic tests. Hence, the purpose of this study was to use a systems biology approach to identify key parasite proteins that may be useful for development of improved diagnostic tests. Methodology/Principal Findings The transcriptome of adult Paragonimus kellicotti was sequenced with Illumina technology. Raw reads were pre-processed and assembled into 78,674 unique transcripts derived from 54,622 genetic loci, and 77,123 unique protein translations were predicted. A total of 2,555 predicted proteins (from 1,863 genetic loci) were verified by mass spectrometric analysis of total worm homogenate, including 63 proteins lacking homology to previously characterized sequences. Parasite proteins encoded by 321 transcripts (227 genetic loci) were reactive with antibodies from infected patients, as demonstrated by immunoaffinity purification and high-resolution liquid chromatography-mass spectrometry. Serodiagnostic candidates were prioritized based on several criteria, especially low conservation with proteins in other trematodes. Cysteine proteases, MFP6 proteins and myoglobins were abundant among the immunoreactive proteins, and these warrant further study as diagnostic candidates. Conclusions The transcriptome, proteome and immunolome of adult P. kellicotti represent a major advance in the study of Paragonimus species. These data provide a powerful foundation for translational research to develop improved diagnostic tests. Similar integrated approaches may be useful for identifying novel targets for drugs and vaccines in the future. Paragonimiasis is a food-borne trematode infection that people acquire when they eat raw or undercooked crustaceans. Disease symptoms (including cough, fever, blood in sputum, etc.) can be similar to those observed in patients with tuberculosis or bacterial pneumonia, frequently resulting in misdiagnosis. Although the infection is relatively easy to treat, diagnosis is complicated. Available diagnostic assays rely on total parasite homogenate to facilitate the detection of Paragonimus-specific antibodies in patients. Though these blot-based assays have shown high sensitivity and specificity, they are inconvenient because total parasite homogenate is not readily available. This study used next generation genomic and proteomic methods to identify transcripts and proteins expressed in adult Paragonimus flukes. We then used sera from patients infected with P. kellicotti to isolate immunoreactive proteins, and these were analyzed by mass spectrometry. The annotated transcriptome and the associated proteome of the antibody immune response represent a significant advance in research on Paragonimus. This information will be a valuable resource for further research on Paragonimus and paragonimiasis. Thus this project illustrates the potential power of employing systems biology for translational research in parasitology.
Collapse
|
35
|
Venne AS, Zahedi RP. The potential of fractional diagonal chromatography strategies for the enrichment of post-translational modifications. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Lakshmanan R, Wolff JJ, Alvarado R, Loo JA. Top-down protein identification of proteasome proteins with nanoLC-FT-ICR-MS employing data-independent fragmentation methods. Proteomics 2014; 14:1271-82. [PMID: 24478249 DOI: 10.1002/pmic.201300339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 11/10/2022]
Abstract
A comparison of different data-independent fragmentation methods combined with LC coupled to high-resolution FT-ICR-MS/MS is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complexes and their PTMs were identified using a 15 T FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty-cycle measurements that better suit online LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (continuous accumulation of selected ions)-CAD. The N-termini for 9 of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass-measurement accuracy with the LC-FT-ICR system for the 20- to 30-kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100-kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact-protein fragmentation and is an effective addition to the growing inventory of dissociation methods that are compatible with online protein separation coupled to FT-ICR-MS.
Collapse
Affiliation(s)
- Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
37
|
Catherman AD, Skinner OS, Kelleher NL. Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 2014; 445:683-93. [PMID: 24556311 PMCID: PMC4103433 DOI: 10.1016/j.bbrc.2014.02.041] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 12/29/2022]
Abstract
The rise of the "Top Down" method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious "inference" problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years.
Collapse
Affiliation(s)
- Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Owen S Skinner
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
38
|
Waybright TJ, Chan KC, Veenstra TD, Xiao Z. Preparation of the low molecular weight serum proteome for mass spectrometry analysis. Methods Mol Biol 2014; 1061:279-89. [PMID: 23963944 DOI: 10.1007/978-1-62703-589-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.
