1
|
Yin X, Li Q, Shu Y, Wang H, Thomas B, Maxwell JT, Zhang Y. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing. J Biomed Sci 2024; 31:47. [PMID: 38724973 PMCID: PMC11084032 DOI: 10.1186/s12929-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.
Collapse
Affiliation(s)
- Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Biju Thomas
- Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Khandani B, Movahedin M. Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems. Stem Cell Rev Rep 2024; 20:484-494. [PMID: 38079087 DOI: 10.1007/s12015-023-10662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotent stem cells (PSCs) are widely recognized as one of the most promising types of stem cells for applications in regenerative medicine, tissue engineering, disease modeling, and drug screening. This is due to their unique ability to differentiate into cells from all three germ layers and their capacity for indefinite self-renewal. Initially, PSCs were cultured using animal feeder cells, but these systems presented several limitations, particularly in terms of Good Manufacturing Practices (GMP) regulations. As a result, feeder-free systems were introduced as a safer alternative. However, the precise mechanisms by which feeder cells support pluripotency are not fully understood. More importantly, it has been observed that some aspects of the need for feeder cells like the optimal density and cell type can vary depending on conditions such as the developmental stage of the PSCs, phases of the culture protocol, the method used in culture for induction of pluripotency, and intrinsic variability of PSCs. Thus, gaining a better understanding of the divergent roles and necessity of feeder cells in various conditions would lead to the development of condition-specific defined feeder-free systems that resolve the failure of current feeder-free systems in some conditions. Therefore, this review aims to explore considerable feeder-related issues that can lead to the development of condition-specific feeder-free systems.
Collapse
Affiliation(s)
- Bardia Khandani
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115111, Iran.
| |
Collapse
|
3
|
Mantesso A, Nör JE. Stem cells in clinical dentistry. J Am Dent Assoc 2023; 154:1048-1057. [PMID: 37804275 DOI: 10.1016/j.adaj.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Stem cells are present in most of the tissues in the craniofacial complex and play a major role in tissue homeostasis and repair. These cells are characterized by their capacity to differentiate into multiple cell types and to self-renew to maintain a stem cell pool throughout the life of the tissue. TYPES OF STUDIES REVIEWED The authors discuss original data from experiments and comparative analyses and review articles describing the identification and characterization of stem cells of the oral cavity. RESULTS Every oral tissue except enamel, dentin, and cementum contains stem cells for the entire life span. These stem cells self-renew to maintain a pool of cells that can be activated to replace terminally differentiated cells (for example, odontoblasts) or to enable wound healing (for example, dentin bridge in pulp exposures and healing of periodontal tissues after surgery). In addition, dental stem cells can differentiate into functional blood vessels and nerves. Initial clinical trials have shown that transplanting dental pulp stem cells into disinfected necrotic teeth has allowed for the recovery of tooth vitality and vertical and horizontal root growth in immature teeth with incomplete root formation. PRACTICAL IMPLICATIONS As a consequence of these groundbreaking discoveries, stem cell banks are now offering services for the cryopreservation of dental stem cells. The future use of stem cell-based therapies in the clinic will depend on the collaboration of clinicians and researchers in projects designed to understand whether these treatments are safe, efficacious, and clinically feasible.
Collapse
|
4
|
Transcriptomic Profile of Genes Regulating the Structural Organization of Porcine Atrial Cardiomyocytes during Primary In Vitro Culture. Genes (Basel) 2022; 13:genes13071205. [PMID: 35885988 PMCID: PMC9319992 DOI: 10.3390/genes13071205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous cardiovascular diseases (CVD) eventually lead to severe myocardial dysfunction, which is the most common cause of death worldwide. A better understanding of underlying molecular mechanisms of cardiovascular pathologies seems to be crucial to develop effective therapeutic options. Therefore, a worthwhile endeavor is a detailed molecular characterization of cells extracted from the myocardium. A transcriptomic profile of atrial cardiomyocytes during long-term primary cell culture revealed the expression patterns depending on the duration of the culture and the heart segment of origin (right atrial appendage and right atrium). Differentially expressed genes (DEGs) were classified as involved in ontological groups such as: “cellular component assembly”, “cellular component organization”, “cellular component biogenesis”, and “cytoskeleton organization”. Transcriptomic profiling allowed us to indicate the increased expression of COL5A2, COL8A1, and COL12A1, encoding different collagen subunits, pivotal in cardiac extracellular matrix (ECM) structure. Conversely, genes important for cellular architecture, such as ABLIM1, TMOD1, XIRP1, and PHACTR1, were downregulated during in vitro culture. The culture conditions may create a favorable environment for reconstruction of the ECM structures, whereas they may be suboptimal for expression of some pivotal transcripts responsible for the formation of intracellular structures.
Collapse
|
5
|
Zeitlin BD. Banking on teeth - Stem cells and the dental office. Biomed J 2020; 43:124-133. [PMID: 32381462 PMCID: PMC7283549 DOI: 10.1016/j.bj.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
Science and commerce advance together and the stem cell field is no exception. With the promise of cures for conditions as diverse as cancer, autism, neural degeneration, organ replacement and addiction, long-term preservation of dental stem cells is a growth market. The discovery nearly twenty years ago, of viable, multipotent, stem cells in dental pulp from both baby and adult teeth initiated, and drives, this market.The dental stem cell preservation services, "tooth banks", focus on the collection of a child's baby teeth, as they are shed naturally, and storage of the stem cells from within the pulp for therapeutic use in later years should the child require them. This review focuses on the procedures related to these stem cell storage services and may serve as an introduction for many to the practice of "tooth banking".
Collapse
Affiliation(s)
- Benjamin D Zeitlin
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.
| |
Collapse
|
6
|
Kaushik A, Bhartiya D. Pluripotent Very Small Embryonic-Like Stem Cells in Adult Testes - An Alternate Premise to Explain Testicular Germ Cell Tumors. Stem Cell Rev Rep 2019; 14:793-800. [PMID: 30238242 DOI: 10.1007/s12015-018-9848-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Developmental exposure to endocrine disruptors has resulted in the increased incidence of infertility and testicular germ cell tumors (T2GCT) in young men residing in developed countries. Unlike T1GCT (infants and young children) and T3GCT (aged men), T2GCT arise from CIS/GCNIS that develops from pre-CIS. Pre-CIS represents undifferentiated, growth-arrested gonocytes that persist in fetal testes due to endocrine disruption. However, whether pre-CIS truly exist, do CIS develop into T2GCT, why no CIS in T1GCT/T3GCT, why germ cell tumors (GCT) also occur along midline at extra-gonadal sites, why T1GCT show partial erasure and T2GCT show complete erasure of genomic imprints are open questions that are awaiting answers. We propose that rather than pre-CIS, pluripotent, very small embryonic-like stem cells (VSELs) get affected by exposure to endocrine disruption. Since VSELs are developmentally equivalent to primordial germ cells (PGCs), T2GCT cells show complete erasure of genomic imprints and CIS represents growth-arrested clonally expanding stem/progenitor cells. PGCs/VSELs migrate along the midline to various organs and this explains why GCT occur along the midline, T1GCT show partial erasure of imprints as they develop from migrating PGCs. T3GCT possibly reflects effects of aging due to compromised differentiation and expansion of pre-meiotic spermatocytes. Absent spermatogenesis in pre-pubertal and aged testes explains absence of CIS in T1GCT and T3GCT. Endocrine disruptors possibly alter epigenetic state of VSELs and thus rather than maintaining normal tissue homeostasis, VSELs undergo increased proliferation and compromised differentiation resulting in reduced sperm count, infertility and TGCT. This newly emerging understanding offers alternate premise to explain TGCT and warrants further exploration.
