1
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
2
|
Mendes GM, d'Orlye F, Trapiella-Alfonso L, Duarte GRM, Varenne A. Streamlined integrated protein isoelectric focusing using microfluidic paper-based device. J Chromatogr A 2024; 1732:465222. [PMID: 39111183 DOI: 10.1016/j.chroma.2024.465222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
An innovative integrated paper-based microdevice was developed for protein separation by isoelectric focusing (IEF), allowing for robust design thanks to a 3D-printed holder integrating separation channel, reservoirs, and electrodes. To reach robustness and precision, the optimization focused on the holder geometry, the paper nature, the reservoir design, the IEF medium, and various focusing parameters. A well-established and stable pH gradient was obtained on a glass-fiber paper substrate with simple sponge reservoirs, and the integration of the electrodes in the holder led to a straightforward system. The separation medium composed of water/glycerol (85/15, v/v) allowed for reducing medium evaporation while being an efficient medium for most hydrophobic and hydrophilic proteins, compatible with mass spectrometry detection for further proteomics developments. To our knowledge, this is the first report of the use of glycerol solutions as a separation medium in a paper-based microdevice. Analytical performances regarding pH gradient generation, pI determination, separation efficiency, and resolution were estimated while varying the IEF experimental parameters. The overall process led to an efficient separation within 25 min. Then, this methodology was applied to a sample composed of saliva doped with proteins. A minimal matrix effect was evidenced, underscoring the practical viability of our platform. This low-cost, versatile and robust paper-based IEF microdevice opens the way to various applications, ranging from sample pre-treatment to integration in an overall proteomic-on-a-chip device.
Collapse
Affiliation(s)
- Geovana M Mendes
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France; Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Fanny d'Orlye
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France.
| | - Laura Trapiella-Alfonso
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Gabriela R M Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Anne Varenne
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France.
| |
Collapse
|
3
|
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J. Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:977-997. [PMID: 37155340 DOI: 10.1002/mas.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
4
|
Baxi AB, Pade LR, Nemes P. Cell-Lineage Guided Mass Spectrometry Proteomics in the Developing (Frog) Embryo. J Vis Exp 2022:10.3791/63586. [PMID: 35532271 PMCID: PMC9513837 DOI: 10.3791/63586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Characterization of molecular events as cells give rise to tissues and organs raises a potential to better understand normal development and design efficient remedies for diseases. Technologies enabling accurate identification and quantification of diverse types and large numbers of proteins would provide still missing information on molecular mechanisms orchestrating tissue and organism development in space and time. Here, we present a mass spectrometry-based protocol that enables the measurement of thousands of proteins in identified cell lineages in Xenopus laevis (frog) embryos. The approach builds on reproducible cell-fate maps and established methods to identify, fluorescently label, track, and sample cells and their progeny (clones) from this model of vertebrate development. After collecting cellular contents using microsampling or isolating cells by dissection or fluorescence-activated cell sorting, proteins are extracted and processed for bottom-up proteomic analysis. Liquid chromatography and capillary electrophoresis are used to provide scalable separation for protein detection and quantification with high-resolution mass spectrometry (HRMS). Representative examples are provided for the proteomic characterization of neural-tissue fated cells. Cell-lineage-guided HRMS proteomics is adaptable to different tissues and organisms. It is sufficiently sensitive, specific, and quantitative to peer into the spatio-temporal dynamics of the proteome during vertebrate development.
Collapse
Affiliation(s)
- Aparna B Baxi
- Department of Chemistry & Biochemistry, University of Maryland; Department of Anatomy & Cell Biology, The George Washington University
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland; Department of Anatomy & Cell Biology, The George Washington University;
| |
Collapse
|
5
|
Tucholski T, Ge Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. MASS SPECTROMETRY REVIEWS 2022; 41:158-177. [PMID: 32894796 PMCID: PMC7936991 DOI: 10.1002/mas.21653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Proteoforms contribute functional diversity to the proteome and aberrant proteoforms levels have been implicated in biological dysfunction and disease. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with its ultrahigh mass-resolving power, mass accuracy, and versatile tandem MS capabilities, has empowered top-down, middle-down, and native MS-based approaches for characterizing proteoforms and their complexes in biological systems. Herein, we review the features which make FT-ICR MS uniquely suited for measuring proteoform mass with ultrahigh resolution and mass accuracy; obtaining in-depth proteoform sequence coverage with expansive tandem MS capabilities; and unambiguously identifying and localizing post-translational and noncovalent modifications. We highlight examples from our body of work in which we have quantified and comprehensively characterized proteoforms from cardiac and skeletal muscle to better understand conditions such as chronic heart failure, acute myocardial infarction, and sarcopenia. Structural characterization of monoclonal antibodies and their proteoforms by FT-ICR MS and emerging applications, such as native top-down FT-ICR MS and high-throughput top-down FT-ICR MS-based proteomics at 21 T, are also covered. Historically, the information gleaned from FT-ICR MS analyses have helped provide biological insights. We predict FT-ICR MS will continue to enable the study of proteoforms of increasing size from increasingly complex endogenous mixtures and facilitate the benchmarking of sensitive and specific assays for clinical diagnostics. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705
| |
Collapse
|
6
|
De Clerck L, Willems S, Daled S, Van Puyvelde B, Verhelst S, Corveleyn L, Deforce D, Dhaenens M. An experimental design to extract more information from MS-based histone studies. Mol Omics 2021; 17:929-938. [PMID: 34522942 DOI: 10.1039/d1mo00201e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histone-based chromatin organization paved the way for eukaryotic genome complexity. Because of their key role in information management, the histone posttranslational modifications (hPTM), which mediate their function, have evolved into an alphabet that has more letters than there are amino acids, together making up the "histone code". The resulting combinatorial complexity is manifold higher than what is usually encountered in proteomics. Consequently, a considerably bigger part of the acquired MSMS spectra remains unannotated to date. Adapted search parameters can dig deeper into the dark histone ion space, but the lack of false discovery rate (FDR) control and the high level of ambiguity when searching combinatorial PTMs makes it very hard to assess whether the newly assigned ions are informative. Therefore, we propose an easily adoptable time-lapse enzymatic deacetylation (HDAC1) of a commercial histone extract as a quantify-first strategy that allows isolating ion populations of interest, when studying e.g. acetylation on histones, that currently remain in the dark. By adapting search parameters to study potential issues in sample preparation, data acquisition and data analysis, we stepwise managed to double the portion of annotated precursors of interest from 10.5% to 21.6%. This strategy is intended to make up for the lack of validated FDR control and has led to several adaptations of our current workflow that will reduce the portion of the dark histone ion space in the future. Finally, this strategy can be applied with any enzyme targeting a modification of interest.
