1
|
Evans KM, Chen SH, Souna AJ, Stranick SJ, Soles CL, Chan EP. The Projectile Perforation Resistance of Materials: Scaling the Impact Resistance of Thin Films to Macroscale Materials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384826 DOI: 10.1021/acsami.3c05130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
From drug delivery to ballistic impact, the ability to control or mitigate the puncture of a fast-moving projectile through a material is critical. While puncture is a common occurrence, which can span many orders of magnitude in the size, speed, and energy of the projectile, there remains a need to connect our understanding of the perforation resistance of materials at the nano- and microscale to the actual behavior at the macroscale that is relevant for engineering applications. In this article, we address this challenge by combining a new dimensional analysis scheme with experimental data from micro- and macroscale impact tests to develop a relationship that connects the size-scale effects and materials properties during high-speed puncture events. By relating the minimum perforation velocity to fundamental material properties and geometric test conditions, we provide new insights and establish an alternative methodology for evaluating the performance of materials that is independent of the impact energy or the specific projectile puncture experiment type. Finally, we demonstrate the utility of this approach by assessing the relevance of novel materials, such as nanocomposites and graphene for real-world impact applications.
Collapse
Affiliation(s)
- Katherine M Evans
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, Maryland 20899, United States
| | - Shawn H Chen
- National Institute of Standards and Technology, Materials Measurement Sciences Division, Gaithersburg, Maryland 20899, United States
| | - Amanda J Souna
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, Maryland 20899, United States
| | - Stephan J Stranick
- National Institute of Standards and Technology, Materials Measurement Sciences Division, Gaithersburg, Maryland 20899, United States
| | - Christopher L Soles
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, Maryland 20899, United States
| | - Edwin P Chan
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Pressure- and Size-Dependent Aerodynamic Drag Effects on Mach 0.3–2.2 Microspheres for High-Precision Micro-Ballistic Characterization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The acceleration of microparticles to supersonic velocities is required for microscopic ballistic testing, a method for understanding material characteristics under extreme dynamic conditions, and for projectile gene and drug delivery, a needle-free administration technique. However, precise aerodynamic effects upon supersonic microsphere motion at sub-300 Reynolds numbers have not been quantified. We derive drag coefficients for microspheres traveling in air at subsonic, transonic, and supersonic velocities from the measured trajectories of microspheres launched by laser-induced projectile acceleration. Moreover, the observed drag effects on microspheres in atmospheric (760 Torr) and reduced pressure (76 Torr) are compared with existing empirical data and drag coefficient models. We find that the existing models adequately predict the drag coefficient for subsonic microspheres, while rarefaction effects cause a discrepancy between the model and empirical data in the supersonic regime. These results will improve microsphere flight modeling for high-precision microscopic ballistic testing and projectile gene and drug delivery.
Collapse
|
3
|
In vivo, in situ and ex vivo comparison of porcine skin for microprojection array penetration depth, delivery efficiency and elastic modulus assessment. J Mech Behav Biomed Mater 2022; 130:105187. [DOI: 10.1016/j.jmbbm.2022.105187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
|
4
|
Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, Donnelly RF. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022; 14:1152. [PMID: 35745725 PMCID: PMC9231212 DOI: 10.3390/pharmaceutics14061152] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ideal drug delivery system has a bioavailability comparable to parenteral dosage forms but is as convenient and easy to use for the patient as oral solid dosage forms. In recent years, there has been increased interest in transdermal drug delivery (TDD) as a non-invasive delivery approach that is generally regarded as being easy to administer to more vulnerable age groups, such as paediatric and geriatric patients, while avoiding certain bioavailability concerns that arise from oral drug delivery due to poor absorbability and metabolism concerns. However, despite its many merits, TDD remains restricted to a select few drugs. The physiology of the skin poses a barrier against the feasible delivery of many drugs, limiting its applicability to only those drugs that possess physicochemical properties allowing them to be successfully delivered transdermally. Several techniques have been developed to enhance the transdermal permeability of drugs. Both chemical (e.g., thermal and mechanical) and passive (vesicle, nanoparticle, nanoemulsion, solid dispersion, and nanocrystal) techniques have been investigated to enhance the permeability of drug substances across the skin. Furthermore, hybrid approaches combining chemical penetration enhancement technologies with physical technologies are being intensively researched to improve the skin permeation of drug substances. This review aims to summarize recent trends in TDD approaches and discuss the merits and drawbacks of the various chemical, physical, and hybrid approaches currently being investigated for improving drug permeability across the skin.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Jehad Nasereddin
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sukaina Nimrawi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| |
Collapse
|
5
|
K B M, Nayar SA, P V M. Vaccine and vaccination as a part of human life: In view of COVID-19. Biotechnol J 2021; 17:e2100188. [PMID: 34665927 PMCID: PMC8646257 DOI: 10.1002/biot.202100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022]
Abstract
Background Vaccination created a great breakthrough toward the improvement to the global health. The development of vaccines and their use made a substantial decrease and control in infectious diseases. The abundance and emergence of new vaccines has facilitated targeting populations to alleviate and eliminate contagious pathogens from their innate reservoir. However, along with the infections like malaria and HIV, effective immunization remains obscure and imparts a great challenge to science. Purpose and scope The novel Corona virus SARS‐CoV‐2 is the reason for the 2019 COVID‐19 pandemic in the human global population, in the first half of 2019. The need for establishing a protected and compelling COVID‐19 immunization is a global prerequisite to end this pandemic. Summary and conclusion The different vaccine technologies like inactivation, attenuation, nucleic acid, viral vector, subunit, and viral particle based techniques are employed to develop a safe and highly efficient vaccine. The progress in vaccine development for SARS‐CoV2 is much faster in the history of science. Even though there exist of lot of limitations, continuous efforts has put forward so as to develop highly competent and effective vaccine for many human and animal linked diseases due to its unlimited prospective. This review article focuses on the historical outlook and the development of the vaccine as it is a crucial area of research where the life of the human is saved from various potential diseases.
Collapse
Affiliation(s)
- Megha K B
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, India
| | - Seema A Nayar
- Microbiology Department, Government Medical College, Trivandrum, India
| | - Mohanan P V
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, India
| |
Collapse
|
6
|
Velagacherla V, Suresh A, Mehta CH, Nayak UY. Advances and challenges in nintedanib drug delivery. Expert Opin Drug Deliv 2021; 18:1687-1706. [PMID: 34556001 DOI: 10.1080/17425247.2021.1985460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Nintedanib (N.T.B) is an orally administered tyrosine kinase inhibitor that has been approved recently by U.S.F.D.A for idiopathic pulmonary fibrosis (I.P.F) and systemic sclerosis-associated interstitial lung disease (S.Sc-I.L.D). N.T.B is also prescribed in COVID-19 patients associated with I.P.F. However, it has an extremely low bioavailability of around 4.7%, and hence, researchers are attempting to address this drawback by different approaches. AREAS COVERED This review article focuses on enlisting all the formulation attempts explored by researchers to increase the bioavailability of N.T.B while also providing meaningful insight into the unexplored areas in formulation development, such as targeting of the lymphatic system and transdermal delivery. All the patents on the formulation development of N.T.B have also been summarized. EXPERT OPINION N.T.B has the potential to act on multiple diseases that are still being discovered, but its extremely low bioavailability is a challenge that is to be dealt with for obtaining the full benefit. Few studies have been performed aiming at improving the bioavailability, but there are unexplored areas that can be used, a few of which are explained in this article. However, the ability to reproduce laboratory results when scaling up to the industry level is the only factor to be taken into consideration.
