1
|
Seo D, Park J. Ultrasonography assessments of talar cartilage and ATFL after running in chronically unstable, coper, and healthy ankles: a case-control study. Physiother Theory Pract 2024:1-11. [PMID: 39387690 DOI: 10.1080/09593985.2024.2412209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Comparisons of talar cartilage and the anterior talofibular ligament (ATFL) profiles in individuals with different levels of chronic ankle instability (CAI) provide insight into early adaptation of tissue morphology. PURPOSE This study compared morphologic response and recovery of the talar cartilage and ATFL before and after 30-min of self-paced treadmill running between individuals with CAI, coper (full recovery from a first-time ankle sprain), and healthy controls. METHODS Sixty young males (24.8 years, 176.9 cm, 75.7 kg) were allocated into the CAI, coper, and healthy control group by their number of ankle sprains and scores on the self-reported ankle instability questionnaires (Cumberland Ankle Instability Tool, and Foot and Ankle Ability Measure-Activities of Daily Living). Ultrasonographic images in the cross-sectional area (CSA; overall, lateral, and medial) and ATFL length (unstressed and stressed and position) before and after treadmill running were recorded and analyzed. RESULTS There were no group by time interactions in the talar cartilage CSA (F14,399 <1.09, p > .36 for all tests) and ATFL length (F14,399< .69, p > .79 for all tests). Regardless of time, CAIs had the largest overall (F2,399 = 42.68, p < .001), lateral (F2,399 = 37.16, p < .001), and medial (F2,399 = 36.57, p < .001) CSA of talar cartilage and the longest stressed-ATFL length (F2,399 = 54.42, p < .001), followed by copers and healthy controls. CONCLUSION Morphologic features of the talar cartilage and ATFL appear to depend on the level of ankle instability (e.g. a history of recurrent ankle sprain).
Collapse
Affiliation(s)
- Dongkyun Seo
- Department of Sports Medicine, Athletic Training Laboratory, Kyung Hee University, Yongin, Korea
| | - Jihong Park
- Department of Sports Medicine, Athletic Training Laboratory, Kyung Hee University, Yongin, Korea
| |
Collapse
|
2
|
Kraus VB, Hsueh MF. Molecular biomarker approaches to prevention of post-traumatic osteoarthritis. Nat Rev Rheumatol 2024; 20:272-289. [PMID: 38605249 DOI: 10.1038/s41584-024-01102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Up to 50% of individuals develop post-traumatic osteoarthritis (PTOA) within 10 years following knee-joint injuries such as anterior cruciate ligament rupture or acute meniscal tear. Lower-extremity PTOA prevalence is estimated to account for ≥12% of all symptomatic osteoarthritis (OA), or approximately 5.6 million cases in the USA. With knowledge of the inciting event, it might be possible to 'catch PTOA in the act' with sensitive imaging and soluble biomarkers and thereby prevent OA sequelae by early intervention. Existing biomarker data in the joint-injury literature can provide insights into the pathogenesis and early risk trajectory related to PTOA and can help to elucidate a research agenda for preventing or slowing the onset of PTOA. Non-traumatic OA and PTOA have many clinical, radiological and genetic similarities, and efforts to understand early risk trajectories in PTOA might therefore contribute to the identification and classification of early non-traumatic OA, which is the most prevalent form of OA.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Zhao Q, Holt A, Spritzer CE, DeFrate LE, McNulty AL, Wang N. High angular resolution diffusion imaging (HARDI) of porcine menisci: a comparison of diffusion tensor imaging and generalized q-sampling imaging. Quant Imaging Med Surg 2024; 14:2738-2746. [PMID: 38617143 PMCID: PMC11007495 DOI: 10.21037/qims-23-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 04/16/2024]
Abstract
Background Diffusion magnetic resonance imaging (MRI) allows for the quantification of water diffusion properties in soft tissues. The goal of this study was to characterize the 3D collagen fiber network in the porcine meniscus using high angular resolution diffusion imaging (HARDI) acquisition with both diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI). Methods Porcine menisci (n=7) were scanned ex vivo using a three-dimensional (3D) HARDI spin-echo pulse sequence with an isotropic resolution of 500 µm at 7.0 Tesla. Both DTI and GQI reconstruction techniques were used to quantify the collagen fiber alignment and visualize the complex collagen network of the meniscus. The MRI findings were validated with conventional histology. Results DTI and GQI exhibited distinct fiber orientation maps in the meniscus using the same HARDI acquisition. We found that crossing fibers were only resolved with GQI, demonstrating the advantage of GQI over DTI to visualize the complex collagen fiber orientation in the meniscus. Furthermore, the MRI findings were consistent with conventional histology. Conclusions HARDI acquisition with GQI reconstruction more accurately resolves the complex 3D collagen architecture of the meniscus compared to DTI reconstruction. In the future, these technologies have the potential to nondestructively assess both normal and abnormal meniscal structure.
Collapse
Affiliation(s)
- Qi Zhao
- Physical Education Institute, Jimei University, Xiamen, China
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Abigail Holt
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Charles E. Spritzer
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
4
|
Yang S, Xie J, Pan Z, Guan H, Tu Y, Ye Y, Huang S, Fu S, Li K, Huang Z, Li X, Shi Z, Li L, Zhang Y. Advanced glycation end products promote meniscal calcification by activating the mTOR-ATF4 positive feedback loop. Exp Mol Med 2024; 56:630-645. [PMID: 38424194 PMCID: PMC10985079 DOI: 10.1038/s12276-024-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.
Collapse
Affiliation(s)
- Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, 920 Hospital of the Joint Logistic Support Force, Kunming, Yunnan, China
| | - JiaJun Xie
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhiJie Pan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopaedics, The First People's Hospital of Zhaoqing, Zhaoqing, Guangdong, China
| | - HongMei Guan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - YueSheng Tu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - YuanJian Ye
- Department of Orthopaedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - ShouBin Huang
- Department of Orthopaedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - ShiQiang Fu
- Huizhou First Maternal and Child Health Care Hospital, Huizhou, Guangdong, China
| | - KangXian Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhiWei Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - XiaoQi Li
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhanJun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Le Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yang Zhang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Vrgoč G, Vuletić F, Matolić G, Ivković A, Hudetz D, Bulat S, Bukvić F, Janković S. Clinical Outcome of Arthroscopic Repair for Isolated Meniscus Tear in Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5088. [PMID: 36981997 PMCID: PMC10049165 DOI: 10.3390/ijerph20065088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Increased knowledge of the long-term destructive consequences of meniscectomy has created a shift towards operative repair of isolated meniscus lesions. However, in the literature the results of isolated meniscal repair in athletes currently remain underreported. Our objective was to investigate the clinical and functional outcomes as well as survival and return to sport in patients who underwent meniscal repair after isolated meniscal tear, with a focus on athletes (both professional and recreational) in the study population. This retrospective study included 52 athletes who underwent knee surgery for isolated meniscal tear between 2014 and 2020. Patients with concomitant ligamentous and/or chondral injury were not included in this study. The mean age of the patients was 25.5 years (ranging from 12 to 57 years). The mean follow-up period of all patients was 33.3 months (ranging 10 to 80 months). The mean purpose of the study was to report the return to sport. The International Knee Documentation Committee rating (IKDC), Lysholm score, the Knee Osteoarthritis Outcome Score (KOOS) and Tegner activity level were determined at the follow-up. Failure was defined as re-operation with meniscectomy or revision meniscal repair. In total, 44 out of 52 patients (85%) returned to their previous sports activities. At follow-up, the mean Lysholm score was 90, representing a good to excellent result. Assessment of KOOS (mean value 88.8) and IKDC (mean value 89) scores also showed good to excellent results. A mean level of Tegner scale was 6.2, indicating a relatively high level of sports participation. Failure was encountered in 8 out of 52 knees (15%). Therefore, isolated meniscal repair resulted in good to excellent knee function and most athletes can return to their previous level of sports participation.