Collapse
Affiliation(s)
- Laura De Clerck
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Sander Willems
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Simon Daled
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Sigrid Verhelst
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Pandeswari PB, Chary RN, Kamalanathan AS, Prabhakar S, Sabareesh V. Mimicking LysC Proteolysis by 'Arginine-Modification-cum-Trypsin digestion': Comparison of Bottom-Up & Middle-Down Proteomic Approaches by ESI-QTOF-MS. Protein Pept Lett 2021; 28:1379-1390. [PMID: 34587878 DOI: 10.2174/0929866528666210929163307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/04/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Middle-down (MD) proteomics is an emerging approach for reliable identification of post- translational modifications and isoforms, as this approach focuses on proteolytic peptides containing > 25 - 30 amino acid residues (a.a.r.), which are longer than typical tryptic peptides. Such longer peptides can be obtained by AspN, GluC, LysC proteases. Additionally, some special proteases were developed specifically to effect MD approach, e.g., OmpT, Sap9, etc. However, these proteases are expensive. Herein we report a cost-effective strategy, 'arginine modification-cum trypsin digestion', which can produce longer tryptic peptides resembling LysC peptides derived from proteins. OBJECTIVE To obtain proteolytic peptides that resemble LysC peptides, by using 'trypsin', which is an less expensive protease. METHODS This strategy is based on the simple principle that trypsin cannot act at the C-termini of those arginines in proteins, whose sidechain guanidine groups are modified by 1,2-cyclohexanedione or phenylglyoxal. RESULTS As a proof of concept, we demonstrate this strategy on four models: β-casein (bovine), β- lactoglobulin (bovine), ovalbumin (chick) and transferrin (human), by electrospray ionization-mass spectrometry (ESI-MS) involving hybrid quadrupole time-of-flight. From the ESI-MS of these models, we obtained several arginine modified tryptic peptides, whose lengths are in the range, 30 - 60 a.a.r. The collision-induced dissociation MS/MS characteristics of some of the arginine modified longer tryptic peptides are compared with the unmodified standard tryptic peptides. CONCLUSION The strategy followed in this proof-of-concept study, not only helps in obtaining longer tryptic peptides that mimic LysC proteolytic peptides, but also facilitates in enhancing the probability of missed cleavages by the trypsin. Hence, this method aids in evading the possibility of obtaining very short peptides that are < 5 - 10 a.a.r. Therefore, this is indeed an cost-effective alternative/substitute for LysC proteolysis and in turn, for those MD proteomic studies that utilize LysC. Additionally, this methodology can be fruitful for mass spectrometry based de novo protein and peptide sequencing.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu - 632014. India
| | - R Nagarjuna Chary
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana - 500007. India
| | - A S Kamalanathan
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu - 632014. India
| | - Sripadi Prabhakar
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana - 500007. India
| | - Varatharajan Sabareesh
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu - 632014. India
| |
Collapse
|
8
|
Zhang Z, Hug C, Tao Y, Bitsch F, Yang Y. Solving Complex Biologics Truncation Problems by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1928-1935. [PMID: 33395284 DOI: 10.1021/jasms.0c00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With increasing protein therapeutics being designed as non-mAb (non-monoclonal antibody) modalities, additional efforts and resources are required to develop and characterize such therapeutic proteins. Truncation is an emerging issue for manufacturing of non-mAb drug substances and requires sophisticated methods to investigate. In this paper, we describe two cases with complex truncation problems where traditional methods such as intact mass spectrometry led to inclusive or wrong identifications. Therefore, we developed an online top-down LC-MS (liquid chromatography-mass spectrometry) based workflow to study truncated drug substances, and we successfully identified the clipping locations. Compared to other orthogonal methods, this method provides a unique capability of solving protein clipping problems. The successful identification of truncated species and the high compatibility to routine intact MS make it a very valuable tool for resolving truncation problems during protein production in the pharmaceutical industry.
Collapse
Affiliation(s)
- Zhe Zhang
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Christian Hug
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, CH-4057, Basel, Switzerland
| | - Yuanqi Tao
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Francis Bitsch
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, CH-4057, Basel, Switzerland
| | - Yang Yang
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, CH-4057, Basel, Switzerland
| |
Collapse
|
9
|
Jooß K, McGee JP, Melani RD, Kelleher NL. Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kDa. Electrophoresis 2021; 42:1050-1059. [PMID: 33502026 PMCID: PMC8122066 DOI: 10.1002/elps.202000317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Native mass spectrometry (nMS) is a rapidly growing method for the characterization of large proteins and protein complexes, preserving "native" non-covalent inter- and intramolecular interactions. Direct infusion of purified analytes into a mass spectrometer represents the standard approach for conducting nMS experiments. Alternatively, CZE can be performed under native conditions, providing high separation performance while consuming trace amounts of sample material. Here, we provide standard operating procedures for acquiring high-quality data using CZE in native mode coupled online to various Orbitrap mass spectrometers via a commercial sheathless interface, covering a wide range of analytes from 30-800 kDa. Using a standard protein mix, the influence of various CZE method parameters were evaluated, such as BGE/conductive liquid composition and separation voltage. Additionally, a universal approach for the optimization of fragmentation settings in the context of protein subunit and metalloenzyme characterization is discussed in detail for model analytes. A short section is dedicated to troubleshooting of the nCZE-MS setup. This study is aimed to help normalize nCZE-MS practices to enhance the CE community and provide a resource for the production of reproducible and high-quality data.
Collapse
Affiliation(s)
- Kevin Jooß
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - John P McGee
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Rafael D Melani
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
10
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
11
|
Janssen KA, Coradin M, Lu C, Sidoli S, Garcia BA. Quantitation of Single and Combinatorial Histone Modifications by Integrated Chromatography of Bottom-up Peptides and Middle-down Polypeptide Tails. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2449-2459. [PMID: 31512222 DOI: 10.1007/s13361-019-02303-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The analysis of histone post-translational modifications (PTMs) by mass spectrometry (MS) has been critical to the advancement of the field of epigenetics. The most sensitive and accurate workflow is similar to the canonical proteomics analysis workflow (bottom-up MS), where histones are digested into short peptides (4-20 aa) and quantitated in extracted ion chromatograms. However, this limits the ability to detect even very common co-occurrences of modifications on histone proteins, preventing biological interpretation of PTM crosstalk. By digesting with GluC rather than trypsin, it is possible to produce long polypeptides corresponding to intact histone N-terminal tails (50-60 aa), where most modifications reside. This middle-down MS approach is used to study distant PTM co-existence. However, the most sensitive middle-down workflow uses weak cation exchange-hydrophilic interaction chromatography (WCX-HILIC), which is less robust than conventional reversed-phase chromatography. Additionally, since the buffer systems for middle-down and bottom-up proteomics differ substantially, it is cumbersome to toggle back and forth between both experimental setups on the same LC system. Here, we present a new workflow using porous graphitic carbon (PGC) as a stationary phase for histone analysis where bottom-up and middle-down sized histone peptides can be analyzed simultaneously using the same reversed-phase buffer setup. By using this protocol for middle-down sized peptides, we identified 406 uniquely modified intact histone tails and achieved a correlation of 0.85 between PGC and WCX-HILIC LC methods. Together, our method facilitates the analysis of single and combinatorial histone PTMs with much simpler applicability for conventional proteomics labs than the state-of-the-art middle-down MS.
