1
|
Kulhari U, Ambujakshan A, Ahmed M, Washimkar K, Kachari J, Mugale MN, Sahu BD. Nuciferine inhibits TLR4/NF-κB/MAPK signaling axis and alleviates adjuvant-induced arthritis in rats. Eur J Pharmacol 2024; 982:176940. [PMID: 39182545 DOI: 10.1016/j.ejphar.2024.176940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis is an inflammatory condition primarily affecting the joints. Nuciferine (NCF), a key bioactive aporphine alkaloid biosynthesized in lotus leaves, exhibits promising anti-inflammatory and antioxidant properties. In this study, we investigated whether NCF could alleviate inflammatory arthritis conditions in a complete Freund's adjuvant (CFA)-mediated arthritis model in rats. The arthritis model was established through intradermal injection of CFA (100 μL) in the sub-plantar region of the right hind paw. The arthritic animals were treated orally with NCF at 5 and 10 mg/kg and indomethacin (Indo) at 5 mg/kg body weight as reference control. NCF treatment remarkably alleviated inflammatory joint swelling and arthritic index. The radiological and histological analysis revealed evidence of the beneficial effects of NCF. NCF treatment decreased the content of pro-inflammatory cytokines (TNF-α and IL-1β) and myeloperoxidase (MPO) activity and restored the anti-inflammatory cytokine (IL-10) in the paw joints. The serum levels of pro-inflammatory cytokines were also markedly reduced in the NCF (10 mg/kg) treatment group. Moreover, the arthritis-induced inflammatory mediators, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the toll-like receptor (TLR)-4, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling proteins were substantially decreased in the NCF treatment groups. NCF treatment also restored the antioxidant defense enzymes and abrogated lipid peroxidation in the paw tissue. Our findings strongly suggest that NCF is a promising therapeutic molecule for rheumatoid arthritis, inspiring further research, and development in this area.
Collapse
Affiliation(s)
- Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Anju Ambujakshan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Momitul Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Kaveri Washimkar
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Jodumoni Kachari
- Department of Veterinary Surgery and Radiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
2
|
Clanchy FI, Borghese F, Bystrom J, Balog A, Penn H, Hull DN, Mageed RA, Taylor PC, Williams RO. Inflammatory disease status and response to TNF blockade are associated with mechanisms of endotoxin tolerance. J Autoimmun 2024; 148:103300. [PMID: 39116634 DOI: 10.1016/j.jaut.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The mechanisms of endotoxin tolerance (ET), which down-regulate inflammation, are well described in response to exogenous toll-like receptor ligands, but few studies have focused on ET-associated mechanisms in inflammatory disease. As blocking TNF can attenuate the development of ET, the effect of anti-TNF on the expression of key ET-associated molecules in inflammatory auto-immune disease was measured; changes in inflammatory gene expression were confirmed using an ET bioassay. The expression of immunomodulatory molecules was measured in a murine model of arthritis treated with anti-TNF and the expression of ET-associated molecules was measured in whole blood in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients, before and after therapy. The expression of ET-associated genes was also measured in RA patient monocytes before and after therapy, in anti-TNF responders and non-responders. Tnfaip3, Ptpn6 and Irak3 were differentially expressed in affected paws, spleens, lymph nodes and circulating leucocytes in experimental murine arthritis treated with anti-TNF. Prior to therapy, the expression of TNFAIP3, INPP5D, PTPN6, CD38 and SIGIRR in whole blood differed between human healthy controls and RA or AS patients. In blood monocytes from RA patients, the expression of TNFAIP3 was significantly reduced by anti-TNF therapy in non-responders. Prior to therapy, anti-TNF non-responders had higher expression of TNFAIP3 and SLPI, compared to responders. Although the expression of TNFAIP3 was significantly higher in RA non-responders prior to treatment, the post-treatment reduction to a level similar to responders did not coincide with a clinical response to therapy.