Collapse
Affiliation(s)
- Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
7
|
Suman S, Domingues A, Ratajczak J, Ratajczak MZ. Potential Clinical Applications of Stem Cells in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:1-22. [PMID: 31898779 DOI: 10.1007/978-3-030-31206-0_1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The field of regenerative medicine is looking for a pluripotent/multipotent stem cell able to differentiate across germ layers and be safely employed in therapy. Unfortunately, with the exception of hematopoietic stem/progenitor cells (HSPCs) for hematological applications, the current clinical results with stem cells are somewhat disappointing. The potential clinical applications of the more primitive embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have so far been discouraging, as both have exhibited several problems, including genomic instability, a risk of teratoma formation, and the possibility of rejection. Therefore, the only safe stem cells that have so far been employed in regenerative medicine are monopotent stem cells, such as the abovementioned HSPCs or mesenchymal stem cells (MSCs) isolated from postnatal tissues. However, their monopotency, and therefore limited differentiation potential, is a barrier to their broader application in the clinic. Interestingly, results have accumulated indicating that adult tissues contain rare, early-development stem cells known as very small embryonic-like stem cells (VSELs), which can differentiate into cells from more than one germ layer. This chapter addresses different sources of stem cells for potential clinical application and their advantages and problems to be solved.
Collapse
Affiliation(s)
- Suman Suman
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alison Domingues
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
8
|
Nassiri Asl M, Aali E. Review on the mesenchymal stem cells and their potential application in regenerative medicine. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.21.6.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
9
|
Deb A, Sarkar A, Ghosh Z. Dissecting the variation in transcriptional circuits between naive and primed pluripotent states. FEBS Lett 2017. [DOI: 10.1002/1873-3468.12732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aritra Deb
- Bioinformatics Centre; Bose Institute; Kolkata India
| | | | - Zhumur Ghosh
- Bioinformatics Centre; Bose Institute; Kolkata India
| |
Collapse
|
10
|
Yan X, Xu N, Meng C, Wang B, Yuan J, Wang C, Li Y. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin. Am J Transl Res 2016; 8:419-432. [PMID: 27158336 PMCID: PMC4846893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
The technology to reprogram human somatic cells to pluripotent state allows the generation of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine and autologous transplantation. Here we, for the first time, identified mesenchymal stem cells isolated from parotid gland (hPMSCs) as a suitable candidate for iPSC production. In the present study, hPMSCs were isolated from parotid gland specimens in patients with squamous cell carcinoma of the oral cavity. The mesenchymal stem cell properties of cultured hPMSCs were confirmed by expression of surface markers and induced differentiation into osteogenic, chondrogenic and adipogenic cell lineages. hPMSCs were then reprogrammed to pluripotent cells by episomal vector-mediated transduction of reprogramming factors (OCT3/4, SOX2, KLF4, c-MYC, LIN28 and TP53 shRNA). The resulting hPMSC-iPSCs showed similar characteristics as human embryonic stem cells (ESCs) with regard to morphology, pluripotent markers, global gene expression, and methylation status of pluripotent cell-specific genes OCT4 and NANOG. These hPMSC-iPSCs were able to differentiate into cells of all three germ layers both in vitro and in vivo. Our results indicate that hPMSCs could be an alternative cell source for generation of iPSCs and have the potential to be used in cell-based regenerative medicine.
Collapse
Affiliation(s)
- Xing Yan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical UniversityBeijing, PR China
| | - Nuo Xu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical UniversityBeijing, PR China
| | - Cen Meng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical UniversityBeijing, PR China
| | - Bianhong Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical UniversityBeijing, PR China
| | - Jinghong Yuan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical UniversityBeijing, PR China
| | - Caiyun Wang
- Beijing Cellapy Biotechnology Co., LTDBeijing, PR China
| | - Yang Li
- Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking UniversityBeijing, PR China
| |
Collapse
|
11
|
|
12
|
Li Q, Rycaj K, Chen X, Tang DG. Cancer stem cells and cell size: A causal link? Semin Cancer Biol 2015; 35:191-9. [PMID: 26241348 DOI: 10.1016/j.semcancer.2015.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
The majority of normal animal cells are 10-20 μm in diameter. Many signaling mechanisms, notably PI3K/Akt/mTOR, Myc, and Hippo pathways, tightly control and coordinate cell growth, cell size, cell division, and cell number during homeostasis. These regulatory mechanisms are frequently deregulated during tumorigenesis resulting in wide variations in cell sizes and increased proliferation in cancer cells. Here, we first review the evidence that primitive stem cells in adult tissues are quiescent and generally smaller than their differentiated progeny, suggesting a correlation between small cell sizes with the stemness. Conversely, increased cell size positively correlates with differentiation phenotypes. We then discuss cancer stem cells (CSCs) and present some evidence that correlates cell sizes with CSC activity. Overall, a causal link between CSCs and cell size is relatively weak and remains to be rigorously assessed. In the future, optimizing methods for isolating cells based on size should help elucidate the connection between cancer cell size and CSC characteristics.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Kiera Rycaj
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Xin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
13
|
Pan S, Chen W, Liu X, Xiao J, Wang Y, Liu J, Du Y, Wang Y, Zhang Y. Application of a novel population of multipotent stem cells derived from skin fibroblasts as donor cells in bovine SCNT. PLoS One 2015; 10:e0114423. [PMID: 25602959 PMCID: PMC4300223 DOI: 10.1371/journal.pone.0114423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/10/2014] [Indexed: 01/26/2023] Open
Abstract
Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4+ cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4+ cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4+ cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4+ cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4− cells. Moreover, blastocysts derived from SSEA-4+ cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4– derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4+ cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle.
Collapse
Affiliation(s)
- Shaohui Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wuju Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiajia Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YW); (YZ)
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YW); (YZ)
| |
Collapse
|
14
|
Cwykiel J, Tfaily EB, Siemionow MZ. Cellular Therapies in Nerve Regeneration. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Lee SJ, Park SH, Kim YI, Hwang S, Kwon PM, Han IS, Kwon BS. Adult stem cells from the hyaluronic acid-rich node and duct system differentiate into neuronal cells and repair brain injury. Stem Cells Dev 2014; 23:2831-40. [PMID: 25027245 DOI: 10.1089/scd.2014.0142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The existence of a hyaluronic acid-rich node and duct system (HAR-NDS) within the lymphatic and blood vessels was demonstrated previously. The HAR-NDS was enriched with small (3.0-5.0 μm in diameter), adult stem cells with properties similar to those of the very small embryonic-like stem cells (VSELs). Sca-1(+)Lin(-)CD45(-) cells were enriched approximately 100-fold in the intravascular HAR-NDS compared with the bone marrow. We named these adult stem cells "node and duct stem cells (NDSCs)." NDSCs formed colonies on C2C12 feeder layers, were positive for fetal alkaline phosphatase, and could be subcultured on the feeder layers. NDSCs were Oct4(+)Nanog(+)SSEA-1(+)Sox2(+), while VSELs were Oct4(+)Nanog(+)SSEA-1(+)Sox2(-). NDSCs had higher sphere-forming efficiency and proliferative potential than VSELs, and they were found to differentiate into neuronal cells in vitro. Injection of NDSCs into mice partially repaired ischemic brain damage. Thus, we report the discovery of potential adult stem cells that may be involved in tissue regeneration. The intravascular HAR-NDS may serve as a route that delivers these stem cells to their target tissues.
