1
|
Zhang Y, Tawiah GK, Wu X, Zhang Y, Wang X, Wei X, Qiao X, Zhang Q. Primary cilium-mediated mechanotransduction in cartilage chondrocytes. Exp Biol Med (Maywood) 2023; 248:1279-1287. [PMID: 37897221 PMCID: PMC10625344 DOI: 10.1177/15353702231199079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent joint disorders associated with the degradation of articular cartilage and an abnormal mechanical microenvironment. Mechanical stimuli, including compression, shear stress, stretching strain, osmotic challenge, and the physical properties of the matrix microenvironment, play pivotal roles in the tissue homeostasis of articular cartilage. The primary cilium, as a mechanosensory and chemosensory organelle, is important for detecting and transmitting both mechanical and biochemical signals in chondrocytes within the matrix microenvironment. Growing evidence indicates that primary cilia are critical for chondrocytes signaling transduction and the matrix homeostasis of articular cartilage. Furthermore, the ability of primary cilium to regulate cellular signaling is dynamic and dependent on the cellular matrix microenvironment. In the current review, we aim to elucidate the key mechanisms by which primary cilia mediate chondrocytes sensing and responding to the matrix mechanical microenvironment. This might have potential therapeutic applications in injuries and OA-associated degeneration of articular cartilage.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Histology and Embryology, Shanxi Medical University, Jinzhong 030604, Shanxi, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Godfred K Tawiah
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanjun Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaohu Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaohong Qiao
- Department of Histology and Embryology, Shanxi Medical University, Jinzhong 030604, Shanxi, China
- Department of Orthopaedics, Lvliang Hospital Affiliated to Shanxi Medical University, Lvliang 033099, Shanxi, China
| | - Quanyou Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| |
Collapse
|
2
|
Pettenuzzo S, Arduino A, Belluzzi E, Pozzuoli A, Fontanella CG, Ruggieri P, Salomoni V, Majorana C, Berardo A. Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines 2023; 11:1942. [PMID: 37509581 PMCID: PMC10377681 DOI: 10.3390/biomedicines11071942] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties. For these purposes, this review was aimed at collecting the available literature focused on experimental chondrocyte and chondron biomechanics with direct connection to their biochemical functions and activities, in order to point out important information regarding the planning of an experimental test or a comparison with the available results. In particular, this review highlighted (i) the most common experimental techniques used, (ii) the results and models adopted by different authors, (iii) a critical perspective on features that could affect the results and finally (iv) the quantification of structural and mechanical changes due to a degenerative pathology such as osteoarthritis.
Collapse
Affiliation(s)
- Sofia Pettenuzzo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alessandro Arduino
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | | | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Valentina Salomoni
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Management and Engineering (DTG), Stradella S. Nicola 3, 36100 Vicenza, Italy
| | - Carmelo Majorana
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alice Berardo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
3
|
Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-α. Bone Res 2023; 11:13. [PMID: 36869045 PMCID: PMC9984452 DOI: 10.1038/s41413-023-00248-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 03/05/2023] Open
Abstract
In the synovial joint, mechanical force creates an important signal that influences chondrocyte behavior. The conversion of mechanical signals into biochemical cues relies on different elements in mechanotransduction pathways and culminates in changes in chondrocyte phenotype and extracellular matrix composition/structure. Recently, several mechanosensors, the first responders to mechanical force, have been discovered. However, we still have limited knowledge about the downstream molecules that enact alterations in the gene expression profile during mechanotransduction signaling. Recently, estrogen receptor α (ERα) has been shown to modulate the chondrocyte response to mechanical loading through a ligand-independent mechanism, in line with previous research showing that ERα exerts important mechanotransduction effects on other cell types, such as osteoblasts. In consideration of these recent discoveries, the goal of this review is to position ERα into the mechanotransduction pathways known to date. Specifically, we first summarize our most recent understanding of the mechanotransduction pathways in chondrocytes on the basis of three categories of actors, namely mechanosensors, mechanotransducers, and mechanoimpactors. Then, the specific roles played by ERα in mediating the chondrocyte response to mechanical loading are discussed, and the potential interactions of ERα with other molecules in mechanotransduction pathways are explored. Finally, we propose several future research directions that may advance our understanding of the roles played by ERα in mediating biomechanical cues under physiological and pathological conditions.
Collapse
|
4
|
Stevenson NL. The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function. Biol Open 2023; 12:287059. [PMID: 36802341 PMCID: PMC9986613 DOI: 10.1242/bio.059719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The growth and development of healthy tissues is dependent on the construction of a highly specialised extracellular matrix (ECM) to provide support for cell growth and migration and to determine the biomechanical properties of the tissue. These scaffolds are composed of extensively glycosylated proteins which are secreted and assembled into well-ordered structures that can hydrate, mineralise, and store growth factors as required. The proteolytic processing and glycosylation of ECM components is vital to their function. These modifications are under the control of the Golgi apparatus, an intracellular factory hosting spatially organised, protein-modifying enzymes. Regulation also requires a cellular antenna, the cilium, which integrates extracellular growth signals and mechanical cues to inform ECM production. Consequently, mutations in either Golgi or ciliary genes frequently lead to connective tissue disorders. The individual importance of each of these organelles to ECM function is well-studied. However, emerging evidence points towards a more tightly linked system of interdependence between the Golgi, cilium and ECM. This review examines how the interplay between all three compartments underpins healthy tissue. As an example, it will look at several members of the golgin family of Golgi-resident proteins whose loss is detrimental to connective tissue function. This perspective will be important for many future studies looking to dissect the cause and effect of mutations impacting tissue integrity.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Primary Cilia: A Cellular Regulator of Articular Cartilage Degeneration. Stem Cells Int 2022; 2022:2560441. [PMID: 36193252 PMCID: PMC9525753 DOI: 10.1155/2022/2560441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease that can cause pain and disability in adults. The main pathological characteristic of OA is cartilage degeneration, which is caused by chondrocyte apoptosis, cartilage matrix degradation, and inflammatory factor destruction. The current treatment for patients with OA focuses on delaying its progression, such as oral anti-inflammatory analgesics or injection of sodium gluconate into the joint cavity. Primary cilia are an important structure involved in cellular signal transduction. Thus, they are very sensitive to mechanical and physicochemical stimuli. It is reported that the primary cilia may play an important role in the development of OA. Here, we review the correlation between the morphology (location, length, incidence, and orientation) of chondrocyte primary cilia and OA and summarize the relevant signaling pathways in chondrocytes that could regulate the OA process through primary cilia, including Hedgehog, Wnt, and inflammation-related signaling pathways. These data provide new ideas for OA treatment.