Collapse
Affiliation(s)
- Kevin A Janssen
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Congcong Lu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Benjamin A Garcia
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Hinkle JD, D'Ippolito RA, Panepinto MC, Wang WH, Bai DL, Shabanowitz J, Hunt DF. Unambiguous Sequence Characterization of a Monoclonal Antibody in a Single Analysis Using a Nonspecific Immobilized Enzyme Reactor. Anal Chem 2019; 91:13547-13554. [PMID: 31584792 DOI: 10.1021/acs.analchem.9b02666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate sequence characterization is essential for the development of therapeutic antibodies by the pharmaceutical industry. Presented here is a methodology to obtain comprehensive sequence analysis of a monoclonal antibody. An enzyme reactor of immobilized Aspergillopepsin I, a highly stable nonspecific protease, was used to cleave reduced antibody subunits into a peptide profile ranging from 1 to 20 kDa. Utilizing the Thermo Orbitrap Fusion's unique instrument architecture combined with state-of-the-art instrument control software allowed for dynamic instrument methods that optimally characterize eluting peptides based on their size and charge density. Using a data-dependent instrument method, both collisional dissociation and electron transfer dissociation were used to fragment the appropriate charge state of analyte peptides. The instrument layout also allowed for scans to be taken in parallel using both the ion trap and Orbitrap concurrently, thus allowing larger peptides to be analyzed in high resolution using the Orbitrap while simultaneously analyzing tryptic-like peptides using the ion trap. We harnessed these capabilities to develop a custom method to optimally fragment the eluting peptides based on their mass and charge density. Using this approach, we obtained 100% sequence coverage of the total antibody in a single chromatographic analysis, enabling unambiguous sequence assignment of all residues.
Collapse
Affiliation(s)
- Joshua D Hinkle
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Robert A D'Ippolito
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Maria C Panepinto
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Wei-Han Wang
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Dina L Bai
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Jeffrey Shabanowitz
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Donald F Hunt
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States.,Department of Pathology , University of Virginia , Charlottesville , Virginia 22908 , United States
| |
Collapse
|
13
|
Aslebagh R, Wormwood KL, Channaveerappa D, Wetie AGN, Woods AG, Darie CC. Identification of Posttranslational Modifications (PTMs) of Proteins by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:199-224. [DOI: 10.1007/978-3-030-15950-4_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Ngounou Wetie AG, Sokolowska I, Channaveerappa D, Dupree EJ, Jayathirtha M, Woods AG, Darie CC. Proteomics and Non-proteomics Approaches to Study Stable and Transient Protein-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:121-142. [DOI: 10.1007/978-3-030-15950-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
16
|
Vincent D, Mertens D, Rochfort S. Optimisation of Milk Protein Top-Down Sequencing Using In-Source Collision-Induced Dissociation in the Maxis Quadrupole Time-of-Flight Mass Spectrometer. Molecules 2018; 23:molecules23112777. [PMID: 30373172 PMCID: PMC6278275 DOI: 10.3390/molecules23112777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/25/2022] Open
Abstract
Top-down sequencing in proteomics has come of age owing to continuous progress in LC-MS. With their high resolution and broad mass range, Quadrupole Time-of-Flight (Q-ToF) hybrid mass spectrometers equipped with electrospray ionisation source and tandem MS capability by collision-induced dissociation (CID) can be employed to analyse intact proteins and retrieve primary sequence information. To our knowledge, top-down proteomics methods with Q-ToF have only been evaluated using samples of relatively low complexity. Furthermore, the in-source CID (IS-CID) capability of Q-ToF instruments has been under-utilised. This study aimed at optimising top-down sequencing of intact milk proteins to achieve the greatest sequence coverage possible from samples of increasing complexity, assessed using nine known proteins. Eleven MS/MS methods varying in their IS-CID and conventional CID parameters were tested on individual and mixed protein standards as well as raw milk samples. Top-down sequencing results from the nine most abundant proteoforms of caseins, alpha-lactalbumin and beta-lactoglubulins were compared. Nine MS/MS methods achieved more than 70% sequence coverage overall to distinguish between allelic proteoforms, varying only by one or two amino acids. The optimal methods utilised IS-CID at low energy. This experiment demonstrates the utility of Q-ToF systems for top-down proteomics and that IS-CID could be more frequently employed.
Collapse
Affiliation(s)
- Delphine Vincent
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, Bundoora, Victoria 3083, Australia.
| | | | - Simone Rochfort
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, Bundoora, Victoria 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
17
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
18
|
Rathore D, Faustino A, Schiel J, Pang E, Boyne M, Rogstad S. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev Proteomics 2018; 15:431-449. [DOI: 10.1080/14789450.2018.1469982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Deepali Rathore
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anneliese Faustino
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - John Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Eric Pang
- Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Boyne
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- COUR Pharmaceuticals Development Company, Northbrook, IL, USA
| | - Sarah Rogstad
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
19
|
Soboleva A, Schmidt R, Vikhnina M, Grishina T, Frolov A. Maillard Proteomics: Opening New Pages. Int J Mol Sci 2017; 18:E2677. [PMID: 29231845 PMCID: PMC5751279 DOI: 10.3390/ijms18122677] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs) represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer's disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus), proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Rico Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06108 Halle, Germany.
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
20
|
Belov AM, Viner R, Santos MR, Horn DM, Bern M, Karger BL, Ivanov AR. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2614-2634. [PMID: 28875426 PMCID: PMC5709234 DOI: 10.1007/s13361-017-1781-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 05/04/2023]
Abstract
Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Arseniy M Belov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | - David M Horn
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | - Barry L Karger
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Greening DW, Kapp EA, Simpson RJ. The Peptidome Comes of Age: Mass Spectrometry-Based Characterization of the Circulating Cancer Peptidome. Enzymes 2017; 42:27-64. [PMID: 29054270 DOI: 10.1016/bs.enz.2017.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peptides play a seminal role in most physiological processes acting as neurotransmitters, hormones, antibiotics, and immune regulation. In the context of tumor biology, it is hypothesized that endogenous peptides, hormones, cytokines, growth factors, and aberrant degradation of select protein networks (e.g., enzymatic activities, protein shedding, and extracellular matrix remodeling) are fundamental in mediating cancer progression. Analysis of peptides in biological fluids by mass spectrometry holds promise of providing sensitive and specific diagnostic and prognostic information for cancer and other diseases. The identification of circulating peptides in the context of disease constitutes a hitherto source of new clinical biomarkers. The field of peptidomics can be defined as the identification and comprehensive analysis of physiological and pathological peptides. Like proteomics, peptidomics has been advanced by the development of new separation strategies, analytical detection methods such as mass spectrometry, and bioinformatic technologies. Unlike proteomics, peptidomics is targeted toward identifying endogenous protein and peptide fragments, defining proteolytic enzyme substrate specificity, as well as protease cleavage recognition (degradome). Peptidomics employs "top-down proteomics" strategies where mass spectrometry is applied at the proteoform level to analyze intact proteins and large endogenous peptide fragments. With recent advances in prefractionation workflows for separating peptides, mass spectrometry instrumentation, and informatics, peptidomics is an important field that promises to impact on translational medicine. This review covers the current advances in peptidomics, including top-down and imaging mass spectrometry, comprehensive quantitative peptidome analyses (developments in reproducibility and coverage), peptide prefractionation and enrichment workflows, peptidomic data analyses, and informatic tools. The application of peptidomics in cancer biomarker discovery will be discussed.