Collapse
Affiliation(s)
- Seung J Lee
- 1 Cancer Immunology Branch, National Cancer Center , Ilsan, Gyeonggi, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Péault B. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 2014; 71:1353-74. [PMID: 24158496 PMCID: PMC11113613 DOI: 10.1007/s00018-013-1462-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/17/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) can regenerate tissues by direct differentiation or indirectly by stimulating angiogenesis, limiting inflammation, and recruiting tissue-specific progenitor cells. MSCs emerge and multiply in long-term cultures of total cells from the bone marrow or multiple other organs. Such a derivation in vitro is simple and convenient, hence popular, but has long precluded understanding of the native identity, tissue distribution, frequency, and natural role of MSCs, which have been defined and validated exclusively in terms of surface marker expression and developmental potential in culture into bone, cartilage, and fat. Such simple, widely accepted criteria uniformly typify MSCs, even though some differences in potential exist, depending on tissue sources. Combined immunohistochemistry, flow cytometry, and cell culture have allowed tracking the artifactual cultured mesenchymal stem/stromal cells back to perivascular anatomical regions. Presently, both pericytes enveloping microvessels and adventitial cells surrounding larger arteries and veins have been described as possible MSC forerunners. While such a vascular association would explain why MSCs have been isolated from virtually all tissues tested, the origin of the MSCs grown from umbilical cord blood remains unknown. In fact, most aspects of the biology of perivascular MSCs are still obscure, from the emergence of these cells in the embryo to the molecular control of their activity in adult tissues. Such dark areas have not compromised intents to use these cells in clinical settings though, in which purified perivascular cells already exhibit decisive advantages over conventional MSCs, including purity, thorough characterization and, principally, total independence from in vitro culture. A growing body of experimental data is currently paving the way to the medical usage of autologous sorted perivascular cells for indications in which MSCs have been previously contemplated or actually used, such as bone regeneration and cardiovascular tissue repair.
Collapse
Affiliation(s)
- Iain R. Murray
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- BHF Center for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Christopher C. West
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- BHF Center for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Winters R. Hardy
- Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- Indiana Center for Vascular Biology and Medicine, Indianapolis, USA
| | - Aaron W. James
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Tea Soon Park
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, USA
| | - Alan Nguyen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Tulyapruek Tawonsawatruk
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- BHF Center for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lorenza Lazzari
- Cell Factory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Departments of Surgery and Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Bruno Péault
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- BHF Center for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
17
|
Yalcinkaya TM, Sittadjody S, Opara EC. Scientific principles of regenerative medicine and their application in the female reproductive system. Maturitas 2014; 77:12-9. [DOI: 10.1016/j.maturitas.2013.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 02/01/2023]
|
18
|
Srikanth GVN, Tripathy NK, Nityanand S. Fetal cardiac mesenchymal stem cells express embryonal markers and exhibit differentiation into cells of all three germ layers. World J Stem Cells 2013; 5:26-33. [PMID: 23362437 PMCID: PMC3557348 DOI: 10.4252/wjsc.v5.i1.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/23/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To study the expression of embryonal markers by fetal cardiac mesenchymal stem cells (fC-MSC) and their differentiation into cells of all the germ layers. METHODS Ten independent cultures of rat fC-MSC were set up from cells derived from individual or pooled fetal hearts and studies given below were carried out at passages 3, 6, 15 and 21. The phenotypic markers CD29, CD31, CD34, CD45, CD73, CD90, CD105, CD166 and HLA-DR were analyzed by flow cytometry. The expression of embryonal markers Oct-4, Nanog, Sox-2, SSEA-1, SSEA-3, SSEA-4, TRA-1-60 and TRA 1-81 were studied by immunocytochemistry. The fC-MSC treated with specific induction medium were evaluated for their differentiation into (1) adipocytes and osteocytes (mesodermal cells) by Oil Red O and Alizarin Red staining, respectively, as well as by expression of lipoprotein lipase, PPARγ2 genes in adipocytes and osteopontin and RUNX2 genes in osteocytes by reverse-transcription polymerase chain reaction (RT-PCR); (2) neuronal (ectodermal) cells by expression of neuronal Filament-160 and Glial Fibrillar Acidic Protein by RT-PCR and immunocytochemistry; and (3) hepatocytic (endodermal) cells by expression of albumin by RT-PCR and immunocytochemistry, glycogen deposits by Periodic Acid Schiff staining and excretion of urea into the culture supernatant. RESULTS The fC-MSC expressed CD29, CD73, CD90, CD105, CD166 but lacked expression of CD31, CD34, CD45 and HLA-DR. They expressed embryonal markers, viz. Oct-4, Nanog, Sox-2, SSEA-1, SSEA-3, SSEA-4, TRA-1-81 but not TRA-1-60. On treatment with specific induction media, they differentiated into adipocytes and osteocytes, neuronal cells and hepatocytic cells. CONCLUSION Our results together suggest that fC-MSC are primitive stem cell types with a high degree of plasticity and, in addition to their suitability for cardiovascular regenerative therapy, they may have a wide spectrum of therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Garikipati Venkata Naga Srikanth
- Garikipati Venkata Naga Srikanth, Naresh Kumar Tripathy, Soniya Nityanand, Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | | | | |
Collapse
|
19
|
Bartke A, Westbrook R, Sun L, Ratajczak M. Links between growth hormone and aging. ENDOKRYNOLOGIA POLSKA 2013; 64:46-52. [PMID: 23450447 PMCID: PMC3647466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Studies in mutant, gene knock-out and transgenic mice have demonstrated that growth hormone (GH) signalling has a major impact on ageing and longevity. Growth hormone-resistant and GH-deficient animals live much longer than their normal siblings, while transgenic mice overexpressing GH are short lived. Actions of GH in juvenile animals appear to be particularly important for life extension and responsible for various phenotypic characteristics of long-lived hypopituitary mutants. Available evidence indicates that reduced GH signalling is linked to extended longevity by multiple interacting mechanisms including increased stress resistance, reduced growth, altered profiles of cytokines produced by the adipose tissue, and various metabolic adjustments such as enhanced insulin sensitivity, increased oxygen consumption (VO2/g) and reduced respiratory quotient. The effects of removing visceral fat indicate that increased levels of adiponectin and reduced levels of pro-inflammatory cytokines in GH-resistant mice are responsible for their increased insulin sensitivity. Increased VO2 apparently represents increased energy expenditure for thermogenesis, because VO2 of mutant and normal mice does not differ at thermoneutral temperature. Recent studies identified GH- and IGF-1-dependent maintenance of bone marrow populations of very small embryonic-like stem cells (VSELs) as another likely mechanism of delayed ageing and increased longevity of GH-deficient and GH-resistant animals. Many of the physiological characteristics of long-lived, GH-related mouse mutants are shared by exceptionally long-lived people and by individuals genetically predisposed to longevity.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, United States.
