1
|
Watanabe-Matsui M, Kadoya S, Segawa K, Shima H, Nakagawa T, Nagasawa Y, Hayashi S, Matsumoto M, Ikeda M, Muto A, Ochiai K, Nguyen LC, Doh-Ura K, Shirouzu M, Nakayama K, Murayama K, Igarashi K. Heme regulates protein interactions and phosphorylation of BACH2 intrinsically disordered region in humoral response. iScience 2025; 28:111529. [PMID: 39758820 PMCID: PMC11699347 DOI: 10.1016/j.isci.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/03/2023] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Heme is known to bind to the intrinsically disordered region (IDR) to regulate protein function. The binding of heme to the IDR of transcription factor BACH2 promotes plasma cell differentiation, but the molecular basis is unknown. Heme was found to increase BACH2 IDR interaction with TANK-binding kinase 1 (TBK1). TBK1 inactivated BACH2 by phosphorylation of its IDR, whereas BACH2 repressed TBK1 gene expression. BACH2 phosphorylation by TBK1 inhibited its interaction with the co-repressor NCOR1 and promoted plasma cell differentiation. Heme also induced BACH2 binding to ubiquitin E3 ligase adaptor FBXO22, which polyubiquitinated BACH2 only in the presence of heme in vitro. Mutations of some of the TBK1-mediated phosphorylation sites promoted BACH2-FBXO22 interaction, while additional mutations abrogated their interaction, suggesting that TBK1 can both inhibit and promote BACH2-FBXO22 interaction. Therefore, heme regulates phosphorylation of BACH2 IDR by TBK1 and its interaction with NCOR1 and FBXO22, leading to de-repression of BACH2 target genes in humoral immunity.
Collapse
Affiliation(s)
- Miki Watanabe-Matsui
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Shun Kadoya
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Segawa
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Tokyo, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichiro Hayashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Ikeda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Long C. Nguyen
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Cao S, Garcia SF, Shi H, James EI, Kito Y, Shi H, Mao H, Kaisari S, Rona G, Deng S, Goldberg HV, Ponce J, Ueberheide B, Lignitto L, Guttman M, Pagano M, Zheng N. Recognition of BACH1 quaternary structure degrons by two F-box proteins under oxidative stress. Cell 2024; 187:7568-7584.e22. [PMID: 39504958 DOI: 10.1016/j.cell.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/25/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Ubiquitin-dependent proteolysis regulates diverse cellular functions with high substrate specificity, which hinges on the ability of ubiquitin E3 ligases to decode the targets' degradation signals, i.e., degrons. Here, we show that BACH1, a transcription repressor of antioxidant response genes, features two distinct unconventional degrons encrypted in the quaternary structure of its homodimeric BTB domain. These two degrons are both functionalized by oxidative stress and are deciphered by two complementary E3s. FBXO22 recognizes a degron constructed by the BACH1 BTB domain dimer interface, which is unmasked from transcriptional co-repressors after oxidative stress releases BACH1 from chromatin. When this degron is impaired by oxidation, a second BACH1 degron manifested by its destabilized BTB dimer is probed by a pair of FBXL17 proteins that remodels the substrate into E3-bound monomers for ubiquitination. Our findings highlight the multidimensionality of protein degradation signals and the functional complementarity of different ubiquitin ligases targeting the same substrate.
Collapse
Affiliation(s)
- Shiyun Cao
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Sheena Faye Garcia
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Huigang Shi
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA
| | - Yuki Kito
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hui Shi
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Haibin Mao
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Sophia Deng
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V Goldberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Luca Lignitto
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Goretzki B, Khoshouei M, Schröder M, Penner P, Egger L, Stephan C, Argoti D, Dierlamm N, Rada JM, Kapps S, Müller CS, Thiel Z, Mutlu M, Tschopp C, Furkert D, Freuler F, Haenni S, Tenaillon L, Knapp B, Hinniger A, Hoppe P, Schmidt E, Gutmann S, Iurlaro M, Ryzhakov G, Fernández C. Dual BACH1 regulation by complementary SCF-type E3 ligases. Cell 2024; 187:7585-7602.e25. [PMID: 39657677 DOI: 10.1016/j.cell.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/19/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Broad-complex, tramtrack, and bric-à-brac domain (BTB) and CNC homolog 1 (BACH1) is a key regulator of the cellular oxidative stress response and an oncogene that undergoes tight post-translational control by two distinct F-box ubiquitin ligases, SCFFBXO22 and SCFFBXL17. However, how both ligases recognize BACH1 under oxidative stress is unclear. In our study, we elucidate the mechanism by which FBXO22 recognizes a quaternary degron in a domain-swapped β-sheet of the BACH1 BTB dimer. Cancer-associated mutations and cysteine modifications destabilize the degron and impair FBXO22 binding but simultaneously expose an otherwise shielded degron in the dimer interface, allowing FBXL17 to recognize BACH1 as a monomer. These findings shed light on a ligase switch mechanism that enables post-translational regulation of BACH1 by complementary ligases depending on the stability of its BTB domain. Our results provide mechanistic insights into the oxidative stress response and may spur therapeutic approaches for targeting oxidative stress-related disorders and cancer.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland.
| | - Maryam Khoshouei
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Martin Schröder
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Patrick Penner
- Global Discovery Chemistry, Novartis Biomedical Research, Basel, Switzerland
| | - Luca Egger
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Christine Stephan
- Disease Area Oncology, Novartis Biomedical Research, Basel, Switzerland
| | - Dayana Argoti
- Global Discovery Chemistry, Novartis Biomedical Research, Emeryville, CA, USA
| | - Nele Dierlamm
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Jimena Maria Rada
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Sandra Kapps
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | | | - Zacharias Thiel
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Merve Mutlu
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Claude Tschopp
- Disease Area Immunology, Novartis Biomedical Research, Basel, Switzerland
| | - David Furkert
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Felix Freuler
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Simon Haenni
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Laurent Tenaillon
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Britta Knapp
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | | | - Philipp Hoppe
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Enrico Schmidt
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Sascha Gutmann
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Mario Iurlaro
- Disease Area Oncology, Novartis Biomedical Research, Basel, Switzerland
| | - Grigory Ryzhakov
- Disease Area Immunology, Novartis Biomedical Research, Basel, Switzerland
| | - César Fernández
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland.
| |
Collapse
|
4
|
Yao X, Yang S, Chen L, Lin F, Ruan Y, Rao T, Cheng F. The bach1/G9a/Slc7a11 axis epigenetically promotes renal fibrosis by mediated ferroptosis. Int Immunopharmacol 2024; 143:113363. [PMID: 39393269 DOI: 10.1016/j.intimp.2024.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
A high percentage of individuals with renal fibrosis are susceptible to developing chronic kidney disease (CKD), and conventional therapy fails to halt the progression of renal fibrosis and CKD. Here, we assessed the potential functions of G9a in a unilateral ureteral obstruction (UUO)-induced renal fibrosis mouse model. The expression of G9a was significantly increased in the fibrotic kidneys of patients and mice. G9a knockout inhibited inflammatory cytokine production and collagen deposition in mice, whereas its overexpression aggravated renal fibrosis in mice. In vitro, the knockdown of G9a alleviated the production of inflammatory cytokines and renal fibrosis. G9a, a histone methyltransferase, interacts with transcription factor Bach1 and activates ferroptosis by suppressing the transcription of Slc7a11 via dimethylation of histone 3 lysine 9 (H3K9me2) both in vivo and in vitro. Collectively, our findings indicate that G9a could be an attractive therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Xiaobing Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijia Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
5
|
Wu Y, Zhang Y, Ge L, He S, Zhang Y, Chen D, Nie Y, Zhu M, Pang Q. RTA408 alleviates lipopolysaccharide-induced acute lung injury via inhibiting Bach1-mediated ferroptosis. Int Immunopharmacol 2024; 142:113250. [PMID: 39340988 DOI: 10.1016/j.intimp.2024.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The approved traditional Asian medicine RTA408 (Omaveloxolone) has demonstrated potent anti-inflammatory properties in the treatment of Friedreich's ataxia. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains poorly understood. This study aims to evaluate the effect of RTA408 on LPS-induced ALI and elucidate its underlying mechanisms. In this study, in vivo experiments demonstrated that RTA408 significantly ameliorated LPS-induced mouse ALI, characterized by reduced pathological damage and neutrophil infiltration as well as decreased lung edema of murine lung tissues. Moreover, LPS administration induced ferroptosis in ALI mice, evidenced by increased MDA levels, reduced GSH and SOD activity, and decreased expression of ferroptosis repressors (GPX4 and SLC7A11), whereas RTA408 reversed these changes. Consistently, RTA408 reduced ferroptosis and improved cell damage in LPS-stimulated MLE-12 cells, as evidenced by decreased ROS and MDA levels, increased SOD, GSH activity and ferroptosis repressors expression. Meanwhile, the protective effective of RTA408 on LPS-induced oxidative damage was blocked by ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistic studies demonstrated that RTA408 inhibited the expression and nuclear translocation of Bach1, and the anti-ferroptosis effect was diminished by Bach1 siRNA or Bach1 knockout (Bach1-/-) mice. Furthermore, Bach1-/- mice exhibited attenuated ALI induced by LPS compared to wild-type (WT) mice, and the protective effect of RTA408 on LPS-challenged ALI was not observed in Bach1-/- mice. In conclusion, our data suggested that RTA408 alleviates LPS-induced ALI by interfering Bach1-mediated ferroptosis and might be a novel candidate for LPS-induced ALI/ARDS therapy.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Longlong Ge
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yunjuan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Zhongshan Road 68, Wuxi 214002, Jiangsu Province, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
6
|
Tokunaga F. BACH to the ferroptosis. J Biochem 2024; 176:423-426. [PMID: 39315605 DOI: 10.1093/jb/mvae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent phospholipid peroxidation and is closely related to various diseases. System Xc-, a cystine/glutamate antiporter, and glutathione peroxidase 4 (GPX4) are key molecules in ferroptosis. Erastin and RSL3, known as inhibitors of system Xc- and GPX4, respectively, are commonly used as ferroptosis inducers. Broad-Complex, Tramtrack and Bric a brac (BTB) and Cap'n'collar (CNC) homology 1 (BACH1), a heme-binding transcription repressor, promotes pro-ferroptotic signalling, and therefore, Bach1-deficient cells are resistant to ferroptosis. Irikura et al. (Ferroptosis model system by the re-expression of BACH1. J. Biochem. 2023;174:239-52) constructed Bach1-re-expressing immortalized mouse embryonic fibroblasts (iMEFs) from Bach1-/- mice, which induce ferroptosis simply through the depletion of 2-mercaptoethanol from the culture medium. Transcriptional repression by re-expressed BACH1 induces suppressed glutathione synthesis and increases labile iron. Furthermore, ferroptosis initiated by BACH1-re-expressing iMEFs is propagated to surrounding cells. Thus, the BACH1-re-expression system is a novel and powerful tool to investigate the cellular basis of ferroptosis.