Collapse
Affiliation(s)
- David W Greening
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.
| | - Eugene A Kapp
- Systems Biology & Personalised Medicine Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Florey Institute of Neuroscience, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria, Australia
| | - Richard J Simpson
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Park J, Piehowski PD, Wilkins C, Zhou M, Mendoza J, Fujimoto GM, Gibbons BC, Shaw JB, Shen Y, Shukla AK, Moore RJ, Liu T, Petyuk VA, Tolic N, Pasa-Tolic L, Smith RD, Payne SH, Kim S. Informed-Proteomics: open-source software package for top-down proteomics. Nat Methods 2017; 14:909-914. [PMID: 28783154 PMCID: PMC5578875 DOI: 10.1038/nmeth.4388] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Top-down proteomics, the analysis of intact proteins in their endogenous form, preserves valuable information about post-translation modifications, isoforms and proteolytic processing. The quality of top-down liquid chromatography-tandem MS (LC-MS/MS) data sets is rapidly increasing on account of advances in instrumentation and sample-processing protocols. However, top-down mass spectra are substantially more complex than conventional bottom-up data. New algorithms and software tools for confident proteoform identification and quantification are needed. Here we present Informed-Proteomics, an open-source software suite for top-down proteomics analysis that consists of an LC-MS feature-finding algorithm, a database search algorithm, and an interactive results viewer. We compare our tool with several other popular tools using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.
Collapse
Affiliation(s)
- Jungkap Park
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Paul D. Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Christopher Wilkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Joshua Mendoza
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Grant M Fujimoto
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Bryson C. Gibbons
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Jared B. Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Yufeng Shen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Anil K. Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Nikola Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Samuel H. Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Sangtae Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| |
Collapse
|
23
|
Weisbrod CR, Kaiser NK, Syka JEP, Early L, Mullen C, Dunyach JJ, English AM, Anderson LC, Blakney GT, Shabanowitz J, Hendrickson CL, Marshall AG, Hunt DF. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1787-1795. [PMID: 28721671 PMCID: PMC5711562 DOI: 10.1007/s13361-017-1702-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/21/2017] [Accepted: 04/29/2017] [Indexed: 05/13/2023]
Abstract
High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., ~60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Chad R Weisbrod
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, FL, 32310, USA.
| | - Nathan K Kaiser
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | | | - Lee Early
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | | | - A Michelle English
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904-4319, USA
| | - Lissa C Anderson
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Greg T Blakney
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904-4319, USA
| | - Christopher L Hendrickson
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| | - Alan G Marshall
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904-4319, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
24
|
Hsu CC, Baker MW, Gaasterland T, Meehan MJ, Macagno ER, Dorrestein PC. Top-Down Atmospheric Ionization Mass Spectrometry Microscopy Combined With Proteogenomics. Anal Chem 2017; 89:8251-8258. [PMID: 28692290 DOI: 10.1021/acs.analchem.7b01096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry-based protein analysis has become an important methodology for proteogenomic mapping by providing evidence for the existence of proteins predicted at the genomic level. However, screening and identification of proteins directly on tissue samples, where histological information is preserved, remain challenging. Here we demonstrate that the ambient ionization source, nanospray desorption electrospray ionization (nanoDESI), interfaced with light microscopy allows for protein profiling directly on animal tissues at the microscopic scale. Peptide fragments for mass spectrometry analysis were obtained directly on ganglia of the medicinal leech (Hirudo medicinalis) without in-gel digestion. We found that a hypothetical protein, which is predicted by the leech genome, is highly expressed on the specialized neural cells that are uniquely found in adult sex segmental ganglia. Via this top-down analysis, a post-translational modification (PTM) of tyrosine sulfation to this neuropeptide was resolved. This three-in-one platform, including mass spectrometry, microscopy, and genome mining, provides an effective way for mappings of proteomes under the lens of a light microscope.
Collapse
Affiliation(s)
- Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
26
|
Riley NM, Hebert AS, Dürnberger G, Stanek F, Mechtler K, Westphall MS, Coon JJ. Phosphoproteomics with Activated Ion Electron Transfer Dissociation. Anal Chem 2017; 89:6367-6376. [PMID: 28383256 PMCID: PMC5555596 DOI: 10.1021/acs.analchem.7b00212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to localize phosphosites to specific amino acid residues is crucial to translating phosphoproteomic data into biological meaningful contexts. In a companion manuscript ( Anal. Chem. 2017 , DOI: 10.1021/acs.analchem.7b00213 ), we described a new implementation of activated ion electron transfer dissociation (AI-ETD) on a quadrupole-Orbitrap-linear ion trap hybrid MS system (Orbitrap Fusion Lumos), which greatly improved peptide fragmentation and identification over ETD and other supplemental activation methods. Here we present the performance of AI-ETD for identifying and localizing sites of phosphorylation in both phosphopeptides and intact phosphoproteins. Using 90 min analyses we show that AI-ETD can identify 24,503 localized phosphopeptide spectral matches enriched from mouse brain lysates, which more than triples identifications from standard ETD experiments and outperforms ETcaD and EThcD as well. AI-ETD achieves these gains through improved quality of fragmentation and MS/MS success rates for all precursor charge states, especially for doubly protonated species. We also evaluate the degree to which phosphate neutral loss occurs from phosphopeptide product ions due to the infrared photoactivation of AI-ETD and show that modifying phosphoRS (a phosphosite localization algorithm) to include phosphate neutral losses can significantly improve localization in AI-ETD spectra. Finally, we demonstrate the utility of AI-ETD in localizing phosphosites in α-casein, an ∼23.5 kDa phosphoprotein that showed eight of nine known phosphorylation sites occupied upon intact mass analysis. AI-ETD provided the greatest sequence coverage for all five charge states investigated and was the only fragmentation method to localize all eight phosphosites for each precursor. Overall, this work highlights the analytical value AI-ETD can bring to both bottom-up and top-down phosphoproteomics.