| | | | | | | |
Collapse
|
20
|
Ratajczak MZ, Mierzejewska K, Ratajczak J, Kucia M. CD133 Expression Strongly Correlates with the Phenotype of Very Small Embryonic-/Epiblast-Like Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:125-41. [PMID: 23161080 DOI: 10.1007/978-1-4614-5894-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD133 antigen (prominin-1) is a useful cell surface marker of very small embryonic-like stem cells (VSELs). Antibodies against it, conjugated to paramagnetic beads or fluorochromes, are thus powerful biological tools for their isolation from human umbilical cord blood, mobilized peripheral blood, and bone marrow. VSELs are described with the following characteristics: (1) are slightly smaller than red blood cells; (2) display a distinct morphology, typified by a high nuclear/cytoplasmic ratio and an unorganized euchromatin; (3) become mobilized during stress situations into peripheral blood; (4) are enriched in the CD133(+)Lin(-)CD45(-) cell fraction in humans; and (5) express markers of pluripotent stem cells (e.g., Oct-4, Nanog, and stage-specific embryonic antigen-4). The most recent in vivo data from our and other laboratories demonstrated that human VSELs exhibit some characteristics of long-term repopulating hematopoietic stem cells and are at the top of the hierarchy in the mesenchymal lineage. However, still more labor is needed to characterize better at a molecular level these rare cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, 40202 Rm. 107, Louisville, KY, USA,
| | | | | | | |
Collapse
|
21
|
Li Y, Li X, Zhao H, Feng R, Zhang X, Tai D, An G, Wen J, Tan J. Efficient induction of pluripotent stem cells from menstrual blood. Stem Cells Dev 2012; 22:1147-58. [PMID: 23151296 DOI: 10.1089/scd.2012.0428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The technology to reprogram human somatic cells back to pluripotency allows the production of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine. Choosing the most suitable cell type for induction and reducing the risk of viral transgene activation, especially oncogene activation, are important for iPSC research. To date, human dermal fibroblasts (HDFs) are the most frequent cell source used for iPSC generation, but they have several limitations. An invasive skin biopsy must be performed to obtain HDFs, and HDFs must be cultured for a prolonged period before they can be used for experiments. Thus, in an effort to develop a suitable source for iPSC studies to avoid the limitations mentioned above, we have here identified stromal cells derived from menstrual blood (MenSCs) as suitable candidates. In the present study, we found that MenSCs can be reprogrammed to pluripotent status by doxycycline-inducible lentiviral transduction of OCT4, SOX2, and KLF4. Additionally, we found that MenSCs have a significantly higher reprogramming efficiency than HDFs. The combination of OCT4 and SOX2 is sufficient to reprogram MenSCs into iPSCs without the use of c-MYC or KLF4. The resulting MenSC-iPSCs showed the same characteristics as human embryonic stem cells with regard to morphology, pluripotent markers, gene expression, and the epigenetic status of pluripotent-cell-specific genes. These cells were able to differentiate into various cell types of all 3 germ layers both in vitro and in vivo. Therefore, MenSCs may be a preferred candidate for generation of iPSCs.
Collapse
Affiliation(s)
- Yang Li
- Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ratajczak J, Kucia M, Mierzejewska K, Marlicz W, Pietrzkowski Z, Wojakowski W, Greco NJ, Tendera M, Ratajczak MZ. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells--implications for stem cell therapies in regenerative medicine. Stem Cells Dev 2012; 22:422-30. [PMID: 23003001 DOI: 10.1089/scd.2012.0268] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CD133+ cells purified from hematopoietic tissues are enriched mostly for hematopoietic stem/progenitor cells, but also contain some endothelial progenitor cells and very small embryonic-like stem cells. CD133+ cells, which are akin to CD34+ cells, are a potential source of stem cells in regenerative medicine. However, the lack of convincing donor-derived chimerism in the damaged organs of patients treated with these cells suggests that the improvement in function involves mechanisms other than a direct contribution to the damaged tissues. We hypothesized that CD133+ cells secrete several paracrine factors that play a major role in the positive effects observed after treatment and tested supernatants derived from these cells for the presence of such factors. We observed that CD133+ cells and CD133+ cell-derived microvesicles (MVs) express mRNAs for several antiapoptotic and proangiopoietic factors, including kit ligand, insulin growth factor-1, vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8. These factors were also detected in a CD133+ cell-derived conditioned medium (CM). More important, the CD133+ cell-derived CM and MVs chemoattracted endothelial cells and display proangiopoietic activity both in vitro and in vivo assays. This observation should be taken into consideration when evaluating clinical outcomes from purified CD133+ cell therapies in regenerative medicine.
Collapse
Affiliation(s)
- Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ratajczak MZ, Shin DM, Liu R, Mierzejewska K, Ratajczak J, Kucia M, Zuba-Surma EK. Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation--an update and comparison to other primitive small stem cells isolated from adult tissues. Aging (Albany NY) 2012; 4:235-46. [PMID: 22498452 PMCID: PMC3371759 DOI: 10.18632/aging.100449] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are a population of developmentally early stem cells residing in adult tissues. These rare cells, which are slightly smaller than red blood cells, i) become mobilized during stress situations into peripheral blood, ii) are enriched in the Sca1+Lin−CD45− cell fraction in mice and the CD133+ Lin−CD45− cell fraction in humans, iii) express markers of pluripotent stem cells (e.g., Oct4, Nanog, and SSEA), and iv) display a distinct morphology characterized by a high nuclear/cytoplasmic ratio and undifferentiated chromatin. Recent evidence indicates that murine VSELs are kept quiescent in adult tissues and protected from teratoma formation by epigenetic modification of imprinted genes that regulate insulin/insulin like growth factor signaling (IIS). The successful reversal of these epigenetic changes in VSELs that render them quiescent will be crucial for efficient expansion of these cells. The most recent data in vivo from our and other laboratories demonstrated that both murine and human VSELs exhibit some characteristics of long-term repopulating hematopoietic stem cells (LT-HSCs), are at the top of the hierarchy in the mesenchymal lineage, and may differentiate into organ-specific cells (e.g., cardiomyocytes). Moreover, as recently demonstrated the number of these cells positively correlates in several murine models with longevity. Finally, while murine BM-derived VSELs have been extensively characterized more work is needed to better characterize these small cells at the molecular level in humans.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KT, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Current state of the development of mesenchymal stem cells into clinically applicable Schwann cell transplants. Mol Cell Biochem 2012; 368:127-35. [DOI: 10.1007/s11010-012-1351-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/16/2012] [Indexed: 12/14/2022]
|
25
|
Abstract
One of the most intriguing questions in stem cell biology is whether pluripotent stem cells exist in adult tissues. Several groups of investigators employing i) various isolation protocols, ii) detection of surface markers, and iii) experimental in vitro and in vivo models, have reported the presence of cells that possess a pluripotent character in adult tissues. Such cells were assigned various operational abbreviations and names in the literature that added confusion to the field and raised the basic question of whether these are truly distinct or overlapping populations of the same primitive stem cells. Unfortunately, these cells were never characterized side-by-side to address this important issue. Nevertheless, taking into consideration their common features described in the literature, it is very likely that various investigators have described overlapping populations of developmentally early stem cells that are closely related. These different populations of stem cells will be reviewed in this paper.