Collapse
Affiliation(s)
- Goran Vrgoč
- Department for Orthopaedic Surgery, University Hospital, “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia; (F.V.)
- Faculty of Kinesiology, University of Zagreb, Horvaćanski zavoj 15, 10000 Zagreb, Croatia
| | - Filip Vuletić
- Department for Orthopaedic Surgery, University Hospital, “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia; (F.V.)
- Faculty of Kinesiology, University of Zagreb, Horvaćanski zavoj 15, 10000 Zagreb, Croatia
| | - Grgur Matolić
- School of Medicine, University of Zagreb, Šalata 2, 10000 Zagreb, Croatia
| | - Alan Ivković
- Department for Orthopaedic Surgery, University Hospital, “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia; (F.V.)
- School of Medicine, University of Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Department of Clinical Medicine, University Applied Health Sciences, Mlinarska cesta 38, 10000 Zagreb, Croatia
| | - Damir Hudetz
- Department for Orthopaedic Surgery, University Hospital, “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia; (F.V.)
| | - Stjepan Bulat
- Department for Orthopaedic Surgery, University Hospital, “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia; (F.V.)
| | - Frane Bukvić
- Department for Orthopaedic Surgery, University Hospital, “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia; (F.V.)
| | - Saša Janković
- Department for Orthopaedic Surgery, University Hospital, “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia; (F.V.)
- Faculty of Kinesiology, University of Zagreb, Horvaćanski zavoj 15, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Bradley PX, Thomas KN, Kratzer AL, Robinson AC, Wittstein JR, DeFrate LE, McNulty AL. The Interplay of Biomechanical and Biological Changes Following Meniscus Injury. Curr Rheumatol Rep 2023; 25:35-46. [PMID: 36479669 PMCID: PMC10267895 DOI: 10.1007/s11926-022-01093-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Meniscus injury often leads to joint degeneration and post-traumatic osteoarthritis (PTOA) development. Therefore, the purpose of this review is to outline the current understanding of biomechanical and biological repercussions following meniscus injury and how these changes impact meniscus repair and PTOA development. Moreover, we identify key gaps in knowledge that must be further investigated to improve meniscus healing and prevent PTOA. RECENT FINDINGS Following meniscus injury, both biomechanical and biological alterations frequently occur in multiple tissues in the joint. Biomechanically, meniscus tears compromise the ability of the meniscus to transfer load in the joint, making the cartilage more vulnerable to increased strain. Biologically, the post-injury environment is often characterized by an increase in pro-inflammatory cytokines, catabolic enzymes, and immune cells. These multi-faceted changes have a significant interplay and result in an environment that opposes tissue repair and contributes to PTOA development. Additionally, degenerative changes associated with OA may cause a feedback cycle, negatively impacting the healing capacity of the meniscus. Strides have been made towards understanding post-injury biological and biomechanical changes in the joint, their interplay, and how they affect healing and PTOA development. However, in order to improve clinical treatments to promote meniscus healing and prevent PTOA development, there is an urgent need to understand the physiologic changes in the joint following injury. In particular, work is needed on the in vivo characterization of the temporal biomechanical and biological changes that occur in patients following meniscus injury and how these changes contribute to PTOA development.
Collapse
Affiliation(s)
- Patrick X Bradley
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Karl N Thomas
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Avery L Kratzer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Allison C Robinson
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Jocelyn R Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Louis E DeFrate
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Englander ZA, Foody JN, Cutcliffe HC, Wittstein JR, Spritzer CE, DeFrate LE. Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity. Am J Sports Med 2022; 50:2688-2697. [PMID: 35853157 PMCID: PMC9875882 DOI: 10.1177/03635465221107085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quadriceps loading of the anterior cruciate ligament (ACL) may play a role in the noncontact mechanism of ACL injury. Musculoskeletal modeling techniques are used to estimate the intrinsic force of the quadriceps acting at the knee joint. PURPOSE/HYPOTHESIS The purpose of this paper was to develop a novel musculoskeletal model of in vivo quadriceps force during dynamic activity. We used the model to estimate quadriceps force in relation to ACL strain during a single-leg jump. We hypothesized that quadriceps loading of the ACL would reach a local maximum before initial ground contact with the knee positioned in extension. STUDY DESIGN Descriptive laboratory study. METHODS Six male participants underwent magnetic resonance imaging in addition to high-speed biplanar radiography during a single-leg jump. Three-dimensional models of the knee joint, including the femur, tibia, patellofemoral cartilage surfaces, and attachment-site footprints of the patellar tendon, quadriceps tendon, and ACL, were created from the magnetic resonance imaging scans. The bone models were registered to the biplanar radiographs, thereby reproducing the positions of the knee joint at the time of radiographic imaging. The magnitude of quadriceps force was determined for each knee position based on a 3-dimensional balance of the forces and moments of the patellar tendon and the patellofemoral cartilage contact acting on the patella. Knee kinematics and ACL strain were determined for each knee position. RESULTS A local maximum in average quadriceps force of approximately 6500 N (8.4× body weight) occurred before initial ground contact. ACL strain increased concurrently with quadriceps force when the knee was positioned in extension. CONCLUSION This novel participant-specific modeling technique provides estimates of in vivo quadriceps force during physiologic dynamic loading. A local maximum in quadriceps force before initial ground contact may tension the ACL when the knee is positioned in extension. CLINICAL RELEVANCE These data contribute to understanding noncontact ACL injury mechanisms and the potential role of quadriceps activation in these injuries.
Collapse
Affiliation(s)
- Zoë A. Englander
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Jacqueline N. Foody
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | - Hattie C. Cutcliffe
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | | | - Louis E. DeFrate
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA.,Address correspondence to Louis E. DeFrate, ScD, Duke University Medical Center, Room 379, Medical Sciences Research Bldg, Box 3093, Durham, NC 27710, USA ()
| |
Collapse
|
8
|
Hwang JW, Chawla D, Han G, Eriten M, Henak CR. Effects of solvent osmolarity and viscosity on cartilage energy dissipation under high-frequency loading. J Mech Behav Biomed Mater 2021; 126:105014. [PMID: 34871958 DOI: 10.1016/j.jmbbm.2021.105014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 11/27/2021] [Indexed: 01/16/2023]
Abstract
Articular cartilage is a spatially heterogeneous, dissipative biological hydrogel with a high fluid volume fraction. Although energy dissipation is important in the context of delaying cartilage damage, the dynamic behavior of articular cartilage equilibrated in media of varied osmolarity and viscosity is not widely understood. This study investigated the mechanical behaviors of cartilage when equilibrated to media of varying osmolarity and viscosity. Dynamic moduli and phase shift were measured at both low (1 Hz) and high (75-300 Hz) frequency, with cartilage samples compressed to varied offset strain levels. Increasing solution osmolarity and viscosity both independently resulted in larger energy dissipation and decreased dynamic modulus of cartilage at both low and high frequency. Mechanical property alterations induced by varying osmolarity are likely due to the change in permeability and fluid volume fraction within the tissue. The effects of solution viscosity are likely due to frictional interactions at the solid-fluid interface, affecting energy dissipation. These findings highlight the significance of interstitial fluid on the energy dissipation capabilities of the tissue, which can influence the onset of cartilage damage.