Collapse
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alexander S. Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gerhard Dürnberger
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- GMI, Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | - Florian Stanek
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | - Michael S. Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Patil AA, Chou SW, Chang PY, Lee CW, Cheng CY, Chu ML, Peng WP. High Mass Ion Detection with Charge Detector Coupled to Rectilinear Ion Trap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1066-1078. [PMID: 27966174 DOI: 10.1007/s13361-016-1548-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Conventional linear ion trap mass analyzers (LIT-MS) provide high ion capacity and show their MS n ability; however, the detection of high mass ions is still challenging because LIT-MS with secondary electron detectors (SED) cannot detect high mass ions. To detect high mass ions, we coupled a charge detector (CD) to a rectilinear ion trap mass spectrometer (RIT-MS). Immunoglobulin G ions (m/z ~150,000) are measured successfully with controlled ion kinetic energy. In addition, when mass-to-charge (m/z) ratios of singly charged ions exceed 10 kTh, the detection efficiency of CD is found to be greater than that of SED. The CD can be coupled to LIT-MS to extend the detection mass range and provide the potential to perform MS n of high mass ions inside the ion trap. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Avinash A Patil
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan, 97401, Republic of China
| | - Szu-Wei Chou
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan, 97401, Republic of China
- AcroMass technologies Inc., Hukou, Hsinchu, Taiwan, 30352, Republic of China
| | - Pei-Yu Chang
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan, 97401, Republic of China
| | - Chen-Wei Lee
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan, 97401, Republic of China
| | - Chun-Yen Cheng
- AcroMass technologies Inc., Hukou, Hsinchu, Taiwan, 30352, Republic of China
| | - Ming-Lee Chu
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan, 97401, Republic of China.
| |
Collapse
|
28
|
Jin Y, Wei L, Cai W, Lin Z, Wu Z, Peng Y, Kohmoto T, Moss RL, Ge Y. Complete Characterization of Cardiac Myosin Heavy Chain (223 kDa) Enabled by Size-Exclusion Chromatography and Middle-Down Mass Spectrometry. Anal Chem 2017; 89:4922-4930. [PMID: 28366003 PMCID: PMC5526197 DOI: 10.1021/acs.analchem.7b00113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Myosin heavy chain (MHC), the major component of the myosin motor molecule, plays an essential role in force production during muscle contraction. However, a comprehensive analysis of MHC proteoforms arising from sequence variations and post-translational modifications (PTMs) remains challenging due to the difficulties in purifying MHC (∼223 kDa) and achieving complete sequence coverage. Herein, we have established a strategy to effectively purify and comprehensively characterize MHC from heart tissue by combining size-exclusion chromatography (SEC) and middle-down mass spectrometry (MS). First, we have developed a MS-compatible SEC method for purifying MHC from heart tissue with high efficiency. Next, we have optimized the Glu-C, Asp-N, and trypsin limited digestion conditions for middle-down MS. Subsequently, we have applied this strategy with optimized conditions to comprehensively characterize human MHC and identified β-MHC as the predominant isoform in human left ventricular tissue. Full sequence coverage based on highly accurate mass measurements has been achieved using middle-down MS combining 1 Glu-C, 1 Asp-N, and 1 trypsin digestion. Three different PTMs: acetylation, methylation, and trimethylation were identified in human β-MHC and the corresponding sites were localized to the N-terminal Gly, Lys34, and Lys129, respectively, by electron capture dissociation (ECD). Taken together, we have demonstrated this strategy is highly efficient for purification and characterization of MHC, which can be further applied to studies of the role of MHC proteoforms in muscle-related diseases. We also envision that this integrated SEC/middle-down MS strategy can be extended for the characterization of other large proteins over 200 kDa.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liming Wei
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Takushi Kohmoto
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Coradin M, Karch KR, Garcia BA. Monitoring proteolytic processing events by quantitative mass spectrometry. Expert Rev Proteomics 2017; 14:409-418. [PMID: 28395554 DOI: 10.1080/14789450.2017.1316977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.
Collapse
Affiliation(s)
- Mariel Coradin
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Kelly R Karch
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
30
|
Cristobal A, Marino F, Post H, van den Toorn HWP, Mohammed S, Heck AJR. Toward an Optimized Workflow for Middle-Down Proteomics. Anal Chem 2017; 89:3318-3325. [PMID: 28233997 PMCID: PMC5362747 DOI: 10.1021/acs.analchem.6b03756] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Mass
spectrometry (MS)-based proteomics workflows can crudely be
classified into two distinct regimes, targeting either relatively
small peptides (i.e., 0.7 kDa < Mw <
3.0 kDa) or small to medium sized intact proteins (i.e., 10 kDa < Mw < 30 kDa), respectively, termed bottom-up
and top-down proteomics. Recently, a niche has started to be explored
covering the analysis of middle-range peptides (i.e., 3.0 kDa < Mw < 10 kDa), aptly termed middle-down proteomics.
Although middle-down proteomics can follow, in principle, a modular
workflow similar to that of bottom-up proteomics, we hypothesized
that each of these modules would benefit from targeted optimization
to improve its overall performance in the analysis of middle-range
sized peptides. Hence, to generate middle-range sized peptides from
cellular lysates, we explored the use of the proteases Asp-N and Glu-C
and a nonenzymatic acid induced cleavage. To increase the depth of
the proteome, a strong cation exchange (SCX) separation, carefully
tuned to improve the separation of longer peptides, combined with
reversed phase-liquid chromatography (RP-LC) using columns packed
with material possessing a larger pore size, was used. Finally, after
evaluating the combination of potentially beneficial MS settings,
we also assessed the peptide fragmentation techniques, including higher-energy
collision dissociation (HCD), electron-transfer dissociation (ETD),
and electron-transfer combined with higher-energy collision dissociation
(EThcD), for characterization of middle-range sized peptides. These
combined
improvements clearly improve the detection and sequence coverage of
middle-range peptides and should guide researchers to explore further
how middle-down proteomics may lead to an improved proteome coverage,
beneficial for, among other things, the enhanced analysis of (co-occurring)
post-translational modifications.
Collapse
Affiliation(s)
- Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Departments of Chemistry and Biochemistry, University of Oxford , New Biochemistry Building, South Parks Road, Oxford, OX1 3QU Oxfordshire, United Kingdom
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
31
|
Mulagapati S, Koppolu V, Raju TS. Decoding of O-Linked Glycosylation by Mass Spectrometry. Biochemistry 2017; 56:1218-1226. [PMID: 28196325 DOI: 10.1021/acs.biochem.6b01244] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein glycosylation (N- and O-linked) plays an important role in many biological processes, including protein structure and function. However, the structural elucidation of glycans, specifically O-linked glycans, remains a major challenge and is often overlooked during protein analysis. Recently, mass spectrometry (MS) has matured as a powerful technology for high-quality analytical characterization of O-linked glycans. This review summarizes the recent developments and insights of MS-based glycomics technologies, with a focus on mucin-type O-glycan analysis. Three main MS-based approaches are outlined: O-glycan profiling (structural analysis of released O-glycan), a "bottom-up" approach (analysis of an O-glycan covalently attached to a glycopeptide), and a "top-down" approach (analysis of a glycan attached to an intact glycoprotein). In addition, the most widely used MS ionization techniques, i.e., matrix-assisted laser desorption ionization and electrospray ionization, as well as ion activation techniques like collision-induced dissociation, electron capture dissociation, and electron transfer dissociation during O-glycan analysis are discussed. The MS technical approaches mentioned above are already major improvements for studying O-linked glycosylation and appear to be valuable for in-depth analysis of the type of O-glycan attached, branching patterns, and the occupancy of O-glycosylation sites.
Collapse
Affiliation(s)
- SriHariRaju Mulagapati
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Veerendra Koppolu
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - T Shantha Raju
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
32
|
Wierzbicka C, Torsetnes SB, Jensen ON, Shinde S, Sellergren B. Hierarchically templated beads with tailored pore structure for phosphopeptide capture and phosphoproteomics. RSC Adv 2017. [DOI: 10.1039/c7ra00385d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Phosphotyrosine selective beads prepared by polymer templating at two length scales results in improved capture of larger sized peptide fragments from tryptic protein digests.
