1
|
Marcinekova P, Melymuk L, Bohlin-Nizzetto P, Martinelli E, Jílková SR, Martiník J, Šenk P, Kukučka P, Audy O, Kohoutek J, Ghebremeskel M, Håland A, Borgen AR, Eikenes H, Hanssen L, Harju M, Cebula Z, Rostkowski P. Development of a supramolecular solvent-based extraction method for application to quantitative analyses of a wide range of organic contaminants in indoor dust. Anal Bioanal Chem 2024; 416:4973-4985. [PMID: 38995406 PMCID: PMC11330406 DOI: 10.1007/s00216-024-05433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
This study investigates the efficacy of supramolecular solvent (SUPRAS) in extracting a diverse spectrum of organic contaminants from indoor dust. Initially, seven distinct SUPRAS were assessed across nine categories of contaminants to identify the most effective one. A SUPRAS comprising Milli-Q water, tetrahydrofuran, and hexanol in a 70:20:10 ratio, respectively, demonstrated the best extraction performance and was employed for testing a wider array of organic contaminants. Furthermore, we applied the selected SUPRAS for the extraction of organic compounds from the NIST Standard Reference Material (SRM) 2585. In parallel, we performed the extraction of NIST SRM 2585 with conventional extraction methods using hexane:acetone (1:1) for non-polar contaminants and methanol (100%) extraction for polar contaminants. Analysis from two independent laboratories (in Norway and the Czech Republic) demonstrated the viability of SUPRAS for the simultaneous extraction of twelve groups of organic contaminants with a broad range of physico-chemical properties including plastic additives, pesticides, and combustion by-products. However, caution is advised when employing SUPRAS for highly polar contaminants like current-use pesticides or volatile substances like naphthalene.
Collapse
Affiliation(s)
- Paula Marcinekova
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | | | | | | | - Jakub Martiník
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Ondřej Audy
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | | | | | | | - Heidi Eikenes
- NILU, Instituttveien 18, Kjeller, 2007, Lillestrøm, Norway
| | - Linda Hanssen
- Fram Center, NILU, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Mikael Harju
- Fram Center, NILU, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Zofia Cebula
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | | |
Collapse
|
2
|
Peng B, Xie Y, Lai Q, Liu W, Ye X, Yin L, Zhang W, Xiong S, Wang H, Chen H. Pesticide residue detection technology for herbal medicine: current status, challenges, and prospects. ANAL SCI 2024; 40:581-597. [PMID: 38367162 DOI: 10.1007/s44211-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Qingfu Lai
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Xuelan Ye
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Li Yin
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wanxin Zhang
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Suqin Xiong
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Heng Wang
- Guangdong Haid Group Co., Ltd, Guangzhou, 510000, China.
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Fast and highly efficient liquid chromatographic methods for qualification and quantification of antibiotic residues from environmental waste. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Skok A, Bazel Y, Vishnikin A. New analytical methods for the determination of sulfur species with microextraction techniques: a review. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2045294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Oles Honchar National University, Dnipro, Ukraine
| |
Collapse
|
5
|
Muguruma Y, Nunome M, Inoue K. A Review on the Foodomics Based on Liquid Chromatography Mass Spectrometry. Chem Pharm Bull (Tokyo) 2022; 70:12-18. [PMID: 34980727 DOI: 10.1248/cpb.c21-00765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to the globalization of food production and distribution, the food chain has become increasingly complex, making it more difficult to evaluate unexpected food changes. Therefore, establishing sensitive, robust, and cost-effective analytical platforms to efficiently extract and analyze the food-chemicals in complex food matrices is essential, however, challenging. LC/MS-based metabolomics is the key to obtain a broad overview of human metabolism and understand novel food science. Various metabolomics approaches (e.g., targeted and/or untargeted) and sample preparation techniques in food analysis have their own advantages and limitations. Selecting an analytical platform that matches the characteristics of the analytes is important for food analysis. This review highlighted the recent trends and applications of metabolomics based on "foodomics" by LC-MS and provides the perspectives and insights into the methodology and various sample preparation techniques in food analysis.
Collapse
Affiliation(s)
- Yoshio Muguruma
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Mari Nunome
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Koichi Inoue
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
6
|
de Andrade JC, Galvan D, Effting L, Tessaro L, Aquino A, Conte-Junior CA. Multiclass Pesticide Residues in Fruits and Vegetables from Brazil: A Systematic Review of Sample Preparation Until Post-Harvest. Crit Rev Anal Chem 2021; 53:1174-1196. [PMID: 34908509 DOI: 10.1080/10408347.2021.2013157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Brazil annually produces around 43 million tons of fruits and vegetables. Therefore, large amounts of pesticides are needed to grow these foods. The use of unauthorized or indiscriminate pesticides can lead to the adherence of residues of these compounds to the product in a concentration above the maximum residue limit (MRL). Pesticide residues (PRs) monitoring is a continuous challenge due to several factors influencing the detection of these compounds in the food matrix. Currently, several adaptations to conventional techniques have been developed to minimize these problems. This systematic review presents the main information obtained from 52 research articles, taken from five databases, on changes and advances in Brazil in sample preparation methods for determining PRs in fruits and vegetables in the last nine years. We cover the preexisting ones and some others that might be suitable alternatives approaches. In addition, we present a brief discussion on the monitoring of PRs in different Brazilian regions, and we found that residues belonging to the organophosphate and pyrethroid classes were detected more frequently. Approximately 67% of the residues detected are of irregular use in 28 types of fruits and vegetables commonly consumed and exported by Brazil.