Collapse
Affiliation(s)
- Jin Wook Hwang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Guebum Han
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinne R Henak
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Yan W, Dai W, Cheng J, Fan Y, Wu T, Zhao F, Zhang J, Hu X, Ao Y. Advances in the Mechanisms Affecting Meniscal Avascular Zone Repair and Therapies. Front Cell Dev Biol 2021; 9:758217. [PMID: 34778268 PMCID: PMC8581462 DOI: 10.3389/fcell.2021.758217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Injuries to menisci are the most common disease among knee joint-related morbidities and cover a widespread population ranging from children and the general population to the old and athletes. Repair of the injuries in the meniscal avascular zone remains a significant challenge due to the limited intrinsic healing capacity compared to the peripheral vascularized zone. The current surgical strategies for avascular zone injuries remain insufficient to prevent the development of cartilage degeneration and the ultimate emergence of osteoarthritis (OA). Due to the drawbacks of current surgical methods, the research interest has been transferred toward facilitating meniscal avascular zone repair, where it is expected to maintain meniscal tissue integrity, prevent secondary cartilage degeneration and improve knee joint function, which is consistent with the current prevailing management idea to maintain the integrity of meniscal tissue whenever possible. Biological augmentations have emerged as an alternative to current surgical methods for meniscal avascular zone repair. However, understanding the specific biological mechanisms that affect meniscal avascular zone repair is critical for the development of novel and comprehensive biological augmentations. For this reason, this review firstly summarized the current surgical techniques, including meniscectomies and meniscal substitution. We then discuss the state-of-the-art biological mechanisms, including vascularization, inflammation, extracellular matrix degradation and cellular component that were associated with meniscal avascular zone healing and the advances in therapeutic strategies. Finally, perspectives for the future biological augmentations for meniscal avascular zone injuries will be given.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Wenli Dai
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yifei Fan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Tong Wu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Fengyuan Zhao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Jiahao Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| |
Collapse
|
10
|
Kim-Wang SY, Holt AG, McGowan AM, Danyluk ST, Goode AP, Lau BC, Toth AP, Wittstein JR, DeFrate LE, Yi JS, McNulty AL. Immune cell profiles in synovial fluid after anterior cruciate ligament and meniscus injuries. Arthritis Res Ther 2021; 23:280. [PMID: 34736523 PMCID: PMC8567695 DOI: 10.1186/s13075-021-02661-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/17/2021] [Indexed: 01/18/2023] Open
Abstract
Background Anterior cruciate ligament (ACL) and meniscus tears are common knee injuries. Despite the high rate of post-traumatic osteoarthritis (PTOA) following these injuries, the contributing factors remain unclear. In this study, we characterized the immune cell profiles of normal and injured joints at the time of ACL and meniscal surgeries. Methods Twenty-nine patients (14 meniscus-injured and 15 ACL-injured) undergoing ACL and/or meniscus surgery but with a normal contralateral knee were recruited. During surgery, synovial fluid was aspirated from both normal and injured knees. Synovial fluid cells were pelleted, washed, and stained with an antibody cocktail consisting of fluorescent antibodies for cell surface proteins. Analysis of immune cells in the synovial fluid was performed by polychromatic flow cytometry. A broad spectrum immune cell panel was used in the first 10 subjects. Based on these results, a T cell-specific panel was used in the subsequent 19 subjects. Results Using the broad spectrum immune cell panel, we detected significantly more total viable cells and CD3 T cells in the injured compared to the paired normal knees. In addition, there were significantly more injured knees with T cells above a 500-cell threshold. Within the injured knees, CD4 and CD8 T cells were able to be differentiated into subsets. The frequency of total CD4 T cells was significantly different among injury types, but no statistical differences were detected among CD4 and CD8 T cell subsets by injury type. Conclusions Our findings provide foundational data showing that ACL and meniscus injuries induce an immune cell-rich microenvironment that consists primarily of T cells with multiple T helper phenotypes. Future studies investigating the relationship between immune cells and joint degeneration may provide an enhanced understanding of the pathophysiology of PTOA following joint injury.
Collapse
Affiliation(s)
- Sophia Y Kim-Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Abigail G Holt
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa M McGowan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie T Danyluk
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Adam P Goode
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Brian C Lau
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alison P Toth
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jocelyn R Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Louis E DeFrate
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. .,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA. .,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| | - John S Yi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
11
|
Markus DH, Berlinberg EJ, Strauss EJ. Current State of Synovial Fluid Biomarkers in Sports Medicine. JBJS Rev 2021; 9:01874474-202108000-00003. [PMID: 34398863 DOI: 10.2106/jbjs.rvw.21.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» While the gross mechanical abnormalities contributing to posttraumatic osteoarthritis (PTOA) have been well described, new research is demonstrating that these insults to the articular cartilage may also initiate changes in the joint microenvironment that seed the development of PTOA. » A growing amount of literature has identified key biomarkers that exhibit altered expression in the synovial fluid following a knee injury, with a portion of these molecules remaining elevated in the years following an injury. » These biomarkers have the potential to aid in the early detection of PTOA before radiographic evidence becomes apparent. Furthermore, deciphering the processes that occur within the articular microenvironment after trauma may allow for better identification of therapeutic targets for the prevention and earlier treatment of PTOA.
Collapse
|
12
|
Hori M, Terada M, Suga T, Isaka T. Changes in anterior femoral articular cartilage structure in collegiate rugby athletes with and without a history of traumatic knee joint injury following a five-month competitive season. Sci Rep 2021; 11:15186. [PMID: 34312456 PMCID: PMC8313691 DOI: 10.1038/s41598-021-94462-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to examine anterior femoral cartilage morphology before (pre-season) and after (post-season) a 5-month competitive season in collegiate ruby players with and without a previous history of traumatic injury to ligamentous, meniscus, and/or cartilage structures at the knee joint. Using a prospective cohort design, 42 male collegiate rugby players with a previous history of traumatic intracapsular knee joint injury and 124 players without knee injury history were included in this study. Ultrasonography assessments of anterior femoral cartilage were performed before (pre-season) and following a 5-month athletic season (post-season). Rugby players with a history of traumatic knee joint injury had greater lateral condylar thickness (2.37 ± 0.35 mm, p = 0.03), intercondylar thickness (2.51 ± 0.47 mm, p = 0.03), and partial area (44.67 ± 7.28mm2, p = 0.02) compared to control players (lateral = 2.23 ± 0.35 mm, intercondylar = 2.32 ± 0.47 mm, partial area = 41.60 ± 7.26 mm2), regardless of pre-and post-season assessment time points. Pre-season ultrasonography assessment of lateral condylar thickness (2.34 ± 0.47 mm, p = 0.02), medial condylar thickness (2.05 ± 0.43 mm, p = 0.03), and partial area (44.10 ± 9.23 mm2, p = 0.001) were significantly greater than the post-season ultrasonography assessment time point (lateral = 2.26 ± 0.43 mm, medial = 1.98 ± 0.43 mm, partial area = 42.17 ± 8.82 mm2), regardless of group membership. Rugby players with a history of intracapsular knee joint injury displayed altered anterior femoral cartilage size via ultrasonography assessments. Regardless of a presence of injury history, collegiate rugby players showed a decrease in cartilage thickness and partial area following a 5-month competitive season.
Collapse
Affiliation(s)
- Miyuki Hori
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masafumi Terada
- College of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Tadashi Suga
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tadao Isaka
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.,College of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
13
|
Mostakhdemin M, Nand A, Ramezani M. Articular and Artificial Cartilage, Characteristics, Properties and Testing Approaches-A Review. Polymers (Basel) 2021; 13:2000. [PMID: 34207194 PMCID: PMC8234542 DOI: 10.3390/polym13122000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
The design and manufacture of artificial tissue for knee joints have been highlighted recently among researchers which necessitates an apt approach for its assessment. Even though most re-searches have focused on specific mechanical or tribological tests, other aspects have remained underexplored. In this review, elemental keys for design and testing artificial cartilage are dis-cussed and advanced methods addressed. Articular cartilage structure, its compositions in load-bearing and tribological properties of hydrogels, mechanical properties, test approaches and wear mechanisms are discussed. Bilayer hydrogels as a niche in tissue artificialization are presented, and recent gaps are assessed.