Collapse
|
26
|
Baiguera S, Jungebluth P, Mazzanti B, Macchiarini P. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements. Transpl Int 2012; 25:369-82. [PMID: 22248229 DOI: 10.1111/j.1432-2277.2011.01426.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs), a rare heterogeneous subset of pluripotent stromal cells that can be easily isolated from different adult tissues, in vitro expanded and differentiated into multiple lineages, are immune privileged and, more important, display immunomodulatory capacities. Because of this, they are the preferred cell source in tissue-engineered replacements, not only in autogeneic conditions, where they do not evoke any immune response, but especially in the setting of allogeneic organ and tissue replacements. However, more preclinical and clinical studies are requested to completely understand MSC's immune biology and possible clinical applications. We herein review the immunogenicity and immunomodulatory properties of MSCs, their possible mechanisms and potential clinical use for tissue-engineered organ and tissue replacement.
Collapse
Affiliation(s)
- Silvia Baiguera
- BIOAIRlab, European Center of Thoracic Research (CERT), University Hospital Careggi, Florence, Italy
| | | | | | | |
Collapse
|
27
|
Bhartiya D, Kasiviswananthan S, Shaikh A. Cellular origin of testis-derived pluripotent stem cells: a case for very small embryonic-like stem cells. Stem Cells Dev 2012; 21:670-4. [PMID: 21988281 DOI: 10.1089/scd.2011.0554] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It has been suggested that testicular germ stem cells represent the only adult body stem cells that dedifferentiate and reprogram into a pluripotent state without any genetic modification. Emerging debate about the authenticity of embryonic stem cell (ES)-like cells derived from adult testicular tissue has prompted us to put forth this letter. We wish to reinforce our findings that pluripotent very small embryonic-like stem cells (VSELs) exist as a small population in adult mammalian testis and may result in ES-like colonies. Because of their small size, it is felt that VSELs could be contaminating the initial cells used for seeding, although efforts were made to place a single germ cell per well in a 96-well plate for clonal expansion, or magnetic activated cell sorting (MACS)-sorted α6 integrin positive cells were used. On a similar note, it is felt that the presence of VSELs in various tissues along with mesenchymal stem cells (MSCs) may provide an alternative explanation to the transdifferentiation potential of MSCs. We conclude that like Oct-4 biology, presence of VSELs in adult body tissues has somewhat surprised stem cell biologists.
Collapse
|
28
|
Fan GC. Role of heat shock proteins in stem cell behavior. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:305-22. [PMID: 22917237 DOI: 10.1016/b978-0-12-398459-3.00014-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stress response is well appreciated to induce the expression of heat shock proteins (Hsps) in the cell. Numerous studies have demonstrated that Hsps function as molecular chaperones in the stabilization of intracellular proteins, repairing damaged proteins, and assisting in protein translocation. Various kinds of stem cells (embryonic stem cells, adult stem cells, or induced pluripotent stem cells) have to maintain their stemness and, under certain circumstances, undergo stress. Therefore, Hsps should have an important influence on stem cells. Actually, numerous studies have indicated that some Hsps physically interact with a number of transcription factors as well as intrinsic and extrinsic signaling pathways. Importantly, alterations in Hsp expression have been demonstrated to affect stem cell behavior including self-renewal, differentiation, sensitivity to environmental stress, and aging. This chapter summarizes recent findings related to (1) the roles of Hsps in maintenance of stem cell dormancy, proliferation, and differentiation; (2) the expression signature of Hsps in embryonic/adult stem cells and differentiated stem cells; (3) the protective roles of Hsps in transplanted stem cells; and (4) the possible roles of Hsps in stem cell aging.
Collapse
Affiliation(s)
- Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
29
|
Hu J, Li C, Wang L, Zhang X, Zhang M, Gao H, Yu X, Wang F, Zhao W, Yan S, Wang Y. Long term effects of the implantation of autologous bone marrow mononuclear cells for type 2 diabetes mellitus. Endocr J 2012; 59:1031-9. [PMID: 22814142 DOI: 10.1507/endocrj.ej12-0092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Previous studies have shown that several types of stem cells can differentiate into insulin-secreting islet beta-cells and that these cells can reduce blood glucose in some trials, but there has been no report of a long-term follow-up. We assessed the long-term effects of the use of autologous bone marrow mononuclear cells in the treatment of type 2 diabetes mellitus (T2DM). Based on the willingness to receive implantation of bone marrow mononuclear cells, One hundred and eighteen patients with T2DM were divided into two groups; the patients in group I were treated with autologous bone marrow mononuclear cells and patients in group II were treated with insulin intensification therapy. Mononuclear cells from bone marrow were injected back into the patient's pancreas via a catheter. Patients were followed-up after the operation at monthly intervals for the first 3 months and thereafter every 3 months for the next 33 months, the occurrence of any side effects and the results of laboratory examinations were evaluated. There were no reported acute or chronic side effects in group I and both the HbA1c and C-peptide in group I patients were significantly better than either pretherapy values or group II patients during the follow-up period. These data suggested that the implantation of autologous bone marrow mononuclear cells for the treatment of T2DM is safe and effective. This therapy can partially restore the function of islet beta-cells and maintain blood glucose homeostasis in a longer time.