Collapse
Affiliation(s)
- Jelmir Craveiro de Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, Brazil
| | - Letícia Tessaro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Agrawal A, Keçili R, Ghorbani-Bidkorbeh F, Hussain CM. Green miniaturized technologies in analytical and bioanalytical chemistry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Chen X, Wu X, Luan T, Jiang R, Ouyang G. Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review. J Chromatogr A 2021; 1640:461961. [PMID: 33582515 DOI: 10.1016/j.chroma.2021.461961] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Detection of illicit drugs in the environmental samples has been challenged as the consumption increases globally. Current review examines the recent developments and applications of sample preparation techniques for illicit drugs in solid, liquid, and gas samples. For solid samples, traditional sample preparation methods such as liquid-phase extraction, solid-phase extraction, and the ones with external energy including microwave-assisted, ultrasonic-assisted, and pressurized liquid extraction were commonly used. The sample preparation methods mainly applied for liquid samples were microextraction techniques including solid-phase microextraction, microextraction by packed sorbent, dispersive solid-phase extraction, dispersive liquid-liquid microextraction, hollow fiber-based liquid-phase microextraction, and so on. Capillary microextraction of volatiles and airborne particulate sampling were primarily utilized to extract illicit drugs from gas samples. Besides, the paper introduced recently developed instrumental techniques applied to detect illicit drugs. Liquid chromatograph mass spectrometry and gas chromatograph mass spectrometry were the most widely used methods for illicit drugs samples. In addition, the development of ambient mass spectrometry techniques, such as desorption electrospray ionization mass spectrometry and paper spray mass spectrometry, created potential for rapid in-situ analysis.
Collapse
Affiliation(s)
- Xinlv Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xinyan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and safety, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou, 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Edjere O, Ukpebor JE, Emebu S, Okieimen FE. Preliminary Studies of Organochlorine Pesticides (OCPs) in Sediment, Water and Fish Samples from Ethiope River, Abraka Axis, Southern Nigeria. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2020. [DOI: 10.56431/p-f4t732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Selected persistent organochlorine pollutants, including DDT and its metabolites, hexachlorobenzene, dieldrin, Aldrin, heptachlor, HCH as well as some of their isomers were determined in water, sediment and fish samples from the Ethiope River in Southern Nigeria. Twenty organochlorine pesticides were detected in both seasons from October 2012 – September 2013. Results revealed ∑HCH to be 0.620µg/L (water), 33 ng/g (sediment) and 29.00 ng/g (fish) for the rainy season while concentrations of 0.170 µg/L (water), 14 ng/g (sediment) and 28.00 ng/g (fish) were obtained for the dry season. 0.05–0.15 ng/g for aldrin, 0.12–5.8 ng/g for dieldrin, 0.22–0.64 ng/g for endrin, 0.24–6.37 ng/g for endosulfan and 0.21–8.81 ng/g for ΣDDT (p, p` -DDD, p, p` -DDE, p, p` -DDT). Among the OCPs, ∑HCH, endosulfan and PDDT were the most dominant compounds in the river sediments. γ- HCH was the most frequent detected compound in all the samples from this river. Among the cyclodiene compounds, aldrin was in abundance in most of the sediments, water and fish samples. γ-HCH, γ-HCH and HCB contributed this highest value for the water, sediment and fish sample respectively in the rainy season while aldrin, endrin and HCB were the highest contributors to the ΣOCPs to the mean of water, sediment and fish respectively. Hazard quotient and bioaccumulation analysis carried out on the fish sample revealed that the fishes were heavily contaminated with values >1 for both seasons which possess a possibility for ecological concern.
Collapse
|
10
|
Peng LQ, Cao J. Modern microextraction techniques for natural products. Electrophoresis 2020; 42:219-232. [PMID: 33215711 DOI: 10.1002/elps.202000248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 11/11/2022]
Abstract
Natural product analysis has gained wide attention in recent years, especially for herbal medicines, which contain complex ingredients and play a significant clinical role in the therapy of numerous diseases. The constituents of natural products are usually found at low concentrations, and the matrices are complex. Thus, the extraction of target compounds from natural products before analysis by analytical instruments is very significant for human health and its wide application. The commonly used traditional extraction methods are time-consuming, using large amounts of sample and organic solvents, as well as expensive and inefficient. Recently, microextraction techniques have been used for natural product extraction to overcome the disadvantages of conventional extraction methods. In this paper, the successful applications of and recent developments in microextraction techniques including solvent-based and sorbent-based microextraction methods, in natural product analysis in recent years, especially in the last 5 years, are reviewed for the first time. Their features, advantages, disadvantages, and future development trends are also discussed.