Collapse
Affiliation(s)
- Mohammad Mostakhdemin
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| | - Ashveen Nand
- School of Environmental and Animal Sciences, Unitec Institute of Technology, Auckland 1025, New Zealand;
- School of Healthcare and Social Practice, Unitec Institute of Technology, Auckland 1025, New Zealand
| | - Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Lyons LP, Weinberg JB, Wittstein JR, McNulty AL. Blood in the joint: effects of hemarthrosis on meniscus health and repair techniques. Osteoarthritis Cartilage 2021; 29:471-479. [PMID: 33307179 PMCID: PMC8051641 DOI: 10.1016/j.joca.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 02/02/2023]
Abstract
Injury to the meniscus is common and frequently leads to the development of post-traumatic osteoarthritis (PTOA). Many times meniscus injuries occur coincident with anterior cruciate ligament (ACL) injuries and lead to a bloody joint effusion. Hemarthrosis, or bleeding into the joint, has been implicated in degeneration of joint tissues. The goal of this review paper is to understand the pathophysiology of blood-induced joint damage, the possible effects of blood on meniscus tissue, and the implications for current meniscus repair techniques that involve the introduction of blood-derived products into the joint. In this review, we illustrate the similarities in the pathophysiology of joint damage due to hemophilic arthropathy (HA) and osteoarthritis (OA). Although numerous studies have revealed the harmful effects of blood on cartilage and synovium, there is currently a gap in knowledge regarding the effects of hemarthrosis on meniscus tissue homeostasis, healing, and the development of PTOA following meniscus injury. Given that many meniscus repair techniques utilize blood-derived and marrow-derived products, it is essential to understand the effects of these factors on meniscus tissue and the whole joint organ to develop improved strategies to promote meniscus tissue repair and prevent PTOA development.
Collapse
Affiliation(s)
- Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, NC
| | - J. Brice Weinberg
- Department of Medicine, VA Medical Center, Durham, NC,Department of Medicine, Duke University School of Medicine,
Durham, NC
| | - Jocelyn R. Wittstein
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, NC
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, NC,Department of Pathology, Duke University School of
Medicine, Durham, NC
| |
Collapse
|
15
|
Chalmers PN, Miller M, Wheelwright JC, Kawakami J, Henninger HB, Tashjian RZ. Acromial and glenoid morphology in glenohumeral osteoarthritis: a three-dimensional analysis. JSES Int 2021; 5:398-405. [PMID: 34136846 PMCID: PMC8178618 DOI: 10.1016/j.jseint.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background The purpose of this study was to determine the association between glenohumeral osteoarthritis (GHOA) and three-dimensional acromial and glenoid morphology. Methods In this retrospective study, we compared computed tomographic studies of three groups of scapulae: normal healthy, mild GHOA (Samilson-Prieto grade 1), and severe GHOA (Samilson-Prieto grade 3). All scans were segmented to create three-dimensional reconstructions. From these models, critical shoulder angle and acromial offset were measured, as normalized to scapular height. The coronal plane inclination of the glenoid was measured using a glenoid sphere-fit method. Reliability was confirmed via intraclass correlation coefficients > 0.75. Results Eighty scapulae were included: 30 normal, 20 mild GHOA, and 30 severe GHOA. There were no differences in acromial offset between the normal group and either the mild-GHOA group or the severe-GHOA group. The severe-GHOA group had a smaller critical shoulder angle than either the normal (30 ± 5° vs. 34 ± 4°, P = .003) or mild-GHOA groups (34 ± 4°, P = .020), but the normal and mild-GHOA groups did not differ (P = .965). The severe-GHOA group had more inferiorly inclined glenoids than either the normal (7 ± 6° vs. 12 ± 5°, P = .002) or mild-GHOA groups (14 ± 5°, P ≤ .001), but the normal and mild-GHOA groups did not differ (P = .281). Conclusion Normal and severe-GHOA shoulders differ in critical shoulder angle and glenoid inclination but not acromial offset. The lack of a difference in critical shoulder angle or inferior inclination between mild-GHOA and normal groups calls into question whether inclination and critical shoulder angle differences predate severe GHOA.
Collapse
Affiliation(s)
- Peter N. Chalmers
- Assistant Professor, Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
- Corresponding author: Peter N. Chalmers, MD, Department of Orthopaedic Surgery, 590 Wakara Way, Salt Lake City, UT 84108, USA.
| | - Matt Miller
- Research Associate, Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - John C. Wheelwright
- Research Associate, Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Jun Kawakami
- Research Associate, Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Heath B. Henninger
- Associate Professor, Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Robert Z. Tashjian
- Professor, Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Mostakhdemin M, Nand A, Ramezani M. A novel assessment of microstructural and mechanical behaviour of bilayer silica-reinforced nanocomposite hydrogels as a candidate for artificial cartilage. J Mech Behav Biomed Mater 2021; 116:104333. [PMID: 33494020 DOI: 10.1016/j.jmbbm.2021.104333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
The complex structure of healthy articular cartilage facilitates the joint withstanding the imposed pressures and retaining interstitial fluid to lessen stresses on its soft tissue, while easing the locomotion and minimising friction between cartilage mates. Avascular nature of this tissue results in unrecoverable damaged lesions and severe pain over time. Polymeric hydrogels are promising candidate materials for the replacement of the damaged cartilage. Hence, a tough bilayer nanocomposite acrylamide-acrylic acid hydrogel reinforced with silica nanoparticles (SNPs) was designed and synthesised. The mechanical characterisations showed a significant increase in compressive strength up to 1.4 MPa and doubled elastic modulus (240 kPa) by utilising only 0.6 wt% SNPs compared to the non-reinforced hydrogel. The optimum amounts of monomers and SNPs resulted in the compression of samples up to 85% strain without failure. Viscoelastic responses improved as the stress relaxation lessened to half in all nanocomposite hydrogels. Diffusion rate theory was applied, and the results showed to what extent elastic modulus results in an improvement in stress relaxation. The proposed hydrogel formulation exhibited the poroelastic relaxation occurred before viscoelastic relaxation at the time elapses under stress relaxation tests. SEM images showed uniform funnel-like porosity with 570 μm thick lubricious layer, which is an important feature to retain interstitial fluid. Energy-dispersive X-ray spectroscopy was conducted to characterise the elemental composition within the polymeric macrostructure.
Collapse
Affiliation(s)
- Mohammad Mostakhdemin
- Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand.
| | - Ashveen Nand
- School of Environmental and Animal Sciences and School of Healthcare and Social Practice, Unitec Institute of Technology, Auckland, New Zealand
| | - Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
17
|
Collins AT, Kulvaranon M, Spritzer CE, McNulty AL, DeFrate LE. The Influence of Obesity and Meniscal Coverage on In Vivo Tibial Cartilage Thickness and Strain. Orthop J Sports Med 2020; 8:2325967120964468. [PMID: 33330731 PMCID: PMC7720327 DOI: 10.1177/2325967120964468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
Background Obesity, which potentially increases loading at the knee, is a common and modifiable risk factor for the development of knee osteoarthritis. The menisci play an important role in distributing joint loads to the underlying cartilage. However, the influence of obesity on the role of the menisci in cartilage load distribution in vivo is currently unknown. Purpose To measure tibial cartilage thickness and compressive strain in response to walking in areas covered and uncovered by the menisci in participants with normal body mass index (BMI) and participants with high BMI. Study Design Controlled laboratory study. Methods Magnetic resonance (MR) images of the right knees of participants with normal BMI (<25 kg/m2; n = 8) and participants with high BMI (>30 kg/m2; n = 7) were obtained before and after treadmill walking. The outer margins of the tibia, the medial and lateral cartilage surfaces, and the meniscal footprints were segmented on each MR image to create 3-dimensional models of the joint. Cartilage thickness was measured before and after walking in areas covered and uncovered by the menisci. Cartilage compressive strain was then determined from changes in thickness resulting from the walking task. Results Before exercise, medial and lateral uncovered cartilage of the tibial plateau was significantly thicker than covered cartilage in both BMI groups. In the uncovered region of the lateral tibial plateau, participants with high BMI had thinner preexercise cartilage than those with a normal BMI. Cartilage compressive strain was significantly greater in medial and lateral cartilage in participants with high BMI compared with those with normal BMI in both the regions covered and those uncovered by the menisci. Conclusion Participants with high BMI experienced greater cartilage strain in response to walking than participants with normal BMI in both covered and uncovered regions of cartilage, which may indicate that the load-distributing function of the meniscus is not sufficient to moderate the effects of obesity. Clinical Relevance These findings demonstrate the critical effect of obesity on cartilage function and thickness in regions covered and uncovered by the menisci.