Collapse
Affiliation(s)
- Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Laccetti B, Kornfield J. Ballistic delivery of compounds to inner layers of the cornea is limited by tough mechanical properties of stromal tissue. J Mech Behav Biomed Mater 2020; 115:104246. [PMID: 33340774 DOI: 10.1016/j.jmbbm.2020.104246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/18/2022]
Abstract
The barrier characteristics of the cornea are interrogated using the impact of micro-particles into ex vivo porcine cornea. Using a commercial gene gun (BioRad; PDS1000), microparticles were accelerated and made to embed in target materials: either ballistic gelatin as a reference or corneal tissue. Statistical analysis of penetration of polydisperse spherical microparticles (5-22 μm dia.) with density of 2.5 g/cc, 4.2 g/cc, and 7.8 g/cc (soda-lime glass, barium-titanate glass and stainless steel; more limited examination of 1.1 g/cc polyethylene and 19.2 g/cc tungsten) spanned almost two decades in kinetic energy. Penetration profiles in ballistic gelatin show that the particle embedding depth is sensitive to particle size and density. In the cornea, penetration is a weak function of size and density, and the corneal stroma is an effective stopping medium for high velocity microparticles. Despite the high water content of corneal tissue (76% w/w) compared to the stratum corneum of skin (40% w/w), the resistance to penetration of the cornea is comparable to what is seen in previous research of penetration in skin tissue. Using low density polymer particles with a therapeutic agent payload, it is demonstrated that bulk material can be ballistically delivered to the central 1 cm2 of the corneal epithelium in an even layer with high bioavailability of therapeutic compound.
Collapse
Affiliation(s)
- Benjamin Laccetti
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Julia Kornfield
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
8
|
Microprojection arrays applied to skin generate mechanical stress, induce an inflammatory transcriptome and cell death, and improve vaccine-induced immune responses. NPJ Vaccines 2019; 4:41. [PMID: 31632742 PMCID: PMC6789026 DOI: 10.1038/s41541-019-0134-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/11/2019] [Indexed: 11/08/2022] Open
Abstract
Chemical adjuvants are typically used to improve immune responses induced by immunisation with protein antigens. Here we demonstrate an approach to enhance immune responses that does not require chemical adjuvants. We applied microprojection arrays to the skin, producing a range of controlled mechanical energy to invoke localised inflammation, while administering influenza split virus protein antigen. We used validated computational modelling methods to identify links between mechanical stress and energy generated within the skin strata and resultant cell death. We compared induced immune responses to those induced by needle-based intradermal antigen delivery and used a systems biology approach to examine the nature of the induced inflammatory response, and correlated this with markers of cell stress and death. Increasing the microprojection array application energy and the addition of QS-21 adjuvant were each associated with enhanced antibody response to delivered antigen and with induction of gene transcriptions associated with TNF and NF-κB signalling pathways. We concluded that microprojection intradermal antigen delivery inducing controlled local cell death could potentially replace chemical adjuvants to enhance the immune response to protein antigen. Adjuvants play an essential function in vaccine formulations by boosting immune responses to the delivered antigen. Mark A. F. Kendall and colleagues investigate the efficacy of vaccine delivered intradermally via NanopatchTM—a 16 mm2 ultra-high-density array of 100 micron needles. Systems analysis comparisons demonstrate that depending on the force applied, the NanopatchTM triggers skin transcriptomic changes similar to that elicited by the adjuvant QS-21, including evidence of localised cell death and inflammatory gene expression. Flu vaccine delivered by NanopatchTM elicits anti-hemagglutinin titers equivalent to that observed with conventional intradermal syringe delivery of vaccine plus adjuvant. Sterile mechanical stress elicited by the application of microneedles might therefore be a viable replacement to the use of conventional needles.
Collapse
|
9
|
Vishali D, Monisha J, Sivakamasundari S, Moses J, Anandharamakrishnan C. Spray freeze drying: Emerging applications in drug delivery. J Control Release 2019; 300:93-101. [DOI: 10.1016/j.jconrel.2019.02.044] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/15/2022]
|
10
|
A pilot study using a novel pyrotechnically driven prototype applicator for epidermal powder immunization in piglets. Int J Pharm 2018; 545:215-228. [DOI: 10.1016/j.ijpharm.2018.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022]
|
11
|
Subburaj J, Datey A, Gopalan J, Chakravortty D. Insights into the mechanism of a novel shockwave-assisted needle-free drug delivery device driven by in situ-generated oxyhydrogen mixture which provides efficient protection against mycobacterial infections. J Biol Eng 2017; 11:48. [PMID: 29255479 PMCID: PMC5727940 DOI: 10.1186/s13036-017-0088-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Background Needle-free, painless and localized drug delivery has been a coveted technology in the area of biomedical research. We present an innovative way of trans-dermal vaccine delivery using a miniature detonation-driven shock tube device. This device utilizes~2.5 bar of in situ generated oxyhydrogen mixture to produce a strong shockwave that accelerates liquid jets to velocities of about 94 m/s. Method Oxyhydrogen driven shock tube was optimized for efficiently delivering vaccines in the intradermal region in vivo. Efficiency of vaccination was evaluated by pathogen challenge and host immune response. Expression levels of molecular markers were checked by qRT-PCR. Results High efficiency vaccination was achieved using the device. Post pathogen challenge with Mycobacterium tuberculosis, 100% survival was observed in vaccinated animals. Immune response to vaccination was significantly higher in the animals vaccinated using the device as compared to conventional route of vaccination. Conclusion A novel device was developed and optimized for intra dermal vaccine delivery in murine model. Conventional as well in-house developed vaccine strains were used to test the system. It was found that the vaccine delivery and immune response was at par with the conventional routes of vaccination. Thus, the device reported can be used for delivering live attenuated vaccines in the future.
Collapse
Affiliation(s)
| | - Akshay Datey
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India.,Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Jagadeesh Gopalan
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Vora LK, Donnelly RF, Larrañeta E, González-Vázquez P, Thakur RRS, Vavia PR. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept. J Control Release 2017; 265:93-101. [PMID: 29037785 DOI: 10.1016/j.jconrel.2017.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/25/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022]
Abstract
Polymeric microneedle (MN) arrays continue to receive growing attention due to their ability to bypass the skin's stratum corneum barrier in a minimally-invasive fashion and achieve enhanced transdermal drug delivery and "targeted" intradermal vaccine administration. In this research work, we fabricated biodegradable bilayer MN arrays containing nano - microparticles for targeted and sustained intradermal drug delivery. For this study, model drug (vitamin D3, VD3)-loaded PLGA nano- and microparticles (NMP) were prepared by a single emulsion solvent evaporation method with 72.8% encapsulation of VD3. The prepared NMP were directly mixed 20% w/v poly(vinyl pyrrolidone) (PVP) gel, with the mixture filled into laser engineered micromoulds by high-speed centrifugation (30min) to concentrate NMP into MN shafts. The particle size of PLGA NMP ranged from 300nm to 3.5μm and they retained their particle size after moulding of bilayer MN arrays. The relatively wide particle size distribution of PLGA NMP was shown to be important in producing a compact structure in bilayer conical, as well as pyramidal, MN, as confirmed by scanning electron microscopy. The drug release profile from PLGA NMP was tri-phasic, being sustained over 5days. The height of bilayer MN arrays was influenced by the weight ratio of NMP and 20% w/v PVP. Good mechanical and insertion profiles (into a skin simulant and excised neonatal porcine skin) were confirmed by texture analysis and optical coherence tomography, respectively. Ex vivo intradermal neonatal porcine skin penetration of VD3 NMP from bilayer MN was quantitatively analysed after cryostatic skin sectioning, with 74.2±9.18% of VD3 loading delivered intradermally. The two-stage novel processing strategy developed here provides a simple and easy method for localising particulate delivery systems into dissolving MN. Such systems may serve as promising means for controlled transdermal delivery and targeted intradermal administration.