Collapse
Affiliation(s)
- Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
7
|
Kurasawa T, Muto A, Matsumoto M, Ochiai K, Murayama K, Igarashi K. Absolute quantification of BACH1 and BACH2 transcription factors in B and plasma cells reveals their dynamic changes and unique roles. J Biochem 2024; 176:449-459. [PMID: 39323025 DOI: 10.1093/jb/mvae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
Changes in the absolute protein amounts of transcription factors are important for regulating gene expression during cell differentiation and in responses to changes in the cellular and extracellular environment. However, few studies have focused on the absolute quantification of mammalian transcription factors. In this study, we established an absolute quantification method for the transcription factors BACH1 and BACH2, which are expressed in B cells and regulated by direct heme binding. The method used purified recombinant proteins as controls in western blotting and was applied to mouse naïve B cells in the spleen, as well as activated B cells and plasma cells. BACH1 was present in naïve B cells at approximately half the levels of BACH2. In activated B cells, BACH1 decreased compared to naïve B cells, whilst BACH2 increased. In plasma cells, BACH1 increased back to the same extent as in naïve B cells, whilst BACH2 was not detected. Their target genes, Prdm1 and Hmox1, were highly induced in plasma cells. BACH1 was found to undergo degradation with lower concentrations of heme than BACH2. Therefore, BACH1 and BACH2 are similarly abundant in B cells but differ in heme sensitivity, potentially regulating gene expression differently depending on their heme responsiveness.
Collapse
Affiliation(s)
- Takeshi Kurasawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
8
|
Zhang C, Gao L, Zhang Y, Jin X, Wang M, Wang Q, Zhao W, Wu N, Zhang Y, Liu Y, Zhang Y, Ma L, Chen Y. Corosolic acid inhibits EMT in lung cancer cells by promoting YAP-mediated ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156110. [PMID: 39369568 DOI: 10.1016/j.phymed.2024.156110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Corosolic acid (CA), a naturally occurring pentacyclic triterpenoid is renowned for its anticancer attributes. Previous studies have predominantly centered on the anticancer properties of CA in lung cancer, specifically its role in inducing apoptosis, however, investigations regarding its involvement in ferroptosis have been scarce. METHODS The apoptotic and proliferative effects were evaluated by CCK8 and colony formation assay. Cell death and ROS generation were measured to assess the response of CA to iron death induction. Scratch and invasion assays were performed to verify the effect of CA on the invasive ability of lung cancer cells. Protein and mRNA expression were analyzed using Western blotting and qPCR. The CHX assay was carried out to detect protein half-life. Metabolite levels were measured with appropriate kits. Protein expression was detected through IF and IHC. A xenograft tumor model was established to investigate the inhibitory effect of CA on lung cancer in vivo. RESULTS The current findings revealed that CA exerts its anticancer effect by inducing cell death, accompanied by the accumulation of lipid reactive oxygen species (ROS), hinting at the possible involvement of ferroptosis. Our experimental results further substantiated the significance of ferroptosis in the CA anticancer mechanism, as ferroptosis inhibitors were found to effectively rescue CA-induced cell death. Significantly, we demonstrated for the first time that CA could induce ferroptosis further by suppressing EMT in lung cancer cells. Additionally, CA could regulate GPX4 to induce ferroptosis, interestingly, CA downregulated GSH synthetase by inhibiting YAP rather than GPX4, thereby reducing GSH, inducing ferroptosis, and further suppressing EMT in lung cancer cells.We also discovered that GSS is a crucial downstream target of YAP in regulating GSH. Moreover, a xenograft mouse model indicated that CA could trigger ferroptosis in lung cancer cells by regulating YAP expression and GSH levels. CONCLUSION CA inhibited lung cancer cell metastasis by inducing ferroptosis. Our data offer the first evidence that CA induces ferroptosis in lung cancer cells by regulating YAP/GSS to modulate GSH, thereby further suppressing EMT. These results imply the potential of CA as an inducer of ferroptosis to inhibit lung cancer metastasis.
Collapse
Affiliation(s)
- Congcong Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Lingli Gao
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yinghui Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Xiaoqin Jin
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Mengyu Wang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| | - Qianna Wang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Wenyu Zhao
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Nan Wu
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yasu Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yaru Liu
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yanyu Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, PR China.
| | - Yulong Chen
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| |
Collapse
|
9
|
Fan M, Liu Q, Ma X, Jiang Y, Wang Y, Jia S, Nie Y, Deng R, Zhou P, Zhang S, Jiang S, Guan M, Hou Y, Miao Y, Zhang Y, Zhang X. ZNF131-BACH1 transcriptionally accelerates RAD51-dependent homologous recombination repair and therapy-resistance of non-small-lung cancer cells by preventing their degradation from CUL3. Theranostics 2024; 14:7241-7264. [PMID: 39629137 PMCID: PMC11610138 DOI: 10.7150/thno.97593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/13/2024] [Indexed: 12/07/2024] Open
Abstract
Rationale: Both bulk RNA-sequencing and GEO database upon chemotherapy to non-small cell lung cancer (NSCLC) cells reveal that ZNF131 (Zinc Finger Protein 131) maybe a crucial transcriptional factor involved. However, it is a recently discovered protein with largely unexplored expression patterns and biological functions. Methods: Bioinformatics analyses and immunohistochemistry staining were assessed to detect both mRNA and protein levels of ZNF131 in NSCLC specimens and cell lines. Next, colony formation assay, MTT assay, EdU assay, transwell assay, flow cytometric analysis, sphere formation assay, western blotting analysis, mouse xenograft model analysis, immunofluorescence assay, and reverse transcriptase-polymerase chain reaction were performed to investigate the effect of ZNF131 interaction on proliferation, invasion, stemness, chemotherapy sensitivity. RNA-sequencing assay, RNA-microarray, and ChIP-sequencing assay were used to identify candidate downstream target genes. Further, liquid chromatography-tandem mass spectrometry analysis, GST pull-down assay, and immunoprecipitation assays were performed to evaluate the interactions between ZNF131, BACH1, and CUL3. Results: ZNF131 was elevated in NSCLC specimens and cell lines, which significantly correlates with advanced TNM stage and poor prognosis in NSCLC patients. ZNF131 overexpression promotes NSCLC cell proliferation, invasion, and stemness both in vitro and in vivo. ZNF131 appears to target the RAD51 gene within a well-defined region (-668bp to -403bp) of the RAD51 promoter. ZNF131 contributes to RAD51-dependent homologous recombination (HR), primarily through its Zinc Finger and BTB domains. ZNF131-BACH1 interaction, mediated by their respective BTB domains, enhances the stability of both proteins, effectively preventing their ubiquitin-mediated degradation by CUL3. The ZNF131-BACH1 partnership significantly amplifies RAD51-dependent HR, resulting in expedited resistance to both radiotherapy and chemotherapy in NSCLC patients. Desoxyrhaponticin was shown to halt NSCLC progression and orchestrate a synergistic effect together with chemotherapy at least partially by targeting ZNF131. Conclusions: Our findings indicate that ZNF131 exhibits heightened expression in NSCLC, driving essential processes such as proliferation, invasion, and stemness by transcriptionally activating RAD51. The ZNF131-BACH1 interaction serves as a crucial enhancer, further boosting RAD51 transcription and ultimately accelerating therapy resistance in NSCLC.
Collapse
Affiliation(s)
- Mingwei Fan
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Quanbo Liu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaowen Ma
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Yufeng Jiang
- Department of Emergency, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yilong Wang
- Department of Radiation Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuting Jia
- First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Yingtong Nie
- First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Ruoyi Deng
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Pengchong Zhou
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Shuyu Zhang
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Siyu Jiang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyao Guan
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuekang Hou
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis 2024; 15:556. [PMID: 39090114 PMCID: PMC11294602 DOI: 10.1038/s41419-024-06939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin An
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Yu
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Li Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
11
|
Hu Y, Li J, Hu L, Liu F, Chen R, Xu L, Tang Z, Lu B, Yu J. BACH1 impairs hepatocyte regeneration after hepatectomy with repeated ischemia/reperfusion by reprogramming energy metabolism and exacerbating oxidative stress. Biochem Pharmacol 2024; 226:116377. [PMID: 38906228 DOI: 10.1016/j.bcp.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BTB and CNC homology 1 (BACH1) regulates biological processes, including energy metabolism and oxidative stress. Insufficient liver regeneration after hepatectomy remains an issue for surgeons. The Pringle maneuver is widely used during hepatectomy and induces ischemia/reperfusion (I/R) injury in hepatocytes. A rat model of two-thirds partial hepatectomy with repeated I/R treatment was used to simulate clinical hepatectomy with Pringle maneuver. Delayed recovery of liver function after hepatectomy with the repeated Pringle maneuver in clinic and impaired liver regeneration in rat model were observed. Highly elevated lactate levels, along with reduced mitochondrial complex III and IV activities in liver tissues, indicated that the glycolytic phenotype was promoted after hepatectomy with repeated I/R. mRNA expression profile analysis of glycolysis-related genes in clinical samples and further verification experiments in rat models showed that high BACH1 expression levels correlated with the glycolytic phenotype after hepatectomy with repeated I/R. BACH1 overexpression restricted the proliferative potential of hepatocytes stimulated with HGF. High PDK1 expression and high lactate levels, together with low mitochondrial complex III and IV activities and reduced ATP concentrations, were detected in BACH1-overexpressing hepatocytes with HGF stimulation. Moreover, HO-1 expression was downregulated, and oxidative stress was exacerbated in the BACH1-overexpressing hepatocytes with HGF stimulation. Cell experiments involving repeated hypoxia/reoxygenation revealed that reactive oxygen species accumulation triggered the TGF-β1/BACH1 axis in hepatocytes. Finally, inhibiting BACH1 with the inhibitor hemin effectively restored the liver regenerative ability after hepatectomy with repeated I/R. These results provide a potential therapeutic strategy for impaired liver regeneration after repeated I/R injury.