Collapse
|
6
|
Urtaza U, Guaresti O, Gorroñogoitia I, Zubiarrain-Laserna A, Muiños-López E, Granero-Moltó F, Lamo de Espinosa JM, López-Martinez T, Mazo M, Prósper F, Zaldua AM, Anakabe J. 3D printed bioresorbable scaffolds for articular cartilage tissue engineering: a comparative study between neat polycaprolactone (PCL) and poly(lactide-b-ethylene glycol) (PLA-PEG) block copolymer. Biomed Mater 2022; 17. [PMID: 35700720 DOI: 10.1088/1748-605x/ac78b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
This work identifies and describes different material-scaffold geometry combinations for cartilage tissue engineering (CTE). Previously reported potentially interesting scaffold geometries were tuned and printed using bioresorbable polycaprolactone and poly(lactide-b-ethylene) block copolymer. Medical grades of both polymers were 3D printed with fused filament fabrication technology within an ISO 7 classified cleanroom. Resulting scaffolds were then optically, mechanically and biologically tested. Results indicated that a few material-scaffold geometry combinations present potential for excellent cell viability as well as for an enhance of the chondrogenic properties of the cells, hence suggesting their suitability for CTE applications.
Collapse
Affiliation(s)
| | | | | | | | - Emma Muiños-López
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Froilán Granero-Moltó
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain.,Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - J M Lamo de Espinosa
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Manuel Mazo
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.,Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Felipe Prósper
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.,Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | | | - Jon Anakabe
- Leartiker S. Coop., Markina-Xemein 48270, Spain
| |
Collapse
|
7
|
Rux D, Helbig K, Han B, Cortese C, Koyama E, Han L, Pacifici M. Primary Cilia Direct Murine Articular Cartilage Tidemark Patterning Through Hedgehog Signaling and Ambulatory Load. J Bone Miner Res 2022; 37:1097-1116. [PMID: 35060644 PMCID: PMC9177786 DOI: 10.1002/jbmr.4506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 11/06/2022]
Abstract
Articular cartilage (AC) is essential for body movement but is highly susceptible to degenerative diseases and has poor self-repair capacity. To improve current subpar regenerative treatments, developmental mechanisms of AC should be clarified and, specifically, how its postnatal multizone organization is acquired. Primary cilia are cell surface organelles crucial for mammalian tissue morphogenesis. Although their importance for chondrocyte function is appreciated, their specific roles in postnatal AC morphogenesis remain unclear. To explore these mechanisms, we used a murine conditional loss-of-function approach (Ift88-flox) targeting joint-lineage progenitors (Gdf5Cre) and monitored postnatal knee AC development. Joint formation and growth up to juvenile stages were largely unaffected. However, mature AC (aged 2 months) exhibited disorganized extracellular matrix, decreased aggrecan and collagen II due to reduced gene expression (not increased catabolism), and marked reduction of AC modulus by 30%-50%. In addition, and unexpectedly, we discovered that tidemark patterning was severely disrupted, as was hedgehog signaling, and exhibited specificity based on regional load-bearing functions of AC. Interestingly, Prg4 expression was markedly increased in highly loaded sites in mutants. Together, our data provide evidence that primary cilia orchestrate postnatal AC morphogenesis including tidemark topography, zonal matrix composition, and ambulation load responses. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Helbig
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Courtney Cortese
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
8
|
Willantarra I, Leung S, Choi YS, Chhana A, McGlashan SR. Chondrocyte-specific response to stiffness-mediated primary cilia formation and centriole positioning. Am J Physiol Cell Physiol 2022; 323:C236-C247. [PMID: 35649254 DOI: 10.1152/ajpcell.00135.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical stress and the stiffness of the extracellular matrix are key drivers of tissue development and homeostasis. Aberrant mechanosensation is associated with a wide range of pathologies, including osteoarthritis. Matrix (or substrate) stiffness plays a major role in cell spreading, adhesion, proliferation and differentiation. However, how specific cells sense substrate stiffness still remains unclude. The primary cilium is an essential cellular organelle that senses and integrates mechanical and chemical signals from the extracellular environment. We hypothesised that the primary cilium dynamically alters its length and position to fine-tune cell mechanosignalling based on substrate stiffness alone. We used a hydrogel system of varying substrate stiffness to examine the role of stiffness on cilia frequency, length and centriole position as well as cell and nuclei area over time. Contrary to other cell types, we show that chondrocyte primary cilia shorten on softer substrates demonstrating tissue-specific mechanosensing which is aligned with the tissue stiffness the cells originate from. We further show that stiffness determines centriole positioning to either the basal or apical membrane during attachment and spreading, with centriole positioned towards the basal membrane on stiffer substrates. These phenomena are mediated by force generation actin-myosin stress fibres in a time-dependent manner. Finally we show on stiff substrates, that primary cilia are involved in tension-mediated cell spreading. We propose that substrate stiffness plays a role in cilia positioning, regulating cellular responses to external forces, and may be a key driver of mechanosignalling-associated diseases.