Collapse
Affiliation(s)
- Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence, Govt. of Maharashtra, Mumbai 400 019, India
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence, Govt. of Maharashtra, Mumbai 400 019, India.
| |
Collapse
|
13
|
Straller G, Lee G. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle. Int J Pharm 2017; 532:444-449. [DOI: 10.1016/j.ijpharm.2017.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
|
14
|
Berrospe-Rodriguez C, Visser CW, Schlautmann S, Rivas DF, Ramos-Garcia R. Toward jet injection by continuous-wave laser cavitation. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 29030942 DOI: 10.1117/1.jbo.22.10.105003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/15/2017] [Indexed: 05/06/2023]
Abstract
This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ∼1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general.
Collapse
Affiliation(s)
- Carla Berrospe-Rodriguez
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Puebla, Pue., México
| | - Claas Willem Visser
- Harvard University, Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
- University of Twente, Physics of Fluids Group, MESA+ Institute and Faculty of Science and Technology, The Netherlands
| | - Stefan Schlautmann
- University of Twente, Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and T, The Netherlands
| | - David Fernandez Rivas
- University of Twente, Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and T, The Netherlands
| | - Ruben Ramos-Garcia
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Puebla, Pue., México
| |
Collapse
|
15
|
Weissmueller NT, Marsay L, Schiffter HA, Carlisle RC, Rollier CS, Prud’homme RK, Pollard AJ. Alternative vaccine administration by powder injection: Needle-free dermal delivery of the glycoconjugate meningococcal group Y vaccine. PLoS One 2017; 12:e0183427. [PMID: 28837693 PMCID: PMC5570268 DOI: 10.1371/journal.pone.0183427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022] Open
Abstract
Powder-injectors use gas propulsion to deposit lyophilised drug or vaccine particles in the epidermal and sub epidermal layers of the skin. We prepared dry-powder (Tg = 45.2 ± 0.5°C) microparticles (58.1 μm) of a MenY-CRM197 glyconjugate vaccine (0.5% wt.) for intradermal needle-free powder injection (NFPI). SFD used ultrasound atomisation of the liquid vaccine-containing excipient feed, followed by lyophilisation above the glass transition temperature (Tg' = - 29.9 ± 0.3°C). This resulted in robust particles (density~ 0.53 ±0.09 g/cm3) with a narrow volume size distribution (mean diameter 58.1 μm, and span = 1.2), and an impact parameter (ρvr ~ 11.5 kg/m·s) sufficient to breach the Stratum corneum (sc). The trehalose, manitol, dextran (10 kDa), dextran (150 kDa) formulation, or TMDD (3:3:3:1), protected the MenY-CRM197 glyconjugate during SFD with minimal loss, no detectable chemical degradation or physical aggregation. In a capsular group Y Neisseria meningitidis serum bactericidal assay (SBA) with human serum complement, the needle free vaccine, which contained no alum adjuvant, induced functional protective antibody responses in vivo of similar magnitude to the conventional vaccine injected by hypodermic needle and syringe and containing alum adjuvant. These results demonstrate that needle-free vaccination is both technically and immunologically valid, and could be considered for vaccines in development.
Collapse
Affiliation(s)
- Nikolas T. Weissmueller
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
- Department of Biological and Chemical Engineering, Princeton University, Princeton, New Jersey, United States of America
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Leanne Marsay
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| | - Heiko A. Schiffter
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Robert C. Carlisle
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Christine S. Rollier
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| | - Robert K. Prud’homme
- Department of Biological and Chemical Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew J. Pollard
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
16
|
Moradiafrapoli M, Marston J. High-speed video investigation of jet dynamics from narrow orifices for needle-free injection. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2016.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Fernando GJP, Zhang J, Ng HI, Haigh OL, Yukiko SR, Kendall MAF. Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8(+) T cell responses. J Control Release 2016; 237:35-41. [PMID: 27381247 DOI: 10.1016/j.jconrel.2016.06.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023]
Abstract
DNA vaccines have many advantages such as thermostability and the ease and rapidity of manufacture; for example, in an influenza pandemic situation where rapid production of vaccine is essential. However, immunogenicity of DNA vaccines was shown to be poor in humans unless large doses of DNA are used. If a highly efficacious DNA vaccine delivery system could be identified, then DNA vaccines have the potential to displace protein vaccines. In this study, we show in a C57BL/6 mouse model, that the Nanopatch, a microprojection array of high density (>21,000 projections/cm(2)), could be used to deliver influenza nucleoprotein DNA vaccine to skin, to generate enhanced antigen specific antibody and CD8(+) T cell responses compared to the conventional intramuscular (IM) delivery by the needle and syringe. Antigen specific antibody was measured using ELISA assays of mice vaccinated with a DNA plasmid containing the nucleoprotein gene of influenza type A/WSN/33 (H1N1). Antigen specific CD8(+) T cell responses were measured ex-vivo in splenocytes of mice using IFN-γ ELISPOT assays. These results and our previous antibody and CD4(+) T cell results using the Nanopatch delivered HSV DNA vaccine indicate that the Nanopatch is an effective delivery system of general utility that could potentially be used in humans to increase the potency of the DNA vaccines.
Collapse
Affiliation(s)
- Germain J P Fernando
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Jin Zhang
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland 4072, Australia
| | - Hwee-Ing Ng
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Oscar L Haigh
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland 4072, Australia
| | - Sally R Yukiko
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland 4072, Australia
| | - Mark A F Kendall
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia; The University of Queensland, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia.
| |
Collapse
|
18
|
Crichton ML, Muller DA, Depelsenaire ACI, Pearson FE, Wei J, Coffey J, Zhang J, Fernando GJP, Kendall MAF. The changing shape of vaccination: improving immune responses through geometrical variations of a microdevice for immunization. Sci Rep 2016; 6:27217. [PMID: 27251567 PMCID: PMC4890175 DOI: 10.1038/srep27217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/28/2016] [Indexed: 11/09/2022] Open
Abstract
Micro-device use for vaccination has grown in the past decade, with the promise of ease-of-use, painless application, stable solid formulations and greater immune response generation. However, the designs of the highly immunogenic devices (e.g. the gene gun, Nanopatch or laser adjuvantation) require significant energy to enter the skin (30-90 mJ). Within this study, we explore a way to more effectively use energy for skin penetration and vaccination. These modifications change the Nanopatch projections from cylindrical/conical shapes with a density of 20,000 per cm(2) to flat-shaped protrusions at 8,000 per cm(2), whilst maintaining the surface area and volume that is placed within the skin. We show that this design results in more efficient surface crack initiations, allowing the energy to be more efficiently be deployed through the projections into the skin, with a significant overall increase in penetration depth (50%). Furthermore, we measured a significant increase in localized skin cell death (>2 fold), and resultant infiltrate of cells (monocytes and neutrophils). Using a commercial seasonal trivalent human influenza vaccine (Fluvax 2014), our new patch design resulted in an immune response equivalent to intramuscular injection with approximately 1000 fold less dose, while also being a practical device conceptually suited to widespread vaccination.