Collapse
Affiliation(s)
- Yanxin Hu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiandong Li
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Liangfeng Hu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Fang Liu
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Ruanchang Chen
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Luohang Xu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Zekai Tang
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Baochun Lu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Jianhua Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
12
|
Tong Y, Wang DD, Zhang YL, He S, Chen D, Wu YX, Pang QF. MiR-196a-5p hinders vascular smooth muscle cell proliferation and vascular remodeling via repressing BACH1 expression. Sci Rep 2024; 14:16904. [PMID: 39043832 PMCID: PMC11266626 DOI: 10.1038/s41598-024-68122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Hyperproliferation of vascular smooth muscle cells (VSMCs) is a driver of hypertensive vascular remodeling. This study aimed to uncover the mechanism of BTB and CNC homology 1 (BACH1) and microRNAs (miRNAs) in VSMC growth and hypertensive vascular remodeling. With the help of TargetScan, miRWalk, miRDB, and miRTarBase online database, we identified that BACH1 might be targeted by miR-196a-5p, and overexpressed in VSMCs and aortic tissues from spontaneously hypertensive rats (SHRs). Gain- and loss-of-function experiments demonstrated that miR-196a-5p suppressed VSMC proliferation, oxidative stress and hypertensive vascular remodeling. Double luciferase reporter gene assay and functional verification showed that miR-196a-5p cracked down the transcription and translation of BACH1 in both Wistar Kyoto rats (WKYs) and SHRs. Silencing BACH1 mimicked the actions of miR-196a-5p overexpression on attenuating the proliferation and oxidative damage of VSMCs derived from SHRs. Importantly, miR-196a-5p overexpression and BACH1 knockdown cooperatively inhibited VSMC proliferation and oxidative stress in SHRs. Furthermore, miR-196a-5p, if knocked down in SHRs, aggravated hypertension, upregulated BACH1 and promoted VSMC proliferation, all contributing to vascular remodeling. Taken together, targeting miR-196a-5p to downregulate BACH1 may be a promising strategy for retarding VSMC proliferation and hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Ying Tong
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dan-Dan Wang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Yan-Li Zhang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Shuai He
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Dan Chen
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Xian Wu
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Qing-Feng Pang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
13
|
Cao S, Shi H, Garcia SF, Kito Y, Shi H, Goldberg HV, Ponce J, Ueberheide B, Lignitto L, Pagano M, Zheng N. Distinct Perception Mechanisms of BACH1 Quaternary Structure Degrons by Two F-box Proteins under Oxidative Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.594717. [PMID: 38895309 PMCID: PMC11185555 DOI: 10.1101/2024.06.03.594717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The transcription factor BACH1 regulates heme homeostasis and oxidative stress responses and promotes cancer metastasis upon aberrant accumulation. Its stability is controlled by two F-box protein ubiquitin ligases, FBXO22 and FBXL17. Here we show that the homodimeric BTB domain of BACH1 functions as a previously undescribed quaternary structure degron, which is deciphered by the two F-box proteins via distinct mechanisms. After BACH1 is released from chromatin by heme, FBXO22 asymmetrically recognizes a cross-protomer interface of the intact BACH1 BTB dimer, which is otherwise masked by the co-repressor NCOR1. If the BACH1 BTB dimer escapes the surveillance by FBXO22 due to oxidative modifications, its quaternary structure integrity is probed by a pair of FBXL17, which simultaneously engage and remodel the two BTB protomers into E3-bound monomers for ubiquitination. By unveiling the multifaceted regulatory mechanisms of BACH1 stability, our studies highlight the abilities of ubiquitin ligases to decode high-order protein assemblies and reveal therapeutic opportunities to block cancer invasion via compound-induced BACH1 destabilization.
Collapse
Affiliation(s)
- Shiyun Cao
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Huigang Shi
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sheena Faye Garcia
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yuki Kito
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hui Shi
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Hailey V. Goldberg
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Luca Lignitto
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
14
|
Seasock MJ, Shafiquzzaman M, Ruiz-Echartea ME, Kanchi RS, Tran BT, Simon LM, Meyer MD, Erice PA, Lotlikar SL, Wenlock SC, Ochsner SA, Enright A, Carisey AF, Romero F, Rosas IO, King KY, McKenna NJ, Coarfa C, Rodriguez A. Let-7 restrains an oncogenic epigenetic circuit in AT2 cells to prevent ectopic formation of fibrogenic transitional cell intermediates and pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595205. [PMID: 38826218 PMCID: PMC11142151 DOI: 10.1101/2024.05.22.595205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis. Using mice and organoid models with genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells, we demonstrate prevents AT1 differentiation and results in aberrant accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of enhanced AGO2 UV-crosslinking and immunoprecipitation sequencing (AGO2-eCLIP) with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2 which drives an aberrant fibrotic cascade. Additional analyses by CUT&RUN-sequencing revealed loss of let-7afd hampers AT1 differentiation by eliciting aberrant histone EZH2 methylation which prevents the exit of AT2 transitional cells into terminal AT1s. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.
Collapse
Affiliation(s)
- Matthew J. Seasock
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Md Shafiquzzaman
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Maria E. Ruiz-Echartea
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Rupa S. Kanchi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
| | - Brandon T. Tran
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Pediatrics, Division of Infectious Diseases, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, 77030
| | - Lukas M. Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030
| | | | - Phillip A. Erice
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Shivani L. Lotlikar
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
| | | | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Alex F. Carisey
- William T. Shearer Center for Immunobiology, Texas Children’s Hospital, Houston, TX, 77030
- Current Address: Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Freddy Romero
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine. Houston, TX, 77030
- Current Address: Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA, 92121
| | - Ivan O. Rosas
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine. Houston, TX, 77030
| | - Katherine Y. King
- Department of Pediatrics, Division of Infectious Diseases, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, 77030
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
| | - Antony Rodriguez
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of Medicine Houston TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
- Center for Translational Research on Inflammatory Diseases, Michael E. Debakey, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
15
|
Hou DY, Lu JJ, Zhang X, Abudukeyoumu A, Li MQ, Zhu XY, Xie F. Heme metabolism and HO-1 in the pathogenesis and potential intervention of endometriosis. Am J Reprod Immunol 2024; 91:e13855. [PMID: 38745499 DOI: 10.1111/aji.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.
Collapse
Affiliation(s)
- Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
von Mässenhausen A, Schlecht MN, Beer K, Maremonti F, Tonnus W, Belavgeni A, Gavali S, Flade K, Riley JS, Zamora Gonzalez N, Brucker A, Becker JN, Tmava M, Meyer C, Peitzsch M, Hugo C, Gembardt F, Angeli JPF, Bornstein SR, Tait SWG, Linkermann A. Treatment with siRNAs is commonly associated with GPX4 up-regulation and target knockdown-independent sensitization to ferroptosis. SCIENCE ADVANCES 2024; 10:eadk7329. [PMID: 38489367 PMCID: PMC10942120 DOI: 10.1126/sciadv.adk7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Small interfering RNAs (siRNAs) are widely used in biomedical research and in clinical trials. Here, we demonstrate that siRNA treatment is commonly associated with significant sensitization to ferroptosis, independently of the target protein knockdown. Genetically targeting mitochondrial antiviral-signaling protein (MAVS) reversed the siRNA-mediated sensitizing effect, but no activation of canonical MAVS signaling, which involves phosphorylation of IkBα and interferon regulatory transcription factor 3 (IRF3), was observed. In contrast, MAVS mediated a noncanonical signal resulting in a prominent increase in mitochondrial ROS levels, and increase in the BACH1/pNRF2 transcription factor ratio and GPX4 up-regulation, which was associated with a 50% decrease in intracellular glutathione levels. We conclude that siRNAs commonly sensitize to ferroptosis and may severely compromise the conclusions drawn from silencing approaches in biomedical research. Finally, as ferroptosis contributes to a variety of pathophysiological processes, we cannot exclude side effects in human siRNA-based therapeutical concepts that should be clinically tested.
Collapse
Affiliation(s)
- Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marlena Nastassja Schlecht
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Kristina Beer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Karolin Flade
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Joel S. Riley
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
- Biocenter Innsbruck (CCB), Medical University Innsbruck, Division of Developmental Immunology, Innrain 80, 6020 Innsbruck, Austria
| | - Nadia Zamora Gonzalez
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Anne Brucker
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Jorunn Naila Becker
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Mirela Tmava
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Jose Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Stephen W. G. Tait
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
17
|
Wu K, El Zowalaty AE, Sayin VI, Papagiannakopoulos T. The pleiotropic functions of reactive oxygen species in cancer. NATURE CANCER 2024; 5:384-399. [PMID: 38531982 DOI: 10.1038/s43018-024-00738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Cellular redox homeostasis is an essential, dynamic process that ensures the balance between reducing and oxidizing reactions within cells and thus has implications across all areas of biology. Changes in levels of reactive oxygen species can disrupt redox homeostasis, leading to oxidative or reductive stress that contributes to the pathogenesis of many malignancies, including cancer. From transformation and tumor initiation to metastatic dissemination, increasing reactive oxygen species in cancer cells can paradoxically promote or suppress the tumorigenic process, depending on the extent of redox stress, its spatiotemporal characteristics and the tumor microenvironment. Here we review how redox regulation influences tumorigenesis, highlighting therapeutic opportunities enabled by redox-related alterations in cancer cells.