Collapse
Affiliation(s)
- Amber T Collins
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micaela Kulvaranon
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Physics, Duke University, Durham, North Carolina, USA
| | - Charles E Spritzer
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, North Carolina, USA.,Department of Mechanical Engineering and Materials Science, Duke University, North Carolina, USA
| |
Collapse
|
18
|
Butt U, Vuletić F, Stenhouse G, Hudetz D, Bradbury N. Meniscal scaffold for the treatment of partial meniscal defect-clinical and radiological outcomes in a two-year follow-up. INTERNATIONAL ORTHOPAEDICS 2020; 45:977-983. [PMID: 32949258 DOI: 10.1007/s00264-020-04811-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of meniscal scaffolds is to fill the defect, allow regeneration of meniscal-like tissues, and to prevent long-term risk of cartilage wear and tear. The aim of this study was to evaluate clinical results after two years and magnetic resonance imaging (MRI) results a year after implantation of a meniscal scaffold. METHODS Fifteen patients were recruited into a prospective, single-arm, single-center study, and treated with meniscal scaffolds as a result of segmental meniscal defect due to previous partial meniscectomy. Patients were evaluated using functional knee scores used pre-operatively and 6, 12, and 24 months postoperatively. The radiological outcome was assessed using MRI at 12 months by evaluating scaffold size, morphology, and intensity according to the Genovese grading system. Cartilage assessment was completed according to The International Cartilage Repair Society (ICRS) score. RESULTS All patients completed a follow-up of 24 months. A statistically significant increase in mean levels of all functional scores was present in all patients. On the MRI, all but one of the patients presented an incorporated meniscal implant. In most of the patients (73%), the meniscal implant was a Genovese type III. Type II and III signal intensities were present in all scaffolds when compared with the residual meniscal tissue. A stable cartilage (ICRS) status was observed in 80% of the patients compared with the pre-operative cartilage scores. CONCLUSION In our case series of patients treated with the meniscal scaffold implant, we observed good clinical results at a two year follow-up. Furthermore, MRI findings suggest that meniscal scaffolds might have a beneficial effect on articular cartilage.
Collapse
Affiliation(s)
- Umer Butt
- AO Clinic (Institute of Trauma, Orthopaedics and Sports Injury), Nazimabad No.4, Karachi, Pakistan
- Circle Bath Hospital, Bath, UK
| | - Filip Vuletić
- Department of Orthopaedic Surgery, University Hospital 'Sveti Duh', Zagreb, Croatia.
| | | | - Damir Hudetz
- Department of Orthopaedic Surgery, University Hospital 'Sveti Duh', Zagreb, Croatia
| | | |
Collapse
|
19
|
Rai MF, Brophy RH, Rosen V. Molecular biology of meniscus pathology: Lessons learned from translational studies and mouse models. J Orthop Res 2020; 38:1895-1904. [PMID: 32068295 PMCID: PMC7802285 DOI: 10.1002/jor.24630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023]
Abstract
Injury to any individual structure in the knee interrupts the overall function of the joint and initiates a cascade of biological and biomechanical changes whose endpoint is often osteoarthritis (OA). The knee meniscus is an integral component of knee biomechanics and may also contribute to the biological homeostasis of the joint. Meniscus injury altering knee function is associated with a high risk of OA progression, and may also be involved in the initiation of OA. As the relationship between meniscus injury and OA is very complex; despite the availability of transcript level data on human meniscus injury and meniscus mediated OA, mechanistic studies are lacking, and available human data are difficult to validate in the absence of patient-matched noninjured control tissues. As similarities exist between human and mouse knee joint structure and function, investigators have begun to use cutting-edge genetic and genomic tools to examine the usefulness of the mouse as a model to study the intricate relationship between meniscus injury and OA. In this review, we use evidence from human meniscus research to identify critical barriers hampering our understanding of meniscus injury induced OA and discuss strategies to overcome these barriers, including those that can be examined in a mouse model of injury-mediated OA.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert H. Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States of America
| |
Collapse
|
20
|
Cutcliffe HC, Davis KM, Spritzer CE, DeFrate L. The Characteristic Recovery Time as a Novel, Noninvasive Metric for Assessing In Vivo Cartilage Mechanical Function. Ann Biomed Eng 2020; 48:2901-2910. [PMID: 32666421 PMCID: PMC7723945 DOI: 10.1007/s10439-020-02558-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/25/2020] [Indexed: 12/01/2022]
Abstract
Osteoarthritis (OA) is a disease characterized by the degeneration of cartilage tissue, and is a leading cause of disability in the United States. The clinical diagnosis of OA includes the presence of pain and radiographic imaging findings, which typically do not present until advanced stages of the disease when treatment is difficult. Therefore, identifying new methods of OA detection that are sensitive to earlier pathological changes in cartilage, which may be addressed prior to the development of irreversible OA, is critical for improving OA treatment. A potentially promising avenue for developing early detection methods involves measuring the tissue’s in vivo mechanical response to loading, as changes in mechanical function are commonly observed in ex vivo studies of early OA. However, thus far the mechanical function of cartilage has not been widely assessed in vivo. Therefore, the purpose of this study was to develop a novel methodology that can be used to measure an in vivo mechanical property of cartilage: the characteristic recovery time. Specifically, in this study we quantified the characteristic recovery time of cartilage thickness after exercise in relatively young subjects with asymptomatic cartilage. Additionally, we measured baseline cartilage thickness and T1rho and T2 relaxation times (quantitative MRI) prior to exercise in these subjects to assess whether baseline MRI measures are predictive of the characteristic recovery time, to understand whether or not the characteristic recovery time provides independent information about cartilage’s mechanical state. Our results show that the mean recovery strain response across subjects was well-characterized by an exponential approach with a characteristic time of 25.2 min, similar to literature values of human characteristic times measured ex vivo. Further, we were unable to detect a statistically significant linear relationship between the characteristic recovery time and the baseline metrics measured here (T1rho relaxation time, T2 relaxation time, and cartilage thickness). This might suggest that the characteristic recovery time has the potential to provide additional information about the mechanical state of cartilage not captured by these baseline MRI metrics. Importantly, this study presents a noninvasive methodology for quantifying the characteristic recovery time, an in vivo mechanical property of cartilage. As mechanical response may be indicative of cartilage health, this study underscores the need for future studies investigating the characteristic recovery time and in vivo cartilage mechanical response at various stages of OA.