Collapse
Affiliation(s)
- Celina Wierzbicka
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE 205 06 Malmö
- Sweden
| | - Silje B. Torsetnes
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Sudhirkumar Shinde
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE 205 06 Malmö
- Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE 205 06 Malmö
- Sweden
| |
Collapse
|
33
|
Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat Commun 2016; 7:13397. [PMID: 27824045 PMCID: PMC5105167 DOI: 10.1038/ncomms13397] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
Many biopharmaceutical products exhibit extensive structural micro-heterogeneity due to an array of co-occurring post-translational modifications. These modifications often effect the functionality of the product and therefore need to be characterized in detail. Here, we present an integrative approach, combining two advanced mass spectrometry-based methods, high-resolution native mass spectrometry and middle-down proteomics, to analyse this micro-heterogeneity. Taking human erythropoietin and the human plasma properdin as model systems, we demonstrate that this strategy bridges the gap between peptide- and protein-based mass spectrometry platforms, providing the most complete profiling of glycoproteins. Integration of the two methods enabled the discovery of three undescribed C-glycosylation sites on properdin, and revealed in addition unexpected heterogeneity in occupancies of C-mannosylation. Furthermore, using various sources of erythropoietin we define and demonstrate the usage of a biosimilarity score to quantitatively assess structural similarity, which would also be beneficial for profiling other therapeutic proteins and even plasma protein biomarkers. Many biopharmaceuticals exhibit mixed heterogeneity in their post-translational modifications (PTMs) that are essential for their function. Here the authors use a combination of mass spectrometry techniques to analyse human erythropoietin (EPO) and properdin to discover new PTMs on properdin and derive a biosimilarity score for various sources of EPO.
Collapse
|
34
|
Asakawa D. Principles of hydrogen radical mediated peptide/protein fragmentation during matrix-assisted laser desorption/ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:535-556. [PMID: 25286767 DOI: 10.1002/mas.21444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) is a very easy way to obtain large sequence tags and, thereby, reliable identification of peptides and proteins. Recently discovered new matrices have enhanced the MALDI-ISD yield and opened new research avenues. The use of reducing and oxidizing matrices for MALDI-ISD of peptides and proteins favors the production of fragmentation pathways involving "hydrogen-abundant" and "hydrogen-deficient" radical precursors, respectively. Since an oxidizing matrix provides information on peptide/protein sequences complementary to that obtained with a reducing matrix, MALDI-ISD employing both reducing and oxidizing matrices is a potentially useful strategy for de novo peptide sequencing. Moreover, a pseudo-MS(3) method provides sequence information about N- and C-terminus extremities in proteins and allows N- and C-terminal side fragments to be discriminated within the complex MALDI-ISD mass spectrum. The combination of high mass resolution of a Fourier transform-ion cyclotron resonance (FTICR) analyzer and the software suitable for MALDI-ISD facilitates the interpretation of MALDI-ISD mass spectra. A deeper understanding of the MALDI-ISD process is necessary to fully exploit this method. Thus, this review focuses first on the mechanisms underlying MALDI-ISD processes, followed by a discussion of MALDI-ISD applications in the field of proteomics. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:535-556, 2016.
Collapse
Affiliation(s)
- Daiki Asakawa
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| |
Collapse
|
35
|
Önder Ö, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 2016; 12:499-517. [PMID: 26400466 DOI: 10.1586/14789450.2015.1084231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin biology and epigenetics are scientific fields that are rapid expanding due to their fundamental role in understanding cell development, heritable characters and progression of diseases. Histone post-translational modifications (PTMs) are major regulators of the epigenetic machinery due to their ability to modulate gene expression, DNA repair and chromosome condensation. Large-scale strategies based on mass spectrometry have been impressively improved in the last decade, so that global changes of histone PTM abundances are quantifiable with nearly routine proteomics analyses and it is now possible to determine combinatorial patterns of modifications. Presented here is an overview of the most utilized and newly developed proteomics strategies for histone PTM characterization and a number of case studies where epigenetic mechanisms have been comprehensively characterized. Moreover, a number of current epigenetic therapies are illustrated, with an emphasis on cancer.
Collapse
Affiliation(s)
- Özlem Önder
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA.,b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA
| | - Benjamin A Garcia
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
36
|
Zhang P, Woen S, Wang T, Liau B, Zhao S, Chen C, Yang Y, Song Z, Wormald MR, Yu C, Rudd PM. Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discov Today 2016; 21:740-65. [DOI: 10.1016/j.drudis.2016.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
|
37
|
Trenchevska O, Nelson RW, Nedelkov D. Mass Spectrometric Immunoassays in Characterization of Clinically Significant Proteoforms. Proteomes 2016; 4:proteomes4010013. [PMID: 28248223 PMCID: PMC5217360 DOI: 10.3390/proteomes4010013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023] Open
Abstract
Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Randall W Nelson
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Dobrin Nedelkov
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
38
|
Cotham VC, Brodbelt JS. Characterization of Therapeutic Monoclonal Antibodies at the Subunit-Level using Middle-Down 193 nm Ultraviolet Photodissociation. Anal Chem 2016; 88:4004-13. [DOI: 10.1021/acs.analchem.6b00302] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Victoria C. Cotham
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
39
|
Riley NM, Mullen C, Weisbrod CR, Sharma S, Senko MW, Zabrouskov V, Westphall MS, Syka JEP, Coon JJ. Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:520-31. [PMID: 26589699 PMCID: PMC4758868 DOI: 10.1007/s13361-015-1306-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 05/11/2023]
Abstract
Electron transfer dissociation (ETD) is a valuable tool for protein sequence analysis, especially for the fragmentation of intact proteins. However, low product ion signal-to-noise often requires some degree of signal averaging to achieve high quality MS/MS spectra of intact proteins. Here we describe a new implementation of ETD on the newest generation of quadrupole-Orbitrap-linear ion trap Tribrid, the Orbitrap Fusion Lumos, for improved product ion signal-to-noise via ETD reactions on larger precursor populations. In this new high precursor capacity ETD implementation, precursor cations are accumulated in the center section of the high pressure cell in the dual pressure linear ion trap prior to charge-sign independent trapping, rather than precursor ion sequestration in only the back section as is done for standard ETD. This new scheme increases the charge capacity of the precursor accumulation event, enabling storage of approximately 3-fold more precursor charges. High capacity ETD boosts the number of matching fragments identified in a single MS/MS event, reducing the need for spectral averaging. These improvements in intra-scan dynamic range via reaction of larger precursor populations, which have been previously demonstrated through custom modified hardware, are now available on a commercial platform, offering considerable benefits for intact protein analysis and top down proteomics. In this work, we characterize the advantages of high precursor capacity ETD through studies with myoglobin and carbonic anhydrase.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | | - Seema Sharma
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | | | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
40
|
Sun RX, Luo L, Wu L, Wang RM, Zeng WF, Chi H, Liu C, He SM. pTop 1.0: A High-Accuracy and High-Efficiency Search Engine for Intact Protein Identification. Anal Chem 2016; 88:3082-90. [DOI: 10.1021/acs.analchem.5b03963] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rui-Xiang Sun
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Lan Luo
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Wu
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Min Wang