Collapse
Affiliation(s)
- Michael Lawrence Crichton
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - David Alexander Muller
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Alexandra Christina Isabelle Depelsenaire
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Frances Elizabeth Pearson
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Jonathan Wei
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Jacob Coffey
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Jin Zhang
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Germain J P Fernando
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Mark Anthony Fernance Kendall
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia.,The University of Queensland, Faculty of Medicine and Biomedical Sciences, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
19
|
Pirmoradi FN, Pattekar AV, Linn F, Recht MI, Volkel AR, Wang Q, Anderson GB, Veiseh M, Kjono S, Peeters E, Uhland SA, Chow EM. A microarray MEMS device for biolistic delivery of vaccine and drug powders. Hum Vaccin Immunother 2016; 11:1936-44. [PMID: 26090875 PMCID: PMC4635881 DOI: 10.1080/21645515.2015.1029211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report a biolistic technology platform for physical delivery of particle formulations of drugs or vaccines using parallel arrays of microchannels, which generate highly collimated jets of particles with high spatial resolution. Our approach allows for effective delivery of therapeutics sequentially or concurrently (in mixture) at a specified target location or treatment area. We show this new platform enables the delivery of a broad range of particles with various densities and sizes into both in vitro and ex vivo skin models. Penetration depths of ∼1 mm have been achieved following a single ejection of 200 µg high-density gold particles, as well as 13.6 µg low-density polystyrene-based particles into gelatin-based skin simulants at 70 psi inlet gas pressure. Ejection of multiple shots at one treatment site enabled deeper penetration of ∼3 mm in vitro, and delivery of a higher dose of 1 mg gold particles at similar inlet gas pressure. We demonstrate that particle penetration depths can be optimized in vitro by adjusting the inlet pressure of the carrier gas, and dosing is controlled by drug reservoirs that hold precise quantities of the payload, which can be ejected continuously or in pulses. Future investigations include comparison between continuous versus pulsatile payload deliveries. We have successfully delivered plasmid DNA (pDNA)-coated gold particles (1.15 µm diameter) into ex vivo murine and porcine skin at low inlet pressures of ∼30 psi. Integrity analysis of these pDNA-coated gold particles confirmed the preservation of full-length pDNA after each particle preparation and jetting procedures. This technology platform provides distinct capabilities to effectively deliver a broad range of particle formulations into skin with specially designed high-speed microarray ejector nozzles.
Collapse
|
20
|
Crichton ML, Archer-Jones C, Meliga S, Edwards G, Martin D, Huang H, Kendall MA. Characterising the material properties at the interface between skin and a skin vaccination microprojection device. Acta Biomater 2016; 36:186-94. [PMID: 26956913 DOI: 10.1016/j.actbio.2016.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/04/2016] [Accepted: 02/26/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED The rapid emergence of micro-devices for biomedical applications over the past two decades has introduced new challenges for the materials used in the devices. Devices like microneedles and the Nanopatch, require sufficient strength to puncture skin often with sharp-slender micro-scale profiles, while maintaining mechanical integrity. For these technologies we sought to address two important questions: 1) On the scale at which the device operates, what forces are required to puncture the skin? And 2) What loads can the projections/microneedles withstand prior to failure. First, we used custom fabricated nanoindentation micro-probes to puncture skin at the micrometre scale, and show that puncture forces are ∼0.25-1.75mN for fresh mouse skin, in agreement with finite element simulations for our device. Then, we used two methods to perform strength tests of Nanopatch projections with varied aspect ratios. The first method used a nanoindenter to apply a force directly on the top or on the side of individual silicon projections (110μm in length, 10μm base radius), to measure the force of fracture. Our second method used an Instron to fracture full rows of projections and characterise a range of projection designs (with the method verified against previous nanoindentation experiments). Finally, we used Cryo-Scanning Electron Microscopy to visualise projections in situ in the skin to confirm the behaviour we quantified, qualitatively. STATEMENT OF SIGNIFICANCE Micro-device development has proliferated in the past decade, including devices that interact with tissues for biomedical outcomes. The field of microneedles for vaccine delivery to skin has opened new material challenges both in understanding tissue material properties and device material. In this work we characterise both the biomaterial properties of skin and the material properties of our microprojection vaccine delivery device. This study directly measures the micro-scale puncture properties of skin, whilst demonstrating clearly how these relate to device design. This will be of strong interest to those in the field of biomedical microdevices. This includes work in the field of wearable and semi-implantable devices, which will require clear understanding of tissue behaviour and material characterisation.
Collapse
|
21
|
Berrospe-Rodriguez C, Visser CW, Schlautmann S, Ramos-Garcia R, Fernandez Rivas D. Continuous-wave laser generated jets for needle free applications. BIOMICROFLUIDICS 2016; 10:014104. [PMID: 26858816 PMCID: PMC4714984 DOI: 10.1063/1.4940038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/05/2016] [Indexed: 05/23/2023]
Abstract
We designed and built a microfluidic device for the generation of liquid jets produced by thermocavitation. A continuous wave (CW) laser was focused inside a micro-chamber filled with a light-absorbing solution to create a rapidly expanding vapor bubble. The chamber is connected to a micro-channel which focuses and ejects the liquid jet through the exit. The bubble growth and the jet velocity were measured as a function of the devices geometry (channel diameter D and chamber width A). The fastest jets were those for relatively large chamber size with respect to the channel diameter. Elongated and focused jets up to 29 m/s for a channel diameter of [Formula: see text] and chamber size of [Formula: see text] were obtained. The proposed CW laser-based device is potentially a compact option for a practical and commercially feasible needle-free injector.
Collapse
Affiliation(s)
- Carla Berrospe-Rodriguez
- Departamento de Óptica, Instituto Nacional de Astrofísica , Óptica y Electrónica, Apartado Postal 51 y 216, 72000 Puebla, Pue., Mexico
| | - Claas Willem Visser
- Physics of Fluids Group, MESA+ Institute and Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Stefan Schlautmann
- Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ruben Ramos-Garcia
- Departamento de Óptica, Instituto Nacional de Astrofísica , Óptica y Electrónica, Apartado Postal 51 y 216, 72000 Puebla, Pue., Mexico
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
22
|
Li CY, Wang ZW, Tu C, Wang JB, Jiang BQ, Li Q, Zeng LN, Ma ZJ, Zhang P, Zhao YL, Zhang YM, Yan D, Tan R, Xiao XH. Needle-free injection of insulin powder: delivery efficiency and skin irritation assessment. J Zhejiang Univ Sci B 2015; 15:888-99. [PMID: 25294378 DOI: 10.1631/jzus.b1400065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin is widely used in treating diabetes, but still needs to be administered by needle injection. This study investigated a new needle-free approach for insulin delivery. A portable powder needleless injection (PNI) device with an automatic mechanical unit was designed. Its efficiency in delivering insulin was evaluated in alloxan-induced diabetic rabbits. The skin irritation caused by the device was investigated and the results were analyzed in relation to aerodynamic parameters. Inorganic salt-carried insulin powders had hypoglycemic effects, while raw insulin powders were not effective when delivered by PNI, indicating that salt carriers play an important role in the delivery of insulin via PNI. The relative delivery efficiency of phosphate-carried insulin powder using the PNI device was 72.25%. A safety assessment test showed that three key factors (gas pressure, cylinder volume, and nozzle distance) were related to the amount of skin irritation caused by the PNI device. Optimized injection conditions caused minimal skin lesions and are safe to use in practice. The results suggest that PNI has promising prospects as a novel technology for delivering insulin and other biological drugs.