Collapse
Affiliation(s)
- Katherine Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed Ezat El Zowalaty
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Hu D, Zhang Z, Luo X, Li S, Jiang J, Zhang J, Wu Z, Wang Y, Sun M, Chen X, Zhang B, Xu X, Wang S, Xu S, Wang Y, Huang W, Xia L. Transcription factor BACH1 in cancer: roles, mechanisms, and prospects for targeted therapy. Biomark Res 2024; 12:21. [PMID: 38321558 PMCID: PMC10848553 DOI: 10.1186/s40364-024-00570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Transcription factor BTB domain and CNC homology 1 (BACH1) belongs to the Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family. BACH1 is widely expressed in mammalian tissues, where it regulates epigenetic modifications, heme homeostasis, and oxidative stress. Additionally, it is involved in immune system development. More importantly, BACH1 is highly expressed in and plays a key role in numerous malignant tumors, affecting cellular metabolism, tumor invasion and metastasis, proliferation, different cell death pathways, drug resistance, and the tumor microenvironment. However, few articles systematically summarized the roles of BACH1 in cancer. This review aims to highlight the research status of BACH1 in malignant tumor behaviors, and summarize its role in immune regulation in cancer. Moreover, this review focuses on the potential of BACH1 as a novel therapeutic target and prognostic biomarker. Notably, the mechanisms underlying the roles of BACH1 in ferroptosis, oxidative stress and tumor microenvironment remain to be explored. BACH1 has a dual impact on cancer, which affects the accuracy and efficiency of targeted drug delivery. Finally, the promising directions of future BACH1 research are prospected. A systematical and clear understanding of BACH1 would undoubtedly take us one step closer to facilitating its translation from basic research into the clinic.
Collapse
Affiliation(s)
- Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
19
|
Amaral EP, Namasivayam S, Queiroz ATL, Fukutani E, Hilligan KL, Aberman K, Fisher L, Bomfim CCB, Kauffman K, Buchanan J, Santuo L, Gazzinelli-Guimaraes PH, Costa DL, Teixeira MA, Barreto-Duarte B, Rocha CG, Santana MF, Cordeiro-Santos M, Barber DL, Wilkinson RJ, Kramnik I, Igarashi K, Scriba T, Mayer-Barber KD, Andrade BB, Sher A. BACH1 promotes tissue necrosis and Mycobacterium tuberculosis susceptibility. Nat Microbiol 2024; 9:120-135. [PMID: 38066332 PMCID: PMC10769877 DOI: 10.1038/s41564-023-01523-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/11/2023] [Indexed: 01/07/2024]
Abstract
Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis. Bach1 deletion in Mtb-infected mice increased glutathione levels and Gpx4 expression that inhibit lipid peroxidation. Bach1-/- macrophages exhibited increased resistance to Mtb-induced cell death, while Mtb-infected Bach1-deficient mice displayed reduced bacterial loads, pulmonary necrosis and lipid peroxidation concurrent with increased survival. Single-cell RNA-seq analysis of lungs from Mtb-infected Bach1-/- mice revealed an enrichment of genes associated with ferroptosis suppression. Bach1 depletion in Mtb-infected B6.Sst1S mice that display human-like necrotic lung pathology also markedly reduced necrosis and increased host resistance. These findings identify Bach1 as a key regulator of cellular and tissue necrosis and host resistance in Mtb infection.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA.
| | | | - Artur T L Queiroz
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Eduardo Fukutani
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Kate Aberman
- Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Logan Fisher
- Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Caio Cesar B Bomfim
- Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Keith Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Jay Buchanan
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Leslie Santuo
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Pedro Henrique Gazzinelli-Guimaraes
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
- Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mariane Araujo Teixeira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil
| | - Clarissa Gurgel Rocha
- Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Sao Rafael Hospital, Salvador, Bahia, Brazil
| | - Monique Freire Santana
- Departmento de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas-FCECON, Manaus, Amazonas, Brazil
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | - Daniel L Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Igor Kramnik
- Boston University School of Medicine, Boston, MA, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil
- Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Curso de Medicina, Universidade Faculdade de Tecnologia e Ciências (UniFTC), Salvador, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Deng L, Michielsen CCJR, Vrieling F, Hooiveld GJEJ, Stienstra R, Feitsma AL, Kersten S, Afman LA. Milk fat globule membrane modulates inflammatory pathways in human monocytes: A crossover human intervention study. Clin Nutr 2024; 43:232-245. [PMID: 38101314 DOI: 10.1016/j.clnu.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Intake of high-fat foods raises postprandial plasma triglycerides and inflammatory markers, which may depend on the type of fat ingested. Dairy products are commonly consumed, but not much is known about the impact of milk fat and the milk fat globule membrane on postprandial inflammation. Here, we aimed to study the effect of milk fat with and without milk fat globule membrane and a vegetable fat blend on post-prandial inflammation, with a focus on blood monocyte gene expression. METHODS We performed a randomized, double-blind cross-over trial in 37 middle-aged healthy male and female volunteers (BMI 22-27 kg/m2). The participants consumed a meal shake containing 95.5 g of fat consisting of either a vegetable fat blend (VEGE), anhydrous milk fat (AMF, without milk fat globule membrane), or cream (CREAM, containing milk fat globule membrane). Blood monocytes were collected at 0 h and 6 h postprandially and used for bulk RNA sequencing and ex vivo stimulation with LPS. RESULTS Consumption of all three shakes significantly decreased the percentage of classical monocytes and increased the percentages of intermediate monocytes and non-classical monocytes. No differences in these measures were observed between shakes. Using a threshold of p < 0.01, 787 genes were differentially regulated postprandially between the three shakes. 89 genes were differentially regulated postprandially between AMF and VEGE, 373 genes between AMF and CREAM, and 667 genes between VEGE and CREAM, indicating that the effect of CREAM on monocyte gene expression was distinct from AMF and VEGE. Pathway analyses showed that VEGE significantly increased the expression of genes involved in inflammatory pathways, whereas this was less pronounced after AMF and not observed after CREAM. In addition, CREAM significantly down-regulated the expression of genes involved in energy metabolism-related pathways, such as glycolysis, TCA cycle, and oxidative phosphorylation, as well as HIF-1 signaling. CONCLUSION Compared to the consumption of an anhydrous milk fat without milk fat globule membrane and a vegetable fat blend, the consumption of cream with milk fat globule membrane downregulated inflammatory pathways in blood monocytes, thus suggesting a potential inflammation inhibitory effect of milk fat globule membrane.
Collapse
Affiliation(s)
- Lei Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Charlotte C J R Michielsen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, RadboudUMC, Nijmegen, the Netherlands
| | - Anouk L Feitsma
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
21
|
Li G, Feng M, Zhang Z, Liu J, Zhang H. BACH1 Loss Exerts Antitumor Effects on Mantle Cell Lymphoma Cells via Inducing a Tumor-Intrinsic Innate Immune Response and Cell-Cycle Arrest. Mol Cancer Res 2023; 21:1274-1287. [PMID: 37713314 DOI: 10.1158/1541-7786.mcr-23-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
BTB and CNC homology 1 (BACH1) is a transcription repressor that regulates multiple physiological processes, including intracellular heme homeostasis and immune responses. Increasing lines of evidence indicate that BACH1 reshapes metastasis and metabolism of human solid tumors. However, its potential roles in mantle cell lymphoma (MCL) remain largely unknown. Here, we found that silencing BACH1 in MCL cells induced markedly cell-cycle arrest and cell apoptosis, whereas overexpression of BACH1 exhibited the opposite patterns. Increased BACH1 levels not only promoted tumor growth and dispersal in xenografts, but also conferred a long-term poor prognosis in patients with MCL. Interestingly, RNA sequencing analysis revealed noncanonical function of BACH1 in regulation of type I interferon (IFNI) response, DNA replication and repair, and cell cycle. Mechanistically, zinc finger and BTB domain containing 20 (ZBTB20) and HMG-box transcription factor 1 (HBP1) were for the first time identified as two novel downstream targets repressed by BACH1 in MCL cells. Further double-knockdown functional assays confirmed that loss of BACH1 induced ZBTB20-mediated IFNα production and HBP1-mediated cell-cycle arrest, indicating that BACH1-centered regulatory network may be a novel targetable vulnerability in MCL cells. IMPLICATIONS BACH1 serves as a pleotropic regulator of tumor-intrinsic innate immune response and cell-cycle progression, disruption of which may offer a promising therapeutic strategy for MCL treatment.
Collapse
Affiliation(s)
- Guilan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jiangyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
22
|
Shyam S, Ramu S, Sehgal M, Jolly MK. A systems-level analysis of the mutually antagonistic roles of RKIP and BACH1 in dynamics of cancer cell plasticity. J R Soc Interface 2023; 20:20230389. [PMID: 37963558 PMCID: PMC10645512 DOI: 10.1098/rsif.2023.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity-a hallmark of cancer metastasis. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two antagonistic 'teams' of players-while BACH1 belonged to the one driving pro-EMT, stem-like and therapy-resistant cell states, RKIP belonged to the one enabling pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network enable the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, and with patient survival data.