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Feng Zeng
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chi
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Chao Liu
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Si-Min He
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| |
Collapse
|
41
|
Chen B, Peng Y, Valeja SG, Xiu L, Alpert AJ, Ge Y. Online Hydrophobic Interaction Chromatography-Mass Spectrometry for Top-Down Proteomics. Anal Chem 2016; 88:1885-91. [PMID: 26729044 DOI: 10.1021/acs.analchem.5b04285] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent progress in top-down proteomics has led to a demand for mass spectrometry (MS)-compatible chromatography techniques to separate intact proteins using volatile mobile phases. Conventional hydrophobic interaction chromatography (HIC) provides high-resolution separation of proteins under nondenaturing conditions but requires high concentrations of nonvolatile salts. Herein, we introduce a series of more-hydrophobic HIC materials that can retain proteins using MS-compatible concentrations of ammonium acetate. The new HIC materials appear to function as a hybrid form of conventional HIC and reverse phase chromatography. The function of the salt seems to be preserving protein structure rather than promoting retention. Online HIC-MS is feasible for both qualitative and quantitative analysis. This is demonstrated with standard proteins and a complex cell lysate. The mass spectra of proteins from the online HIC-MS exhibit low charge-state distributions, consistent with those commonly observed in native MS. Furthermore, HIC-MS can chromatographically separate proteoforms differing by minor modifications. Hence, this new HIC-MS combination is promising for top-down proteomics.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Santosh G Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Lichen Xiu
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Andrew J Alpert
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States.,PolyLC, Inc., 9151 Rumsey Rd., Suite 180, Columbia, Maryland, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin, United States
| |
Collapse
|
42
|
Zhang L, English AM, Bai DL, Ugrin SA, Shabanowitz J, Ross MM, Hunt DF, Wang WH. Analysis of Monoclonal Antibody Sequence and Post-translational Modifications by Time-controlled Proteolysis and Tandem Mass Spectrometry. Mol Cell Proteomics 2015; 15:1479-88. [PMID: 26621848 DOI: 10.1074/mcp.o115.056721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Indexed: 12/17/2022] Open
Abstract
Methodology for sequence analysis of ∼150 kDa monoclonal antibodies (mAb), including location of post-translational modifications and disulfide bonds, is described. Limited digestion of fully denatured (reduced and alkylated) antibody was accomplished in seconds by flowing a sample in 8murea at a controlled flow rate through a micro column reactor containing immobilized aspergillopepsin I. The resulting product mixture containing 3-9 kDa peptides was then fractionated by capillary column liquid chromatography and analyzed on-line by both electron-transfer dissociation and collisionally activated dissociation mass spectrometry (MS). This approach enabled identification of peptides that cover the complete sequence of a murine mAb. With customized tandem MS and ProSightPC Biomarker search, we verified 95% amino acid residues of this mAb and identified numerous post-translational modifications (oxidized methionine, pyroglutamylation, deamidation of Asn, and several forms ofN-linked glycosylation). For disulfide bond location, native mAb is subjected to the same procedure but with longer digestion times controlled by sample flow rate through the micro column reactor. Release of disulfide containing peptides from accessible regions of the folded antibody occurs with short digestion times. Release of those in the interior of the molecule requires longer digestion times. The identity of two peptides connected by a disulfide bond is determined using a combination of electron-transfer dissociation and ion-ion proton transfer chemistry to read the two N-terminal and two C-terminal sequences of the connected peptides.
Collapse
Affiliation(s)
- Lichao Zhang
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - A Michelle English
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Dina L Bai
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Scott A Ugrin
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Jeffrey Shabanowitz
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Mark M Ross
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Donald F Hunt
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904; §Department of Pathology, Health Sciences Center, University of Virginia, Charlottesville, Virginia 22908
| | - Wei-Han Wang
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904;
| |
Collapse
|
43
|
|
44
|
Bricker TM, Mummadisetti MP, Frankel LK. Recent advances in the use of mass spectrometry to examine structure/function relationships in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:227-46. [PMID: 26390944 DOI: 10.1016/j.jphotobiol.2015.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/24/2023]
Abstract
Tandem mass spectrometry often coupled with chemical modification techniques, is developing into increasingly important tool in structural biology. These methods can provide important supplementary information concerning the structural organization and subunit make-up of membrane protein complexes, identification of conformational changes occurring during enzymatic reactions, identification of the location of posttranslational modifications, and elucidation of the structure of assembly and repair complexes. In this review, we will present a brief introduction to Photosystem II, tandem mass spectrometry and protein modification techniques that have been used to examine the photosystem. We will then discuss a number of recent case studies that have used these techniques to address open questions concerning PS II. These include the nature of subunit-subunit interactions within the phycobilisome, the interaction of phycobilisomes with Photosystem I and the Orange Carotenoid Protein, the location of CyanoQ, PsbQ and PsbP within Photosystem II, and the identification of phosphorylation and oxidative modification sites within the photosystem. Finally, we will discuss some of the future prospects for the use of these methods in examining other open questions in PS II structural biochemistry.
Collapse
Affiliation(s)
- Terry M Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Manjula P Mummadisetti
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
45
|
Jeong SK, Hancock WS, Paik YK. GenomewidePDB 2.0: A Newly Upgraded Versatile Proteogenomic Database for the Chromosome-Centric Human Proteome Project. J Proteome Res 2015; 14:3710-9. [PMID: 26272709 DOI: 10.1021/acs.jproteome.5b00541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since the launch of the Chromosome-centric Human Proteome Project (C-HPP) in 2012, the number of "missing" proteins has fallen to 2932, down from ∼5932 since the number was first counted in 2011. We compared the characteristics of missing proteins with those of already annotated proteins with respect to transcriptional expression pattern and the time periods in which newly identified proteins were annotated. We learned that missing proteins commonly exhibit lower levels of transcriptional expression and less tissue-specific expression compared with already annotated proteins. This makes it more difficult to identify missing proteins as time goes on. One of the C-HPP goals is to identify alternative spliced product of proteins (ASPs), which are usually difficult to find by shot-gun proteomic methods due to their sequence similarities with the representative proteins. To resolve this problem, it may be necessary to use a targeted proteomics approach (e.g., selected and multiple reaction monitoring [S/MRM] assays) and an innovative bioinformatics platform that enables the selection of target peptides for rarely expressed missing proteins or ASPs. Given that the success of efforts to identify missing proteins may rely on more informative public databases, it was necessary to upgrade the available integrative databases. To this end, we attempted to improve the features and utility of GenomewidePDB by integrating transcriptomic information (e.g., alternatively spliced transcripts), annotated peptide information, and an advanced search interface that can find proteins of interest when applying a targeted proteomics strategy. This upgraded version of the database, GenomewidePDB 2.0, may not only expedite identification of the remaining missing proteins but also enhance the exchange of information among the proteome community. GenomewidePDB 2.0 is available publicly at http://genomewidepdb.proteomix.org/.