Collapse
Affiliation(s)
- Chun-yu Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China; China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China; Department of Traditional Chinese Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China; Integrative Medicine Center, 302 Military Hospital, Beijing 100039, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 2015; 7:438-70. [PMID: 26506371 PMCID: PMC4695828 DOI: 10.3390/pharmaceutics7040438] [Citation(s) in RCA: 521] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner much time and investment with the continuous advancement of new and innovative approaches. This review details the progress and current status of the transdermal drug delivery field and describes numerous pharmaceutical developments which have been employed to overcome limitations associated with skin delivery systems. Advantages and disadvantages of the various approaches are detailed, commercially marketed products are highlighted and particular attention is paid to the emerging field of microneedle technologies.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- School of Pharmacy, 97 Lisburn Road, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
- Faculty of Pharmacy, Zarqa University, Zarqa 132222, Jordan.
| | - Maelíosa T C McCrudden
- School of Pharmacy, 97 Lisburn Road, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Ryan F Donnelly
- School of Pharmacy, 97 Lisburn Road, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
24
|
Tlaxca JL, Ellis S, Remmele RL. Live attenuated and inactivated viral vaccine formulation and nasal delivery: potential and challenges. Adv Drug Deliv Rev 2015; 93:56-78. [PMID: 25312673 DOI: 10.1016/j.addr.2014.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 08/01/2014] [Accepted: 10/01/2014] [Indexed: 12/23/2022]
Abstract
Vaccines are cost-effective for the prevention of infectious diseases and have significantly reduced mortality and morbidity. Novel approaches are needed to develop safe and effective vaccines against disease. Major challenges in vaccine development include stability in a suitable dosage form and effective modes of delivery. Many live attenuated vaccines are capable of eliciting both humoral and cell mediated immune responses if physicochemically stable in an appropriate delivery vehicle. Knowing primary stresses that impart instability provides a general rationale for formulation development and mode of delivery. Since most pathogens enter the body through the mucosal route, live-attenuated vaccines have the advantage of mimicking natural immunization via non-invasive delivery. This presentation will examine aspects of formulation design, types of robust dosage forms to consider, effective routes of delivery (invasive and noninvasive), and distinctions between live attenuated or inactivated vaccines.
Collapse
|
25
|
Mo S, Carlisle R, Laga R, Myers R, Graham S, Cawood R, Ulbrich K, Seymour L, Coussios CC. Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours. J Control Release 2015; 210:10-8. [PMID: 25975831 DOI: 10.1016/j.jconrel.2015.05.265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 12/18/2022]
Abstract
Nanomedicines have provided fresh impetus in the fight against cancer due to their selectivity and power. However, these agents are limited when delivered intravenously due to their rapid clearance from the bloodstream and poor passage from the bloodstream into target tumours. Here we describe a novel stealthing strategy which addresses both these limitations and thereby demonstrate that both the passive and mechanically-mediated tumour accumulation of the model nanomedicine adenovirus (Ad) can be substantially enhanced. In our strategy gold nanoparticles were thoroughly modified with 2kDa polyethyleneglycol (PEG) and then linked to Ad via a single reduction-cleavable 5kDa PEG. The resulting Ad-gold-PEG construct was compared to non-modified Ad or conventionally stealthed Ad-poly[N-(2-hydroxypropyl)methacrylamide] (Ad-PHPMA). Notably, although Ad-gold-PEG was of similar size and surface charge to Ad-PHPMA the increase in density, resulting from the inclusion of the gold nanoparticles, provided a substantial enhancement of ultrasound-mediated transport. In an in vitro tumour mimicking phantom, the level and distance of Ad-gold-PEG transport was shown to be substantially greater than achieved with Ad-PHPMA. In in vivo studies 0.1% of an unmodified Ad dose was shown to accumulate in tumours, whereas over 12% of the injected dose was recovered from the tumours of mice treated with Ad-gold-PEG and ultrasound. Ultimately, a significant increase in anti-tumour efficacy resulted from this strategy. This stealthing and density-increasing technology could ultimately enhance clinical utility of intravenously delivered nanoscale medicines including viruses, liposomes and antibodies.
Collapse
Affiliation(s)
- Steven Mo
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | - Richard Laga
- Clinical Pharmacology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK; Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Rachel Myers
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Susan Graham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ryan Cawood
- Clinical Pharmacology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Leonard Seymour
- Clinical Pharmacology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Constantin-C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
26
|
Hogan NC, Taberner AJ, Jones LA, Hunter IW. Needle-free delivery of macromolecules through the skin using controllable jet injectors. Expert Opin Drug Deliv 2015; 12:1637-48. [PMID: 26004884 DOI: 10.1517/17425247.2015.1049531] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Transdermal delivery of drugs has a number of advantages in comparison to other routes of administration. The mechanical properties of skin, however, impose a barrier to administration and so most compounds are administered using hypodermic needles and syringes. In order to overcome some of the issues associated with the use of needles, a variety of non-needle devices based on jet injection technology has been developed. AREAS COVERED Jet injection has been used primarily for vaccine administration but has also been used to deliver macromolecules such as hormones, monoclonal antibodies and nucleic acids. A critical component in the more recent success of jet injection technology has been the active control of pressure applied to the drug during the time course of injection. EXPERT OPINION Jet injection systems that are electronically controllable and reversible offer significant advantages over conventional injection systems. These devices can consistently create the high pressures and jet speeds necessary to penetrate tissue and then transition smoothly to a lower jet speed for delivery of the remainder of the desired dose. It seems likely that in the future this work will result in smart drug delivery systems incorporated into personal medical devices and medical robots for in-home disease management and healthcare.
Collapse
Affiliation(s)
- Nora C Hogan
- a 1 Massachusetts Institute of Technology, Department of Mechanical Engineering , 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrew J Taberner
- b 2 University of Auckland, Auckland Bioengineering Institute and Department of Engineering Science , 70 Symonds Street, Auckland 1010, New Zealand
| | - Lynette A Jones
- c 3 Massachusetts Institute of Technology, Department of Mechanical Engineering , 77 Massachusetts Avenue, Cambridge, MA 02139, USA +1 617 253 3973 ; +1 617 253 2218 ;
| | - Ian W Hunter
- d 4 Massachusetts Institute of Technology, Department of Mechanical Engineering , 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine 2015; 33:4663-74. [PMID: 26006087 DOI: 10.1016/j.vaccine.2015.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies.
Collapse
|
28
|
Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm 2015; 488:136-53. [PMID: 25900097 DOI: 10.1016/j.ijpharm.2015.04.053] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
Abstract
Pharmaceutical spray-freeze drying (SFD) includes a heterogeneous set of technologies with primary applications in apparent solubility enhancement, pulmonary drug delivery, intradermal ballistic administration and delivery of vaccines to the nasal mucosa. The methods comprise of three steps: droplet generation, freezing and sublimation drying, which can be matched to the requirements given by the dosage form and route of administration. The objectives, various methods and physicochemical and pharmacological outcomes have been reviewed with a scope including related fields of science and technology.