Collapse
Affiliation(s)
- Li-Qing Peng
- College of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jun Cao
- College of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
11
|
Edjere O, Ukpebor JE, Emebu S, Okieimen FE. Preliminary Studies of Organochlorine Pesticides (OCPs) in Sediment, Water and Fish Samples from Ethiope River, Abraka Axis, Southern Nigeria. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2020. [DOI: 10.18052/www.scipress.com/ilns.80.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Selected persistent organochlorine pollutants, including DDT and its metabolites, hexachlorobenzene, dieldrin, Aldrin, heptachlor, HCH as well as some of their isomers were determined in water, sediment and fish samples from the Ethiope River in Southern Nigeria. Twenty organochlorine pesticides were detected in both seasons from October 2012 – September 2013. Results revealed ∑HCH to be 0.620µg/L (water), 33 ng/g (sediment) and 29.00 ng/g (fish) for the rainy season while concentrations of 0.170 µg/L (water), 14 ng/g (sediment) and 28.00 ng/g (fish) were obtained for the dry season. 0.05–0.15 ng/g for aldrin, 0.12–5.8 ng/g for dieldrin, 0.22–0.64 ng/g for endrin, 0.24–6.37 ng/g for endosulfan and 0.21–8.81 ng/g for ΣDDT (p, p` -DDD, p, p` -DDE, p, p` -DDT). Among the OCPs, ∑HCH, endosulfan and PDDT were the most dominant compounds in the river sediments. γ- HCH was the most frequent detected compound in all the samples from this river. Among the cyclodiene compounds, aldrin was in abundance in most of the sediments, water and fish samples. γ-HCH, γ-HCH and HCB contributed this highest value for the water, sediment and fish sample respectively in the rainy season while aldrin, endrin and HCB were the highest contributors to the ΣOCPs to the mean of water, sediment and fish respectively. Hazard quotient and bioaccumulation analysis carried out on the fish sample revealed that the fishes were heavily contaminated with values >1 for both seasons which possess a possibility for ecological concern.
Collapse
|
12
|
Tışlı B, Chormey DS, Ayyıldız MF, Bakırdere S. Experimental Design of Vortex Assisted Switchable Solvent Homogeneous Liquid-Liquid Microextraction for Simultaneous Determination of Four Pesticides in Wastewater. J AOAC Int 2020; 103:1250-1255. [PMID: 33241397 DOI: 10.1093/jaoacint/qsaa047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Pesticides are chemicals used mainly to protect plant crops in order to increase their production efficiency and quality. OBJECTIVE Switchable-solvent homogeneous liquid-liquid microextraction was optimized using a Box-Behnken experimental design and validated on a gas chromatography mass spectrometry system for the determination of analytes. METHOD The significance of independent variables (switchable solvent volume, sodium hydroxide volume, and vortex period) and their interactions were evaluated by analysis of variance at 95% confidence limits (α = 0.05). RESULTS The LOD and LOQ ranges of the analytes were found to be 0.42-1.90 µg/L and 1.36-6.33 µg/L, respectively. Percentage recovery results were found to be in the range of 87-113% in spiking experiments. CONCLUSIONS A simple, efficient, and accurate analytical method was developed for the simultaneous determination of the selected pesticides. Highlights: Matrix matching was used to enhance quantification accuracy for real samples. HIGHLIGHTS Matrix matching was used to enhance quantification accuracy for real samples.
Collapse
Affiliation(s)
- Büşra Tışlı
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Dotse Selali Chormey
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Merve Fırat Ayyıldız
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| |
Collapse
|
13
|
Manafi Khoshmanesh S, Hamishehkar H, Razmi H. Trace analysis of organophosphorus pesticide residues in fruit juices and vegetables by an electrochemically fabricated solid-phase microextraction fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3268-3276. [PMID: 32930190 DOI: 10.1039/d0ay00626b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, a solid-phase microextraction pencil lead fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite (GG/GO/PANI) was fabricated by an in situ electrochemical technique for the trace analysis of organophosphorus pesticide residues in packed grape and apple juice and also fresh tomato samples. The effects of various parameters, including the type of desorption solvent, adsorption time, desorption time, pH, salt addition, and stirring rate, on the extraction efficiency of the studied pesticides were investigated and accordingly, these parameters were optimized. The proposed fiber demonstrated desirable linear ranges (0.01-300 μg L-1) with good correlation coefficients (R2 ≥ 0.996) as well as low limits of detection (0.003-0.03 μg L-1) for the studied pesticides. The relative standard deviations (n = 5) for the extraction of 50 μg L-1 of each analyte were less than 7 and 11.5% for inter and intra-day precisions, respectively. This fast, facile, and repeatable electrochemical fabrication method produced a porous and homogeneous coating. The proposed fiber demonstrated good extraction efficiency, high stability, and long life-time despite being low cost. The successful application of the proposed fiber for the trace determination of pesticides in complex food matrices was proven by the satisfactory relative recoveries of 80.7-116.5%.