Collapse
Affiliation(s)
- Timothy J Waybright
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, SAIC-Frederick, Frederick, MD, USA
| | | | | | | |
Collapse
|
39
|
Durbin KR, Fellers RT, Ntai I, Kelleher NL, Compton PD. Autopilot: an online data acquisition control system for the enhanced high-throughput characterization of intact proteins. Anal Chem 2014; 86:1485-92. [PMID: 24400813 PMCID: PMC3958137 DOI: 10.1021/ac402904h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
The ability to study organisms by
direct analysis of their proteomes
without digestion via mass spectrometry has benefited greatly from
recent advances in separation techniques, instrumentation, and bioinformatics.
However, improvements to data acquisition logic have lagged in comparison.
Past workflows for Top Down Proteomics (TDPs) have focused on high
throughput at the expense of maximal protein coverage and characterization.
This mode of data acquisition has led to enormous overlap in the identification
of highly abundant proteins in subsequent LC-MS injections. Furthermore,
a wealth of data is left underutilized by analyzing each newly targeted
species as unique, rather than as part of a collection of fragmentation
events on a distinct proteoform. Here, we present a major advance
in software for acquisition of TDP data that incorporates a fully
automated workflow able to detect intact masses, guide fragmentation
to achieve maximal identification and characterization of intact protein
species, and perform database search online to yield real-time protein
identifications. On Pseudomonas aeruginosa, the software
combines fragmentation events of the same precursor with previously
obtained fragments to achieve improved characterization of the target
form by an average of 42 orders of magnitude in confidence. When HCD
fragmentation optimization was applied to intact proteins ions, there
was an 18.5 order of magnitude gain in confidence. These improved
metrics set the stage for increased proteome coverage and characterization
of higher order organisms in the future for sharply improved control
over MS instruments in a project- and lab-wide context.
Collapse
Affiliation(s)
- Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | | | | | | | | |
Collapse
|
40
|
Liuni P, Wilson DJ. Understanding and optimizing electrospray ionization techniques for proteomic analysis. Expert Rev Proteomics 2014; 8:197-209. [DOI: 10.1586/epr.10.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Petrotchenko EV, Serpa JJ, Cabecinha AN, Lesperance M, Borchers CH. "Out-gel" tryptic digestion procedure for chemical cross-linking studies with mass spectrometric detection. J Proteome Res 2014; 13:527-35. [PMID: 24354799 DOI: 10.1021/pr400710q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SDS-PAGE is one of the most powerful protein separation techniques, and in-gel digestion is the leading method for converting proteins separated by SDS-PAGE into peptides suitable for mass spectrometry-based proteomic studies. In in-gel digestion, proteins are digested within the gel matrix, and the resulting peptides are extracted into an appropriate buffer. Transfer of the digested peptides to the liquid phase for subsequent mass spectrometric analysis, however, may be hampered by peptide-specific characteristics, including size, shape, poor solubility, adsorption to the polyacrylamide, and-in the case of cross-linking applications-by the branched structure of the peptides produced. This can be a limitation in cross-linking studies where efficient recoveries of the cross-linked peptides are critical. To overcome this limitation, we have developed a modification to the standard in-gel digestion procedure for SDS-PAGE-separated cross-linked proteins, based on older passive diffusion methods. By omitting the gel staining and gel fixation steps, intact proteins or cross-linked protein complexes can move through the gel and into the buffer solution. Digestion of the entire protein in the buffer outside the gel increases the probability that most of the proteolytic peptides produced will be present in the final digest solution. The resulting peptide mixture is then freed of SDS and concentrated using SCX (strong cation exchange) zip-tips and analyzed by mass spectrometry. For standard protein identification studies and the recovery of noncross-linked peptides, the in-gel procedure outperformed the out-gel procedure, but for cross-linking studies with enrichable cross-linkers (such as CBDPS), the standard out-gel procedure allowed the recoveries of cross-links not recovered via the in-gel method. Labeling experiments showed that, with an enrichable cross-linker, 93% of the cross-links showed better or equal recoveries with the out-gel procedure, as compared to the in-gel procedure. It should be noted that this method is not designed to replace in-gel digestion for most proteomics applications. However, by using the out-gel method, we were able to detect twice as many interprotein CBDPS cross-links from the histone H2A/H2B complex as were found in the in-gel digested sample.