Collapse
Affiliation(s)
- Felix Il Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| | - Federica Borghese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Jonas Bystrom
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Attila Balog
- Department of Rheumatology and Immunology, Szent-Györgyi Albert Clinical Centre, University of Szeged, Szeged, Hungary
| | - Henry Penn
- Northwick Park Hospital, Harrow, United Kingdom
| | - Dobrina N Hull
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Rizgar A Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
3
|
Zeng L, Yu G, Yang K, He Q, Hao W, Xiang W, Long Z, Chen H, Tang X, Sun L. Exploring the mechanism of Celastrol in the treatment of rheumatoid arthritis based on systems pharmacology and multi-omics. Sci Rep 2024; 14:1604. [PMID: 38238321 PMCID: PMC10796403 DOI: 10.1038/s41598-023-48248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
To explore the molecular network mechanism of Celastrol in the treatment of rheumatoid arthritis (RA) based on a novel strategy (integrated systems pharmacology, proteomics, transcriptomics and single-cell transcriptomics). Firstly, the potential targets of Celastrol and RA genes were predicted through the database, and the Celastrol-RA targets were obtained by taking the intersection. Then, transcriptomic data and proteomic data of Celastrol treatment of RA were collected. Subsequently, Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were imported into Metascape for enrichment analysis, and related networks were constructed. Finally, the core targets of Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were mapped to synoviocytes of RA mice to find potential cell populations for Celastrol therapy. A total of 195 Celastrol-RA targets, 2068 differential genes, 294 differential proteins were obtained. The results of enrichment analysis showed that these targets, genes and proteins were mainly related to extracellular matrix organization, TGF-β signaling pathway, etc. The results of single cell sequencing showed that the main clusters of these targets, genes, and proteins could be mapped to RA synovial cells. For example, Mmp9 was mainly distributed in Hematopoietic cells, especially in Ptprn+fibroblast. The results of molecular docking also suggested that Celastrol could stably combine with molecules predicted by network pharmacology. In conclusion, this study used systems pharmacology, transcriptomics, proteomics, single-cell transcriptomics to reveal that Celastrol may regulate the PI3K/AKT signaling pathway by regulating key targets such as TNF and IL6, and then play an immune regulatory role.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
| |
Collapse
|
4
|
Kalliolias GD, Basdra EK, Papavassiliou AG. Targeting TLR Signaling Cascades in Systemic Lupus Erythematosus and Rheumatoid Arthritis: An Update. Biomedicines 2024; 12:138. [PMID: 38255243 PMCID: PMC10813148 DOI: 10.3390/biomedicines12010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Evidence from animal models and human genetics implicates Toll-like Receptors (TLRs) in the pathogenesis of Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). Endosomal TLRs sensing nucleic acids were proposed to induce lupus-promoting signaling in dendritic cells, B cells, monocytes, and macrophages. Ligation of TLR4 in synovial macrophages and fibroblast-like synoviocytes (FLSs) by endogenous ligands was suggested to induce local production of mediators that amplify RA synovitis. Inhibition of TLRs using antagonists or monoclonal antibodies (mAbs) that selectively prevent extracellular or endosomal TLR ligation has emerged as an attractive treatment strategy for SLE and RA. Despite the consistent success of selective inhibition of TLR ligation in animal models, DV-1179 (dual TLR7/9 antagonist) failed to achieve pharmacodynamic effectiveness in SLE, and NI-0101 (mAb against TLR4) failed to improve arthritis in RA. Synergistic cooperation between TLRs and functional redundancy in human diseases may require pharmacologic targeting of intracellular molecules that integrate signaling downstream of multiple TLRs. Small molecules inhibiting shared kinases involved in TLR signaling and peptidomimetics disrupting the assembly of common signalosomes ("Myddosome") are under development. Targeted degraders (proteolysis-targeting chimeras (PROTACs)) of intracellular molecules involved in TLR signaling are a new class of TLR inhibitors with promising preliminary data awaiting further clinical validation.