Collapse
Affiliation(s)
- Hattie C Cutcliffe
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keithara M Davis
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Charles E Spritzer
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Louis DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA. .,Department of Biomedical Engineering, Duke University, Durham, NC, USA. .,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Lee D, Hong KT, Lim TS, Lee E, Lee YH, Park JS, Kim W, Oh JH, Choi JA, Song Y. Alterations in articular cartilage T2 star relaxation time following mechanical disorders: in vivo canine supraspinatus tendon resection models. BMC Musculoskelet Disord 2020; 21:424. [PMID: 32615950 PMCID: PMC7331159 DOI: 10.1186/s12891-020-03447-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background The role of altered joint mechanics on cartilage degeneration in in vivo models has not been studied successfully due to a lack of pre-injury information. We aimed 1) to develop an accurate in vivo canine model to measure the changes in joint loading and T2 star (T2*) relaxation time before and after unilateral supraspinatus tendon resections, and 2) to find the relationship between regional variations in articular cartilage loading patterns and T2* relaxation time distributions. Methods Rigid markers were implanted in the scapula and humerus of tested dogs. The movement of the shoulder bones were measured by a motion tracking system during normal gaits. In vivo cartilage contact strain was measured by aligning 3D shoulder models with the motion tracking data. Articular cartilage T2* relaxation times were measured by quantitative MRI scans. Articular cartilage contact strain and T2* relaxation time were compared in the shoulders before and 3 months after the supraspinatus tendon resections. Results Excellent accuracy and reproducibility were found in our in vivo contact strain measurements with less than 1% errors. Changes in articular cartilage contact strain exhibited similar patterns with the changes in the T2* relaxation time after resection surgeries. Regional changes in the articular cartilage T2* relaxation time exhibited positive correlations with regional contact strain variations 3 months after the supraspinatus resection surgeries. Conclusion This is the first study to measure in vivo articular cartilage contact strains with high accuracy and reproducibility. Positive correlations between contact strain and T2* relaxation time suggest that the articular cartilage extracellular matrix may responds to mechanical changes in local areas.
Collapse
Affiliation(s)
- Dokwan Lee
- Department of Mechanical Engineering, Korea University Engineering Campus, Innovation Hall, Room 306, Anam-dong, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ki-Taek Hong
- Department of Mechanical Engineering, Korea University Engineering Campus, Innovation Hall, Room 306, Anam-dong, Seongbuk-gu, Seoul, 02841, South Korea
| | - Tae Seong Lim
- Department of Radiology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Eugene Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ye Hyun Lee
- Department of Orthopedic Surgery, National Police Hospital, Seoul, South Korea
| | - Ji Soon Park
- Department of Orthopedic Surgery, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| | - Woo Kim
- Seoul Kiwoonchan Orthopedics Clinic, Seoul, South Korea
| | - Joo Han Oh
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jung-Ah Choi
- Department of Radiology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Yongnam Song
- Department of Mechanical Engineering, Korea University Engineering Campus, Innovation Hall, Room 306, Anam-dong, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
22
|
Rodeo SA, Monibi F, Dehghani B, Maher S. Biological and Mechanical Predictors of Meniscus Function: Basic Science to Clinical Translation. J Orthop Res 2020; 38:937-945. [PMID: 31799733 DOI: 10.1002/jor.24552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/03/2019] [Indexed: 02/04/2023]
Abstract
Progressive knee joint degeneration occurs following removal of a torn meniscus. However, there is significant variability in the rate of development of post-meniscectomy osteoarthritis (OA). While there is no current consensus on the risk factors for development of knee OA in patients with meniscus tears, it is likely that both biological and biomechanical factors play critical roles. In this perspective paper, we review the mechanical and the biological predictors of the response of the knee to partial meniscectomy. We review the role of patient-based studies, in vivo animal models, cadaveric models, bioreactor systems, and statistically augmented computational models for the study of meniscus function and post-meniscectomy OA, providing insight into the important interplay between biomechanical and biologic factors. We then discuss the clinical translation of these concepts for "biologic augmentation" of meniscus healing and meniscus replacement. Ultimately, collaborative studies between engineers, biologists, and clinicians is the optimal way to improve our understanding of meniscus pathology and response to injury and/or disease, and to facilitate effective translation of laboratory findings to improved treatments for our patients. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:937-945, 2020.
Collapse
Affiliation(s)
- Scott A Rodeo
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Farrah Monibi
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Bijan Dehghani
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Suzanne Maher
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| |
Collapse
|
23
|
Walsh SK, Schneider SE, Amundson LA, Neu CP, Henak CR. Maturity-dependent cartilage cell plasticity and sensitivity to external perturbation. J Mech Behav Biomed Mater 2020; 106:103732. [PMID: 32321631 DOI: 10.1016/j.jmbbm.2020.103732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Articular cartilage undergoes biological and morphological changes throughout maturation. The prevalence of osteoarthritis in the aged population suggests that maturation predisposes cartilage to degradation and/or impaired regeneration, but this process is not fully understood. Therefore, the objective of this study was to characterize the cellular and genetic profile of cartilage, as well as biological plasticity in response to mechanical and culture time stimuli, as a function of animal maturity. METHODS/DESIGN Porcine articular cartilage explants were harvested from stifle joints of immature (2-4 weeks), adolescent (5-6 months), and mature (1-5 years) animals. Half of all samples were subjected to a single compressive mechanical load. Loaded samples were paired with unloaded controls for downstream analyses. Expression of cartilage progenitor cell markers CD105, CD44, and CD29 were determined via flow cytometry. Expression of matrix synthesis genes Col1, Col2, Col10, ACAN, and SOX9 were determined via qPCR. Tissue morphology and matrix content were examined histologically. Post-loading assays were performed immediately and following 7 days in culture. RESULTS CD105 and CD29 expression decreased with maturity, while CD44 expression was upregulated in cartilage from mature animals. Expression of matrix synthesis genes were generally upregulated in cartilage from mature animals, and adolescent animals showed the lowest expression of several matrix synthesizing genes. Culture time and mechanical loading analyses revealed greater plasticity to mechanical loading and culture time in cartilage from younger animals. Histology confirmed distinct structural and biochemical profiles across maturity. CONCLUSION This study demonstrates differential, nonlinear expression of chondroprogenitor markers and matrix synthesis genes as a function of cartilage maturity, as well as loss of biological plasticity in aged tissue. These findings have likely implications for age-related loss of regeneration and osteoarthritis progression.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Stephanie E Schneider
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Laura A Amundson
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
24
|
Hidalgo Perea S, Lyons LP, Nishimuta JF, Weinberg JB, McNulty AL. Evaluation of culture conditions for in vitro meniscus repair model systems using bone marrow-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:322-337. [PMID: 31661326 PMCID: PMC7188595 DOI: 10.1080/03008207.2019.1680656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Meniscal injury and loss of meniscus tissue lead to osteoarthritis development. Therefore, novel biologic strategies are needed to enhance meniscus tissue repair. The purpose of this study was to identify a favorable culture medium for both bone marrow-derived mesenchymal stem cells (MSCs) and meniscal tissue, and to establish a novel meniscus tissue defect model that could be utilized for in vitro screening of biologics to promote meniscus repair.Materials and Methods: In parallel, we analyzed the biochemical properties of MSC - seeded meniscus-derived matrix (MDM) scaffolds and meniscus repair model explants cultured in different combinations of serum, dexamethasone (Dex), and TGF-β. Next, we combined meniscus tissue and MSC-seeded MDM scaffolds into a novel meniscus tissue defect model to evaluate the effects of chondrogenic and meniscal media on the tissue biochemical properties and repair strength.Results: Serum-free medium containing TGF-β and Dex was the most promising formulation for experiments with MSC-seeded scaffolds, whereas serum-containing medium was the most effective for meniscus tissue composition and integrative repair. When meniscus tissue and MSC-seeded MDM scaffolds were combined into a defect model, the chondrogenic medium (serum-free with TGF-β and Dex) enhanced the production of proteoglycans and promoted integrative repair of meniscus tissue. As well, cross-linked scaffolds improved repair over the MDM slurry.Conclusions: The meniscal tissue defect model established in this paper can be used to perform in vitro screening to identify and optimize biological treatments to enhance meniscus tissue repair prior to conducting preclinical animal studies.