Collapse
Affiliation(s)
- Ivanna Willantarra
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sophia Leung
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Perth, Australia
| | - Ashika Chhana
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sue R McGlashan
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Boos MA, Lamandé SR, Stok KS. Multiscale Strain Transfer in Cartilage. Front Cell Dev Biol 2022; 10:795522. [PMID: 35186920 PMCID: PMC8855033 DOI: 10.3389/fcell.2022.795522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte’s microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.
Collapse
Affiliation(s)
- Manuela A. Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shireen R. Lamandé
- Musculoskeletal Research, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kathryn S. Stok,
| |
Collapse
|
10
|
Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 2021; 18:67-84. [PMID: 34934171 DOI: 10.1038/s41584-021-00724-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Mechanical stimuli have fundamental roles in articular cartilage during health and disease. Chondrocytes respond to the physical properties of the cartilage extracellular matrix (ECM) and the mechanical forces exerted on them during joint loading. In osteoarthritis (OA), catabolic processes degrade the functional ECM and the composition and viscoelastic properties of the ECM produced by chondrocytes are altered. The abnormal loading environment created by these alterations propagates cell dysfunction and inflammation. Chondrocytes sense their physical environment via an array of mechanosensitive receptors and channels that activate a complex network of downstream signalling pathways to regulate several cell processes central to OA pathology. Advances in understanding the complex roles of specific mechanosignalling mechanisms in healthy and OA cartilage have highlighted molecular processes that can be therapeutically targeted to interrupt pathological feedback loops. The potential for combining these mechanosignalling targets with the rapidly expanding field of smart mechanoresponsive biomaterials and delivery systems is an emerging paradigm in OA treatment. The continued advances in this field have the potential to enable restoration of healthy mechanical microenvironments and signalling through the development of precision therapeutics, mechanoregulated biomaterials and drug systems in the near future.
Collapse
|
11
|
Langhans MT, Gao J, Tang Y, Wang B, Alexander P, Tuan RS. Wdpcp regulates cellular proliferation and differentiation in the developing limb via hedgehog signaling. BMC DEVELOPMENTAL BIOLOGY 2021; 21:10. [PMID: 34225660 PMCID: PMC8258940 DOI: 10.1186/s12861-021-00241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Background Mice with a loss of function mutation in Wdpcp were described previously to display severe birth defects in the developing heart, neural tube, and limb buds. Further characterization of the skeletal phenotype of Wdpcp null mice was limited by perinatal lethality. Results We utilized Prx1-Cre mice to generate limb bud mesenchyme specific deletion of Wdpcp. These mice recapitulated the appendicular skeletal phenotype of the Wdpcp null mice including polydactyl and limb bud signaling defects. Examination of late stages of limb development demonstrated decreased size of cartilage anlagen, delayed calcification, and abnormal growth plates. Utilizing in vitro assays, we demonstrated that loss of Wdpcp in skeletal progenitors lead to loss of hedgehog signaling responsiveness and associated proliferative response. In vitro chondrogenesis assays showed this loss of hedgehog and proliferative response was associated with decreased expression of early chondrogenic marker N-Cadherin. E14.5 forelimbs demonstrated delayed ossification and expression of osteoblast markers Runx2 and Sp7. P0 growth plates demonstrated loss of hedgehog signaling markers and expansion of the hypertrophic zones of the growth plate. In vitro osteogenesis assays demonstrated decreased osteogenic differentiation of Wdpcp null mesenchymal progenitors in response to hedgehog stimulation. Conclusions These findings demonstrate how Wdpcp and associated regulation of the hedgehog signaling pathway plays an important role at multiple stages of skeletal development. Wdpcp is necessary for positive regulation of hedgehog signaling and associated proliferation is key to the initiation of chondrogenesis. At later stages, Wdpcp facilitates the robust hedgehog response necessary for chondrocyte hypertrophy and osteogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00241-9.
Collapse
Affiliation(s)
- Mark T Langhans
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Jingtao Gao
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Peter Alexander
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA. .,Present Address: Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
12
|
Statham P, Jones E, Jennings LM, Fermor HL. Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:405-420. [PMID: 33726527 DOI: 10.1089/ten.teb.2020.0373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is well known that the biomechanical and tribological performance of articular cartilage is inextricably linked to its extracellular matrix (ECM) structure and zonal heterogeneity. Furthermore, it is understood that the presence of native ECM components, such as collagen II and aggrecan, promote healthy homeostasis in the resident chondrocytes. What is less frequently discussed is how chondrocyte metabolism is related to the extracellular mechanical environment, at both the macro and microscale. The chondrocyte is in immediate contact with the pericellular matrix of the chondron, which acts as a mechanocoupler, transmitting external applied loads from the ECM to the chondrocyte. Therefore, components of the pericellular matrix also play essential roles in chondrocyte mechanotransduction and metabolism. Recreating the biomechanical environment through tuning material properties of a scaffold and/or the use of external cyclic loading can induce biosynthetic responses in chondrocytes. Decellularized scaffolds, which retain the native tissue macro- and microstructure also represent an effective means of recapitulating such an environment. The use of such techniques in tissue engineering applications can ensure the regeneration of skeletally mature articular cartilage with appropriate biomechanical and tribological properties to restore joint function. Despite the pivotal role in graft maturation and performance, biomechanical and tribological properties of such interventions is often underrepresented. This review outlines the role of biomechanics in relation to native cartilage performance and chondrocyte metabolism, and how application of this theory can enhance the future development and successful translation of biomechanically relevant tissue engineering interventions. Impact statement Physiological cartilage function is a key criterion in the success of a cartilage tissue engineering solution. The in situ performance is dependent on the initial scaffold design as well as extracellular matrix deposition by endogenous or exogenous cells. Both biological and biomechanical stimuli serve as key regulators of cartilage homeostasis and maturation of the resulting tissue-engineered graft. An improved understanding of the influence of biomechanics on cellular function and consideration of the final biomechanical and tribological performance will help in the successful development and translation of tissue-engineered grafts to restore natural joint function postcartilage trauma or osteoarthritic degeneration, delaying the requirement for prosthetic intervention.