Collapse
Affiliation(s)
- Stefan Wanning
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Richard Süverkrüp
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Alf Lamprecht
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France.
| |
Collapse
|
29
|
Needle-Free Dermal Delivery of a Diphtheria Toxin CRM197 Mutant on Potassium-Doped Hydroxyapatite Microparticles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:586-92. [PMID: 25809632 DOI: 10.1128/cvi.00121-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/21/2015] [Indexed: 11/20/2022]
Abstract
Injections with a hypodermic needle and syringe (HNS) are the current standard of care globally, but the use of needles is not without limitation. While a plethora of needle-free injection devices exist, vaccine reformulation is costly and presents a barrier to their widespread clinical application. To provide a simple, needle-free, and broad-spectrum protein antigen delivery platform, we developed novel potassium-doped hydroxyapatite (K-Hap) microparticles with improved protein loading capabilities that can provide sustained local antigen presentation and release. K-Hap showed increased protein adsorption over regular hydroxyapatite (P < 0.001), good structural retention of the model antigen (CRM197) with 1% decrease in α-helix content and no change in β-sheet content upon adsorption, and sustained release in vitro. Needle-free intradermal powder inoculation with K-Hap-CRM197 induced significantly higher IgG1 geometric mean titers (GMTs) than IgG2a GMTs in a BALB/c mouse model (P < 0.001) and induced IgG titer levels that were not different from the current clinical standard (P > 0.05), namely, alum-adsorbed CRM197 by intramuscular (i.m.) delivery. The presented results suggest that K-Hap microparticles may be used as a novel needle-free delivery vehicle for some protein antigens.
Collapse
|
30
|
McNeilly CL, Crichton ML, Primiero CA, Frazer IH, Roberts MS, Kendall MAF. Microprojection arrays to immunise at mucosal surfaces. J Control Release 2014; 196:252-60. [PMID: 25285611 DOI: 10.1016/j.jconrel.2014.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/22/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022]
Abstract
The buccal mucosa (inner cheek) is an attractive site for delivery of immunotherapeutics, due to its ease of access and rich antigen presenting cell (APC) distribution. However, to date, most delivery methods to the buccal mucosa have only been topical-with the challenges of: 1) an environment where significant biomolecule degradation may occur; 2) inability to reach the APCs that are located deep in the epithelium and lamina propria; and 3) salivary flow and mucous secretion that may result in removal of the therapeutic agent before absorption has taken place. To overcome these challenges and achieve consistent, repeatable targeted delivery of immunotherapeutics to within the buccal mucosa (not merely on to the surface), we utilised microprojection arrays (Nanopatches-110 μm length projections, 3364 projections, 16 mm2 surface area) with a purpose built clip applicator. The mechanical application of Nanopatches bearing a dry-coated vaccine (commercial influenza vaccine, as a test case immunotherapeutic) released the vaccine to a depth of 47.8±14.8 μm (mean±SD, n=4), in the mouse buccal mucosa (measured using fluorescent delivered dyes and CryoSEM). This location is in the direct vicinity of APCs, facilitating antigenic uptake. Resultant systemic immune responses were similar to systemic immunization methods, and superior to comparative orally immunised mice. This confirms the Nanopatch administered vaccine was delivered into the buccal mucosa and not ingested. This study demonstrates a minimally-invasive delivery device with rapid (2 min of application time), accurate and consistent release of immunotherapeutics in to the buccal mucosa-that conceptually can be extended in to human use for broad and practical utility.
Collapse
Affiliation(s)
- Celia L McNeilly
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Michael L Crichton
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia; Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| | - Clare A Primiero
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, School of Medicine, Princess Alexandra Hospital, The University of Queensland, Brisbane, Queensland, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Mark A F Kendall
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia; Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia; The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
31
|
Deng Y, Mathaes R, Winter G, Engert J. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection. Eur J Pharm Sci 2014; 63:154-66. [DOI: 10.1016/j.ejps.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
32
|
Iftekhar Rasel M, Kim H. A computational study of drug particle delivery through a shock tube. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Weissmueller NT, Schiffter HA, Pollard AJ. Intradermal powder immunization with protein-containing vaccines. Expert Rev Vaccines 2013; 12:687-702. [PMID: 23750797 DOI: 10.1586/erv.13.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The central importance for global public health policy of delivering life-saving vaccines for all children makes the development of efficacious and safe needle-free alternatives to hypodermic needles, preferably in a thermostable form, a matter of pressing urgency. This paper comprehensively reviews past in vivo studies on intradermal powder immunization with vaccine formulations that do not require refrigeration. Particular emphasis is given to the immune response in relation to antigen adjuvantation. While needle-free intradermal delivery of vaccines induces a predominantly Th2-type immune response, adjuvants powerfully enhance and modulate the magnitude and nature of the elicited immune response at various effector sites.
Collapse
Affiliation(s)
- Nikolas T Weissmueller
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | | |
Collapse
|
34
|
Mitragotri S. Engineering approaches to transdermal drug delivery: a tribute to contributions of prof. Robert Langer. Skin Pharmacol Physiol 2013; 26:263-76. [PMID: 23921113 DOI: 10.1159/000351947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022]
Abstract
Transdermal drug delivery continues to provide an advantageous route of drug administration over injections. While the number of drugs delivered by passive transdermal patches has increased over the years, no macromolecule is currently delivered by the transdermal route. Substantial research efforts have been dedicated by a large number of researchers representing varied disciplines including biology, chemistry, pharmaceutics and engineering to understand, model and overcome the skin's barrier properties. This article focuses on engineering contributions to the field of transdermal drug delivery. The article pays tribute to Prof. Robert Langer, who pioneered the engineering approach towards transdermal drug delivery. Over a period spanning nearly 25 years since his first publication in the field of transdermal drug delivery, Bob Langer has deeply impacted the field by quantitative analysis and innovative engineering. At the same time, he has inspired several generations of engineers by collaborations and mentorship. His scientific insights, innovative technologies, translational efforts and dedicated mentorship have transformed the field.
Collapse
Affiliation(s)
- S Mitragotri
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
35
|
Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1433-9. [PMID: 23863506 DOI: 10.1128/cvi.00251-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 months after a single vaccine dose. Influenza virus-specific total IgG response and hemagglutination inhibition (HAI) titers were maintained at high levels for over 1 year after microneedle vaccination. Microneedle vaccination also induced substantial levels of lung IgG and IgA antibody responses, and antibody-secreting plasma cells from spleen and bone marrow, as well as conferring effective control of lung viral loads, resulting in complete protection 14 months after vaccination. These strong and long-lasting immune responses were enabled in part by stabilization of the vaccine by formulation with trehalose during microneedle patch fabrication. Administration of the stabilized vaccine using microneedles was especially effective at enabling strong recall responses measured 4 days after lethal virus challenge, including increased HAI and antibody-secreting cells in the spleen and reduced viral titer and inflammatory response in the lung. The results in this study indicate that skin vaccination with VLP vaccine using a microneedle patch provides long-term protection against influenza in mice.
