1
|
Torabian P, Singh N, Crawford J, Gonzalez G, Burgado N, Videva M, Miller A, Perdue J, Dinu M, Pietropaoli A, Gaborski T, Michel LV. Effect of clinically relevant antibiotics on bacterial extracellular vesicle release from Escherichia coli. Int J Antimicrob Agents 2025; 65:107384. [PMID: 39542065 DOI: 10.1016/j.ijantimicag.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Sepsis, a leading cause of death in hospitals, can be defined as a dysregulated host inflammatory response to infection, which can lead to tissue damage, organ failure and cardiovascular complications. Although there is no cure for sepsis, the condition is typically managed with broad-spectrum antibiotics to eliminate any potential bacterial source of infection. However, a potential side effect of antibiotic treatment is the enhanced release of bacterial extracellular vesicles (BEVs), membrane-bound nanoparticles containing proteins and other biological molecules from their parent bacterium. Some of the Gram-negative extracellular vesicle (EV) cargo, including peptidoglycan associated lipoprotein and outer membrane protein A, have been shown to induce both acute and chronic inflammation in host tissue. It was hypothesized that the antibiotic concentration and mechanism of action may affect the amount of released BEVs, which could potentially exacerbate the host inflammatory response. This study evaluated nine clinically relevant antibiotics for their effect on EV release from Escherichia coli. Several beta-lactam antibiotics caused significantly more EV release, while quinolone and aminoglycoside antibiotics caused less vesiculation. Further study is warranted to corroborate the correlation between an antibiotic's mechanism of action and its effect on EV release, but these results underline the importance of antibiotic choice when treating patients with sepsis.
Collapse
Affiliation(s)
- Panteha Torabian
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Navraj Singh
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA
| | - James Crawford
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Gabriela Gonzalez
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Nicholas Burgado
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Martina Videva
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Aidan Miller
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Janai Perdue
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Milena Dinu
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Anthony Pietropaoli
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester, Rochester, NY, USA
| | - Thomas Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
2
|
Dong Q, Zhou J, Feng M, Kong L, Fang B, Zhang Z. A review of bacterial and osteoclast differentiation in bone infection. Microb Pathog 2024; 197:107102. [PMID: 39505086 DOI: 10.1016/j.micpath.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bone infections are characterized by bacterial invasion of the bone microenvironment and subsequent bone structure deterioration. This holds significance because osteoclasts, which are the only cells responsible for bone resorption, are abnormally stimulated during bone infections. Multiple communication factors secreted by bone stromal cells regulate the membrane of osteoclast progenitor cells, thereby maintaining bone homeostasis through the expression of many types of receptors. During infection, the immunoinflammatory response triggered by bacterial invasion and multiple virulence factors of bacterial origin can disrupt osteoclast homeostasis. Therefore, clarifying the pathways through which bacteria affect osteoclasts can offer a theoretical basis for preventing and treating bone infections. This review summarizes studies investigating bone destruction caused by different bacterial infections. In conclusion, bacteria can affect osteoclast metabolic activity through multiple pathways, including direct contact, release of virulence factors, induction of immunoinflammatory responses, influence on bone stromal cell metabolism, and intracellular infections.
Collapse
Affiliation(s)
- Qi Dong
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiuqin Zhou
- Department of Infectious Disease of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mingzhe Feng
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingqiang Kong
- Department of Orthopedics, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 312030, China.