Collapse
Affiliation(s)
- Sara Manafi Khoshmanesh
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
14
|
Dugheri S, Mucci N, Bonari A, Marrubini G, Cappelli G, Ubiali D, Campagna M, Montalti M, Arcangeli G. Liquid phase microextraction techniques combined with chromatography analysis: a review. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sample pretreatment is the first and the most important step of an analytical procedure. In routine analysis, liquid–liquid microextraction (LLE) is the most widely used sample pre-treatment technique, whose goal is to isolate the target analytes, provide enrichment, with cleanup to lower the chemical noise, and enhance the signal. The use of extensive volumes of hazardous organic solvents and production of large amounts of waste make LLE procedures unsuitable for modern, highly automated laboratories, expensive, and environmentally unfriendly. In the past two decades, liquid-phase microextraction (LPME) was introduced to overcome these drawbacks. Thanks to the need of only a few microliters of extraction solvent, LPME techniques have been widely adopted by the scientific community. The aim of this review is to report on the state-of-the-art LPME techniques used in gas and liquid chromatography. Attention was paid to the classification of the LPME operating modes, to the historical contextualization of LPME applications, and to the advantages of microextraction in methods respecting the value of green analytical chemistry. Technical aspects such as description of methodology selected in method development for routine use, specific variants of LPME developed for complex matrices, derivatization, and enrichment techniques are also discussed.
Collapse
Affiliation(s)
- Stefano Dugheri
- 1 Industrial Hygiene and Toxicology Laboratory, Careggi University Hospital, Florence, Italy
| | - Nicola Mucci
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Bonari
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Giovanni Cappelli
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Ubiali
- 3 Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marcello Campagna
- 4 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Manfredi Montalti
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules 2020; 25:E1719. [PMID: 32283595 PMCID: PMC7180442 DOI: 10.3390/molecules25071719] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Preparing a sample for analysis is a crucial step of many analytical procedures. The goal of sample preparation is to provide a representative, homogenous sample that is free of interferences and compatible with the intended analytical method. Green approaches to sample preparation require that the consumption of hazardous organic solvents and energy be minimized or even eliminated in the analytical process. While no sample preparation is clearly the most environmentally friendly approach, complete elimination of this step is not always practical. In such cases, the extraction techniques which use low amounts of solvents or no solvents are considered ideal alternatives. This paper presents an overview of green extraction procedures and sample preparation methodologies, briefly introduces their theoretical principles, and describes the recent developments in food, pharmaceutical, environmental and bioanalytical chemistry applications.
Collapse
Affiliation(s)
- Alshymaa A. Aly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate 61519, Egypt
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
16
|
Bozyiğit GD, Ayyıldız MF, Chormey DS, Engin GO, Bakırdere S. Development of a sensitive and accurate method for the simultaneous determination of selected insecticides and herbicide in tap water and wastewater samples using vortex-assisted switchable solvent-based liquid-phase microextraction prior to determination by gas chromatography-mass spectrometry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:275. [PMID: 32270289 DOI: 10.1007/s10661-020-08266-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, a switchable solvent-based liquid-phase microextraction method was developed to preconcentrate selected pesticides from tap water and wastewater matrices for determination by gas chromatography-mass spectrometry. A thorough optimization process was performed for prominent extraction parameters such as switchable solvent amount, concentration/amount of sodium hydroxide, salt type and mixing period. Optimum parameters obtained at the end of the optimization process were applied to aqueous standard solutions to validate the method. The linear dynamic ranges of all four analytes were appreciably wide with coefficient of determination values greater than 0.9997. The limits of detection and quantification (LOD and LOQ) were calculated for the analytes in the ranges of 0.38-2.0 ng/mL and 1.3-6.5 ng/mL, respectively. Spiked recovery experiments were used to validate the accuracy of the developed method and to determine the performance of the method in different sample matrices. Tap water, municipal wastewater and medical wastewater were spiked at three different concentrations and analyzed under the method's optimum conditions. The percent recovery results calculated for the samples were in the range of 79-107%, and this validated the method's accuracy and applicability to complex matrices such as municipal and medical wastewater samples.
Collapse
Affiliation(s)
- Gamze Dalgıç Bozyiğit
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Davutpasa, Esenler, Istanbul, Turkey
| | - Merve Fırat Ayyıldız
- Yildiz Technical University, Faculty of Art and Science, Department of Chemistry, 34220, Davutpasa, Esenler, Istanbul, Turkey
| | - Dotse Selali Chormey
- Yildiz Technical University, Faculty of Art and Science, Department of Chemistry, 34220, Davutpasa, Esenler, Istanbul, Turkey
| | - Guleda Onkal Engin
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezgin Bakırdere
- Yildiz Technical University, Faculty of Art and Science, Department of Chemistry, 34220, Davutpasa, Esenler, Istanbul, Turkey.