Collapse
Affiliation(s)
- George D. Kalliolias
- Hospital for Special Surgery, Arthritis & Tissue Degeneration, New York, NY 10021, USA;
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
5
|
Maarouf RE, Abdel-Rafei MK, Thabet NM, Azab KS, Rashed L, El Bakary NM. Ondansetron or beta-sitosterol antagonizes inflammatory responses in liver, kidney, lung and heart tissues of irradiated arthritic rats model. Int J Immunopathol Pharmacol 2024; 38:3946320241260635. [PMID: 38831558 PMCID: PMC11149447 DOI: 10.1177/03946320241260635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder mainly affecting joints, yet the systemic inflammation can influence other organs and tissues. The objective of this study was to unravel the ameliorative capability of Ondansetron (O) or β-sitosterol (BS) against inflammatory reactions and oxidative stress that complicates Extra-articular manifestations (EAM) in liver, kidney, lung, and heart of arthritic and arthritic irradiated rats. METHODS This was accomplished by exposing adjuvant-induced arthritis (AIA) rats to successive weekly fractions of total body γ-irradiation (2 Gray (Gy)/fraction once per week for four weeks, up to a total dose of 8 Gy). Arthritic and/or arthritic irradiated rats were either treated with BS (40 mg/kg b.wt. /day, orally) or O (2 mg/kg) was given ip) or were kept untreated as model groups. RESULTS Body weight changes, paw circumference, oxidative stress indices, inflammatory response biomarkers, expression of Janus kinase-2 (JAK-2), Signal transducer and activator of transcription 3 (STAT3), high mobility group box1 (HMGB1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as pro- and anti-inflammatory mediators in the target organs, besides histopathological examination of ankle joints and extra-articular tissues. Treatment of arthritic and/or arthritic irradiated rats with BS or O powerfully alleviated changes in body weight gain, paw swelling, oxidative stress, inflammatory reactions, and histopathological degenerative alterations in articular and non-articular tissues. CONCLUSION The obtained data imply that BS or O improved the articular and EAM by regulating oxidative and inflammatory indices in arthritic and arthritic irradiated rats.
Collapse
Affiliation(s)
- Rokaya E Maarouf
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled S Azab
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Laila Rashed
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen M El Bakary
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
6
|
Ren W, Zhao L, Sun Y, Wang X, Shi X. HMGB1 and Toll-like receptors: potential therapeutic targets in autoimmune diseases. Mol Med 2023; 29:117. [PMID: 37667233 PMCID: PMC10478470 DOI: 10.1186/s10020-023-00717-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
HMGB1, a nucleoprotein, is expressed in almost all eukaryotic cells. During cell activation and cell death, HMGB1 can function as an alarm protein (alarmin) or damage-associated molecular pattern (DAMP) and mediate early inflammatory and immune response when it is translocated to the extracellular space. The binding of extracellular HMGB1 to Toll-like receptors (TLRs), such as TLR2 and TLR4 transforms HMGB1 into a pro-inflammatory cytokine, contributing to the occurrence and development of autoimmune diseases. TLRs, which are members of a family of pattern recognition receptors, can bind to endogenous DAMPs and activate the innate immune response. Additionally, TLRs are key signaling molecules mediating the immune response and play a critical role in the host defense against pathogens and the maintenance of immune balance. HMGB1 and TLRs are reported to be upregulated in several autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and autoimmune thyroid disease. The expression levels of HMGB1 and some TLRs are upregulated in tissues of patients with autoimmune diseases and animal models of autoimmune diseases. The suppression of HMGB1 and TLRs inhibits the progression of inflammation in animal models. Thus, HMGB1 and TLRs are indispensable biomarkers and important therapeutic targets for autoimmune diseases. This review provides comprehensive strategies for treating or preventing autoimmune diseases discovered in recent years.
Collapse
Affiliation(s)
- Wenxuan Ren
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xichang Wang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
7
|
Yang J, Pan Y, Zeng X, Liu S, Chen Z, Cheng K. Discovery of novel aporphine alkaloid derivative as potent TLR2 antagonist reversing macrophage polarization and neutrophil infiltration against acute inflammation. Acta Pharm Sin B 2023; 13:3782-3801. [PMID: 37719381 PMCID: PMC10501872 DOI: 10.1016/j.apsb.2023.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 09/19/2023] Open
Abstract
Toll-like receptor 2 (TLR2) mediated macrophages regulate the protective immune response to infectious microorganisms, but the aberrant activation of macrophages often leads to pathological inflammation, including tissue damage. In this study, we identified antagonists of TLR2 by screening 2100 natural products and subsequently identified Taspine, an aporphine alkaloid, as an excellent candidate. Furthermore, analysis of the 10 steps chemical synthesis route and structural optimization yielded the Taspine derivative SMU-Y6, which has higher activity, better solubility, and improved drug-feasible property. Mechanistic studies and seq-RNA analysis revealed that SMU-Y6 inhibited TLR2 over other TLRs, hindered the formation of TLR2/MyD88 complex, and blocked the downstream NF-κB and MAPK signaling pathway, thus suppressing the release of inflammatory cytokines. SMU-Y6 could stabilize TLR2 and bind to TLR2 protein with a Kd of 0.18 μmol/L. Additionally, SMU-Y6 could efficiently reverse the M1 phenotype macrophage polarization, reduce the production of cytokines as well as infiltration of neutrophiles and alleviate the local inflammation in mice with acute paw edema and colitis. Collectively, we reported the first aporphine alkaloid derivative that selectively inhibits TLR2 with high binding affinity and superior drug-feasible property, thus providing an urgently-needed molecular probe and potential drug candidate for inflammatory and autoimmune disease therapy.