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| | - Zhen Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
3
|
Wang J, Liu C, Cutler J, Ivanovski S, Lee RSB, Han P. Microbial- and host immune cell-derived extracellular vesicles in the pathogenesis and therapy of periodontitis: A narrative review. J Periodontal Res 2024; 59:1115-1129. [PMID: 38758729 PMCID: PMC11626692 DOI: 10.1111/jre.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
Periodontitis is a chronic inflammatory disease caused by dysbiotic biofilms and destructive host immune responses. Extracellular vesicles (EVs) are circulating nanoparticles released by microbes and host cells involved in cell-to-cell communication, found in body biofluids, such as saliva and gingival crevicular fluid (GCF). EVs are mainly involved in cell-to-cell communication, and may hold promise for diagnostic and therapeutic purposes. Periodontal research has examined the potential involvement of bacterial- and host-cell-derived EVs in disease pathogenesis, diagnosis, and therapy, but data remains scarce on immune cell- or microbial-derived EVs. In this narrative review, we first provide an overview of the role of microbial and host-derived EVs on disease pathogenesis. Recent studies reveal that Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans-derived outer membrane vesicles (OMVs) can activate inflammatory cytokine release in host cells, while M1 macrophage EVs may contribute to bone loss. Additionally, we summarised current in vitro and pre-clinical research on the utilisation of immune cell and microbial-derived EVs as potential therapeutic tools in the context of periodontal treatment. Studies indicate that EVs from M2 macrophages and dendritic cells promote bone regeneration in animal models. While bacterial EVs remain underexplored for periodontal therapy, preliminary research suggests that P. gingivalis OMVs hold promise as vaccine candidates. Finally, we acknowledge the current limitations present in the field of translating immune cell derived EVs and microbial derived EVs in periodontology. It is concluded that microbial and host immune cell-derived EVs have a role in periodontitis pathogenesis and hence may be useful for studying disease pathophysiology, and as diagnostic and treatment monitoring biomarkers.
Collapse
Affiliation(s)
- Jenny Wang
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
| | - Chun Liu
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jason Cutler
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sašo Ivanovski
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ryan SB Lee
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Pingping Han
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
4
|
Ware JP, Shea DK, Nicholas SL, Stimson EA, Riesterer JL, Ibsen SD. Recovery and Analysis of Bacterial Membrane Vesicle Nanoparticles from Human Plasma Using Dielectrophoresis. BIOSENSORS 2024; 14:456. [PMID: 39451671 PMCID: PMC11505931 DOI: 10.3390/bios14100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024]
Abstract
Bacterial membrane vesicle (BMV) nanoparticles are secreted naturally by bacteria throughout their lifecycle and are a rich source of biomarkers from the parent bacteria, but they are currently underutilized for clinical diagnostic applications, such as pathogen identification, due to the time-consuming and low-yield nature of traditional recovery methods required for analysis. The recovery of BMVs is particularly difficult from complex biological fluids. Here, we demonstrate a recovery method that uses dielectrophoretic (DEP) forces generated on electrokinetic microfluidic chips to isolate and analyze BMVs from human plasma. DEP takes advantage of the natural difference in dielectric properties between the BMVs and the surrounding plasma fluid to quickly and consistently collect these particles from as little as 25 µL of plasma. Using DEP and immunofluorescence staining of the LPS biomarker carried on BMVs, we have demonstrated a lower limit of detection of 4.31 × 109 BMVs/mL. The successful isolation of BMVs from human plasma using DEP, and subsequent on-chip immunostaining for biomarkers, enables the development of future assays to identify the presence of specific bacterial species by analyzing BMVs from small amounts of complex body fluid.
Collapse
Affiliation(s)
- Jason P. Ware
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Delaney K. Shea
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Shelby L. Nicholas
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
| | - Ella A. Stimson
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Jessica L. Riesterer
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
| | - Stuart D. Ibsen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| |
Collapse
|
5
|
Spari D, Schmid A, Sanchez-Taltavull D, Murugan S, Keller K, Ennaciri N, Salm L, Stroka D, Beldi G. Released bacterial ATP shapes local and systemic inflammation during abdominal sepsis. eLife 2024; 13:RP96678. [PMID: 39163101 PMCID: PMC11335348 DOI: 10.7554/elife.96678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.