| |
Collapse
|
17
|
Farajzadeh MA, Abbaspour M, Kazemian R, Afshar Mogaddam MR. Preparation of a new three-component deep eutectic solvent and its use as an extraction solvent in dispersive liquid-liquid microextraction of pesticides in green tea and herbal distillates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1904-1912. [PMID: 31825526 DOI: 10.1002/jsfa.10200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/11/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND A new solvent, deep eutectic solvent, in which there is growing interest, has been prepared and used as an extraction solvent in the dispersive liquid-liquid method of microextraction. To prepare the solvent, dichloroacetic acid, l-menthol, and n-butanol are mixed at a molar ratio of 4:1:1 and the deep eutectic solvent is formed after heating. Then a dispersive liquid-liquid microextraction method using the prepared solvent is used for the extraction and preconcentration of some pesticides from an aqueous sample. To carry out the procedure, the deep eutectic solvent is mixed with methanol and rapidly injected by a syringe into the aqueous sample containing the analytes. After centrifuging, an aliquot of the sedimented phase is injected into the gas chromatograph. The influence of several variables on the extraction efficiency was investigated and optimized. RESULTS Extraction recoveries and enrichment factors were obtained in the ranges of 53-86% and 1760-2853, respectively. The intra- (n = 6) and inter-day (n = 5) precision of the method was satisfactory, with relative standard deviations ≤ 7% obtained at two concentrations of 10 and 50 μg L-1 of each analyte. Moreover, detection and quantification limits for the target analytes were obtained in the ranges of 0.11-0.23 and 0.38-0.74 μg L-1 , respectively. CONCLUSION Different samples, including green tea, rose water, lemon balm, mint, and pussy willow distillates were analyzed successfully using the method that was developed, and chlorpyrifos was found in rose water at a concentration of 17 ± 1 μg L-1 (n = 3). © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Nicosia, North Cyprus, Mersin, Turkey
| | - Maryam Abbaspour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Roya Kazemian
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
18
|
Goh SXL, Chong BHD, Lee HK. Fully Automated Water Sampling—Surfactant-Enhanced Membrane Bag Liquid-Phase Microextraction—Ultrahigh Performance Liquid Chromatography–Mass Spectrometry. Anal Chem 2020; 92:5362-5369. [DOI: 10.1021/acs.analchem.0c00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shalene Xue Lin Goh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Benson He Da Chong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
19
|
Biparva P, Gorji S, Hedayati E. Promoted reaction microextraction for determining pesticide residues in environmental water samples using gas chromatography-mass spectrometry. J Chromatogr A 2020; 1612:460639. [DOI: 10.1016/j.chroma.2019.460639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
|
20
|
Kapsi M, Tsoutsi C, Paschalidou A, Albanis T. Environmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (N.W. Greece). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2188-2198. [PMID: 30292989 DOI: 10.1016/j.scitotenv.2018.09.185] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 05/19/2023]
Abstract
Estuarine environments are being constantly stressed by new sources of pollution (e.g. pesticides) derived from activities of industry and intensive agriculture. The present study aims at quantify pesticides of three different categories (fungicides, herbicides and insecticides) in the Louros River (Epirus region, North-Western Greece). A monitoring study of 34 compounds was carried out in surface river waters from June 2011 until May 2012. Seven water sampling stations were established and 35 water samples were collected. A solid-phase extraction (SPE) method coupled with gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), depending on the compound, was developed and validated. During the monitoring study 25 pesticides were detected (13 herbicides, 9 insecticides, 3 fungicides). The most commonly encountered pesticides were quizalofop-ethyl, trifluralin and pendimethaline. Tebufenpyrad was found in all sampling stations and seasons, with the highest concentrations of 0.330 μg/L at Tsopeli Lagoon exceeding the rather low concentrations reported nationwide. Regarding the environmental risk due to the presence of target compounds in surface waters, this was estimated by calculating risk quotients (RQs) for different aquatic organisms (algae, zooplankton and fish). The results denoted a possible threat for the aquatic environment, rendering in this way the RQ method as a useful screening tool. In any case, further extensive study is needed for acetochlor, pirimiphos-methyl, endosulfan-a and azinphos-ethyl in order to better correlate their occurrence and potential toxic effects in aquatic life and humans.
Collapse
Affiliation(s)
- Margarita Kapsi
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Panepistimioupolis, Ioannina 45110, Greece
| | - Charoula Tsoutsi
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Panepistimioupolis, Ioannina 45110, Greece
| | - Anastasia Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, 68200, Greece
| | - Triantafyllos Albanis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Panepistimioupolis, Ioannina 45110, Greece.
| |
Collapse
|
21
|
A review of the application of hollow-fiber liquid-phase microextraction in bioanalytical methods – A systematic approach with focus on forensic toxicology. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1108:32-53. [DOI: 10.1016/j.jchromb.2019.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/10/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
|
22
|
Abstract
The sample preparation is the most critical step involved in the bioanalytical process. When dealing with green analytical chemistry, sample preparation can be even more challenging. To fit the green analytical chemistry principles, efforts should be made toward the elimination or reduction of the use of toxic reagents and solvents, minimization of energy consumption and increased operator safety. The simplest sample preparations are more appropriate for liquid biological matrices with little interfering compounds such as urine, plasma and oral fluid. The same does not usually occur with complex matrices that require more laborious procedures. The present review discusses green analytical approaches for the analyses of drugs of abuse in complex biological matrices, such as whole blood, breast milk, meconium and hair.