Collapse
Affiliation(s)
- Jianxia Hu
- Stem Cell Research Center, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ratajczak MZ, Kucia M, Jadczyk T, Greco NJ, Wojakowski W, Tendera M, Ratajczak J. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 2011; 26:1166-73. [PMID: 22182853 DOI: 10.1038/leu.2011.389] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although regenerative medicine is searching for pluripotent stem cells that could be employed for therapy, various types of more differentiated adult stem and progenitor cells are in meantime being employed in clinical trials to regenerate damaged organs (for example, heart, kidney or neural tissues). It is striking that, for a variety of these cells, the currently observed final outcomes of cellular therapies are often similar. This fact and the lack of convincing documentation for donor-recipient chimerism in treated tissues in most of the studies indicates that a mechanism other than transdifferentiation of cells infused systemically into peripheral blood or injected directly into damaged organs may have an important role. In this review, we will discuss the role of (i) growth factors, cytokines, chemokines and bioactive lipids and (ii) microvesicles (MVs) released from cells employed as cellular therapeutics in regenerative medicine. In particular, stem cells are a rich source of these soluble factors and MVs released from their surface may deliver RNA and microRNA into damaged organs. Based on these phenomena, we suggest that paracrine effects make major contributions in most of the currently reported positive results in clinical trials employing adult stem cells. We will also present possibilities for how these paracrine mechanisms could be exploited in regenerative medicine to achieve better therapeutic outcomes. This approach may yield critical improvements in current cell therapies before true pluripotent stem cells isolated in sufficient quantities from adult tissues and successfully expanded ex vivo will be employed in the clinic.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zuba-Surma EK, Wojakowski W, Ratajczak MZ, Dawn B. Very small embryonic-like stem cells: biology and therapeutic potential for heart repair. Antioxid Redox Signal 2011; 15:1821-34. [PMID: 21194389 PMCID: PMC3159118 DOI: 10.1089/ars.2010.3817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Very small embryonic-like stem cells (VSELs) represent a population of extremely small nonhematopoietic pluripotent cells that are negative for lineage markers and express Sca-1 in mice and CD133 in humans. Their embryonic-like characteristics include the expression of markers of pluripotency; the ability to give rise to cellular derivatives of all three germ-layers; and the ability to form embryoid-like bodies. Indeed, quiescent VSELs may represent the remnants of epiblast-derived cells in adult organs. After tissue injury, including acute myocardial infarction (MI), bone marrow-derived VSELs are mobilized into the peripheral blood and home to the damaged organ. Given the ability of VSELs to differentiate into cardiomyocytes and endothelial cells, and their ability to secrete various cardioprotective growth factors/cytokines, VSELs may serve as an ideal cellular source for cardiac repair. Consistently, transplantation of VSELs after an acute MI improves left ventricular (LV) structure and function, and these benefits remain stable during long-term follow-up. Although the mechanisms remain under investigation, effects of secreted factors, regeneration of cellular constituents, and stimulation of endogenous stem/progenitors may play combinatorial roles. The purpose of this review is to summarize the current evidence regarding the biologic features of VSELs, and to discuss their potential as cellular substrates for therapeutic cardiac repair.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | |
Collapse
|
32
|
Ratajczak MZ. The emerging role of microvesicles in cellular therapies for organ/tissue regeneration. Nephrol Dial Transplant 2011; 26:1453-6. [PMID: 21531733 DOI: 10.1093/ndt/gfr165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
33
|
Corradetti B, Lange-Consiglio A, Barucca M, Cremonesi F, Bizzaro D. Size-sieved subpopulations of mesenchymal stem cells from intervascular and perivascular equine umbilical cord matrix. Cell Prolif 2011; 44:330-42. [PMID: 21645152 DOI: 10.1111/j.1365-2184.2011.00759.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Umbilical cord matrix (UCM) has been recently proposed as an alternative source of mesenchymal stem cells (MSCs). The aim of this study was to isolate and characterize presumptive stem cells from intervascular and perivascular equine UCM and to obtain homogeneous subpopulations from both sites. MATERIALS AND METHODS Umbilical cords were processed for retrieval of MSCs. Unsieved cells from intervascular and perivascular portions were evaluated for cell cycle analysis and for immunophenotyping by flow cytometry. Cells from each site were separated into larger and smaller sieved populations using multi-dishes with 8-μm pore transwell inserts. Each cell population was characterized in terms of renewal capability, specific marker expression and differentiation potential. Cryopreservation was performed on sieved cells only. RESULTS Cells from both areas expressed MSC and pluripotential specific markers and were able to differentiate into mesodermic and ectodermic lineages. The sieving procedure yielded two relatively homogeneous subpopulations with comparable characteristics. Surprisingly, after sieving, large intervascular and small perivascular cells were the most rapidly replicating cells [20.53 and 19.49 cell population doublings (PD) after 31 days respectively] and also showed higher fibroblast colony forming unit frequency. Unsieved cell populations were used as controls, and showed PD of 9.42(intervascular cells) and 8.54 (perivascular cells) after 31 days. CONCLUSIONS Here, cells from UCM represented an intermediate stage between pluripotent embryonic and adult stem cells. Size-sieving can be used to isolate more rapidly proliferating cell populations.
Collapse
Affiliation(s)
- B Corradetti
- Università Politecnica delle Marche, Department of Biochemistry, Biology and Genetics, Ancona, Italy
| | | | | | | | | |
Collapse
|
34
|
Dyce PW, Liu J, Tayade C, Kidder GM, Betts DH, Li J. In vitro and in vivo germ line potential of stem cells derived from newborn mouse skin. PLoS One 2011; 6:e20339. [PMID: 21629667 PMCID: PMC3101249 DOI: 10.1371/journal.pone.0020339] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/27/2011] [Indexed: 12/18/2022] Open
Abstract
We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP(+). After differentiation, some GFP(+) OLCs reached 40-45 µM and expressed oocyte markers. Flow cytometric analysis revealed that ∼ 0.3% of the freshly isolated skin cells were GFP(+). The GFP-positive cells increased to ∼ 7% after differentiation, suggesting that the GFP(+) cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP(+) oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis.
Collapse
Affiliation(s)
- Paul W. Dyce
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, and Children's Health Research Institute, London, Ontario, Canada
| | - Jinghe Liu
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Chandrakant Tayade
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | - Gerald M. Kidder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, and Children's Health Research Institute, London, Ontario, Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, and Children's Health Research Institute, London, Ontario, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Successful modulation of type 2 diabetes in db/db mice with intra-bone marrow--bone marrow transplantation plus concurrent thymic transplantation. J Autoimmun 2011; 35:414-23. [PMID: 20884174 DOI: 10.1016/j.jaut.2010.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 12/29/2022]
Abstract
There is increasing evidence that both autoimmune and autoinflammatory mechanisms are involved in the development of not only type 1 diabetes mellitus (T1 DM), but also type 2 diabetes mellitus (T2 DM). Our laboratory has focused on this concept, and in earlier efforts replaced the bone marrow cells (BMCs) of leptin receptor-deficient (db/db) mice, an animal model of T2DM, with those of normal C57BL/6 (B6) mice by IBM-BMT. However, the outcome was poor due to incomplete recovery of T cell function. Therefore, we hypothesized that intra-bone marrow-bone marrow transplantation plus thymus transplantation (IBM-BMT + TT) could be used to treat T2 DM by normalizing the T cell imbalance. Hence we addressed this issue by using such dual transplantation and demonstrate herein that seven weeks later, recipient db/db mice manifested improved body weight, reduced levels of blood glucose, and a reduction of plasma IL-6 and IL-1β. More importantly, this treatment regimen showed normal CD4/CD8 ratios, and increased plasma adiponectin levels, insulin sensitivity, and the number of insulin-producing cells. Furthermore, the expression of pancreatic pAKT, pLKB1, pAMPK and HO-1 was increased in the mice treated with IBM-BMT + TT. Our data show that IBM-BMT + TT treatment normalizes T cell subsets, cytokine imbalance and insulin sensitivity in the db/db mouse, suggesting that IBM-BMT + TT is a viable therapeutic option in the treatment of T2 DM.
Collapse
|
36
|
Abstract
Cardiac diseases are the leading cause of death and reach epidemic proportions with aging. Advanced heart disease results from an abrupt or progressive loss of contractile cardiomyocytes. Following percutaneous coronary intervention and revascularization regenerative medicine aims at effectively repair damaged tissue and replacement of lost cardiomyocytes. However, mixed results were obtained from trials using bone marrow-derived stem cells. Benefits were rather attributed to paracrine effects leading to inhibition or reverse of negative remodeling processes than to regeneration of viable cardiomyocytes. Thus the aim of regenerative medicine, in particular stem cell research, to generate viable cardiac muscle has so far not been achieved in humans, reflecting our incomplete understanding of underlying biological mechanisms. Moreover, there is growing evidence that substantial person-to-person differences in the outcome of stem cell therapy exists. We here review our present knowledge in evolving stem cell based cardiovascular medicine and highlight personalized aspects of stem cell interventions.