Collapse
Affiliation(s)
- Daniel Spari
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Annina Schmid
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Daniel Sanchez-Taltavull
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Shaira Murugan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Keely Keller
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Nadia Ennaciri
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Lilian Salm
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| |
Collapse
|
6
|
Yılmaz Çolak Ç. Bacterial Membrane Vesicles as a Novel Vaccine Platform against SARS-CoV-2. Curr Microbiol 2024; 81:317. [PMID: 39164527 DOI: 10.1007/s00284-024-03846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Throughout history, infectious diseases have plagued humanity, with outbreaks occurring regularly worldwide. Not every outbreak affects people globally; however, in the case of Coronavirus Disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), it reached a pandemic level within a remarkably short period. Fortunately, advancements in medicine and biotechnology have facilitated swift responses to the disease, resulting in the development of therapeutics and vaccines. Nevertheless, the persistent spread of the virus and the emergence of new variants underscore the necessity for protective interventions, leading researchers to seek more effective vaccines. Despite the presence of various types of vaccines, including mRNA and inactivated vaccines against SARS-CoV-2, new platforms have been investigated since the pandemic, and research on bacterial membrane vesicles (BMVs) has demonstrated their potential as a novel COVID-19 vaccine platform. Researchers have explored different strategies for BMV-based COVID-19 vaccines, such as mixing the vesicles with antigenic components of the virus due to their adjuvant capacity or decorating the vesicles with the viral antigens to create adjuvanted delivery systems. These approaches have presented promising results in inducing robust immune responses, but obstacles such as reproducibility in obtaining and homogeneous characterization of BMVs remain in developing vesicle-based vaccines. Overall, the development of BMV-based vaccines represents a novel and promising strategy in the fight against COVID-19. Additional research and clinical trials are needed to further evaluate the potential of these vaccines to offer long-lasting protection against SARS-CoV-2 and its evolving variants.
Collapse
Affiliation(s)
- Çiğdem Yılmaz Çolak
- Life Sciences, Marmara Research Center, TUBITAK, Kocaeli, Türkiye.
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Türkiye.
| |
Collapse
|
7
|
Torabian P, Singh N, Crawford J, Gonzalez G, Burgado N, Videva M, Miller A, Perdue J, Dinu M, Pietropaoli A, Gaborski T, Michel LV. The effect of clinically relevant beta-lactam, aminoglycoside, and quinolone antibiotics on bacterial extracellular vesicle release from E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568081. [PMID: 38045295 PMCID: PMC10690228 DOI: 10.1101/2023.11.22.568081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sepsis, a leading cause of death in hospitals, can be defined as a dysregulated host inflammatory response to infection, which can lead to tissue damage, organ failure, and cardiovascular complications. Although there is no cure for sepsis, the condition is typically managed with broad spectrum antibiotics to eliminate any potential bacterial source of infection. However, a potential side-effect of antibiotic treatment is the enhanced release of bacterial extracellular vesicles (BEVs). BEVs are membrane-bound nanoparticles produced by a variety of mechanisms, one of which includes the pinching-off of the outer membrane (in Gram-negative bacteria) to enclose proteins and other biological molecules for transport and intercellular communication. Some of the Gram-negative EV cargo, including Peptidoglycan associated lipoprotein (Pal) and Outer membrane protein A (OmpA), have been shown to induce both acute and chronic inflammation in host tissue. We hypothesize that antibiotic concentration and its mechanism of action can have an effect on the amount of released BEVs, which could potentially exacerbate the host inflammatory response. In this study, we evaluated nine clinically relevant antibiotics for their effect on EV release from Escherichia coli. EVs were characterized using immunoblotting, nanoparticle tracking analysis, and transmission electron microscopy. Several beta-lactam antibiotics caused significantly more EV release, while quinolone and aminoglycosides caused relatively less vesiculation. Further study is warranted to corroborate the correlation between an antibiotic's mechanism of action and its effect on EV release, but these results underline the importance of antibiotic choice when treating sepsis patients.
Collapse
Affiliation(s)
- Panteha Torabian
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Navraj Singh
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - James Crawford
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Gabriela Gonzalez
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Nicholas Burgado
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Martina Videva
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Aidan Miller
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Janai Perdue
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Milena Dinu
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Anthony Pietropaoli
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester
| | - Thomas Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology
| |
Collapse
|
8
|
Jiang Y, Zhou Z, Liu C, Wang L, Li C. Bacterial outer membrane vesicles as drug delivery carrier for photodynamic anticancer therapy. Front Chem 2023; 11:1284292. [PMID: 37915541 PMCID: PMC10616255 DOI: 10.3389/fchem.2023.1284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Photodynamic Therapy (PDT) is an effective tumor treatment strategy that not only induces photocytotoxicity to kill tumor cells directly but also activates the immune system in the body to generate tumor-specific immunity, preventing cancer metastasis and recurrence. However, some limitations of PDT limit the therapeutic efficacy in deep tumors. Previous studies have used different types of nanoparticles (NPs) as drug carriers of photosensitizers (PSs) to overcome the shortcomings of PDT and improve therapeutic efficacy. Among them, bacterial outer membrane vesicles (OMVs) have natural advantages as carriers for PS delivery. In addition to the targeted delivery of PSs into tumor cells, their unique immunogenicity helps them to serve as immune adjuvants to enhance the PDT-induced immune effect, providing new ideas for photodynamic anticancer therapy. Therefore, in this review, we will introduce the biogenesis and anticancer functions of OMVs and the research on them as drug delivery carriers in PDT. Finally, we also discuss the challenges and prospects of OMVs as a versatile drug delivery carrier for photodynamic anticancer therapy.