Collapse
|
23
|
Ghoraba Z, Aibaghi B, Soleymanpour A. Ultrasound-assisted dispersive liquid-liquid microextraction followed by ion mobility spectrometry for the simultaneous determination of bendiocarb and azinphos-ethyl in water, soil, food and beverage samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:459-466. [PMID: 30218969 DOI: 10.1016/j.ecoenv.2018.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
A sensitive and fast ultrasound-assisted dispersive liquid-liquid microextraction procedure combined with ion mobility spectrometry has been developed for the simultaneous extraction and determination of bendiocarb and azinphos-ethyl. Experimental parameters affecting the analytical performance of the method were optimized: type and volume of extraction solvent (chloroform, 150 µL), pH (9.0), type and volume of buffer (ammonium buffer pH = 9.0, 4.5 mL) and extraction time (3.0 min). Under optimum conditions, the linearity was found to be in the range of 2-40 and 6-100 ng/mL and the limits of detection (LOD) were 1.04 and 1.31 ng/mL for bendiocarb and azinphos-ethyl, respectively. The method was successfully validated for the analysis of bendiocarb and azinphos-ethyl in different samples such as waters, soil, food and beverage samples.
Collapse
Affiliation(s)
- Zahra Ghoraba
- School of Chemistry, Damghan University, Damghan 3671641167, Iran
| | - Behzad Aibaghi
- School of Chemistry, Damghan University, Damghan 3671641167, Iran.
| | - Ahmad Soleymanpour
- School of Chemistry, Damghan University, Damghan 3671641167, Iran; Institute of Biological Science, Damghan University, Damghan 3671641167, Iran
| |
Collapse
|
24
|
Liang D, Liu W, Raza R, Bai Y, Liu H. Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis. J Sep Sci 2018; 42:330-341. [DOI: 10.1002/jssc.201800804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Dapeng Liang
- Key Lab of Groundwater Resources and Environment of Ministry of Education; College of New Energy and Environment; Jilin University; Changchun P. R. China
| | - Wenjie Liu
- Key Lab of Groundwater Resources and Environment of Ministry of Education; College of New Energy and Environment; Jilin University; Changchun P. R. China
| | - Rabia Raza
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| |
Collapse
|
25
|
Havlikova M, Cabala R, Pacakova V, Bosakova Z. Critical evaluation of microextraction pretreatment techniques-Part 2: Membrane-supported and homogenous phase based techniques. J Sep Sci 2018; 42:303-318. [DOI: 10.1002/jssc.201800903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Martina Havlikova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
| | - Radomir Cabala
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Toxicology Department; Institute of Forensic Medicine and Toxicology; General University Hospital in Prague and 1st Faculty of Medicine of Charles University; Prague Czech Republic
| | - Vera Pacakova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
| |
Collapse
|
26
|
Havlikova M, Cabala R, Pacakova V, Bursova M, Bosakova Z. Critical evaluation of microextraction pretreatment techniques - Part 1: Single drop and sorbent-based techniques. J Sep Sci 2018; 42:273-284. [DOI: 10.1002/jssc.201800902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Martina Havlikova
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
| | - Radomir Cabala
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
- Toxicology Department; Institute of Forensic Medicine and Toxicology; General University Hospital in Prague and 1st Faculty of Medicine of Charles University; Prague 2 Czech Republic
| | - Vera Pacakova
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
| | - Miroslava Bursova
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
- Toxicology Department; Institute of Forensic Medicine and Toxicology; General University Hospital in Prague and 1st Faculty of Medicine of Charles University; Prague 2 Czech Republic
| | - Zuzana Bosakova
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
| |
Collapse
|
27
|
Deniz S, Kasa A, Sel S, Büyükpınar Ç, Bakırdere S. Sensitive and Accurate Determination of Cobalt at Trace Levels by Slotted Quartz Tube-Flame Atomic Absorption Spectrometry Following Preconcentration with Dispersive Liquid–Liquid Microextraction. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1493737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Serenay Deniz
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
| | - Aylin Kasa
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
| | - Sabriye Sel
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
| | - Çağdaş Büyükpınar
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
28
|
Gorji S, Biparva P, Bahram M, Nematzadeh G. Rapid and Direct Microextraction of Pesticide Residues from Rice and Vegetable Samples by Supramolecular Solvent in Combination with Chemometrical Data Processing. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1371-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Present state and applications of single drop microextraction for the determination of harmful organic compounds and pollutants. NOVA BIOTECHNOLOGICA ET CHIMICA 2018. [DOI: 10.2478/nbec-2018-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Single drop microextraction (SDME) nowadays earns an increasing attention by scientists due to its simplicity, low cost and the need for only common laboratory equipment. This microextraction technique combines sample cleanup and pre-concentration of analytes in one step. Furthermore, a significant reduction in the amount of organic solvents needed comparing to standard LLE techniques places SDME into the position of environmental friendly extraction techniques. SDME is a straightforward technique in which a micro-drop of solvent is suspended from the tip of a conventional micro-syringe and then it is in a direct contact with a sample solution in which it is immiscible or it could be suspended in the headspace above the sample. The paper overviews developments of the state-of-the-art SDME techniques for the extraction of harmful organic compound and pollutants from environmental, food and biological matrices. Key extraction parameters essential for SDME performance were described and discussed.