Collapse
Affiliation(s)
- Sai Shyam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Nguyen NT, Jaramillo-Martinez V, Mathew M, Suresh VV, Sivaprakasam S, Bhutia YD, Ganapathy V. Sigma Receptors: Novel Regulators of Iron/Heme Homeostasis and Ferroptosis. Int J Mol Sci 2023; 24:14672. [PMID: 37834119 PMCID: PMC10572259 DOI: 10.3390/ijms241914672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their role in neuronal functions in the brain/retina. However, there have been recent developments in the field with the discovery of unexpected roles for these proteins in iron/heme homeostasis. Sigma receptor 1 (S1R) regulates the oxidative stress-related transcription factor NRF2 and protects against ferroptosis, an iron-induced cell death process. Sigma receptor 2 (S2R), which is structurally unrelated to S1R, complexes with progesterone receptor membrane components PGRMC1 and PGRMC2. S2R, PGRMC1, and PGRMC2, either independently or as protein-protein complexes, elicit a multitude of effects with a profound influence on iron/heme homeostasis. This includes the regulation of the secretion of the iron-regulatory hormone hepcidin, the modulation of the activity of mitochondrial ferrochelatase, which catalyzes iron incorporation into protoporphyrin IX to form heme, chaperoning heme to specific hemoproteins thereby influencing their biological activity and stability, and protection against ferroptosis. Consequently, S1R, S2R, PGRMC1, and PGRMC2 potentiate disease progression in hemochromatosis and cancer. These new discoveries usher this intriguing group of non-traditional progesterone receptors into an unchartered territory in biology and medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (N.T.N.); (V.J.-M.); (M.M.); (V.V.S.); (S.S.); (Y.D.B.)
| |
Collapse
|
24
|
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S, Hou B. Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol 2023; 13:1251561. [PMID: 37736551 PMCID: PMC10509481 DOI: 10.3389/fonc.2023.1251561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.
Collapse
Affiliation(s)
- Hailiang Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Xinjian Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
25
|
Ren Y, Mao X, Xu H, Dang Q, Weng S, Zhang Y, Chen S, Liu S, Ba Y, Zhou Z, Han X, Liu Z, Zhang G. Ferroptosis and EMT: key targets for combating cancer progression and therapy resistance. Cell Mol Life Sci 2023; 80:263. [PMID: 37598126 PMCID: PMC10439860 DOI: 10.1007/s00018-023-04907-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Iron-dependent lipid peroxidation causes ferroptosis, a form of regulated cell death. Crucial steps in the formation of ferroptosis include the accumulation of ferrous ions (Fe2+) and lipid peroxidation, of which are controlled by glutathione peroxidase 4 (GPX4). Its crucial role in stopping the spread of cancer has been shown by numerous studies undertaken in the last ten years. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. EMT is connected to carcinogenesis, invasiveness, metastasis, and therapeutic resistance in cancer. It is controlled by a range of internal and external signals and changes the phenotype from epithelial to mesenchymal like. Studies have shown that mesenchymal cancer cells tend to be more ferroptotic than their epithelial counterparts. Drug-resistant cancer cells are more easily killed by inducers of ferroptosis when they undergo EMT. Therefore, understanding the interaction between ferroptosis and EMT will help identify novel cancer treatment targets. In-depth discussion is given to the regulation of ferroptosis, the potential application of EMT in the treatment of cancer, and the relationships between ferroptosis, EMT, and signaling pathways associated with tumors. Invasion, metastasis, and inflammation in cancer all include ferroptosis and EMT. The goal of this review is to provide suggestions for future research and practical guidance for applying ferroptosis and EMT in clinical practice.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangrong Mao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
26
|
Irikura R, Nishizawa H, Nakajima K, Yamanaka M, Chen G, Tanaka K, Onodera M, Matsumoto M, Igarashi K. Ferroptosis model system by the re-expression of BACH1. J Biochem 2023; 174:239-252. [PMID: 37094356 DOI: 10.1093/jb/mvad036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Ferroptosis is a regulated cell death induced by iron-dependent lipid peroxidation. The heme-responsive transcription factor BTB and CNC homology 1 (BACH1) promotes ferroptosis by repressing the transcription of genes involved in glutathione (GSH) synthesis and intracellular labile iron metabolism, which are key regulatory pathways in ferroptosis. We found that BACH1 re-expression in Bach1-/- immortalized mouse embryonic fibroblasts (iMEFs) can induce ferroptosis upon 2-mercaptoethanol removal, without any ferroptosis inducers. In these iMEFs, GSH synthesis was reduced, and intracellular labile iron levels were increased upon BACH1 re-expression. We used this system to investigate whether the major ferroptosis regulators glutathione peroxidase 4 (Gpx4) and apoptosis-inducing factor mitochondria-associated 2 (Aifm2), the gene for ferroptosis suppressor protein 1, are target genes of BACH1. Neither Gpx4 nor Aifm2 was regulated by BACH1 in the iMEFs. However, we found that BACH1 represses AIFM2 transcription in human pancreatic cancer cells. These results suggest that the ferroptosis regulators targeted by BACH1 may vary across different cell types and animal species. Furthermore, we confirmed that the ferroptosis induced by BACH1 re-expression exhibited a propagating effect. BACH1 re-expression represents a new strategy for inducing ferroptosis after GPX4 or system Xc- suppression and is expected to contribute to future ferroptosis research.
Collapse
Key Words
- BACH1 Abbreviations: AIFM2, apoptosis-inducing factor mitochondria-associated 2; ANOVA, analysis of variance; BACH1, BTB and CNC homology 1; Bach1−/− mice, Bach1 knockout mice; BTB, Broad complex, Tramtrack, Bric-a-brac domain; bZIP, basic leucine zipper; ChIP-seq, chromatin immunoprecipitation sequencing; CNC, Cap‘n’Collar region; DAPI, 4′,6-diamidino-2-phenylindole; DFX, deferasirox; DMSO, dimethyl sulfoxide; EMT, epithelial–mesenchymal transition; Ferr-1, ferrostatin-1; FINs, ferroptosis inducers; FSP1, Ferroptosis suppressor protein 1; Fth1, ferritin heavy chain 1; Ftl, ferritin light chain; GCL, glutamate-cysteine ligase; Gclc, GCL catalytic subunit; Gclm, GCL modifier subunit; GEO, Gene Expression Omnibus; GPX4, glutathione peroxidase 4; GSH, glutathione; HO-1 (Hmox1), heme oxygenase 1; iMEFs, immortalized MEFs; KuO, Kusabira Orange; MAFK, musculoaponeurotic fibrosarcoma oncogene homolog bZIP transcription factor K; mBACH1, Bach1 gene of Mus musculus; 2-ME, 2-mercaptoethanol; MEFs, mouse embryonic fibroblasts; NRF2, nuclear factor-erythroid 2-related factor 2; NSA, necrosulfonamide; PDAC, pancreatic ductal adenocarcinoma; PI, Propidium iodide; Ptgs2, prostaglandin-endoperoxide synthase 2; RSL3, (1S,3R)-RSL3; Slc40a1, solute carrier family 40 member 1; Slc7a11, solute carrier family 7 member 11; TFRC, transferrin receptor 1; Z-VAD.FMK, Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone
- extracellular signal
- ferroptosis
- fibroblasts
- transcription
Collapse
Affiliation(s)
- Riko Irikura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazuma Nakajima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Gladstone Institute of Neurological Disease, Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Guan Chen
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masafumi Onodera
- Gene & Cell Therapy Promotion Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
27
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
28
|
Dowling NM, Khramtsova G, Olopade O, Lee BS, Lee J. Expression analysis of BACH1 with clinical variables using the US breast cancer patient cohort. RESEARCH SQUARE 2023:rs.3.rs-3121163. [PMID: 37461502 PMCID: PMC10350188 DOI: 10.21203/rs.3.rs-3121163/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Background Studies on functional roles of BACH1 reveal that BACH1 promotes cancer metastasis and regulates metabolic networks for metastatic processes. However, little is known about BACH1 protein expression in breast tumors and its relevance to clinical variables as a biomarker for patients with breast tumors. Methods Using a tissue microarray (TMA) of breast tumor tissues isolated from a patient cohort (N = 130) expression of BACH1 and its target gene MCT1 (encoded by SLC16A1) were monitored by immunohistochemistry (IHC) assays and scored for further analyses. We examined the association between scores of BACH1 (Allredscoretotal) or MCT1 (Hscoretotal3×2×1x) with clinical variables including: breast cancer subtypes, tissue types, tumor size, patient's racial/ethnic background, and age group. Groups were compared using the Mann-Whitney U test (or the non-parametric Kruskal-Wallis test when appropriate) for numerical data. A proportional odds ordinal logistic model was used to examine multiple covariates. Associations between variables were evaluated with the Spearman's correlation coefficient. Results BACH1 and MCT1 expression were detected in 90.76% (N = 118/130) and 92.30% (N = 120/130) of patients by IHC, respectively, in our study. After dichotomizing tumor size (small: 3-25 in diameter vs. big: 27-85 mm in diameter), BACH1 expression scores were significantly higher (p = 0.015) in the bigger tumor group (mean [SD]; 4.20 [1.796]) compared with the smaller tumor group (3.920 [1.693]). Of interest, we also observed significantly higher BACH1 scores (p = 0.004) in tumors from Black women (3.971 [1.514]; N = 69) compared with those of White women (3.02 [1.942]; N = 49). Consistent with mRNA expression analysis, BACH1 expression is most abundant in the basal-like tumors among all subtypes, specifically in Black women, whereas MCT1 expression scores are considerably higher in the basal-like tumors regardless of race. In addition, there was a positive association between BACH1 and MCT1 IHC scores in tumors from Black women, although a weak association between them in tumors from White women. In general, we did not detect associations between MCT1 IHC scores and race, tumor size, tissue types, or patient's age. Conclusions We found strong associations of BACH1 expression with tumor size and the basal-like subtype, respectively. Importantly, BACH1 expresses significantly higher in tumors from Black women than White women, as well as in the basal-like subtype of breast tumors from Black women. Our study suggests that BACH1 expression could serve as a potential race-associated biomarker indicating poor prognosis.