Collapse
Affiliation(s)
- Patrick Statham
- Institute of Medical and Biological Engineering, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds, United Kingdom
| | - Louise M Jennings
- Institute of Medical and Biological Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazel L Fermor
- Institute of Medical and Biological Engineering, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Thompson CL, McFie M, Chapple JP, Beales P, Knight MM. Polycystin-2 Is Required for Chondrocyte Mechanotransduction and Traffics to the Primary Cilium in Response to Mechanical Stimulation. Int J Mol Sci 2021; 22:4313. [PMID: 33919210 PMCID: PMC8122406 DOI: 10.3390/ijms22094313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Primary cilia and associated intraflagellar transport are essential for skeletal development, joint homeostasis, and the response to mechanical stimuli, although the mechanisms remain unclear. Polycystin-2 (PC2) is a member of the transient receptor potential polycystic (TRPP) family of cation channels, and together with Polycystin-1 (PC1), it has been implicated in cilia-mediated mechanotransduction in epithelial cells. The current study investigates the effect of mechanical stimulation on the localization of ciliary polycystins in chondrocytes and tests the hypothesis that they are required in chondrocyte mechanosignaling. Isolated chondrocytes were subjected to mechanical stimulation in the form of uniaxial cyclic tensile strain (CTS) in order to examine the effects on PC2 ciliary localization and matrix gene expression. In the absence of strain, PC2 localizes to the chondrocyte ciliary membrane and neither PC1 nor PC2 are required for ciliogenesis. Cartilage matrix gene expression (Acan, Col2a) is increased in response to 10% CTS. This response is inhibited by siRNA-mediated loss of PC1 or PC2 expression. PC2 ciliary localization requires PC1 and is increased in response to CTS. Increased PC2 cilia trafficking is dependent on the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4) activation. Together, these findings demonstrate for the first time that polycystins are required for chondrocyte mechanotransduction and highlight the mechanosensitive cilia trafficking of PC2 as an important component of cilia-mediated mechanotransduction.
Collapse
Affiliation(s)
- Clare L. Thompson
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| | - Megan McFie
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| | - J. Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Philip Beales
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Martin M. Knight
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| |
Collapse
|
14
|
Fang F, Schwartz AG, Moore ER, Sup ME, Thomopoulos S. Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis. SCIENCE ADVANCES 2020; 6:6/44/eabc1799. [PMID: 33127677 PMCID: PMC7608799 DOI: 10.1126/sciadv.abc1799] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 05/10/2023]
Abstract
The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and maintained. We tested the hypothesis that the primary cilium is a hub for transducing biophysical and hedgehog (Hh) signals to regulate tendon enthesis formation and adaptation to loading. Primary cilia were necessary for enthesis development, and cilia assembly was coincident with Hh signaling and enthesis mineralization. Cilia responded inversely to loading; increased loading led to decreased cilia and decreased loading led to increased cilia. Enthesis responses to loading were dependent on Hh signaling through cilia. Results imply a role for tendon enthesis primary cilia as mechanical responders and Hh signal transducers, providing a therapeutic target for tendon enthesis pathologies.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Andrea G Schwartz
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Emily R Moore
- School of Dental Medicine, Harvard University, Cambridge, MA, 02138, USA
| | - McKenzie E Sup
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Barsch F, Niedermair T, Mamilos A, Schmitt VH, Grevenstein D, Babel M, Burgoyne T, Shoemark A, Brochhausen C. Physiological and Pathophysiological Aspects of Primary Cilia-A Literature Review with View on Functional and Structural Relationships in Cartilage. Int J Mol Sci 2020; 21:ijms21144959. [PMID: 32674266 PMCID: PMC7404129 DOI: 10.3390/ijms21144959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia are cellular organelles that project from the cell. They occur in nearly all non-hematopoietic tissues and have different functions in different tissues. In mesenchymal tissues primary cilia play a crucial role in the adequate morphogenesis during embryological development. In mature articular cartilage, primary cilia fulfil chemo- and mechanosensitive functions to adapt the cellular mechanisms on extracellular changes and thus, maintain tissue homeostasis and morphometry. Ciliary abnormalities in osteoarthritic cartilage could represent pathophysiological relationships between ciliary dysfunction and tissue deformation. Nevertheless, the molecular and pathophysiological relationships of ‘Primary Cilia’ (PC) in the context of osteoarthritis is not yet fully understood. The present review focuses on the current knowledge about PC and provide a short but not exhaustive overview of their role in cartilage.