Collapse
|
30
|
A comprehensive study of a new versatile microchip device based liquid phase microextraction for stopped-flow and double-flow conditions. J Chromatogr A 2018; 1556:29-36. [DOI: 10.1016/j.chroma.2018.04.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/02/2023]
|
31
|
Jafari MT, Rezaei B, Bahrami H. Zirconium dioxide-reduced graphene oxide nanocomposite-coated stir-bar sorptive extraction coupled with ion mobility spectrometry for determining ethion. Talanta 2018; 182:285-291. [DOI: 10.1016/j.talanta.2018.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
32
|
Shamgsumova RV, Shurpik DN, Evtugyn VG, Stoikov II, Evtugyn GA. Electrochemical Determination of Malathion on an Acetylcholinesterase-Modified Glassy Carbon Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1396338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Rezeda V. Shamgsumova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kazan, Russian Federation
| | - Dmitry N. Shurpik
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kazan, Russian Federation
| | - Vladimir G. Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, Kazan, Russian Federation
| | - Ivan I. Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kazan, Russian Federation
| | - Gennady A. Evtugyn
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
33
|
Taghani A, Goudarzi N, Bagherian GA, Arab Chamjangali M, Amin AH. Application of nanoperlite as a new natural sorbent in the preconcentration of three organophosphorus pesticides by microextraction in packed syringe coupled with gas chromatography and mass spectrometry. J Sep Sci 2018; 41:2245-2252. [DOI: 10.1002/jssc.201701276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Abdollah Taghani
- Faculty of Chemistry; Shahrood University of Technology; Shahrood Iran
| | - Nasser Goudarzi
- Faculty of Chemistry; Shahrood University of Technology; Shahrood Iran
| | | | | | - Amir Hossein Amin
- Faculty of Chemistry; Shahrood University of Technology; Shahrood Iran
| |
Collapse
|
34
|
Torbati M, Farajzadeh MA, Torbati M, Nabil AAA, Mohebbi A, Afshar Mogaddam MR. Development of salt and pH–induced solidified floating organic droplets homogeneous liquid–liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography-mass spectrometry. Talanta 2018; 176:565-572. [DOI: 10.1016/j.talanta.2017.08.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
|
35
|
Farajzadeh MA, Abbaspour M. Development of a new sample preparation method based on liquid–liquid–liquid extraction combined with dispersive liquid–liquid microextraction and its application on unfiltered samples containing high content of solids. Talanta 2017; 174:111-121. [DOI: 10.1016/j.talanta.2017.05.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 11/15/2022]
|
36
|
Dispersive-Solid-Phase Extraction Cleanup Integrated to Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet for Determination of Organochlorine Pesticides in Vegetables. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1040-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Timofeeva I, Kanashina D, Moskvin L, Bulatov A. An evaporation-assisted dispersive liquid–liquid microextraction technique as a simple tool for high performance liquid chromatography tandem–mass spectrometry determination of insecticides in wine. J Chromatogr A 2017; 1512:107-114. [DOI: 10.1016/j.chroma.2017.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
38
|
Affiliation(s)
- Cong Xu
- Institute of Nuclear and
New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tingliang Xie
- Institute of Nuclear and
New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
39
|
Rekhi H, Rani S, Sharma N, Malik AK. A Review on Recent Applications of High-Performance Liquid Chromatography in Metal Determination and Speciation Analysis. Crit Rev Anal Chem 2017. [PMID: 28644042 DOI: 10.1080/10408347.2017.1343659] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High-performance liquid chromatography (HPLC) has several advantages over the conventional methods due to their operational simplicity. It is a vital tool to determine metal ions having same mass but different electronic configuration, to separate complex mixtures and to resolve ions that may be indistinguishable by mass spectrometry alone. Metal ions play vital role in many biological processes and involved in setting up of many diseases. Therefore, the development of simple methods for the detection and quantification of metals in real samples might serve as diagnostic tools for various diseases. This review article focuses on the recent main feature of this technique, i.e. speciation of metal ions and their applications to series of problem of metal ion chemistry in different environmental matrixes. Speciation of metals is of increasing interest and has a great importance because of bioavailability, environmental mobility, toxicity and potential risk of metals. With the capability of partitioning the complex species of different metal ions, HPLC is an efficient technique for this task. This review summarizes recent advances in the development of HPLC to the fundamental understanding of metal ion chemistry in the environment and discusses all the issues that still need a lot of consideration. It has been classified into different sections depending on the role of HPLC in separation used and metal speciation; furthermore, the underlying sample preconcentration techniques and detection systems involved for the determination of metal ions and their applications were discussed.