Collapse
Affiliation(s)
- Seul-Ki Jeong
- Yonsei Proteome Research Center and Biomedical Proteome Research Center , 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , 12 Oxford Street, Boston, Massachusetts 02115, United States
| | - Young-Ki Paik
- Yonsei Proteome Research Center and Biomedical Proteome Research Center , 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea.,Department of Biochemistry, Department of Integrated Omics for Biomedical Science (World Class University Graduate Program), Yonsei University , 50 Yonsei-Ro, Sudaemoon-ku, Seoul 120-749, Korea
| |
Collapse
|
46
|
Riley NM, Westphall MS, Coon JJ. Activated Ion Electron Transfer Dissociation for Improved Fragmentation of Intact Proteins. Anal Chem 2015; 87:7109-16. [PMID: 26067513 PMCID: PMC9488116 DOI: 10.1021/acs.analchem.5b00881] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we report the first implementation of activated ion electron transfer dissociation (AI-ETD) for top down protein characterization, showing that AI-ETD definitively extends the m/z range over which ETD can be effective for fragmentation of intact proteins. AI-ETD, which leverages infrared photon bombardment concurrent to the ETD reaction to mitigate nondissociative electron transfer, was performed using a novel multipurpose dissociation cell that can perform both beam-type collisional dissociation and ion-ion reactions on an ion trap-Orbitrap hybrid mass spectrometer. AI-ETD increased the number of c- and z-type product ions for all charge states over ETD alone, boosting product ion yield by nearly 4-fold for low charge density precursors. AI-ETD also outperformed HCD, generating more matching fragments for all proteins at all charge states investigated. In addition to generating more unique fragment ions, AI-ETD provided greater protein sequence coverage compared to both HCD and ETD. In all, the effectiveness of AI-ETD across the entirety of the m/z spectrum demonstrates its efficacy for robust fragmentation of intact proteins.
Collapse
Affiliation(s)
- Nicholas M. Riley
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael S. Westphall
- Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
47
|
Levy MJ, Gucinski AC, Boyne MT. Primary Sequence Confirmation of a Protein Therapeutic Using Top Down MS/MS and MS3. Anal Chem 2015; 87:6995-9. [DOI: 10.1021/acs.analchem.5b01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Michaella J. Levy
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of
Testing and Research, Division of Pharmaceutical Analysis, 645 S. Newstead Ave., St. Louis, Missouri 63110, United States
| | - Ashley C. Gucinski
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of
Testing and Research, Division of Pharmaceutical Analysis, 645 S. Newstead Ave., St. Louis, Missouri 63110, United States
| | - Michael T. Boyne
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of
Testing and Research, Division of Pharmaceutical Analysis, 645 S. Newstead Ave., St. Louis, Missouri 63110, United States
| |
Collapse
|
48
|
Middle-down electron capture dissociation and electron transfer dissociation for histone analysis. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The post-translational modifications (PTMs) of histones play a major role in activating or silencing gene transcription. To gain better understanding of the interplay between the PTMs that occur on histones, they are extensively studied using mass spectrometry techniques. Due to the abundance of lysines and arginines, the typical trypsin digestion has been found less favorable and GluC-digests have been explored as an alternative to yield larger peptides amenable to middle-down approaches. In addition, the use of weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) and the use of electron-based fragmentation techniques were found to be advantageous for the in-depth characterization of histone variants containing multiple PTMs.
As a test model, we used histones from MEL (murine erythroleukemia) cells treated with butyric acid or DMSO. After acid extraction, histone pellets were dried and fractionated using a reversed-phase C3 column. For middle-down analysis, selected histone fractions were digested using GluC. The digested samples were separated on a WCX-HILIC capillary column packed in-house with PolyCAT A resin, coupled to a linear trap quadrupole Fourier transformation ion cyclotron resonance (LTQFT-ICR) instrument. Raw data was acquired on the LTQFT-ICR using electron capture dissociation (ECD). After deconvolution of the raw data, we generated heatmaps to illustrate differential maps between differentially treated histone samples. We also explored the innovative use of Skyline to quantify histone tails. In addition, we report some preliminary data using a synthetic histone peptide acquired on an Orbitrap Fusion using electron transfer dissociation (ETD). Both, ECD and ETD methods are capable of comprehensively analyzing complex histone variations not accessible with conventional techniques.
Collapse
|
49
|
Nickchi P, Jafari M, Kalantari S. PEIMAN 1.0: Post-translational modification Enrichment, Integration and Matching ANalysis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav037. [PMID: 25911152 PMCID: PMC4408379 DOI: 10.1093/database/bav037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/31/2015] [Indexed: 01/07/2023]
Abstract
Conventional proteomics has discovered a wide gap between protein sequences and biological functions. The third generation of proteomics was provoked to bridge this gap. Targeted and untargeted post-translational modification (PTM) studies are the most important parts of today’s proteomics. Considering the expensive and time-consuming nature of experimental methods, computational methods are developed to study, analyze, predict, count and compute the PTM annotations on proteins. The enrichment analysis softwares are among the common computational biology and bioinformatic software packages. The focus of such softwares is to find the probability of occurrence of the desired biological features in any arbitrary list of genes/proteins. We introduce Post-translational modification Enrichment Integration and Matching Analysis (PEIMAN) software to explore more probable and enriched PTMs on proteins. Here, we also represent the statistics of detected PTM terms used in enrichment analysis in PEIMAN software based on the latest released version of UniProtKB/Swiss-Prot. These results, in addition to giving insight to any given list of proteins, could be useful to design targeted PTM studies for identification and characterization of special chemical groups. Database URL:http://bs.ipm.ir/softwares/PEIMAN/
Collapse
Affiliation(s)
- Payman Nickchi
- Protein Chemistry & Proteomics Unit, Biotechnology Research Center, Pasteur Institute of Iran, 69, Pasteur St., 13164 Tehran, Iran, School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), P. O. Box 193955746, Tehran, Iran and Chronic Kidney Disease Research Center (CKDRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohieddin Jafari
- Protein Chemistry & Proteomics Unit, Biotechnology Research Center, Pasteur Institute of Iran, 69, Pasteur St., 13164 Tehran, Iran, School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), P. O. Box 193955746, Tehran, Iran and Chronic Kidney Disease Research Center (CKDRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran Protein Chemistry & Proteomics Unit, Biotechnology Research Center, Pasteur Institute of Iran, 69, Pasteur St., 13164 Tehran, Iran, School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), P. O. Box 193955746, Tehran, Iran and Chronic Kidney Disease Research Center (CKDRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Kalantari
- Protein Chemistry & Proteomics Unit, Biotechnology Research Center, Pasteur Institute of Iran, 69, Pasteur St., 13164 Tehran, Iran, School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), P. O. Box 193955746, Tehran, Iran and Chronic Kidney Disease Research Center (CKDRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 2015; 24:1176-92. [PMID: 25676284 DOI: 10.1002/pro.2661] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called "native conditions" (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein-ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| |
Collapse
|