Collapse
Affiliation(s)
- Friedrich Barsch
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany and Institute of Exercise and Occupational Medicine, Department of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Volker H. Schmitt
- Cardiology I, Centre for Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
| | - David Grevenstein
- Department for Orthopedic and Trauma Surgery, University of Cologne, 50923 Köln, Germany;
| | - Maximilian Babel
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Thomas Burgoyne
- Royal Brompton Hospital and Harefield NHS Trust, SW3 6NP London and UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Amelia Shoemark
- Royal Brompton Hospital and Harefield NHS Trust, University of Dundee, Dundee DD1 4HN, UK;
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
- Correspondence: ; Tel.: +49-941-944-6636
| |
Collapse
|
16
|
Chang A, Tang SY. Determination of the Depth- and Time- Dependent Mechanical Behavior of Mouse Articular Cartilage Using Cyclic Reference Point Indentation. Cartilage 2020; 11:358-363. [PMID: 30019597 PMCID: PMC7298594 DOI: 10.1177/1947603518786554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mouse models of osteoarthritis and cartilage degeneration are important and powerful tools for investigating the molecular mechanisms of the disease pathology. Because of the vast number of genetically modified mouse models that are available for research, the ability to use these models is particularly attractive for the mechanobiologic interactions in the pathogenesis of osteoarthritis. However, the very small scale of mouse articular cartilage, where the healthy tissue is only 80 µm in thickness, poses challenges in quantifying mechanical characteristics of the tissue. We introduce here a novel approach that combines experimental and analytical methods to quantify the nuanced mechanical changes during cartilage degeneration at this scale. Cyclic reference point indentation is used to directly test the murine articular cartilage to obtain the force-deformation and the phase-shift characteristics of the tissue. The cartilage zonal thicknesses are confirmed from histology. These data are then fitted to a parallel spring model to determine the depth-dependent tissue stiffness and modulus. Using this approach, we investigated the effects of trypsin degradation on the zonal mechanical behavior of mouse articular cartilage. We observe a decline of the superficial zone stiffness coupled with the loss of the superficial layer. Subsequent degradation by trypsin allowed the identification of middle- and deep- zone properties. Taken together, this approach can be a useful tool for understanding the disease mechanisms of cartilage homeostasis and degeneration, and for monitoring of therapies for osteoarthritis.
Collapse
Affiliation(s)
- Andrew Chang
- Department of Mechanical
Engineering and Materials Science, Washington University in St. Louis, St.
Louis, MO, USA
| | - Simon Y. Tang
- Department of Mechanical
Engineering and Materials Science, Washington University in St. Louis, St.
Louis, MO, USA,Department of Biomedical
Engineering, Washington University in St. Louis, St. Louis, MO, USA,Department of Orthopaedic Surgery,
Washington University in St. Louis, St. Louis, MO, USA,Simon Y. Tang, Department of
Orthopaedic Surgery, Washington University in St. Louis, 660 South
Euclid Avenue, Box 8233, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Zhao Z, Li Y, Wang M, Zhao S, Zhao Z, Fang J. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J Cell Mol Med 2020; 24:5408-5419. [PMID: 32237113 PMCID: PMC7214151 DOI: 10.1111/jcmm.15204] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Mechanical stress plays a critical role in cartilage development and homoeostasis. Chondrocytes are surrounded by a narrow pericellular matrix (PCM), which absorbs dynamic and static forces and transmits them to the chondrocyte surface. Recent studies have demonstrated that molecular components, including perlecan, collagen and hyaluronan, provide distinct physical properties for the PCM and maintain the essential microenvironment of chondrocytes. These physical signals are sensed by receptors and molecules located in the cell membrane, such as Ca2+ channels, the primary cilium and integrins, and a series of downstream molecular pathways are involved in mechanotransduction in cartilage. All mechanoreceptors convert outside signals into chemical and biological signals, which then regulate transcription in chondrocytes in response to mechanical stresses. This review highlights recent progress and focuses on the function of the PCM and cell surface molecules in chondrocyte mechanotransduction. Emerging understanding of the cellular and molecular mechanisms that regulate mechanotransduction will provide new insights into osteoarthritis pathogenesis and precision strategies that could be used in its treatment.
Collapse
Affiliation(s)
- Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mengjiao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sen Zhao
- Department of Orthodontics, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Hafsia N, Forien M, Renaudin F, Delacour D, Reboul P, Van Lent P, Cohen-Solal M, Lioté F, Poirier F, Ea HK. Galectin 3 Deficiency Alters Chondrocyte Primary Cilium Formation and Exacerbates Cartilage Destruction via Mitochondrial Apoptosis. Int J Mol Sci 2020; 21:ijms21041486. [PMID: 32098291 PMCID: PMC7073077 DOI: 10.3390/ijms21041486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 12/24/2019] [Accepted: 02/20/2020] [Indexed: 12/01/2022] Open
Abstract
Mechanical overload and aging are the main risk factors of osteoarthritis (OA). Galectin 3 (GAL3) is important in the formation of primary cilia, organelles that are able to sense mechanical stress. The objectives were to evaluate the role of GAL3 in chondrocyte primary cilium formation and in OA in mice. Chondrocyte primary cilium was detected in vitro by confocal microscopy. OA was induced by aging and partial meniscectomy of wild-type (WT) and Gal3-null 129SvEV mice (Gal3−/−). Primary chondrocytes were isolated from joints of new-born mice. Chondrocyte apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), caspase 3 activity and cytochrome c release. Gene expression was assessed by qRT-PCR. GAL3 was localized at the basal body of the chondrocyte primary cilium. Primary cilia of Gal3−/− chondrocytes were frequently abnormal and misshapen. Deletion of Gal3 triggered premature OA during aging and exacerbated joint instability-induced OA. In both aging and surgery-induced OA cartilage, levels of chondrocyte catabolism and hypertrophy markers and apoptosis were more severe in Gal3−/− than WT samples. In vitro, Gal3 knockout favored chondrocyte apoptosis via the mitochondrial pathway. GAL3 is a key regulator of cartilage homeostasis and chondrocyte primary cilium formation in mice. Gal3 deletion promotes OA development.