Collapse
Affiliation(s)
- Heena Rekhi
- a Department of Chemistry , Punjabi University , Patiala , India
| | - Susheela Rani
- a Department of Chemistry , Punjabi University , Patiala , India
| | - Neha Sharma
- a Department of Chemistry , Punjabi University , Patiala , India
| | | |
Collapse
|
40
|
Aswathi M, Mathai S, Joseph SC, Biju VM. Room temperature ionic liquid, cetyl pyridinium naphthenate, supported cloud point extractive separation and ultra trace determination of copper in blood and environmental samples. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1324491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Aswathi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - Suja Mathai
- Department of Chemistry, Mar Ivanios College, Thiruvananthapuram, Kerala, India
| | - Suju C. Joseph
- Department of Chemistry, Mar Ivanios College, Thiruvananthapuram, Kerala, India
| | - V. M. Biju
- Department of Chemistry, Mar Ivanios College, Thiruvananthapuram, Kerala, India
| |
Collapse
|
41
|
Timofeeva I, Shishov A, Kanashina D, Dzema D, Bulatov A. On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta 2017; 167:761-767. [DOI: 10.1016/j.talanta.2017.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
42
|
Goh SXL, Lee HK. An alternative perspective of hollow fiber-mediated extraction: Bundled hollow fiber array-liquid-phase microextraction with sonication-assisted desorption and liquid chromatography–tandem mass spectrometry for determination of estrogens in aqueous matrices. J Chromatogr A 2017; 1488:26-36. [DOI: 10.1016/j.chroma.2017.01.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022]
|
43
|
Platzer S, Kar M, Leyma R, Chib S, Roller A, Jirsa F, Krachler R, MacFarlane DR, Kandioller W, Keppler BK. Task-specific thioglycolate ionic liquids for heavy metal extraction: Synthesis, extraction efficacies and recycling properties. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:241-249. [PMID: 27856054 DOI: 10.1016/j.jhazmat.2016.10.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Eight novel task-specific ionic liquids (TSILs) based on the thioglycolate anion designed for heavy metal extraction have been prepared and characterized by 1H and 13C NMR, UV-Vis, infrared, ESI-MS, conductivity, viscosity, density and thermal properties. Evaluation of their time-resolved extraction abilities towards cadmium(II) and copper(II) in aqueous solutions have been investigated where distribution ratios up to 1200 were observed. For elucidation of the IL extraction mode, crystals were grown where Cd(II) was converted with an excess of S-butyl thioglycolate. It was found by X-ray diffraction analysis that cadmium is coordinated by five oxygen and one sulfur donor atoms provided by two thioglycolate molecules and one water molecule. Leaching behavior of the hydrophobic ionic liquids into aqueous systems was studied by TOC (total dissolved organic carbon) measurements. Additionally, the immobilization on polypropylene was elucidated and revealed slower metal extraction rates and similar leaching behavior. Finally, recovery processes for cadmium and copper after extraction were performed and recyclability was successfully proven for both metals.
Collapse
Affiliation(s)
- Sonja Platzer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Mega Kar
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Raphlin Leyma
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sonia Chib
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Alexander Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Franz Jirsa
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
| | - Regina Krachler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | | | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| |
Collapse
|
44
|
WANG S, WANG Z, HOU KY, LI HY. Thermal Desorption Low Temperature Plasma Ionization Mass Spectrometry for Rapid and Sensitive Detection of Pesticides in Broomcorn. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(16)60993-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
TAGHANI A, GOUDARZI N, BAGHERIAN G, CHAMJANGALI MA. Determination of Three Organochlorine Pesticides in Aqueous Samples by Solid-Phase Extraction Based on Natural Nano Diatomite in Packed Syringe Coupled to Gas Chromatography–Mass Spectrometry. ANAL SCI 2017; 33:1135-1140. [DOI: 10.2116/analsci.33.1135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Lopes D, Dias AN, Simão V, Carasek E. Determination of emerging contaminants in aqueous matrices with hollow fiber-supported dispersive liquid-liquid microextraction (HF-DLLME) and separation/detection by liquid chromatography – Diode array detection. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Taghani A, Goudarzi N, Bagherian G. Application of multiwalled carbon nanotubes for the preconcentration and determination of organochlorine pesticides in water samples by gas chromatography with mass spectrometry. J Sep Sci 2016; 39:4219-4226. [DOI: 10.1002/jssc.201600555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Abdollah Taghani
- Faculty of Chemistry; Shahrood University of Technology; Shahrood Iran
| | - Naaser Goudarzi
- Faculty of Chemistry; Shahrood University of Technology; Shahrood Iran
| | | |
Collapse
|
48
|
Ramos-Payan M, Maspoch S, Llobera A. An effective microfluidic based liquid-phase microextraction device (μLPME) for extraction of non-steroidal anti-inflammatory drugs from biological and environmental samples. Anal Chim Acta 2016; 946:56-63. [DOI: 10.1016/j.aca.2016.09.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
|
49
|
Day C, Saldarriaga A, Tilley M, Hunter H, Organ MG, Wilson DJ. A Single-Stage, Continuous High-Efficiency Extraction Device (HEED) for Flow Synthesis. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Craig Day
- Chemistry Department, York University, Toronto, ON M3J 1P3, Canada
| | | | - Michael Tilley
- Chemistry Department, York University, Toronto, ON M3J 1P3, Canada
| | - Howard Hunter
- Chemistry Department, York University, Toronto, ON M3J 1P3, Canada
| | - Michael G. Organ
- Chemistry Department, York University, Toronto, ON M3J 1P3, Canada
| | - Derek J. Wilson
- Chemistry Department, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
50
|
Al-Saidi H, Al-Harbi SA, Aljuhani E, El-Shahawi M. Headspace sorptive solid phase microextraction (HS-SPME) combined with a spectrophotometry system: A simple glass devise for extraction and simultaneous determination of cyanide and thiocyanate in environmental and biological samples. Talanta 2016; 159:137-142. [DOI: 10.1016/j.talanta.2016.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|