Collapse
Affiliation(s)
- Sofia Hidalgo Perea
- Department of Biology, Duke University, Durham, North
Carolina, USA,Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - James F. Nishimuta
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - J. Brice Weinberg
- Department of Medicine, Duke University School of Medicine,
Durham, North Carolina, USA,VA Medical Center, Durham, NC, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA,Department of Pathology, Duke University School of
Medicine, Durham, North Carolina, USA,Corresponding Author: Amy L. McNulty,
PhD, Duke University School of Medicine, 355A Medical Sciences Research Building
1, DUMC Box 3093, Durham, NC 27710, Phone: 919-684-6882,
| |
Collapse
|
25
|
|
26
|
Lyons LP, Hidalgo Perea S, Weinberg JB, Wittstein JR, McNulty AL. Meniscus-Derived Matrix Bioscaffolds: Effects of Concentration and Cross-Linking on Meniscus Cellular Responses and Tissue Repair. Int J Mol Sci 2019; 21:ijms21010044. [PMID: 31861690 PMCID: PMC6981607 DOI: 10.3390/ijms21010044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Meniscal injuries, particularly in the avascular zone, have a low propensity for healing and are associated with the development of osteoarthritis. Current meniscal repair techniques are limited to specific tear types and have significant risk for failure. In previous work, we demonstrated the ability of meniscus-derived matrix (MDM) scaffolds to augment the integration and repair of an in vitro meniscus defect. The objective of this study was to determine the effects of percent composition and dehydrothermal (DHT) or genipin cross-linking of MDM bioscaffolds on primary meniscus cellular responses and integrative meniscus repair. In all scaffolds, the porous microenvironment allowed for exogenous cell infiltration and proliferation, as well as endogenous meniscus cell migration. The genipin cross-linked scaffolds promoted extracellular matrix (ECM) deposition and/or retention. The shear strength of integrative meniscus repair was improved with increasing percentages of MDM and genipin cross-linking. Overall, the 16% genipin cross-linked scaffolds were most effective at enhancing integrative meniscus repair. The ability of the genipin cross-linked scaffolds to attract endogenous meniscus cells, promote glycosaminoglycan and collagen deposition, and enhance integrative meniscus repair reveals that these MDM scaffolds are promising tools to augment meniscus healing.
Collapse
Affiliation(s)
- Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
| | - Sofia Hidalgo Perea
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - J. Brice Weinberg
- Department of Medicine, VA Medical Center, Durham, NC 27705, USA;
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jocelyn R. Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-919-684-6882
| |
Collapse
|
27
|
Maturation of the Meniscal Collagen Structure Revealed by Polarization-Resolved and Directional Second Harmonic Generation Microscopy. Sci Rep 2019; 9:18448. [PMID: 31804577 PMCID: PMC6895152 DOI: 10.1038/s41598-019-54942-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022] Open
Abstract
We report Polarization-resolved Second Harmonic Generation (P-SHG) and directional SHG (forward and backward, F/B) measurements of equine foetal and adult collagen in meniscus, over large field-of-views using sample-scanning. Large differences of collagen structure and fibril orientation with maturation are revealed, validating the potential for this novel methodology to track such changes in meniscal structure. The foetal menisci had a non-organized and more random collagen fibrillar structure when compared with adult using P-SHG. For the latter, clusters of homogeneous fibril orientation (inter-fibrillar areas) were revealed, separated by thick fibers. F/B SHG showed numerous different features in adults notably, in thick fibers compared to interfibrillar areas, unlike foetal menisci that showed similar patterns for both directions. This work confirms previous studies and improves the understanding of meniscal collagen structure and its maturation, and makes F/B and P-SHG good candidates for future studies aiming at revealing structural modifications to meniscus due to pathologies.
Collapse
|
28
|
Englander ZA, Baldwin EL, Smith WA, Garrett WE, Spritzer CE, DeFrate LE. In Vivo Anterior Cruciate Ligament Deformation During a Single-Legged Jump Measured by Magnetic Resonance Imaging and High-Speed Biplanar Radiography. Am J Sports Med 2019; 47:3166-3172. [PMID: 31593498 PMCID: PMC7042957 DOI: 10.1177/0363546519876074] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The in vivo mechanics of the anterior cruciate ligament (ACL) and its bundles during dynamic activities are not completely understood. An improved understanding of how the ACL stabilizes the knee is likely to aid in the identification and prevention of injurious maneuvers. PURPOSE/HYPOTHESIS The purpose was to measure in vivo ACL strain during a single-legged jump through use of magnetic resonance imaging (MRI) and high-speed biplanar radiography. We hypothesized that ACL strain would increase with the knee near extension, and a peak in ACL strain would occur just before landing from the jump, potentially due to quadriceps contraction in anticipation of landing. STUDY DESIGN Descriptive laboratory study. METHODS Models of the femur, tibia, and ACL attachment sites of 8 male participants were generated from MRI scans through use of solid modeling. High-speed biplanar radiographs were obtained from these participants as they performed a single-legged jump. The bone models were registered to the biplanar radiographs, thereby reproducing the in vivo positions of the joint throughout the jump. ACL and bundle elongations were defined as the centroid to centroid distances between attachment sites for each knee position. ACL strain was defined as ACL length normalized to its length measured in the position of the knee at the time of MRI. RESULTS Peaks in ACL strain were observed before toe-off and 55 ± 35 milliseconds before initial ground contact. These peaks were associated with the knee positioned at low flexion angles. Mean ACL strain was inversely related to mean flexion angle (rho = -0.73, P < .001), such that ACL strain generally increased with knee extension throughout the jumping motion. ACL bundle lengths were significantly (rho > 0.85, P < .001) correlated with overall ACL length. CONCLUSION These findings provide insight into how landing in extension can increase the risk of ACL injury. Specifically, this study shows that peak ACL strain can occur just before landing from a single-legged jump. Thus, when an individual lands on an extended knee, the ACL is relatively taut, which may make it particularly vulnerable to injury, especially in the presence of a movement perturbation or unanticipated change in landing strategy. CLINICAL RELEVANCE This study provides a novel measurement of dynamic ACL strain during an athletic maneuver and lends insight into how landing in extension can increase the likelihood of ACL failure.
Collapse
Affiliation(s)
- Zoë A. Englander
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Edward L. Baldwin
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | - Wyatt A.R. Smith
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | - William E. Garrett
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | - Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
29
|
Patel JM, Wise BC, Bonnevie ED, Mauck RL. A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering. Tissue Eng Part C Methods 2019; 25:593-608. [PMID: 31288616 DOI: 10.1089/ten.tec.2019.0116] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Articular cartilage is integral to the mechanical function of many joints in the body. When injured, cartilage lacks the capacity to self-heal, and thus, therapies and replacements have been developed in recent decades to treat damaged cartilage. Given that the primary function of articular cartilage is mechanical in nature, rigorous physical evaluation of cartilage tissues undergoing treatment and cartilage constructs intended for replacement is an absolute necessity. With the large number of groups developing cartilage tissue engineering strategies, however, a variety of mechanical testing protocols have been reported in the literature. This lack of consensus in testing methods makes comparison between studies difficult at times, and can lead to misinterpretation of data relative to native tissue. Therefore, the purpose of this study was to systematically review mechanical testing of articular cartilage and cartilage repair constructs over the past 10 years (January 2009-December 2018), to highlight the most common testing configurations, and to identify key testing parameters. For the most common tests, key parameters identified in this systematic review were validated by characterizing both cartilage tissue and hydrogels commonly used in cartilage tissue engineering. Our findings show that compression testing was the most common test performed (80.2%; 158/197), followed by evaluation of frictional properties (18.8%; 37/197). Upon further review of those studies performing compression testing, the various modes (ramp, stress relaxation, creep, dynamic) and testing configurations (unconfined, confined, in situ) are described and systematically reviewed for parameters, including strain rate, equilibrium time, and maximum strain. This systematic analysis revealed considerable variability in testing methods. Our validation testing studies showed that such variations in testing criteria could have large implications on reported outcome parameters (e.g., modulus) and the interpretation of findings from these studies. This analysis is carried out for all common testing methods, followed by a discussion of less common trends and directions in the mechanical evaluation of cartilage tissues and constructs. Overall, this work may serve as a guide for cartilage tissue engineers seeking to rigorously evaluate the physical properties of their novel treatment strategies. Impact Statement Articular cartilage tissue engineering has made significant strides with regard to treatments and replacements for injured tissue. The evaluation of these approaches typically involves mechanical testing, yet the plethora of testing techniques makes comparisons between studies difficult, and often leads to misinterpretation of data compared with native tissue. This study serves as a guide for the mechanical testing of cartilage tissues and constructs, highlighting recent trends in test conditions and validating these common procedures. Cartilage tissue engineers, especially those unfamiliar with mechanical testing protocols, will benefit from this study in their quest to physically evaluate novel treatment and regeneration approaches.