Collapse
Affiliation(s)
- Yuan Jiang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - ZunZhen Zhou
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chongzhi Liu
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Limei Wang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chun Li
- Department of Rehabilitation Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
9
|
Kelwick RJR, Webb AJ, Freemont PS. Opportunities for engineering outer membrane vesicles using synthetic biology approaches. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:255-261. [PMID: 39697987 PMCID: PMC11648402 DOI: 10.20517/evcna.2023.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 12/20/2024]
Abstract
Gram-negative bacteria naturally shed lipid vesicles, which contain complex molecular cargoes, from their outer membrane. These outer membrane vesicles (OMVs) have important biological functions relating to microbial stress responses, microbiome regulation, and host-pathogen interactions. OMVs are also attractive vehicles for delivering drugs, vaccines, and other therapeutic agents because of their ability to interact with host cells and their natural immunogenic properties. OMVs are also set to have a positive impact on other biotechnological and medical applications including diagnostics, bioremediation, and metabolic engineering. We envision that the field of synthetic biology offers a compelling opportunity to further expand and accelerate the foundational research and downstream applications of OMVs in a range of applications including the provision of OMV-based healthcare technologies. In our opinion, we discuss how current and potential future synergies between OMV research and synthetic biology approaches might help to further accelerate OMV research and real-world applications for the benefit of animal and human health.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- Authors contributed equally
| | - Alexander J. Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Authors contributed equally
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- The London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, London W12 0BZ, UK
| |
Collapse
|
10
|
Doré E, Boilard E. Bacterial extracellular vesicles and their interplay with the immune system. Pharmacol Ther 2023; 247:108443. [PMID: 37210006 DOI: 10.1016/j.pharmthera.2023.108443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The mammalian intestinal tract harbors trillions of microorganisms confined within this space by mucosal barriers. Despite these barriers, bacterial components may still be found elsewhere in the body, even in healthy subjects. Bacteria can release small lipid-bound particles, also named bacterial extracellular vesicles (bEV). While bacteria themselves cannot normally penetrate the mucosal defense, bEVs may infiltrate the barrier and disseminate throughout the body. The extremely diverse cargo that bEVs can carry, depending on their parent species, strain, and growth conditions, grant them an equally broad potential to interact with host cells and influence immune functions. Herein, we review the current knowledge of processes underlying the uptake of bEVs by mammalian cells, and their effect on the immune system. Furthermore, we discuss how bEVs could be targeted and manipulated for diverse therapeutic purposes.
Collapse
Affiliation(s)
- Etienne Doré
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada; Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada; Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada.
| |
Collapse
|
11
|
Laakmann K, Eckersberg JM, Hapke M, Wiegand M, Bierwagen J, Beinborn I, Preußer C, Pogge von Strandmann E, Heimerl T, Schmeck B, Jung AL. Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells. Cell Commun Signal 2023; 21:111. [PMID: 37189117 DOI: 10.1186/s12964-023-01131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction. Here, we investigated the impact of bEVs of sepsis-related pathogens on human EC RNase1 regulation. METHODS bEVs from sepsis-associated bacteria were isolated via ultrafiltration and size exclusion chromatography and used for stimulation of human lung microvascular ECs combined with and without signaling pathway inhibitor treatments. RESULTS bEVs from Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium significantly reduced RNase1 mRNA and protein expression and activated ECs, while TLR2-inducing bEVs from Streptococcus pneumoniae did not. These effects were mediated via LPS-dependent TLR4 signaling cascades as they could be blocked by Polymyxin B. Additionally, LPS-free ClearColi™ had no impact on RNase1. Further characterization of TLR4 downstream pathways involving NF-кB and p38, as well as JAK1/STAT1 signaling, revealed that RNase1 mRNA regulation is mediated via a p38-dependent mechanism. CONCLUSION Blood stream bEVs from gram-negative, sepsis-associated bacteria reduce the vascular protective factor RNase1, opening new avenues for therapeutical intervention of EC dysfunction via promotion of RNase1 integrity. Video Abstract.