Collapse
Affiliation(s)
- Narjès Hafsia
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
| | - Marine Forien
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
| | - Félix Renaudin
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
| | - Delphine Delacour
- UMR 7592 CNRS, Institut Jacques Monod, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; (D.D.); (F.P.)
| | - Pascal Reboul
- UMR 7365, CNRS-Université de Lorraine, IMoPA, F-54000 Vandœuvre-lés-Nancy, France;
| | - Peter Van Lent
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands;
| | - Martine Cohen-Solal
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
- Service de Rhumatologie, Centre Viggo Petersen, AP-HP, hôpital Lariboisière, F-75010 Paris, France
| | - Frédéric Lioté
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
- Service de Rhumatologie, Centre Viggo Petersen, AP-HP, hôpital Lariboisière, F-75010 Paris, France
| | - Françoise Poirier
- UMR 7592 CNRS, Institut Jacques Monod, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; (D.D.); (F.P.)
| | - Hang Korng Ea
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
- Service de Rhumatologie, Centre Viggo Petersen, AP-HP, hôpital Lariboisière, F-75010 Paris, France
- Correspondence:
| |
Collapse
|
19
|
Tao F, Jiang T, Tao H, Cao H, Xiang W. Primary cilia: Versatile regulator in cartilage development. Cell Prolif 2020; 53:e12765. [PMID: 32034931 PMCID: PMC7106963 DOI: 10.1111/cpr.12765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cartilage is a connective tissue in the skeletal system and has limited regeneration ability and unique biomechanical reactivity. The growth and development of cartilage can be affected by different physical, chemical and biological factors, such as mechanical stress, inflammation, osmotic pressure, hypoxia and signalling transduction. Primary cilia are multifunctional sensory organelles that regulate diverse signalling transduction and cell activities. They are crucial for the regulation of cartilage development and act in a variety of ways, such as react to mechanical stress, mediate signalling transduction, regulate cartilage‐related diseases progression and affect cartilage tumorigenesis. Therefore, research on primary cilia‐mediated cartilage growth and development is currently extremely popular. This review outlines the role of primary cilia in cartilage development in recent years and elaborates on the potential regulatory mechanisms from different aspects.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Corrigan MA, Johnson GP, Stavenschi E, Riffault M, Labour MN, Hoey DA. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium. Sci Rep 2018; 8:3824. [PMID: 29491434 PMCID: PMC5830574 DOI: 10.1038/s41598-018-22174-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/19/2018] [Indexed: 01/22/2023] Open
Abstract
Skeletal homeostasis requires the continued replenishment of the bone forming osteoblast from a mesenchymal stem cell (MSC) population, a process that has been shown to be mechanically regulated. However, the mechanisms by which a biophysical stimulus can induce a change in biochemical signaling, mechanotransduction, is poorly understood. As a precursor to loading-induced bone formation, deciphering the molecular mechanisms of MSC osteogenesis is a critical step in developing novel anabolic therapies. Therefore, in this study we characterize the expression of the mechanosensitive calcium channel Transient Receptor Potential subfamily V member 4 (TRPV4) in MSCs and demonstrate that TRPV4 localizes to areas of high strain, specifically the primary cilium. We demonstrate that TRPV4 is required for MSC mechanotransduction, mediating oscillatory fluid shear induced calcium signaling and early osteogenic gene expression. Furthermore, we demonstrate that TRPV4 can be activated pharmacologically eliciting a response that mirrors that seen with mechanical stimulation. Lastly, we show that TRPV4 localization to the primary cilium is functionally significant, with MSCs with defective primary cilia exhibiting an inhibited osteogenic response to TRPV4 activation. Collectively, this data demonstrates a novel mechanism of stem cell mechanotransduction, which can be targeted therapeutically, and further highlights the critical role of the primary cilium in MSC biology.
Collapse
Affiliation(s)
- Michele A Corrigan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
| | - Gillian P Johnson
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
| | - Elena Stavenschi
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
| | - Mathieu Riffault
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin, 2, Ireland
| | - Marie-Noelle Labour
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
- Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
| | - David A Hoey
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland.
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland.
- Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland.
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin, 2, Ireland.
| |
Collapse
|
21
|
Wall M, Butler D, El Haj A, Bodle JC, Loboa EG, Banes AJ. Key developments that impacted the field of mechanobiology and mechanotransduction. J Orthop Res 2018; 36:605-619. [PMID: 28817244 DOI: 10.1002/jor.23707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 02/04/2023]
Abstract
Advances in mechanobiology have evolved through insights from multiple disciplines including structural engineering, biomechanics, vascular biology, and orthopaedics. In this paper, we reviewed the impact of key reports related to the study of applied loads on tissues and cells and the resulting signal transduction pathways. We addressed how technology has helped advance the burgeoning field of mechanobiology (over 33,600 publications from 1970 to 2016). We analyzed the impact of critical ideas and then determined how these concepts influenced the mechanobiology field by looking at the citation frequency of these reports as well as tracking how the overall number of citations within the field changed over time. These data allowed us to understand how a key publication, idea, or technology guided or enabled the field. Initial observations of how forces acted on bone and soft tissues stimulated the development of computational solutions defining how forces affect tissue modeling and remodeling. Enabling technologies, such as cell and tissue stretching, compression, and shear stress devices, allowed more researchers to explore how deformation and fluid flow affect cells. Observation of the cell as a tensegrity structure and advanced methods to study genetic regulation in cells further advanced knowledge of specific mechanisms of mechanotransduction. The future of the field will involve developing gene and drug therapies to simulate or augment beneficial load regimens in patients and in mechanically conditioning organs for implantation. Here, we addressed a history of the field, but we limited our discussions to advances in musculoskeletal mechanobiology, primarily in bone, tendon, and ligament tissues. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:605-619, 2018.