Collapse
|
36
|
Depth-resolved characterization of diffusion properties within and across minimally-perturbed skin layers. J Control Release 2013; 166:87-94. [DOI: 10.1016/j.jconrel.2012.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/09/2012] [Accepted: 12/10/2012] [Indexed: 11/17/2022]
|
37
|
Mitragotri S. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliv Rev 2013; 65:100-3. [PMID: 22960787 DOI: 10.1016/j.addr.2012.07.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/26/2012] [Indexed: 11/28/2022]
Abstract
Overcoming biological barriers including skin, mucosal membranes, blood brain barrier as well as cell and nuclear membrane constitutes a key hurdle in the field of drug delivery. While these barriers serve the natural protective function in the body, they limit delivery of drugs into the body. A variety of methods have been developed to overcome these barriers including formulations, targeting peptides and device-based technologies. This review focuses on the use of physical methods including acoustic devices, electric devices, high-pressure devices, microneedles and optical devices for disrupting various barriers in the body including skin and other membranes. A summary of the working principles of these devices and their ability to enhance drug delivery is presented.
Collapse
Affiliation(s)
- Samir Mitragotri
- Department of Chemical Engineering, University of California, Santa Barbara, 93106, USA.
| |
Collapse
|
38
|
Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng 2012; 41:446-68. [PMID: 23099792 DOI: 10.1007/s10439-012-0678-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022]
Abstract
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.
Collapse
|
39
|
LIU Y, KENDALL MAF. NUMERICAL STUDY OF A TRANSIENT GAS AND PARTICLE FLOW IN A HIGH-SPEED NEEDLE-FREE BALLISTIC PARTICULATE VACCINE DELIVERY SYSTEM. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519404001132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A unique biolistic method of vaccination is operated by accelerating particulate vaccines with a high-speed gas jet generated by a convergent-divergent conical nozzle to sufficient momentum to penetrate the outer layer of human skin. The targeted cells elicit an immunological response. In this paper, Computational Fluid Dynamics (CFD) is utilized to simulate the operation of a prototype biolistics delivery system. The key features of transient gas dynamics and gas-particle interaction are discussed.
Collapse
Affiliation(s)
- Y. LIU
- The PowderJect Centre for Gene and Drug Delivery Research, Department of Engineering Science, University of Oxford, Oxford, OX2 6PE, United Kingdom
| | - M. A. F. KENDALL
- The PowderJect Centre for Gene and Drug Delivery Research, Department of Engineering Science, University of Oxford, Oxford, OX2 6PE, United Kingdom
| |
Collapse
|
40
|
|
41
|
Shah UU, Roberts M, Orlu Gul M, Tuleu C, Beresford MW. Needle-free and microneedle drug delivery in children: A case for disease-modifying antirheumatic drugs (DMARDs). Int J Pharm 2011; 416:1-11. [DOI: 10.1016/j.ijpharm.2011.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/30/2011] [Accepted: 07/02/2011] [Indexed: 12/22/2022]
|
42
|
Soliman S, Abdallah S, Gutmark E, Turner MG. Numerical simulation of microparticles penetration and gas dynamics in an axi-symmetric supersonic nozzle for genetic vaccination. POWDER TECHNOL 2011. [DOI: 10.1016/j.powtec.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials 2011; 32:4670-81. [PMID: 21458062 DOI: 10.1016/j.biomaterials.2011.03.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/07/2011] [Indexed: 01/30/2023]
Abstract
Micro-devices using mechanical means to target skin for improved drug and vaccine delivery have great promise for improved clinical healthcare. Fully realizing this promise requires a greater understanding of key micro-biomechanical properties for each of the different skin layers - that are both the mechanical barriers and biological targets of these devices. Here, we performed atomic force microscopy indentation on a micro-nano scale to quantify separately, in fresh mouse skin, the viscous and elastic behaviour of the stratum corneum, viable epidermis and dermis. By accessing each layer directly, we examined the response to nanoindentation at sub-cellular and bulk-cellular scale. We found that the dermis showed greatest mechanical stiffness (elastic moduli of 7.33-13.48 MPa for 6.62 μm and 1.90 μm diameter spherical probes respectively). In comparison, the stratum corneum and viable epidermis were weaker at 0.75-1.62 MPa and 0.49-1.51 MPa respectively (again with the lower values resulting from indentations with the large probe 6.62 μm). The living cell layer of the epidermis (viable epidermis) showed greatest viscoelasticity - almost fully relaxing from shallow indentation - whilst the other layers reached a plateau after relaxing by around 40%. With small scale (sub-micron) AFM indentation, we directly determined the effects of different layer constituents - in particular, the dermis showed that some indents contacted collagen fibrils and others contacted ground substance/cellular areas. This work has far reaching implications for the design of micro-devices using mechanical means to deliver drugs or vaccines into the skin; providing key characterized mechanical property values for each constituent of the target delivery material.
Collapse
|
44
|
Ziegler A, Simon S, Lee G. Comminution of carbohydrate and protein microparticles on firing in a ballistic powder injector. J Pharm Sci 2011; 99:4917-27. [PMID: 20575004 DOI: 10.1002/jps.22213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The comminution of various powders produced by either spray-freeze-drying (SFD) or spray-drying (SD) on firing in a Ballistic powder injector could be evaluated quantitatively using light microscopic particle imaging. SFD lactose was damaged much less than SFD mannitol and was caused by greater mechanical strength and lower acceleration. SD lactose or mannitol showed much reduced comminution because of their low porosity. SFD lactose/mannitol/dextran 10 kDa formulations also showed less low comminution. The inclusion of catalase further reduced damage on firing. The extent of comminution on firing was found to be related to microparticle surface structure and porosity which influences both mechanical strength and acceleration.
Collapse
Affiliation(s)
- Andreas Ziegler
- Division of Pharmaceutics, Friedrich-Alexander-University Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
45
|
Chen X, Fernando GJP, Crichton ML, Flaim C, Yukiko SR, Fairmaid EJ, Corbett HJ, Primiero CA, Ansaldo AB, Frazer IH, Brown LE, Kendall MAF. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Control Release 2011; 152:349-55. [PMID: 21371510 DOI: 10.1016/j.jconrel.2011.02.026] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
Dry-coated microprojections can deliver vaccine to abundant antigen-presenting cells in the skin and induce efficient immune responses and the dry-coated vaccines are expected to be thermostable at elevated temperatures. In this paper, we show that we have dramatically improved our previously reported gas-jet drying coating method and greatly increased the delivery efficiency of coating from patch to skin to from 6.5% to 32.5%, by both varying the coating parameters and removing the patch edge. Combined with our previous dose sparing report of influenza vaccine delivery in a mouse model, the results show that we now achieve equivalent protective immune responses as intramuscular injection (with the needle and syringe), but with only 1/30th of the actual dose. We also show that influenza vaccine coated microprojection patches are stable for at least 6 months at 23°C, inducing comparable immunogenicity with freshly coated patches. The dry-coated microprojection patches thus have key and unique attributes in ultimately meeting the medical need in certain low-resource regions with low vaccine affordability and difficulty in maintaining "cold-chain" for vaccine storage and transport.
Collapse
Affiliation(s)
- Xianfeng Chen
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, Brisbane
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guha RA, Shear NH, Papini M. Ballistic impact of single particles into gelatin: experiments and modeling with application to transdermal pharmaceutical delivery. J Biomech Eng 2011; 132:101003. [PMID: 20887013 DOI: 10.1115/1.4002428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The impact and penetration of high speed particles with the human skin is of interest for targeted drug delivery by transdermal powder injection. However, it is often difficult to perform penetration experiments on dermal tissue using micron scale particles. To address this, a finite element model of the impact and penetration of a 2 μm gold particle into the human dermis was developed and calibrated using experiments found in the literature. Using dimensional analysis, the model was linked to a larger scale steel ball-gelatin system in order to extract key material parameters for both systems and perform impact studies. In this manner, an elastic modulus of 2.25 MPa was found for skin, in good agreement with reported values from the literature. Further gelatin experiments were performed with steel, polymethyl methacrylate, titanium, and tungsten carbide balls in order to determine the effects of particle size and density on penetration depth. Both the finite element model and the steel-gelatin experiments were able to predict the penetration behavior that was found by other investigators in the study of the impact of typical particles used for vaccine delivery into the human dermis. It can therefore be concluded that scaled up systems utilizing ballistic gelatins can be used to investigate the performance of transdermal powder injection technology.