Collapse
Affiliation(s)
- Evgeniy V Petrotchenko
- University of Victoria, University of Victoria-Genome British Columbia Protein Centre , 3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, BC V8Z 7X8 Canada
| | | | | | | | | |
Collapse
|
42
|
Xian F, Valeja SG, Beu SC, Hendrickson CL, Marshall AG. Artifacts induced by selective blanking of time-domain data in Fourier transform mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1722-1726. [PMID: 24043522 DOI: 10.1007/s13361-013-0735-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 07/02/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Fourier transform mass spectrometry (FTMS) of the isolated isotopic distribution for a highly charged biomolecule produces time-domain signal containing large amplitude signal "beats" separated by extended periods of much lower signal magnitude. Signal-to-noise ratio for data sampled between beats is low because of destructive interference of the signals induced by members of the isotopic distribution. Selective blanking of the data between beats has been used to increase spectral signal-to-noise ratio. However, blanking also eliminates signal components and, thus, can potentially distort the resulting FT spectrum. Here, we simulate the time-domain signal from a truncated isotopic distribution for a single charge state of an antibody. Comparison of the FT spectra produced with or without blanking and with or without added noise clearly show that blanking does not improve mass accuracy and introduces spurious peaks at both ends of the isotopic distribution (thereby making it more difficult to identify posttranslational modifications and/or adducts). Although the artifacts are reduced by use of multiple Gaussian (rather than square wave) windowing, blanking appears to offer no advantages for identifying true peaks or for mass measurement.
Collapse
Affiliation(s)
- Feng Xian
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Ahlf DR, Thomas PM, Kelleher NL. Developing top down proteomics to maximize proteome and sequence coverage from cells and tissues. Curr Opin Chem Biol 2013; 17:787-94. [PMID: 23988518 DOI: 10.1016/j.cbpa.2013.07.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Abstract
Mass spectrometry based proteomics generally seeks to identify and characterize protein molecules with high accuracy and throughput. Recent speed and quality improvements to the independent steps of integrated platforms have removed many limitations to the robust implementation of top down proteomics (TDP) for proteins below 70 kDa. Improved intact protein separations coupled to high-performance instruments have increased the quality and number of protein and proteoform identifications. To date, TDP applications have shown >1000 protein identifications, expanding to an average of ∼3-4 more proteoforms for each protein detected. In the near future, increased fractionation power, new mass spectrometers and improvements in proteoform scoring will combine to accelerate the application and impact of TDP to this century's biomedical problems.
Collapse
Affiliation(s)
- Dorothy R Ahlf
- Department of Chemistry and Biochemistry and the Harper Cancer Institute, University of Notre Dame, Notre Dame, IN, United States
| | | | | |
Collapse
|
45
|
Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions. Proc Natl Acad Sci U S A 2013; 110:10153-8. [PMID: 23720318 DOI: 10.1073/pnas.1221210110] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Toward this end, we used single-dimension ultra-high-pressure liquid chromatography mass spectrometry to investigate the comprehensive "intact" proteome of the Gram-negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1,665 proteoforms generated by posttranslational modifications (PTMs), representing the largest microbial top-down dataset reported to date. We confirmed many previously recognized aspects of Salmonella biology and bacterial PTMs, and our analysis also revealed several additional biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions. This finding of a S-glutathionylation-to-S-cysteinylation switch in a condition-specific manner was corroborated by bottom-up proteomics data and further by changes in corresponding biosynthetic pathways under infection-like conditions and during actual infection of host cells. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents a report of S-cysteinylation in Gram-negative bacteria. Additionally, the functional relevance of these PTMs was supported by protein structure and gene deletion analyses. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.
Collapse
|
46
|
Hettich RL, Pan C, Chourey K, Giannone RJ. Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem 2013; 85:4203-14. [PMID: 23469896 PMCID: PMC3696428 DOI: 10.1021/ac303053e] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of extensive genome information for many different microbes, including unculturable species in mixed communities from environmental samples, has enabled systems-biology interrogation by providing a means to access genomic, transcriptomic, and proteomic information. To this end, metaproteomics exploits the power of high-performance mass spectrometry for extensive characterization of the complete suite of proteins expressed by a microbial community in an environmental sample.