Collapse
|
29
|
Cardile A, Passarini C, Zanrè V, Fiore A, Menegazzi M. Hyperforin Enhances Heme Oxygenase-1 Expression Triggering Lipid Peroxidation in BRAF-Mutated Melanoma Cells and Hampers the Expression of Pro-Metastatic Markers. Antioxidants (Basel) 2023; 12:1369. [PMID: 37507910 PMCID: PMC10376533 DOI: 10.3390/antiox12071369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperforin (HPF) is an acylphloroglucinol compound found abundantly in Hypericum perforatum extract which exhibits antidepressant, anti-inflammatory, antimicrobial, and antitumor activities. Our recent study revealed a potent antimelanoma effect of HPF, which hinders melanoma cell proliferation, motility, colony formation, and induces apoptosis. Furthermore, we have identified glutathione peroxidase-4 (GPX-4), a key enzyme involved in cellular protection against iron-induced lipid peroxidation, as one of the molecular targets of HPF. Thus, in three BRAF-mutated melanoma cell lines, we investigated whether iron unbalance and lipid peroxidation may be a part of the molecular mechanisms underlying the antimelanoma activity of HPF. Initially, we focused on heme oxygenase-1 (HO-1), which catalyzes the heme group into CO, biliverdin, and free iron, and observed that HPF treatment triggered the expression of this inducible enzyme. In order to investigate the mechanism involved in HO-1 induction, we verified that HPF downregulates the BTB and CNC homology 1 (BACH-1) transcription factor, an inhibitor of the heme oxygenase 1 (HMOX-1) gene transcription. Remarkably, we observed a partial recovery of cell viability and an increase in the expression of the phosphorylated and active form of retinoblastoma protein when we suppressed the HMOX-1 gene using HMOX-1 siRNA while HPF was present. This suggests that the HO-1 pathway is involved in the cytostatic effect of HPF in melanoma cells. To explore whether lipid peroxidation is induced, we conducted cytofluorimetric analysis and observed a significant increase in the fluorescence of the BODIPY C-11 probe 48 h after HPF administration in all tested melanoma cell lines. To discover the mechanism by which HPF triggers lipid peroxidation, along with the induction of HO-1, we examined the expression of additional proteins associated with iron homeostasis and lipid peroxidation. After HPF administration, we confirmed the downregulation of GPX-4 and observed low expression levels of SLC7A11, a cystine transporter crucial for the glutathione production, and ferritin, able to sequester free iron. A decreased expression level of these proteins can sensitize cells to lipid peroxidation. On the other hand, HPF treatment resulted in increased expression levels of transferrin, which facilitates iron uptake, and LC3B proteins, a molecular marker of autophagy induction. Indeed, ferritin and GPX-4 have been reported to be digested during autophagy. Altogether, these findings suggest that HPF induced lipid peroxidation likely through iron overloading and decreasing the expression of proteins that protect cells from lipid peroxidation. Finally, we examined the expression levels of proteins associated with melanoma cell invasion and metastatic potential. We observed the decreased expression of CD133, octamer-4, tyrosine-kinase receptor AXL, urokinase plasminogen activator receptor, and metalloproteinase-2 following HPF treatment. These findings provide further support for our previous observations, demonstrating the inhibitory effects of HPF on cell motility and colony formation in soft agar, which are both metastasis-related processes in tumor cells.
Collapse
Affiliation(s)
- Alessia Cardile
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Carlotta Passarini
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Valentina Zanrè
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Alessandra Fiore
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| |
Collapse
|
30
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
31
|
Tong Y, Zhou MH, Li SP, Zhao HM, Zhang YR, Chen D, Wu YX, Pang QF. MiR-155-5p Attenuates Vascular Smooth Muscle Cell Oxidative Stress and Migration via Inhibiting BACH1 Expression. Biomedicines 2023; 11:1679. [PMID: 37371773 DOI: 10.3390/biomedicines11061679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The malfunction of vascular smooth muscle cells (VSMCs) is an initiating factor in the pathogenesis of pathological vascular remodeling, including hypertension-related vascular lesions. MicroRNAs (miRNAs) have been implicated in the pathogenesis of VSMC proliferation and migration in numerous cases of cardiovascular remodeling. The evidence for the regulatory role of miR-155-5p in the development of the cardiovascular system has been emerging. However, it was previously unclear whether miR-155-5p participated in the migration of VSMCs under hypertensive conditions. Thus, we aimed to define the exact role and action of miR-155-5p in VSMC migration by hypertension. Here, we detected that the level of miR-155-5p was lower in primary VSMCs from spontaneously hypertensive rats (SHRs). Its overexpression attenuated, while its depletion accelerated, the migration and oxidative damage of VSMCs from SHRs. Our dual-luciferase reporter assay showed that miRNA-155-5p directly targeted the 3'-untranslated region (3'-UTR) of BTB and CNC homology 1 (BACH1). The miR-155-5p mimic inhibited BACH1 upregulation in SHR VSMCs. By contrast, the deletion of miR-155-5p further elevated the upregulation of BACH1 in SHR-derived VSMCs. Importantly, the overexpression of miR-155-5p and knockdown of BACH1 had synergistic effects on the inhibition of VSMCs in hypertension. Collectively, miR-155-5p attenuates VSMC migration and ameliorates vascular remodeling in SHRs, via suppressing BACH1 expression.
Collapse
Affiliation(s)
- Ying Tong
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Mei-Hui Zhou
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Sheng-Peng Li
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Hui-Min Zhao
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Ya-Ru Zhang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Dan Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Ya-Xian Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|
32
|
Ma XQ, Liu YY, Zhong ZQ, Chen SM, Hu WT, Sheng YR, Liu YK, Wei CY, Li MQ, Zhu XY. Heme induced progesterone-resistant profiling and promotion of endometriosis in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2023:166761. [PMID: 37247698 DOI: 10.1016/j.bbadis.2023.166761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Endometriosis is an estrogen-dependent, progesterone-resistant gynecological disease with an unknown pathogenesis. Compared to women without endometriosis, women with endometriosis have a remarkably high heme level in the peritoneal fluid. To further investigate the pathomechanisms of heme in endometriosis, we aimed to identify the dysregulated expression of heme-trafficking proteins, such as PGRMC1/2 that are also receptors that mediate the non-genomic responses to progesterone, and heme-degrading enzymes between ectopic endometrial stromal cells and their normal counterparts. We found that heme could regulate progesterone receptor-related gene expression. Functional human endometrial stromal cell experiments showed that heme promotes cell proliferation and migration in a heme oxygenase-1-independent manner; moreover, blocking oxidative phosphorylation/ATP generation could abolish these effects of heme in vitro, whereas intraperitoneal hemopexin administration could alleviate heme-triggered ectopic lesions in vivo. Therefore, heme likely mediates the induction of progesterone resistance and simultaneously induces endometriosis via the mitochondrial oxidative phosphorylation pathway.
Collapse
Affiliation(s)
- Xiao-Qian Ma
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Yu-Yin Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, People's Republic of China
| | - Zhi-Qi Zhong
- Xinglin College, Nantong University, Nantong 226001, People's Republic of China
| | - Si-Man Chen
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Ting Hu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Yan-Ran Sheng
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Yu-Kai Liu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Chun-Yan Wei
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| | - Xiao-Yong Zhu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| |
Collapse
|
33
|
Lee J, Roh JL. Epithelial-Mesenchymal Plasticity: Implications for Ferroptosis Vulnerability and Cancer Therapy. Crit Rev Oncol Hematol 2023; 185:103964. [PMID: 36931615 DOI: 10.1016/j.critrevonc.2023.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cancers polarized to a mesenchymal or poorly differentiated state can often evade cell death induced by conventional therapies. The epithelial-mesenchymal transition is involved in lipid metabolism and increases polyunsaturated fatty acid levels in cancer cells, contributing to chemo- and radio-resistance. Altered metabolism in cancer enables invasion and metastasis but is prone to lipid peroxidation under oxidative stress. Cancers with mesenchymal rather than epithelial signatures are highly vulnerable to ferroptosis. Therapy-resistant persister cancer cells show a high mesenchymal cell state and dependence on the lipid peroxidase pathway, which can respond more sensitively to ferroptosis inducers. Cancer cells may survive under specific metabolic and oxidative stress conditions, and targeting this unique defense system can selectively kill only cancer cells. Therefore, this article summarizes the core regulatory mechanisms of ferroptosis in cancer, the relationship between ferroptosis and epithelial-mesenchymal plasticity, and the implications of epithelial-mesenchymal transition for ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
34
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
35
|
Wang RX, Gu X, Zhang SX, Zhao YJ, Zhang HJ, Li FY. Deletion of BACH1 alleviates ferroptosis and protects against LPS-triggered acute lung injury by activating Nrf2/HO-1 signaling pathway. Biochem Biophys Res Commun 2023; 644:8-14. [PMID: 36621150 DOI: 10.1016/j.bbrc.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Multiple lines of evidences have unraveled the emerging role of ferroptosis in the pathophysiological process of acute lung injury (ALI). In this study, we aimed to decipher the role of BACH1 in the onset and progression of ALI with a focus on ferroptosis and elucidated potential molecular mechanism. We observed that BACH1 expression was drastically elevated in BEAS-2B cells upon exposure to LPS. In the functional aspect, BACH1 deletion exerted an anti-inflammatory property, featured by decreased the secretion of several cytokines including TNF-α, IL-1β and IL-6 in the face of LPS challenge. What's more important, BACH1 knockout evidently repressed LPS-triggered oxidative stress damage, as evidenced by reduced reactive oxygen species (ROS) production and malondialdehyde (MDA) generation, accompanied with the elevated the activities of superoxide dismutase (SOD), GSH-Px and CAT. Meanwhile, ablation of BACH1 restrained LPS-elicited ferroptosis, as characterized by decreased iron content and PTGS2 expression, accompanied with increased expression of SLC7A11 and GPX4. In terms of mechanism, Nrf2/HO-1 signaling inhibitor effectively abrogated the beneficial effects of BACH1 inhibition on LPS-stimulated inflammation, oxidative damage and ferroptosis. Taken together, these preceding outcomes strongly illuminated that BACH1 was a novel regulator of LPS-evoked injury through regulation of inflammation response, oxidative stress and ferroptosis via activation Nrf2/HO-1 signaling, indicating that BACH1 may represent as a promising novel therapeutic candidate for ALI treatment.