Collapse
Affiliation(s)
- Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jorina Mona Eckersberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Moritz Hapke
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
12
|
Ahmed AAQ, Besio R, Xiao L, Forlino A. Outer Membrane Vesicles (OMVs) as Biomedical Tools and Their Relevance as Immune-Modulating Agents against H. pylori Infections: Current Status and Future Prospects. Int J Mol Sci 2023; 24:ijms24108542. [PMID: 37239888 DOI: 10.3390/ijms24108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
13
|
Le LHM, Steele JR, Ying L, Schittenhelm RB, Ferrero RL. A new isolation method for bacterial extracellular vesicles providing greater purity and improved proteomic detection of vesicle proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e84. [PMID: 38938280 PMCID: PMC11080860 DOI: 10.1002/jex2.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 06/29/2024]
Abstract
Contaminants within cell culture media often co-isolate with eukaryotic extracellular vesicles (EVs) thus affecting their biological properties. It has yet to be investigated if this is also true for bacterial EVs (BEVs), especially for organisms grown in complex culture media containing animal-derived products. To address this question, we isolated BEVs from the fastidious bacterium Helicobacter pylori grown in either standard Brain Heart Infusion (BHI) medium or BHI depleted of animal-derived products (D-BHI). We show that BEVs prepared from bacteria grown in D-BHI medium have similar morphologies, size ranges and yields to those prepared from standard medium. Similarly, no differences were found in the ability of H. pylori BEVs to induce IL-8 responses in epithelial cells. However, H. pylori BEVs prepared from D-BHI medium were of higher purity than those prepared from standard medium. Importantly, proteomic analyses detected 3.4-fold more H. pylori proteins and 10-fold fewer bovine-derived proteins in BEV samples prepared from D-BHI rather than the standard method. Fifty-seven H. pylori proteins were uniquely detected in BEV samples prepared from D-BHI. In conclusion, we have described an improved method for BEV isolation. Furthermore, we demonstrate how animal-derived products in bacteriological culture media may adversely affect proteomic analyses of BEVs.
Collapse
Affiliation(s)
- Lena Hoang My Le
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Biomedicine Discovery Institute, Department of MicrobiologyMonash UniversityClaytonVictoriaAustralia
| | - Joel R. Steele
- Monash Proteomics and Metabolomics FacilityDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Le Ying
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics FacilityDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Biomedicine Discovery Institute, Department of MicrobiologyMonash UniversityClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
14
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Zhang Y, Yao J, Wang LS, Liang YJ, Li DF. Emerging role of bacterial outer membrane vesicle in gastrointestinal tract. Gut Pathog 2023; 15:20. [PMID: 37106359 PMCID: PMC10133921 DOI: 10.1186/s13099-023-00543-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Bacteria form a highly complex ecosystem in the gastrointestinal (GI) tract. In recent years, mounting evidence has shown that bacteria can release nanoscale phospholipid bilayer particles that encapsulate nucleic acids, proteins, lipids, and other molecules. Extracellular vesicles (EVs) are secreted by microorganisms and can transport a variety of important factors, such as virulence factors, antibiotics, HGT, and defensive factors produced by host eukaryotic cells. In addition, these EVs are vital in facilitating communication between microbiota and the host. Therefore, bacterial EVs play a crucial role in maintaining the GI tract's health and proper functioning. In this review, we outlined the structure and composition of bacterial EVs. Additionally, we highlighted the critical role that bacterial EVs play in immune regulation and in maintaining the balance of the gut microbiota. To further elucidate progress in the field of intestinal research and to provide a reference for future EV studies, we also discussed the clinical and pharmacological potential of bacterial EVs, as well as the necessary efforts required to understand the mechanisms of interaction between bacterial EVs and gut pathogenesis.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, No.1080, Cuizu Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| |
Collapse
|