Collapse
Affiliation(s)
- R A Guha
- Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | | | | |
Collapse
|
47
|
Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release 2010; 148:327-33. [PMID: 20850487 DOI: 10.1016/j.jconrel.2010.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/04/2010] [Accepted: 09/02/2010] [Indexed: 12/26/2022]
Abstract
HSV-2-gD2 DNA vaccine was precisely delivered to immunologically sensitive regions of the skin epithelia using dry-coated microprojection arrays. These arrays delivered a vaccine payload to the epidermis and the upper dermis of mouse skin. Immunomicroscopy results showed that, in 43 ± 5% of microprojection delivery sites, the DNA vaccine was delivered to contact with professional antigen presenting cells in the epidermal layer. Associated with this efficient delivery of the vaccine into the vicinity of the professional antigen presenting cells, we achieved superior antibody responses and statistically equal protection rate against an HSV-2 virus challenge, when compared with the mice immunized with intramuscular injection using needle and syringe, but with less than 1/10th of the delivered antigen.
Collapse
|
48
|
Raphael AP, Prow TW, Crichton ML, Chen X, Fernando GJP, Kendall MAF. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1785-1793. [PMID: 20665628 DOI: 10.1002/smll.201000326] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Targeting of vaccines to abundant immune cell populations within our outer thin skin layers using miniaturized devices-much thinner than a needle and syringe, could improve the efficacy of vaccines (and other immunotherapies). To meet this goal, a densely packed dissolving microprojection array (dissolving Nanopatch) is designed, achieving functional miniaturization by 1) formulating small microneedles (two orders of magnitude smaller than a standard needle and syringe) and 2) multiple layering of the payload within microprojections with tight tolerances (of the order of a micrometer). The formulation method is suitable to many vaccines because it is without harsh or complex chemical processes, and it is performed at low temperatures and at a neutral pH. When the formulated dNPs are applied to skin, consistent and robust penetration is achieved, rapidly targeting the skin strata of interest (<5 min; significantly faster than larger dissolving microneedles that have been previously reported). Resultant diffusion is significantly enhanced within the dermis compared with the epidermis. Using two different antigens (ovalbumin and a commercial trivalent influenza vaccine [Fluvax2008]), the administration of these dissolving patches generate robust systemic immune responses in a mouse model. To the authors' knowledge, this is the first report of successful vaccination with any form of dissolving microneedles. The patches made by this method therefore have the potential for pain-free, needle-free, and effective vaccination in humans.
Collapse
Affiliation(s)
- Anthony P Raphael
- The University of Queensland Australian Institute for Bioengineering and Nanotechnology (AIBN) Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Prow TW, Chen X, Prow NA, Fernando GJP, Tan CSE, Raphael AP, Chang D, Ruutu MP, Jenkins DWK, Pyke A, Crichton ML, Raphaelli K, Goh LYH, Frazer IH, Roberts MS, Gardner J, Khromykh AA, Suhrbier A, Hall RA, Kendall MAF. Nanopatch-targeted skin vaccination against West Nile Virus and Chikungunya virus in mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1776-1784. [PMID: 20665754 DOI: 10.1002/smll.201000331] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The 'Nanopatch' (NP) comprises arrays of densely packed projections with a defined geometry and distribution designed to physically target vaccines directly to thousands of epidermal and dermal antigen presenting cells (APCs). These miniaturized arrays are two orders of magnitude smaller than standard needles-which deliver most vaccines-and are also much smaller than current microneedle arrays. The NP is dry-coated with antigen, adjuvant, and/or DNA payloads. After the NP was pressed onto mouse skin, a protein payload co-localized with 91.4 + or - 4.1 APC mm(-2) (or 2925 in total) representing 52% of the delivery sites within the NP contact area, agreeing well with a probability-based model used to guide the device design; it then substantially increases as the antigen diffuses in the skin to many more cells. APC co-localizing with protein payloads rapidly disappears from the application area, suggesting APC migration. The NP also delivers DNA payloads leading to cutaneous expression of encoded proteins within 24 h. The efficiency of NP immunization is demonstrated using an inactivated whole chikungunya virus vaccine and a DNA-delivered attenuated West Nile virus vaccine. The NP thus offers a needle-free, versatile, highly effective vaccine delivery system that is potentially inexpensive and simple to use.
Collapse
Affiliation(s)
- Tarl W Prow
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schiffter H, Condliffe J, Vonhoff S. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery. J R Soc Interface 2010; 7 Suppl 4:S483-500. [PMID: 20519207 DOI: 10.1098/rsif.2010.0114.focus] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The feasibility of preparing microparticles with high insulin loading suitable for needle-free ballistic drug delivery by spray-freeze-drying (SFD) was examined in this study. The aim was to manufacture dense, robust particles with a diameter of around 50 microm, a narrow size distribution and a high content of insulin. Atomization using ultrasound atomizers showed improved handling of small liquid quantities as well as narrower droplet size distributions over conventional two-fluid nozzle atomization. Insulin nanoparticles were produced by SFD from solutions with a low solid content (<10 mg ml(-1)) and subsequent ultra-turrax homogenization. To prepare particles for needle-free ballistic injection, the insulin nanoparticles were suspended in matrix formulations with a high excipient content (>300 mg ml(-1)) consisting of trehalose, mannitol, dextran (10 kDa) and dextran (150 kDa) (abbreviated to TMDD) in order to maximize particle robustness and density after SFD. With the increase in insulin content, the viscosity of the nanosuspensions increased. Liquid atomization was possible up to a maximum of 250 mg of nano-insulin suspended in a 1.0 g matrix. However, if a narrow size distribution with a good correlation between theoretical and measurable insulin content was desired, no more than 150 mg nano-insulin could be suspended per gram of matrix formulation. Particles were examined by laser light diffraction, scanning electron microscopy and tap density testing. Insulin stability was assessed using size exclusion chromatography (SEC), reverse phase chromatography and Fourier transform infrared (FTIR) spectroscopy. Densification of the particles could be achieved during primary drying if the product temperature (T(prod)) exceeded the glass transition temperature of the freeze concentrate (T(g)') of -29.4 degrees C for TMDD (3331) formulations. Particles showed a collapsed and wrinkled morphology owing to viscous flow of the freeze concentrate. With increasing insulin loading, the d (v, 0.5) of the SFD powders increased and particle size distributions got wider. Insulin showed a good stability during the particle formation process with a maximum decrease in insulin monomer of only 0.123 per cent after SFD. In accordance with the SEC data, FTIR analysis showed only a small increase in the intermolecular beta-sheet of 0.4 per cent after SFD. The good physical stability of the polydisperse particles made them suitable for ballistic injection into tissue-mimicking agar hydrogels, showing a mean penetration depth of 251.3 +/- 114.7 microm.
Collapse
Affiliation(s)
- Heiko Schiffter
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | | | |
Collapse
|