Collapse
Affiliation(s)
- Rui-Xuan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, The Affiliated Chest Hospital of Xi'an Jiaotong University Medical School, Xi'an, 710100, Shaanxi, PR China
| | - Xing Gu
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, The Affiliated Chest Hospital of Xi'an Jiaotong University Medical School, Xi'an, 710100, Shaanxi, PR China
| | - Si-Xue Zhang
- Department of Geriatric Respiratory, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi, PR China
| | - Yan-Jun Zhao
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, The Affiliated Chest Hospital of Xi'an Jiaotong University Medical School, Xi'an, 710100, Shaanxi, PR China
| | - Hong-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, The Affiliated Chest Hospital of Xi'an Jiaotong University Medical School, Xi'an, 710100, Shaanxi, PR China
| | - Fei-Yan Li
- Department of Geriatric Respiratory, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi, PR China.
| |
Collapse
|
36
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M, Aref AR, Salimimoghadam S, Rashidi M, Taheriazam A, Hushmandi K. STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 2023; 158:114168. [PMID: 36916439 DOI: 10.1016/j.biopha.2022.114168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The categorization of cancers demonstrates that prostate cancer is the most common malignancy in men and it causes high death annually. Prostate cancer patients are diagnosed mainly via biomarkers such as PSA test and patients show poor prognosis. Prostate cancer cells rapidly diffuse into different parts of body and their metastasis is also a reason for death. Current therapies for prostate cancer patients include chemotherapy, surgery and radiotherapy as well as targeted therapy. The progression of prostate cancer cells is regulated by different factors that STAT3 signaling is among them. Growth factors and cytokines such as IL-6 can induce STAT3 signaling and it shows carcinogenic impact. Activation of STAT3 signaling occurs in prostate cancer and it promotes malignant behavior of tumor cells. Induction of STAT3 signaling increases glycolysis and proliferation of prostate cancer cells and prevents apoptosis. Furthermore, STAT3 signaling induces EMT mechanism in increasing cancer metastasis. Activation of STAT3 signaling stimulates drug resistance and the limitation of current works is lack of experiment related to role of STAT3 signaling in radio-resistance in prostate tumor. Calcitriol, capsazepine and β-elemonic are among the compounds capable of targeting STAT3 signaling and its inhibition in prostate cancer therapy. In addition to natural products, small molecules targeting STAT3 signaling have been developed in prostate cancer therapy.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
37
|
Role of Ferroptosis in Regulating the Epithelial-Mesenchymal Transition in Pulmonary Fibrosis. Biomedicines 2023; 11:biomedicines11010163. [PMID: 36672671 PMCID: PMC9856078 DOI: 10.3390/biomedicines11010163] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic interstitial lung disease whose pathogenesis involves a complex interaction of cell types and signaling pathways. Lung epithelial cells responding to repeated injury experience persistent inflammation and sustained epithelial-mesenchymal transition (EMT). The persistence of EMT-induced signals generates extracellular matrix accumulation, thereby causing fibrosis. Ferroptosis is a newly characterized iron-dependent non-apoptotic regulated cell death. Increased iron accumulation can increase iron-induced oxidant damage in alveolar epithelial cells. Studies have demonstrated that iron steady states and oxidation steady states play an important role in the iron death regulation of EMT. This review summarizes the role of ferroptosis in regulating EMT in pulmonary fibrosis, aiming to provide a new idea for the prevention and treatment of this disease.
Collapse
|
38
|
Takemoto K, Kobatake K, Miura K, Fukushima T, Babasaki T, Miyamoto S, Sekino Y, Kitano H, Goto K, Ikeda K, Hieda K, Hayashi T, Hinata N, Kaminuma O. BACH1 promotes clear cell renal cell carcinoma progression by upregulating oxidative stress-related tumorigenicity. Cancer Sci 2022; 114:436-448. [PMID: 36178067 PMCID: PMC9899607 DOI: 10.1111/cas.15607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023] Open
Abstract
The carcinogenesis and progression of renal cell carcinoma (RCC), a heterogeneous cancer derived from renal tubular epithelial cells, is closely related to oxidative stress responses (OSRs). Oxidative stress responses participate in various biological processes related to the metabolism and metastatic potential of cancer such as inflammation, epithelial-mesenchymal transition (EMT), and angiogenesis. In this study, we investigated the role of broad complex-tramtrack-bric-a-brac and cap 'n' collar homology 1 (BACH1), a key transcription factor for OSRs, in clear cell RCC (ccRCC) development and prognosis. The poor prognosis and elevation of serum inflammation markers in nephrectomized ccRCC patients were correlated with the intratumor expression of BACH1 accompanied by a downregulation of heme oxygenase-1. BACH1 contributes to the invasion and migration abilities of RCC cell lines without affecting their proliferation in vitro. In contrast, BACH1 contributes to tumor progression in vivo, in relation to OSRs with the activation of EMT-related pathways. BACH1 involvement in other OSR-linked pathways, including inflammatory responses, angiogenesis, and mTOR signaling, was further revealed by RNA sequencing analysis of BACH1-knockdown cells. In conclusion, the crucial role of BACH1 in the pathogenesis and poor prognosis of ccRCC through the promotion of OSRs is suggested.
Collapse
Affiliation(s)
- Kenshiro Takemoto
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan,Department of Disease Models, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Kento Miura
- Department of Disease Models, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Takafumi Fukushima
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takashi Babasaki
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Keisuke Hieda
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Osamu Kaminuma
- Department of Disease Models, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| |
Collapse
|
39
|
Yang X, Wang Y, Zhao J, Rong H, Chen Y, Xiong M, Ye X, Yu S, Hu H. Coordinated regulation of BACH1 and mitochondrial metabolism through tumor-targeted self-assembled nanoparticles for effective triple negative breast cancer combination therapy. Acta Pharm Sin B 2022; 12:3934-3951. [PMID: 36213532 PMCID: PMC9532561 DOI: 10.1016/j.apsb.2022.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022] Open
Abstract
The poor prognosis of triple negative breast cancer (TNBC) results from a lack of approved targeted therapies coupled with aggressive proliferation and metastasis, which is associated with high recurrence and short overall survival. Here we developed a strategy by employing tumor-targeted self-assembled nanoparticles to coordinately regulate BACH1 (BTB domain and CNC homology 1) and mitochondrial metabolism. The BACH1 inhibitor hemin and mitochondria function inhibitor berberine derivative (BD) were used to prepare nanoparticles (BH NPs) followed by the modification of chondroitin sulfate (CS) on the surface of BH NPs to achieve tumor targeting (CS/BH NPs). CS/BH NPs were found to be able to inhibit tumor migration and invasion by significantly decreasing the amounts of tumor cell metabolites, glycolysis and metastasis-associated proteins, which were related to the inhibition of BACH1 function. Meanwhile, decreased mitochondrial membrane potential, activated caspase 3/9 and increased ROS production demonstrated coordinated regulation of BACH1 and mitochondrial metabolism. In a xenograft mice model of breast cancer, CS/BH NPs significantly inhibited tumor growth and metastasis due to the synergetic effect of hemin and BD without showing obvious toxicities for major organs. In sum, the results of efficacy and safety experiments suggest potential clinical significance of the prepared self-assembled CS/BH nanoparticles for the treatment of TNBC.
Collapse
Affiliation(s)
- Xuan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yalong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junke Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hehui Rong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujun Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Mengting Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxing Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
40
|
Cong Z, Yuan F, Wang H, Cai X, Zhu J, Tang T, Zhang L, Han Y, Ma C. BTB domain and CNC homolog 1 promotes glioma invasion mainly through regulating extracellular matrix and increases ferroptosis sensitivity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166554. [PMID: 36181980 DOI: 10.1016/j.bbadis.2022.166554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
BTB Domain and CNC Homolog 1 (Bach1) has been implicated in cancer progression, particularly in invasion, but little is unknown about its effect on glioma. Here, we confirmed that highly expressed Bach1 prominently promoted glioma invasion. Similar to the reported mechanisms in other tumors, Bach1 upregulation was also correlated with epithelial mesenchymal transition (EMT) in glioma cells. More importantly, proteomic analysis indicated that the main mechanism of Bach1 promoting invasion in glioma involved extracellular matrix (ECM). We further found thatBach1 upregulation was associated with the multiple mechanisms of ECM remodeling in glioma, including increasing the expression and deposition of ECM components, activating TGFBR2-smad2/3 signaling, promoting invadopodia formation and inducing the expression and secretion of MMP2. Meanwhile, Bach1 overexpression increased ferroptosis sensitivity in glioma cells. The ferroptosis inducer (sulfasalazine) obviously suppressed the gliomas with Bach1 upregulation in vitro and in vivo. Overall, Bach1 has a two-faced role in glioma. Highly expressed Bach1 promotes glioma invasion. Conversely, Bach1 upregulation is also a potential indicator of the sensitivity of ferroptosis inducers.