Collapse
Affiliation(s)
- Michelle Wall
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, North Carolina
| | - David Butler
- Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Alicia El Haj
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, UK
| | | | | | - Albert J Banes
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, North Carolina.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Xiang W, Zhang J, Wang R, Wang L, Wang S, Wu Y, Dong Y, Guo F, Xu T. Role of IFT88 in icariin‑regulated maintenance of the chondrocyte phenotype. Mol Med Rep 2018; 17:4999-5006. [PMID: 29393439 PMCID: PMC5865960 DOI: 10.3892/mmr.2018.8486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Maintenance of the chondrocyte phenotype is crucial for cartilage repair during tissue engineering. Intraflagellar transport protein 88 (IFT88) is an essential component of primary cilia, shuttling signals along the axoneme. The hypothesis of the present study was that IFT88 could exert an important role in icariin‑regulated maintenance of the chondrocyte phenotype. To this end, the effects of icariin on proliferation and differentiation of the chondrogenic cell line, ATDC5, were explored. Icariin‑treated ATDC5 cells and primary chondrocytes expressed IFT88. Icariin has been demonstrated to aid in the maintenance of the articular cartilage phenotype in a rat model of post‑traumatic osteoarthritis (PTOA). Icariin promoted chondrocyte proliferation and expression of the chondrogenesis marker genes, COL II and SOX9, increased ciliary assembly, and upregulated IFT88 expression in a concentration‑ and time‑dependent manner. Icariin‑treated PTOA rats secreted more cartilage matrix compared with the controls. Knockdown of IFT88 expression with siRNA reduced extracellular signal‑regulated kinase (ERK) phosphorylation, and icariin upregulated IFT88 expression by promoting ERK phosphorylation. Thus, IFT88 serves a major role in icariin‑mediated maintenance of the chondrocyte phenotype, promoting ciliogenesis and IFT88 expression by increasing ERK phosphorylation. Icariin may therefore be useful for maintenance of the cartilage phenotype during tissue engineering.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Limei Wang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shengjie Wang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingxing Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
23
|
Delaine-Smith RM, Burney S, Balkwill FR, Knight MM. Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics. J Mech Behav Biomed Mater 2016; 60:401-415. [PMID: 26974584 DOI: 10.1016/j.jmbbm.2016.02.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 11/18/2022]
Abstract
Mechanical characterisation of soft biological tissues using standard compression or tensile testing presents a significant challenge due to specimen geometrical irregularities, difficulties in cutting intact and appropriately sized test samples, and issues with slippage or damage at the grips. Indentation can overcome these problems but requires fitting a model to the resulting load-displacement data in order to calculate moduli. Despite the widespread use of this technique, few studies experimentally validate their chosen model or compensate for boundary effects. In this study, viscoelastic hydrogels of different concentrations and dimensions were used to calibrate an indentation technique performed at large specimen-strain deformation (20%) and analysed with a range of routinely used mathematical models. A rigid, flat-ended cylindrical indenter was applied to each specimen from which 'indentation moduli' and relaxation properties were calculated and compared against values obtained from unconfined compression. Only one indentation model showed good agreement (<10% difference) with all moduli values obtained from compression. A sample thickness to indenter diameter ratio ≥1:1 and sample diameter to indenter diameter ratio ≥4:1 was necessary to achieve the greatest accuracy. However, it is not always possible to use biological samples within these limits, therefore we developed a series of correction factors. The approach was validated using human diseased omentum and bovine articular cartilage resulting in mechanical properties closely matching compression values. We therefore present a widely useable indentation analysis method to allow more accurate calculation of material mechanics which is important in the study of soft tissue development, ageing, health and disease.
Collapse
Affiliation(s)
- R M Delaine-Smith
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End, London E1 4NS, UK; Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - S Burney
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End, London E1 4NS, UK
| | - F R Balkwill
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - M M Knight
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End, London E1 4NS, UK
| |
Collapse
|
24
|
Bodle JC, Loboa EG. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies. Stem Cells 2016; 34:1445-54. [PMID: 26866419 DOI: 10.1002/stem.2341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023]
Abstract
Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454.
Collapse
Affiliation(s)
- Josephine C Bodle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,College of Engineering University of Missouri, Columbia Columbia, Missouri, USA
| |
Collapse
|
25
|
Wang Z, Wann A, Thompson C, Hassen A, Wang W, Knight M. IFT88 influences chondrocyte actin organization and biomechanics. Osteoarthritis Cartilage 2016; 24:544-54. [PMID: 26493329 PMCID: PMC4769095 DOI: 10.1016/j.joca.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. METHODS The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88(orpk)). Confocal microscopy was used to quantify F-actin and myosin IIB organisation. Viscoelastic cell and actin cortex mechanics were determined using micropipette aspiration with actin dynamics visualised in live cells transfected with LifeACT-GFP. RESULTS IFT88(orpk) cells exhibited a significant increase in acto-myosin stress fibre organisation relative to wild-type (WT) cells in monolayer and an altered response to cytochalasin D. Rounded IFT88(orpk) cells cultured in suspension exhibited reduced cortical actin expression with reduced cellular equilibrium modulus. Micropipette aspiration resulted in reduced membrane bleb formation in IFT88(orpk) cells. Following membrane blebbing, IFT88(orpk) cells exhibited slower reformation of the actin cortex. IFT88(orpk) cells showed increased actin deformability and reduced cortical tension confirming that IFT regulates actin cortex mechanics. The reduced cortical tension is also consistent with the reduced bleb formation. CONCLUSIONS This study demonstrates for the first time that the ciliary protein IFT88 regulates fundamental actin organisation and the stiffness of the actin cortex leading to alterations in cell deformation, mechanical properties and blebbing in an IFT88 chondrocyte cell line. This adds to the growing understanding of the role of primary cilia and IFT in regulating cartilage biology.