Collapse
|
37
|
Amin HD, Olsen I, Knowles J, Donos N. A procedure for identifying stem cell compartments with multi-lineage differentiation potential. Analyst 2011; 136:1440-9. [DOI: 10.1039/c0an00816h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Identification of Very Small Embryonic/Epiblast-Like Stem Cells (VSELs) Circulating in Peripheral Blood During Organ/Tissue Injuries. Methods Cell Biol 2011; 103:31-54. [DOI: 10.1016/b978-0-12-385493-3.00003-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
|
40
|
Evidence of mobilization of pluripotent stem cells into peripheral blood of patients with myocardial ischemia. Exp Hematol 2010; 38:1131-1142.e1. [PMID: 20800644 DOI: 10.1016/j.exphem.2010.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/08/2010] [Accepted: 08/11/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The ischemic myocardium releases multiple chemotactic factors responsible for the mobilization and recruitment of bone marrow-derived cells to injured myocardium. However, the mobilization of primitive pluripotent stem cells (PSCs) enriched in very small embryonic-like stem cells (VSELs) in various cardiac ischemic scenarios is not well understood. MATERIALS AND METHODS Fifty-four ischemic heart disease patients, including subjects with stable angina, non-ST elevation myocardial infarction, and ST elevation myocardial infarction (STEMI) and 12 matched controls were enrolled. The absolute numbers of circulating stem/primitive cells in samples of peripheral blood (PB) were quantitated by ImageStream analysis and conventional flow cytometry. Gene expression of PSC (Oct-4 and Nanog), early cardiomyocyte (Nkx-2.5 and GATA-4), and endothelial (von Willebrand factor) markers was analyzed by real-time polymerase chain reaction. RESULTS The absolute numbers of PSCs, stem cell populations enriched in VSELs, and hematopoietic stem cells present in PB were significantly higher in STEMI patients at presentation and declined over time. There was a corresponding increase in pluripotent, cardiac, and endothelial gene expression in unfractionated PB cells and sorted PB-derived primitive CD34(+) cells. The absolute numbers of circulating VSELs and hematopoietic stem cells in STEMI correlated negatively with patient age. CONCLUSIONS Myocardial ischemia mobilizes primitive PSCs including pluripotent VSELs into the circulation. The peak of mobilization occurs within 12 hours in patients presenting with STEMI, which may represent a therapeutic window for future clinical applications. Reduced stem cell mobilization with advancing age could explain, in part, the observation that age is associated with poor prognosis in patients with myocardial infarction.
Collapse
|
41
|
Taupin P. Very small embryonic-like stem cells for regenerative medicine: WO2010039241. Expert Opin Ther Pat 2010; 20:1103-6. [DOI: 10.1517/13543776.2010.495122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Nichols JE, Niles J, Walls S, Cortiella J. In vitro human bone marrow analog: clinical potential. Regen Med 2010; 5:289-98. [PMID: 20210588 DOI: 10.2217/rme.10.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone marrow is the primary site of hematopoiesis in adult humans. Bone marrow can be cultured in vitro but few simple culture systems fully support hematopoiesis beyond a few months. Human bone marrow analogs are long-term in vitro cultures of marrow stromal and hematopoietic stem cells that can be used to produce cells and products normally harvested from human donors. Bone marrow analog systems should exhibit confluence of the stromal cell populations, persistence of hematopoietic progenitor cells, presence of active regions of hematopoiesis and capacity to produce mature cell types for extended periods of time. Although we are still years away from realizing clinical application of products formed by artificial bone marrow analogs, the process of transitioning this research tool from bench to bedside should be fairly straightforward. The most obvious application of artificial marrow would be for production of autologous hematopoietic CD34(+) stem cells as a stem cell therapy for individuals experiencing bone marrow failure due to disease or injury. Another logical application is for 'blood farming', a process for large-scale in vitro production of red blood cells, white blood cells or platelets, for transfusion or treatment. Other possibilities include production of nonhematopoietic stem cells such as osteogenic stromal cells, osteoblasts and rare pluripotent stem cells. Bone marrow analogs also have great potential as ex vivo human test systems and could play a critical role in drug discovery, drug development and toxicity testing in the future.
Collapse
Affiliation(s)
- Joan E Nichols
- Laboratory of Regenerative & Nano-Medicine, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0435, USA.
| | | | | | | |
Collapse
|
43
|
Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation 2010; 80:123-9. [PMID: 20510497 DOI: 10.1016/j.diff.2010.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/21/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022]
Abstract
Reprogramming human somatic cells to pluripotency represents a valuable resource for research aiming at the development of in vitro models for human diseases and regenerative medicines to produce patient-specific induced pluripotent stem (iPS) cells. Seeking appropriate cell resources for higher efficiency and reducing the risk of viral transgene activation, especially oncogene activation, are of significance for iPS cell research. In this study, we tested whether human amnion-derived cells (hADCs) could be rapidly and efficiently reprogrammed into iPS cells by the defined factors: OCT4/SOX2/NANOG. hADCs from normal placenta were isolated and cultured. The 3rd passage cells were infected with the lentiviral vectors for the delivery of OCT4, SOX2, and NANOG. Afterwards, the generated iPSCs were identified by morphology, pluripotency markers, global gene expression profiles, and epigenetic status both in vitro and in vivo. The results showed that we were able to reprogram hADCs by the defined factors (OCT4/SOX2/NANOG). The efficiency was significantly high (about 0.1%), and the typical colonies appeared on the 9th day after infection. They were similar to human embryonic stem (ES) cells in morphology, proliferation, surface markers, gene expression, and the epigenetic status of pluripotent cell-specific genes. Furthermore, these cells were able to differentiate into various cell types of all three germ layers both in vitro and in vivo. These results demonstrate that hADCs were an ideal somatic cell resource for the rapid and efficient generation of iPS cells by OCT4/SOX2/NANOG.
Collapse
|
44
|
Lindner U, Kramer J, Rohwedel J, Schlenke P. Mesenchymal Stem or Stromal Cells: Toward a Better Understanding of Their Biology? ACTA ACUST UNITED AC 2010; 37:75-83. [PMID: 20737049 DOI: 10.1159/000290897] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/24/2010] [Indexed: 01/12/2023]
Abstract
The adult bone marrow has been generally considered to be composed of hematopoietic tissue and the associated supporting stroma. Within the latter compartment, a subset of cells with multipotent differentiation capacity exists, usually referred to as mesenchymal stem cells. Mesenchymal stem cells can easily be expanded ex vivo and induced to differentiate into several cell types, including osteoblasts, adipocytes and chondrocytes. Up to now, mesenchymal stem cells have gained wide popularity. Despite the rapid growth in this field, irritations remain with respect to the defining characteristics of these cells, including their differentiation potency, self-renewal and in vivo properties. As a consequence, there is a growing tendency to challenge the term mesenchymal stem cell, especially with respect to the stem cell characteristics. Here, we revisit the experimental origins of mesenchymal stem cells, their classical differentiation capacity into mesodermal lineages and their immunophenotype in order to assess their stemness and function. Based on these essentials, it has to be revisited if the designation as a stem cell remains an appropriate term.