Collapse
Affiliation(s)
- Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Feng Yuan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Neurosurgery, Benq Medical Center, Nanjing Medical University, Nanjing 210002, China.
| | - Xiangming Cai
- School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing, 210000, Jiangsu, China
| | - Junhao Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ting Tang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yanling Han
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Chiyuan Ma
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
41
|
Ahuja M, Kaidery NA, Dutta D, Attucks OC, Kazakov EH, Gazaryan I, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Harnessing the Therapeutic Potential of the Nrf2/Bach1 Signaling Pathway in Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11091780. [PMID: 36139853 PMCID: PMC9495572 DOI: 10.3390/antiox11091780] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although a complex interplay of multiple environmental and genetic factors has been implicated, the etiology of neuronal death in PD remains unresolved. Various mechanisms of neuronal degeneration in PD have been proposed, including oxidative stress, mitochondrial dysfunction, neuroinflammation, α-synuclein proteostasis, disruption of calcium homeostasis, and other cell death pathways. While many drugs individually targeting these pathways have shown promise in preclinical PD models, this promise has not yet translated into neuroprotective therapies in human PD. This has consequently spurred efforts to identify alternative targets with multipronged therapeutic approaches. A promising therapeutic target that could modulate multiple etiological pathways involves drug-induced activation of a coordinated genetic program regulated by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). Nrf2 regulates the transcription of over 250 genes, creating a multifaceted network that integrates cellular activities by expressing cytoprotective genes, promoting the resolution of inflammation, restoring redox and protein homeostasis, stimulating energy metabolism, and facilitating repair. However, FDA-approved electrophilic Nrf2 activators cause irreversible alkylation of cysteine residues in various cellular proteins resulting in side effects. We propose that the transcriptional repressor of BTB and CNC homology 1 (Bach1), which antagonizes Nrf2, could serve as a promising complementary target for the activation of both Nrf2-dependent and Nrf2-independent neuroprotective pathways. This review presents the current knowledge on the Nrf2/Bach1 signaling pathway, its role in various cellular processes, and the benefits of simultaneously inhibiting Bach1 and stabilizing Nrf2 using non-electrophilic small molecules as a novel therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Debashis Dutta
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | | | | | - Irina Gazaryan
- Pace University, White Plains, NY 10601, USA
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, 111401 Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, 111401 Moscow, Russia
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Sudarshana M. Sharma
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29406, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29406, USA
- Correspondence:
| |
Collapse
|
42
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
43
|
BACH1 Expression Is Promoted by Tank Binding Kinase 1 (TBK1) in Pancreatic Cancer Cells to Increase Iron and Reduce the Expression of E-Cadherin. Antioxidants (Basel) 2022; 11:antiox11081460. [PMID: 36009179 PMCID: PMC9405201 DOI: 10.3390/antiox11081460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species and promotes metastasis of various cancers including pancreatic ductal adenocarcinoma (PDAC). However, it is not clear how BACH1 is regulated in PDAC cells. Knockdown of Tank binding kinase 1 (TBK1) led to reductions of BACH1 mRNA and protein amounts in AsPC−1 human PDAC cells. Gene expression analysis of PDAC cells with knockdown of TBK1 or BACH1 suggested the involvement of TBK1 and BACH1 in the regulation of iron homeostasis. Ferritin mRNA and proteins were both increased upon BACH1 knockdown in AsPC−1 cells. Flow cytometry analysis showed that AsPC−1 cells with BACH1 knockout or knockdown contained lower labile iron than control cells, suggesting that BACH1 increased labile iron by repressing the expression of ferritin genes. We further found that the expression of E-cadherin was upregulated upon the chelation of intracellular iron content. These results suggest that the TBK1-BACH1 pathway promotes cancer cell metastasis by increasing labile iron within cells.
Collapse
|
44
|
Chang LC, Fan CW, Tseng WK, Chen JR, Hua CC. The tumor/normal tissue ratio of Keap1 protein is a predictor for lymphovascular invasion in colorectal cancer: A correlation study between the Nrf2 and KRas pathways. Biomarkers 2022; 27:701-707. [PMID: 35830714 DOI: 10.1080/1354750x.2022.2102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE: Oxidative stress has impacts on the KRas and Nrf2/Keap1 pathways, which have multiple interactions with each other and play important roles in colorectal cancer (CRC). This study investigated the expressions of proteins in the KRas and Nrf2/Keap1 pathways and their associations with clinicopathological features in CRC.METHODS: The protein levels of Nrf2, Keap1, Bach1, p62, HO1, KRas, Erk, Raf1 and PI3K in both the tumor and normal tissues of 60 CRC subjects were determined by Western blot and their T/N (tumor/normal tissue) ratios were correlated with clinicopathological features.RESULTS: The T/N ratios of proteins in the KRas and Nrf2/Keap1 pathways had correlation patterns and proximity profiles in cluster dendrograms different in CRC with different status of lymphovascular invasion (LVI) or lymph node/distant metastases. The Keap1 protein T/N ratio was a significant predictor (odd ratio: 2.24; 95% confidence interval: 1.26 - 4.38) of LVI, which in turn predicted metastases (11.0; 3.49 - 39.8).CONCLUSION: The interactions between the KRas and Nrf2/Keap1 pathways may be affected differently by LVI and metastases, and the protein T/N ratio of Keap1 may be helpful for predicting LVI in CRC.
Collapse
Affiliation(s)
- Liang-Che Chang
- Department of Pathology, Chang Gung Memorial Hospital, Keelung and Chang Gung university, Keelung, Republic of China
| | - Chung-Wei Fan
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung university Keelung, Republic of China
| | - Wen-Ko Tseng
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung university Keelung, Republic of China
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung and Chang Gung university, Keelung, Republic of China
| | - Chung-Ching Hua
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung and Chang Gung university Keelung, Republic of China
| |
Collapse
|
45
|
Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG. Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma. Nat Commun 2022; 13:3936. [PMID: 35803925 PMCID: PMC9270322 DOI: 10.1038/s41467-022-31683-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack of effective chemotherapies. This shortage of treatments is due to limited knowledge about ependymoma tumorigenic mechanisms. By means of single-nucleus chromatin accessibility and gene expression profiling of posterior fossa primary tumors and distal metastases, we reveal key transcription factors and enhancers associated with the differentiation of ependymoma tumor cells into tumor-derived cell lineages and their transition into a mesenchymal-like state. We identify NFκB, AP-1, and MYC as mediators of this transition, and show that the gene expression profiles of tumor cells and infiltrating microglia are consistent with abundant pro-inflammatory signaling between these populations. In line with these results, both TGF-β1 and TNF-α induce the expression of mesenchymal genes on a patient-derived cell model, and TGF-β1 leads to an invasive phenotype. Altogether, these data suggest that tumor gliosis induced by inflammatory cytokines and oxidative stress underlies the mesenchymal phenotype of posterior fossa ependymoma.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma C Troisi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maclean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Liu S, Pi J, Zhang Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol 2022; 54:102389. [PMID: 35792437 PMCID: PMC9287733 DOI: 10.1016/j.redox.2022.102389] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
The KEAP1-NRF2-ARE signaling pathway plays a central role in mediating the adaptive cellular stress response to oxidative and electrophilic chemicals. This canonical pathway has been extensively studied and reviewed in the past two decades, but rarely was it looked at from a quantitative signaling perspective. Signal amplification, i.e., ultrasensitivity, is crucially important for robust induction of antioxidant genes to appropriate levels that can adequately counteract the stresses. In this review article, we examined a number of well-known molecular events in the KEAP1-NRF2-ARE pathway from a quantitative perspective with a focus on how signal amplification can be achieved. We illustrated, by using a series of mathematical models, that redox-regulated protein sequestration, stabilization, translation, nuclear trafficking, DNA promoter binding, and transcriptional induction - which are embedded in the molecular network comprising KEAP1, NRF2, sMaf, p62, and BACH1 - may generate highly ultrasensitive NRF2 activation and antioxidant gene induction. The emergence and degree of ultrasensitivity depend on the strengths of protein-protein and protein-DNA interaction and protein abundances. A unique, quantitative understanding of signal amplification in the KEAP1-NRF2-ARE pathway will help to identify sensitive targets for the prevention and therapeutics of oxidative stress-related diseases and develop quantitative adverse outcome pathway models to facilitate the health risk assessment of oxidative chemicals.
Collapse
Affiliation(s)
- Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
47
|
Zhao J, Wang Y, Tao L, Chen L. Iron Transporters and Ferroptosis in Malignant Brain Tumors. Front Oncol 2022; 12:861834. [PMID: 35530363 PMCID: PMC9071296 DOI: 10.3389/fonc.2022.861834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant brain tumors represent approximately 1.5% of all malignant tumors. The survival rate among patients is relatively low and the mortality rate of pediatric brain tumors ranks first among all childhood malignant tumors. At present malignant brain tumors remain incurable. Although some tumors can be treated with surgery and chemotherapy, new treatment strategies are urgent owing to the poor clinical prognosis. Iron is an essential trace element in many biological processes of the human body. Iron transporters play a crucial role in iron absorption and transport. Ferroptosis, an iron-dependent form of nonapoptotic cell death, is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism. Recently, compelling evidence has shown that inducing ferroptosis of tumor cells is a potential therapeutic strategy. In this review, we will briefly describe the significant regulatory factors of ferroptosis, iron, its absorption and transport under physiological conditions, especially the function of iron transporters. Then we will summarize the relevant mechanisms of ferroptosis and its role in malignant brain tumors, wherein the role of transporters is not to be ignored. Finally, we will introduce the current research progress in the treatment of malignant brain tumors by inducing ferroptosis in order to explain the current biological principles of potential treatment targets and treatment strategies for malignant brain tumors.
Collapse
Affiliation(s)
- Jingyu Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Yaqi Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Lei Tao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ligong Chen,
| |
Collapse
|
48
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
49
|
Nishizawa H, Yamanaka M, Igarashi K. Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J 2022; 290:1688-1704. [PMID: 35107212 DOI: 10.1111/febs.16382] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Ferroptosis is triggered by a chain of intracellular labile iron-dependent peroxidation of cell membrane phospholipids. Ferroptosis is important not only as a cause of ischaemic and neurodegenerative diseases but also as a mechanism of cancer suppression, and a better understanding of its regulatory mechanism is required. It has become clear that ferroptosis is finely controlled by two oxidative stress-responsive transcription factors, NRF2 (NF-E2-related factor 2) and BACH1 (BTB and CNC homology 1). NRF2 and BACH1 inhibit and promote ferroptosis, respectively, by activating or suppressing the expression of genes in the major regulatory pathways of ferroptosis: intracellular labile iron metabolism, the GSH (glutathione) -GPX4 (glutathione peroxidase 4) pathway and the FSP1 (ferroptosis suppressor protein 1)-CoQ (coenzyme Q) pathway. In addition to this, NRF2 and BACH1 control ferroptosis through the regulation of lipid metabolism and cell differentiation. This multifaceted regulation of ferroptosis by NRF2 and BACH1 is considered to have been acquired during the evolution of multicellular organisms, allowing the utilization of ferroptosis for maintaining homeostasis, including cancer suppression. In terms of cell-cell interaction, it has been revealed that ferroptosis has the property of propagating to surrounding cells along with lipid peroxidation. The regulation of ferroptosis by NRF2 and BACH1 and the propagation phenomenon could be used to realize anticancer cell therapy in the future. In this review, these points will be summarized and discussed.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
50
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|