Collapse
Affiliation(s)
- Junjie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Musculoskeletal Oncology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510642, China
| |
Collapse
|
8
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
9
|
Ogbechi J, Huang YS, Clanchy FIL, Pantazi E, Topping LM, Darlington LG, Williams RO, Stone TW. Modulation of immune cell function, IDO expression and kynurenine production by the quorum sensor 2-heptyl-3-hydroxy-4-quinolone (PQS). Front Immunol 2022; 13:1001956. [PMID: 36389710 PMCID: PMC9650388 DOI: 10.3389/fimmu.2022.1001956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2023] Open
Abstract
Many invasive micro-organisms produce 'quorum sensor' molecules which regulate colony expansion and may modulate host immune responses. We have examined the ability of Pseudomonas Quorum Sensor (PQS) to influence cytokine expression under conditions of inflammatory stress. The administration of PQS in vivo to mice with collagen-induced arthritis (CIA) increased the severity of disease. Blood and inflamed paws from treated mice had fewer regulatory T cells (Tregs) but normal numbers of Th17 cells. However, PQS (1μM) treatment of antigen-stimulated lymph node cells from collagen-immunised mice in vitro inhibited the differentiation of CD4+IFNγ+ cells, with less effect on CD4+IL-17+ cells and no change in CD4+FoxP3+Tregs. PQS also inhibited T cell activation by anti-CD3/anti-CD28 antibodies. PQS reduced murine macrophage polarisation and inhibited expression of IL1B and IL6 genes in murine macrophages and human THP-1 cells. In human monocyte-derived macrophages, IDO1 gene, protein and enzyme activity were all inhibited by exposure to PQS. TNF gene expression was inhibited in THP-1 cells but not murine macrophages, while LPS-induced TNF protein release was increased by high PQS concentrations. PQS is known to have iron scavenging activity and its suppression of cytokine release was abrogated by iron supplementation. Unexpectedly, PQS decreased the expression of indoleamine-2, 3-dioxygenase genes (IDO1 and IDO2), IDO1 protein expression and enzyme activity in mouse and human macrophages. This is consistent with evidence that IDO1 inhibition or deletion exacerbates arthritis, while kynurenine reduces its severity. It is suggested that the inhibition of IDO1 and cytokine expression may contribute to the quorum sensor and invasive actions of PQS.
Collapse
Affiliation(s)
- Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Eirini Pantazi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Louise M. Topping
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | | | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Interaction between Mesenchymal Stem Cells and the Immune System in Rheumatoid Arthritis. Pharmaceuticals (Basel) 2022; 15:ph15080941. [PMID: 36015088 PMCID: PMC9416102 DOI: 10.3390/ph15080941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes damage to joints. This review focuses on the possibility of influencing the disease through immunomodulation by mesenchymal stem cells (MSCs). There is an occurrence of rheumatoid factor and RA-specific autoantibodies to citrullinated proteins in most patients. Citrulline proteins have been identified in the joints of RA patients, and are considered to be the most suitable candidates for the stimulation of anti-citrulline protein antibodies production. Fibroblast-like proliferating active synoviocytes actively promote inflammation and destruction in the RA joint, in association with pro-inflammatory cells. The inflammatory process may be suppressed by MSCs, which are a population of adherent cells with the following characteristic phenotype: CD105+, CD73+, CD90+, CD45−, CD34− and HLA DR−. Following the stimulation process, MSCs are capable of immunomodulatory action through the release of bioactive molecules, as well as direct contact with the cells of the immune system. Furthermore, MSCs show the ability to suppress natural killer cell activation and dendritic cells maturation, inhibit T cell proliferation and function, and induce T regulatory cell formation. MSCs produce factors that suppress inflammatory processes, such as PGE2, TGF-β, HLA-G5, IDO, and IL-10. These properties suggest that MSCs may affect and suppress the excessive inflammation that occurs in RA. The effect of MSCs on rheumatoid arthritis has been proven to be a suitable alternative treatment thanks to successful experiments and clinical studies.