Collapse
|
47
|
Napoli C, Zullo A, Picascia A, Infante T, Mancini FP. Recent advances in proteomic technologies applied to cardiovascular disease. J Cell Biochem 2013; 114:7-20. [PMID: 22886784 DOI: 10.1002/jcb.24307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022]
Abstract
In recent years, the diagnosis of cardiovascular disease (CVD) has increased its potential, also thanks to mass spectrometry (MS) proteomics. Modern MS proteomics tools permit analyzing a variety of biological samples, ranging from single cells to tissues and body fluids, like plasma and urine. This approach enhances the search for informative biomarkers in biological samples from apparently healthy individuals or patients, thus allowing an earlier and more precise diagnosis and a deeper comprehension of pathogenesis, development and outcome of CVD to further reduce the enormous burden of this disease on public health. In fact, many differences in protein expression between CVD-affected and healthy subjects have been detected, but only a few of them have been useful to establish clinical biomarkers because they did not pass the verification and validation tests. For a concrete clinical support of MS proteomics to CVD, it is, therefore, necessary to: ameliorate the resolution, sensitivity, specificity, throughput, precision, and accuracy of MS platform components; standardize procedures for sample collection, preparation, and analysis; lower the costs of the analyses; reduce the time of biomarker verification and validation. At the same time, it will be fundamental, for the future perspectives of proteomics in clinical trials, to define the normal protein maps and the global patterns of normal protein levels, as well as those specific for the different expressions of CVD.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Excellence Research Centre on Cardiovascular Disease, U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Ospedaliera Universitaria (AOU), 1st School of Medicine, Second University of Naples, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
48
|
Russell JD, Scalf M, Book AJ, Ladror DT, Vierstra RD, Smith LM, Coon JJ. Characterization and quantification of intact 26S proteasome proteins by real-time measurement of intrinsic fluorescence prior to top-down mass spectrometry. PLoS One 2013; 8:e58157. [PMID: 23536786 PMCID: PMC3594244 DOI: 10.1371/journal.pone.0058157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1.
Collapse
Affiliation(s)
- Jason D. Russell
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Adam J. Book
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Daniel T. Ladror
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
49
|
Catherman AD, Li M, Tran JC, Durbin KR, Compton PD, Early BP, Thomas PM, Kelleher NL. Top down proteomics of human membrane proteins from enriched mitochondrial fractions. Anal Chem 2013; 85:1880-8. [PMID: 23305238 DOI: 10.1021/ac3031527] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interrogation of intact integral membrane proteins has long been a challenge for biological mass spectrometry. Here, we demonstrate the application of top down mass spectrometry to whole membrane proteins below 60 kDa with up to 8 transmembrane helices. Analysis of enriched mitochondrial membrane preparations from human cells yielded identification of 83 integral membrane proteins, along with 163 membrane-associated or soluble proteins, with a median q value of 3 × 10(-10). An analysis of matching fragment ions demonstrated that significantly more fragment ions were found within transmembrane domains than would be expected based upon the observed protein sequence. In total, 46 proteins from the complexes of oxidative phosphorylation were identified which exemplifies the increasing ability of top down proteomics to provide extensive coverage in a biological network.
Collapse
Affiliation(s)
- Adam D Catherman
- Department of Chemistry, the Chemistry of Life Processes Institute, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, 60208, United States
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lanucara F, Eyers CE. Top-down mass spectrometry for the analysis of combinatorial post-translational modifications. MASS SPECTROMETRY REVIEWS 2013; 32:27-42. [PMID: 22718314 DOI: 10.1002/mas.21348] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 06/01/2023]
Abstract
Protein post-translational modifications (PTMs) are critically important in regulating both protein structure and function, often in a rapid and reversible manner. Due to its sensitivity and vast applicability, mass spectrometry (MS) has become the technique of choice for analyzing PTMs. Whilst the "bottom-up' analytical approach, in which proteins are proteolyzed generating peptides for analysis by MS, is routinely applied and offers some advantages in terms of ease of analysis and lower limit of detection, "top-down" MS, describing the analysis of intact proteins, yields unique and highly valuable information on the connectivity and therefore combinatorial effect of multiple PTMs in the same polypeptide chain. In this review, the state of the art in top-down MS will be discussed, covering the main instrumental platforms and ion activation techniques. Moreover, the way that this approach can be used to gain insights on the combinatorial effect of multiple post-translational modifications and how this information can assist in studying physiologically relevant systems at the molecular level will also be addressed.
Collapse
Affiliation(s)
- Francesco Lanucara
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, Manchester M1 7DN, UK
| | | |
Collapse
|