Collapse
Affiliation(s)
- Z. Wang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - A.K.T. Wann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - C.L. Thompson
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom,Address correspondence and reprint requests to: C.L. Thompson, School of Engineering and Materials Science, Queen Mary University of London, Mile end Rd, London, E1 4NS, United Kingdom. Tel: 44-(0)20-7882-8868.
| | - A. Hassen
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - W. Wang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - M.M. Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
26
|
Osteoarthritis year in review 2015: mechanics. Osteoarthritis Cartilage 2016; 24:27-35. [PMID: 26707990 PMCID: PMC4693146 DOI: 10.1016/j.joca.2015.08.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/29/2015] [Indexed: 02/02/2023]
Abstract
Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA.
Collapse
|
27
|
Khayyeri H, Barreto S, Lacroix D. Primary cilia mechanics affects cell mechanosensation: A computational study. J Theor Biol 2015; 379:38-46. [DOI: 10.1016/j.jtbi.2015.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 01/07/2023]
|
28
|
Spyropoulou A, Karamesinis K, Basdra EK. Mechanotransduction pathways in bone pathobiology. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1700-8. [PMID: 26004394 DOI: 10.1016/j.bbadis.2015.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The skeleton is subject to dynamic changes throughout life and bone remodeling is essential for maintenance of bone functionality. The cell populations which predominantly participate in bone and cartilage remodeling, namely osteocytes, osteoblasts, osteoclasts and chondrocytes sense and respond to external mechanical signals and via a series of molecular cascades control bone metabolism and turnover rate. The aforementioned process, known as mechanotransduction, is the underlying mechanism that controls bone homeostasis and function. A wide array of cross-talking signaling pathways has been found to play an important role in the preservation of bone and cartilage tissue health. Moreover, alterations in bone mechanotransduction pathways, due to genetic, hormonal and biomechanical factors, are considered responsible for the pathogenesis of bone and cartilage diseases. Extensive research has been conducted and demonstrated that aberrations in mechanotransduction pathways result in disease-like effects, however only few signaling pathways have actually been engaged in the development of bone disease. The aim of the present review is to present these signaling molecules and cascades that have been found to be mechano-responsive and implicated in bone disease development, as revealed by research in the last five years. In addition, the role of these molecules as prognostic or diagnostic disease markers and their potential as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Anastasia Spyropoulou
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
29
|
Foster NC, Henstock JR, Reinwald Y, El Haj AJ. Dynamic 3D culture: models of chondrogenesis and endochondral ossification. ACTA ACUST UNITED AC 2015; 105:19-33. [PMID: 25777047 DOI: 10.1002/bdrc.21088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The formation of cartilage from stem cells during development is a complex process which is regulated by both local growth factors and biomechanical cues, and results in the differentiation of chondrocytes into a range of subtypes in specific regions of the tissue. In fetal development cartilage also acts as a precursor scaffold for many bones, and mineralization of this cartilaginous bone precursor occurs through the process of endochondral ossification. In the endochondral formation of bones during fetal development the interplay between cell signalling, growth factors, and biomechanics regulates the formation of load bearing bone, in addition to the joint capsule containing articular cartilage and synovium, generating complex, functional joints from a single precursor anlagen. These joint tissues are subsequently prone to degeneration in adult life and have poor regenerative capabilities, and so understanding how they are created during development may provide useful insights into therapies for diseases, such as osteoarthritis, and restoring bone and cartilage lost in adulthood. Of particular interest is how these tissues regenerate in the mechanically dynamic environment of a living joint, and so experiments performed using 3D models of cartilage development and endochondral ossification are proving insightful. In this review, we discuss some of the interesting models of cartilage development, such as the chick femur which can be observed in ovo, or isolated at a specific developmental stage and cultured organotypically in vitro. Biomaterial and hydrogel-based strategies which have emerged from regenerative medicine are also covered, allowing researchers to make informed choices on the characteristics of the materials used for both original research and clinical translation. In all of these models, we illustrate the essential importance of mechanical forces and mechanotransduction as a regulator of cell behavior and ultimate structural function in cartilage.
Collapse
Affiliation(s)
- Nicola C Foster
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre University of Keele, ST4 7QB, United Kingdom
| | | | | | | |
Collapse
|
30
|
Abstract
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY, 14203, USA
| |
Collapse
|
31
|
Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann N Y Acad Sci 2015; 1335:78-99. [PMID: 24961486 PMCID: PMC4334369 DOI: 10.1111/nyas.12463] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
| | - Rosa A. Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
32
|
Mechanical loading: potential preventive and therapeutic strategy for osteoarthritis. J Am Acad Orthop Surg 2014; 22:465-6. [PMID: 24966253 PMCID: PMC5007862 DOI: 10.5435/jaaos-22-07-465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|