Collapse
|
11
|
Elevated expression of TLR2 and its correlation with disease activity and clinical manifestations in adult-onset Still's disease. Sci Rep 2022; 12:10240. [PMID: 35715478 PMCID: PMC9205149 DOI: 10.1038/s41598-022-14004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
This study investigated the role of Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR7, and TLR9 in patients with adult-onset Still’s disease (AOSD). This study included 20 patients with AOSD and 15 healthy controls (HCs). TLR expression in the peripheral blood was quantified using flow cytometry; TLR expression pattern, in the skin lesions and lymph nodes (LNs) of patients with AOSD, was evaluated immunohistochemically. Significantly higher mean intensities of cells presenting TLR2 and TLR7 from whole blood were observed in patients with AOSD than in HCs. TLR2 expression in whole cells correlated with systemic scores, levels of lactate dehydrogenase and ferritin and serum levels of interleukin-1β (IL-1β), IL-6, and IL-18. The percentage of TLR2-positive inflammatory cells was higher in skin biopsy samples from patients with AOSD than those in HCs. TLR9-expressing positive inflammatory cell counts were higher in skin lesions from patients with AOSD than those in the HC, eczema, and psoriasis groups. The expression levels of TLR1, TLR4, TLR7, and TLR9 were higher in LNs of patients with AOSD than in those with T cell lymphoma and reactive lymphadenopathy. Circulating TLR2- and TLR7-positive cells may contribute to the pathogenesis of AOSD. Furthermore, immunohistochemical staining for TLRs in skin lesions and LNs may aid in differentiating AOSD from similar conditions.
Collapse
|
12
|
Topping LM, Romero-Castillo L, Urbonaviciute V, Bolinsson H, Clanchy FI, Holmdahl R, Bäckström BT, Williams RO. Standardization of Antigen-Emulsion Preparations for the Induction of Autoimmune Disease Models. Front Immunol 2022; 13:892251. [PMID: 35769487 PMCID: PMC9234561 DOI: 10.3389/fimmu.2022.892251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Autoimmune murine disease models are vital tools for identifying novel targets and finding better treatments for human diseases. Complete Freund's adjuvant is commonly used to induce disease in autoimmune models, and the quality of the adjuvant/autoantigen emulsion is of critical importance in determining reproducibility. We have established an emulsification method using a standard homogenizer and specially designed receptacle. Emulsions are easy to prepare, form stable and uniform water-in-oil particles, are faster to make than the traditional syringe method, use less material and are designed to fill syringes with ease. In the present study, we have validated the emulsions for induction of experimental autoimmune encephalitis, collagen II induced arthritis, antigen induced arthritis, and delayed type hypersensitivity models. These models were induced consistently and reproducibly and, in some cases, the new method outperformed the traditional method. The method described herein is simple, cost-effective and will reduce variability, thereby requiring fewer animals for in vivo research involving animal models of autoimmune disease and in vaccine development.
Collapse
Affiliation(s)
- Louise M. Topping
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Laura Romero-Castillo
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hans Bolinsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Felix I. Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - B. Thomas Bäckström
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Autoimmunity, BTB Emulsions AB, Malmo, Sweden
| | - Richard O. Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
MiR-129-5p Inactivates NF-κB Pathway to Block Rheumatoid Arthritis Development via Targeting BRD4. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8330659. [PMID: 35494514 PMCID: PMC9042608 DOI: 10.1155/2022/8330659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/29/2022]
Abstract
Methods The abundance of miR-129-5p was detected in the samples including normal tissues and RA tissues and cell lines including human fibroblast-like synoviocytes (hFLSs) and human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs). The CCK-8 assay, flow cytometry, Transwell, and ELISA were used to observe the effects of miR-129-5p on the phenotype of RA-FLSs. Moreover, the potential targets of miR-129-5p were identified with TargetScan and dual-luciferase reporter gene assay. Besides, the abundances of the proteins were analyzed with western blot. Results Decreased miR-129-5p was observed in RA tissues and cells. Increased miR-129-5p obviously blocked the proliferation, inflammatory stress, and migration and remarkably promoted cellular apoptosis. Moreover, BRD4 was confirmed as targets of miR-129-5p, and BRD4 upregulation could partly rescue the inhibition of miR-129-5p on aggressive behaviors of RA-FLSs. Besides, the finding of this study also proved that upregulated miR-129-5p could impede the NF-κB pathway via targeting BRD4. Conclusion This study suggests that miR-129-5p suppresses the activation of NF-κB pathway to block the progression of RA via targeting BRD4.