Collapse
Affiliation(s)
- Ulrich Lindner
- Medical Department I, Division of Nephrology and Transplantation Unit, University of Lübeck, Germany
| | | | | | | |
Collapse
|
45
|
Zuba-Surma EK, Kucia M, Rui L, Shin DM, Wojakowski W, Ratajczak J, Ratajczak MZ. Fetal liver very small embryonic/epiblast like stem cells follow developmental migratory pathway of hematopoietic stem cells. Ann N Y Acad Sci 2009; 1176:205-18. [PMID: 19796249 DOI: 10.1111/j.1749-6632.2009.04562.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fetal liver (FL) has been described as a source of both hematopoietic and nonhematopoietic stem cells. Recently we have purified from murine adult bone marrow (BM) a population of CXCR4(+)Oct-4(+)SSEA-1(+)Sca-1(+)Lin(-)CD45(-) very small embryonic/epiblast-like stem cells (VSELs). By employing several complementary imaging and molecular strategies, we report in this study that VSELs, like hematopoietic stem cells (HSCs), are highly enriched in murine FL during the second trimester of gestation. Subsequently, at the beginning of the third trimester of gestation their number decreases, which corresponds to the time when HSCs egress FL and follow the stromal derived factor-1 (SDF-1) gradient in order to colonize developing BM. Thus, our data support the hypothesis that VSELs are a mobile pool of primitive stem cells that respond to similar chemotactic gradients as HSCs and follow their developmental migratory route.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Preffer F, Dombkowski D. Advances in complex multiparameter flow cytometry technology: Applications in stem cell research. CYTOMETRY PART B-CLINICAL CYTOMETRY 2009; 76:295-314. [PMID: 19492350 DOI: 10.1002/cyto.b.20480] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Flow cytometry and cell sorting are critical tools in stem cell research. Recent advances in flow cytometric hardware, reagents, and software have synergized to permit the stem cell biologist to more fully identify and isolate rare cells based on their immunofluorescent and light scatter characteristics. Some of these improvements include physically smaller air-cooled lasers, new designs in optics, new fluorescent conjugate-excitation pairs, and improved software to visualize data, all which combine to open up new horizons in the study of stem cells, by enhancing the resolution and specificity of inquiry. In this review, these recent improvements in technology will be outlined and important cell surface and functional antigenic markers useful for the study of stem cells described.
Collapse
Affiliation(s)
- Frederic Preffer
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
47
|
Zuba-Surma EK, Klich I, Greco N, Laughlin MJ, Ratajczak J, Ratajczak MZ. Optimization of isolation and further characterization of umbilical-cord-blood-derived very small embryonic/ epiblast-like stem cells (VSELs). Eur J Haematol 2009; 84:34-46. [PMID: 19758351 DOI: 10.1111/j.1600-0609.2009.01352.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of their small size and density, umbilical cord blood (UCB)-derived very small embryonic/epiblast-like stem cells (VSELs) are usually lost at various steps of UCB preparation. Accordingly, we noticed that a significant number of these cells, which are smaller than erythrocytes, are lost during gradient centrifugation over Ficoll-Paque as well as during routine volume depletion of UCB units before freezing. To preserve these cells in final UCB preparations, we propose a relatively short and economical three-step isolation protocol that allows recovery of approximately 60% of the initial number of Lin(-)/CD45(-)/CD133(+) UCB-VSELs present in freshly harvested UCB units. In this novel approach (i) UCB is lysed in a hypotonic ammonium chloride solution to deplete erythrocytes; (ii) CD133(+) including VSELs cells are enriched by employing immunomagnetic beads; and subsequently (iii) Lin(-)/CD45(-)/CD133(+) cells are sorted by fluorescence-activated cell sorting. The whole isolation procedure takes approximately 2-3 h per UCB unit and isolated cells are highly enriched for an Oct-4(+) and SSEA-4(+) population of small Lin(-)/CD45(-)/CD133(+) cells.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Stem Cell Biology Institute, University of Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kaminitz A, Mizrahi K, Yaniv I, Farkas DL, Stein J, Askenasy N. Low levels of allogeneic but not syngeneic hematopoietic chimerism reverse autoimmune insulitis in prediabetic NOD mice. J Autoimmun 2009; 33:83-91. [DOI: 10.1016/j.jaut.2009.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 12/29/2022]
|
49
|
Kushida T, Ueda Y, Umeda M, Oe K, Okamoto N, Iida H, Abraham NG, Gershwin ME, Ikehara S. Allogeneic intra-bone marrow transplantation prevents rheumatoid arthritis in SKG/Jcl mice. J Autoimmun 2009; 32:216-22. [PMID: 19349145 DOI: 10.1016/j.jaut.2009.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
The treatment of autoimmune diseases by allogeneic bone marrow transplantation remains a promising therapeutic avenue. However, more intensive studies on murine models are essential before application to a large number of human patients. In particular, the use of bone marrow transplantation to treat rheumatoid arthritis has been problematic. We have taken advantage of the SKG/Jcl mouse that develops a chronic T cell-mediated autoimmune disease that mimics rheumatoid arthritis which attempted to prevent the development of immunopathology in these mice by allogeneic bone marrow transplantation (BMT). In particular, we utilized our unique technology in which bone marrow cells (BMCs) of control C57BL/6J mice are directly injected into the bone marrow cavity in the tibia of SKG mice (intra-bone marrow [IBM]-BMT). As controls, SKG/Jcl mice were transplanted with whole BMCs from syngeneic SKG mice. Importantly, 12 months after IBM-BMT [B6-->SKG] demonstrated no evidence of arthritis, whereas the control [SKG-->SKG] mice demonstrated, the expected immunopathology of a rheumatoid arthritis-like condition. Further, hematolymphoid cells in [B6-->SKG] mice were reconstituted by donor-derived cells and the percentages of Treg (Foxp3+/CD4+) cells, the percentages of receptor activator of nuclear factor-kappaB ligand (RANKL)+ cells on the CD4+ T cells and the serum levels of tumor necrosis factor-alpha, interleukin-1 and interleukin-6 were normalized in the [B6-->SKG] mice. These data suggest that IBM-BMT is a viable method of immunological manipulation that suppresses the severe joint destruction and bone absorption in SKG/Jcl mice and lends further credence to the use of this methodology in humans with intractable rheumatoid arthritis.
Collapse
Affiliation(s)
- Taketoshi Kushida
- Department of Orthopedic Surgery, Kansai Medical University, Moriguchi City, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Both skeletal muscle and bone marrow tissue contain myogenic stem cells. The population residing in muscles is heterogenic. Predominant in number are "typical" satellite cells - muscle progenitors migrating from somites during embryonic life. Another population is group of multipotent muscle stem cells which, at least in part, are derived from bone marrow. These cells are tracked by gradient of growth factors releasing from muscle during injury or exercise. Recruited bone marrow-derived cells gradually change their phenotype becoming muscle stem cells and eventually can attain satellite cell position and express Pax7 protein. Mesenchymal stem cells (MSC) isolated directly from bone marrow also display myogenic potential, although methods of induction of myogenic differentiation in vitro have not been optimized yet. Concerning efforts of exploiting myogenic stem cells in cell-mediated therapies it is important to understand the cause of impaired regenerative potential of aged muscle. Up to now, most of research data suggest that majority of age related changes in skeletal muscles are reversible, thus depending on extrinsic factors. However, irreversible intrinsic features of muscle stem cells are also taken into consideration.
Collapse
|