Collapse
|
14
|
Clanchy FIL, Huang YS, Ogbechi J, Darlington LG, Williams RO, Stone TW. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression? Front Immunol 2022; 13:832989. [PMID: 35371018 PMCID: PMC8964980 DOI: 10.3389/fimmu.2022.832989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Medicine and Rheumatology, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Clanchy FIL, Borghese F, Bystrom J, Balog A, Penn H, Taylor PC, Stone TW, Mageed RA, Williams RO. Disease status in human and experimental arthritis, and response to TNF blockade, is associated with MHC class II invariant chain (CD74) isoform expression. J Autoimmun 2022; 128:102810. [PMID: 35245865 DOI: 10.1016/j.jaut.2022.102810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
Splice variants of CD74 differentially modulate the activity of cathepsin L (CTSL). As CD74 and CTSL participate in the pathogenesis of inflammatory diseases such as rheumatoid arthritis (RA), we determined whether splice variants of CD74 could be biomarkers of disease activity. Gene expression was measured in mice with collagen-induced arthritis using quantitative PCR (qPCR). In vitro studies using murine macrophage/DC-lineage cells determined the relative influence of macrophage phenotype on isoform expression and the potential to produce CTSL in response to TNF. CD74 splice variants were measured in human RA synovium and RA patients' monocytes. In arthritic mice, the expression of the p41 CD74 isoform was significantly higher in severely affected paws compared with unaffected paws or the paws of naïve mice; the p41 isoform significantly correlated with the expression of TNF in arthritic paws. Compared with M2-like macrophages, M1-like macrophages expressed increased levels of CD74 and had higher expression, secretion and activity of CTSL. RA patients that responded to TNF blockade had significantly higher expression levels of CD74 in circulating monocytes after treatment, compared with non-responders. The expression of the human CD74 isoform a was significantly higher in RA synovia, compared with osteoarthritis synovia, and was associated with CSTL enzymatic activity. This study is the first to demonstrate differential expression of the CD74 p41 isoform in an auto-immune disorder and in response to therapy. The differential expression of CD74 splice variants indicates an association, and potentially a mechanistic role, in the pathogenesis of RA.
Collapse
Affiliation(s)
- Felix I L Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Federica Borghese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - Jonas Bystrom
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Attila Balog
- Department of Rheumatology and Immunology, Szent-Györgyi Albert Clinical Centre, University of Szeged, Szeged, Hungary
| | | | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Trevor W Stone
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - Rizgar A Mageed
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| |
Collapse
|
16
|
Immunomodulatory effects of different molecular weight sporisorium reilianum polypeptides on LPS-induced RAW264.7 macrophages. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Targeting Toll-like Receptor (TLR) Pathways in Inflammatory Arthritis: Two Better Than One? Biomolecules 2021; 11:biom11091291. [PMID: 34572504 PMCID: PMC8464963 DOI: 10.3390/biom11091291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory arthritis is a cluster of diseases caused by unregulated activity of the immune system. The lost homeostasis is followed by the immune attack of one’s self, what damages healthy cells and tissues and leads to chronic inflammation of various tissues and organs (e.g., joints, lungs, heart, eyes). Different medications to control the excessive immune response are in use, however, drug resistances, flare-reactions and adverse effects to the current therapies are common in the affected patients. Thus, it is essential to broaden the spectrum of alternative treatments and to develop disease-modifying drugs. In the last 20 years, the involvement of the innate immune receptors TLRs in inflammatory arthritis has been widely investigated and targeting either the receptor itself or the proteins in the downstream signalling cascades has emerged as a promising therapeutic strategy. Yet, concerns about the use of pharmacological agents that inhibit TLR activity and may leave the host unprotected against invading pathogens and toxicity issues amid inhibition of downstream kinases crucial in various cellular functions have arisen. This review summarizes the existing knowledge on the role of TLRs in inflammatory arthritis; in addition, the likely druggable related targets and the developed inhibitors, and discusses the pros and cons of their potential clinical use.
Collapse
|
18
|
Unterberger S, Davies KA, Rambhatla SB, Sacre S. Contribution of Toll-Like Receptors and the NLRP3 Inflammasome in Rheumatoid Arthritis Pathophysiology. Immunotargets Ther 2021; 10:285-298. [PMID: 34350135 PMCID: PMC8326786 DOI: 10.2147/itt.s288547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that is characterized by inflammation of the synovial joints leading to cartilage and bone damage. The pathogenesis is sustained by the production of pro-inflammatory cytokines including tumor necrosis factor (TNF), interleukin (IL)-1 and IL-6, which can be targeted therapeutically to alleviate disease severity. Several innate immune receptors are suggested to contribute to the chronic inflammation in RA, through the production of pro-inflammatory factors in response to endogenous danger signals. Much research has focused on toll-like receptors and more recently the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 (NLRP3) inflammasome, which is required for the processing and release of IL-1β. This review summarizes the current understanding of the potential involvement of these receptors in the initiation and maintenance of inflammation and tissue damage in RA and experimental arthritis models.
Collapse
Affiliation(s)
- Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| | - Kevin A Davies
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| | | | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| |
Collapse
|
19
|
Zhang X, Yang Y, Jing L, Zhai W, Zhang H, Ma Q, Li C, Yan F, Cheng D, Zhang J, Ning Z, Shi H, Wang C, Zhao M, Dai J, Li Z, Ming J, Yu M, Wang H, Cheng H, Xiong H, Dong G. Pyruvate Kinase M2 Contributes to TLR-Mediated Inflammation and Autoimmunity by Promoting Pyk2 Activation. Front Immunol 2021; 12:680068. [PMID: 34025679 PMCID: PMC8138060 DOI: 10.3389/fimmu.2021.680068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) play critical roles in regulating the abnormal activation of the immune cells resulting in the pathogenesis of inflammation and autoimmune diseases. Pyruvate kinase M2 (PKM2), which governs the last step of glycolysis, is involved in multiple cellular processes and pathological conditions. However, little is known about the involvement of PKM2 in regulating TLR-mediated inflammation and autoimmunity. Herein, we investigated the role of PKM2 in the activation of the TLR pathways and the pathogenesis of inflammation and autoimmune diseases. The activation of TLR4, TLR7 and TLR9 pathways was found to induce the up-regulation of PKM2 expression in macrophages, dendritic cells (DCs) and B cells. The over-expression of PKM2 promotes the activation of TLR4, TLR7 and TLR9 pathways while interference with the PKM2 expression or the addition of the PKM2 inhibitor (PKM-IN) markedly inhibited the activation of TLR4, TLR7 and TLR9 pathways. Mechanistically, PKM2 augmented the activation of TLR4, TLR7 and TLR9 pathways by promoting the activation of the proline-rich tyrosine kinase 2 (Pyk2). Intriguingly, the PKM2 inhibitor PKM2-IN significantly protected the mice from the endotoxic shock mediated by the TLR4-agonist LPS. Additionally, it alleviated the progression in the TLR7-agonist imiquimod-mediated lupus mice and spontaneous lupus MRL/lpr mice. Moreover, PKM2 expression was highly elevated in the monocytes, DCs and B cells from systemic lupus erythematous (SLE) patients compared with those from the healthy donors. Besides, the PKM2 expression level was positively correlated with the degree of activation of these immune cells. In summary, PKM2 contributed to TLR-mediated inflammation and autoimmunity and can be a valuable target to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Xin Zhang
- School of Medical Laboratory, Weifang Medical University, Weifang, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lina Jing
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiwei Zhai
- Department of Clinical Laboratory, Jining No. 1 People’s Hospital, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Dalei Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Jiankuo Ming
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Meimei Yu
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Haiyan Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongyan Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|