Collapse
Affiliation(s)
- Jay M Patel
- McKay Orthopedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Brian C Wise
- McKay Orthopedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward D Bonnevie
- McKay Orthopedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Robert L Mauck
- McKay Orthopedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Ruprecht JC, Waanders TD, Rowland CR, Nishimuta JF, Glass KA, Stencel J, DeFrate LE, Guilak F, Weinberg JB, McNulty AL. Meniscus-Derived Matrix Scaffolds Promote the Integrative Repair of Meniscal Defects. Sci Rep 2019; 9:8719. [PMID: 31213610 PMCID: PMC6582057 DOI: 10.1038/s41598-019-44855-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023] Open
Abstract
Meniscal tears have a poor healing capacity, and damage to the meniscus is associated with significant pain, disability, and progressive degenerative changes in the knee joint that lead to osteoarthritis. Therefore, strategies to promote meniscus repair and improve meniscus function are needed. The objective of this study was to generate porcine meniscus-derived matrix (MDM) scaffolds and test their effectiveness in promoting meniscus repair via migration of endogenous meniscus cells from the surrounding meniscus or exogenously seeded human bone marrow-derived mesenchymal stem cells (MSCs). Both endogenous meniscal cells and MSCs infiltrated the MDM scaffolds. In the absence of exogenous cells, the 8% MDM scaffolds promoted the integrative repair of an in vitro meniscal defect. Dehydrothermal crosslinking and concentration of the MDM influenced the biochemical content and shear strength of repair, demonstrating that the MDM can be tailored to promote tissue repair. These findings indicate that native meniscus cells can enhance meniscus healing if a scaffold is provided that promotes cellular infiltration and tissue growth. The high affinity of cells for the MDM and the ability to remodel the scaffold reveals the potential of MDM to integrate with native meniscal tissue to promote long-term repair without necessarily requiring exogenous cells.
Collapse
Affiliation(s)
- Jacob C Ruprecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Taylor D Waanders
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Christopher R Rowland
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - James F Nishimuta
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Katherine A Glass
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jennifer Stencel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Louis E DeFrate
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA
| | - J Brice Weinberg
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,VA Medical Center, Durham, NC, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA. .,Department of Pathology, Duke University, Durham, NC, USA.
| |
Collapse
|
31
|
Mohanraj B, Duan G, Peredo A, Kim M, Tu F, Lee D, Dodge GR, Mauck RL. Mechanically-Activated Microcapsules for 'On-Demand' Drug Delivery in Dynamically Loaded Musculoskeletal Tissues. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807909. [PMID: 32655335 PMCID: PMC7351315 DOI: 10.1002/adfm.201807909] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 05/11/2023]
Abstract
Delivery of biofactors in a precise and controlled fashion remains a clinical challenge. Stimuli-responsive delivery systems can facilitate 'on-demand' release of therapeutics in response to a variety of physiologic triggering mechanisms (e.g. pH, temperature). However, few systems to date have taken advantage of mechanical inputs from the microenvironment to initiate drug release. Here, we developed mechanically-activated microcapsules (MAMCs) that are designed to deliver therapeutics in an on-demand fashion in response to the mechanically loaded environment of regenerating musculoskeletal tissues, with the ultimate goal of furthering tissue repair. To establish a suite of microcapsules with different thresholds for mechano-activation, we first manipulated MAMC physical dimensions and composition, and evaluated their mechano-response under both direct 2D compression and in 3D matrices mimicking the extracellular matrix properties and dynamic loading environment of regenerating tissue. To demonstrate the feasibility of this delivery system, we used an engineered cartilage model to test the efficacy of mechanically-instigated release of TGF-β3 on the chondrogenesis of mesenchymal stem cells. These data establish a novel platform by which to tune the release of therapeutics and/or regenerative factors based on the physiologic dynamic mechanical loading environment, and will find widespread application in the repair and regeneration of numerous musculoskeletal tissues.
Collapse
Affiliation(s)
- Bhavana Mohanraj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Gang Duan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Ana Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Miju Kim
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Fuquan Tu
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
32
|
The Importance of the Knee Joint Meniscal Fibrocartilages as Stabilizing Weight Bearing Structures Providing Global Protection to Human Knee-Joint Tissues. Cells 2019; 8:cells8040324. [PMID: 30959928 PMCID: PMC6523218 DOI: 10.3390/cells8040324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to review aspects of the pathobiology of the meniscus in health and disease and show how degeneration of the meniscus can contribute to deleterious changes in other knee joint components. The menisci, distinctive semilunar weight bearing fibrocartilages, provide knee joint stability, co-ordinating functional contributions from articular cartilage, ligaments/tendons, synovium, subchondral bone and infra-patellar fat pad during knee joint articulation. The meniscus contains metabolically active cell populations responsive to growth factors, chemokines and inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha, resulting in the synthesis of matrix metalloproteases and A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS)-4 and 5 which can degrade structural glycoproteins and proteoglycans leading to function-limiting changes in meniscal and other knee joint tissues. Such degradative changes are hall-marks of osteoarthritis (OA). No drugs are currently approved that change the natural course of OA and translate to long-term, clinically relevant benefits. For any pharmaceutical therapeutic intervention in OA to be effective, disease modifying drugs will have to be developed which actively modulate the many different cell types present in the knee to provide a global therapeutic. Many individual and combinatorial approaches are being developed to treat or replace degenerate menisci using 3D printing, bioscaffolds and hydrogel delivery systems for therapeutic drugs, growth factors and replacement progenitor cell populations recognising the central role the menisci play in knee joint health.
Collapse
|
33
|
DeFrate LE, Kim-Wang SY, Englander ZA, McNulty AL. Osteoarthritis year in review 2018: mechanics. Osteoarthritis Cartilage 2019; 27:392-400. [PMID: 30597275 PMCID: PMC6489451 DOI: 10.1016/j.joca.2018.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review recent biomechanics literature focused on the interactions between biomechanics and articular cartilage health, particularly focused on macro-scale and human studies. DESIGN A literature search was conducted in PubMed using the search terms (biomechanics AND osteoarthritis) OR (biomechanics AND cartilage) OR (mechanics AND osteoarthritis) OR (mechanics AND cartilage) for publications from April 2017 to April 2018. RESULTS Abstracts from the 559 articles generated from the literature search were reviewed. Due to the wide range of topics, 62 full texts with a focus on in vivo biomechanical studies were included for further discussion. Several overarching themes in the recent literature were identified and are summarized, including 1) new methods to detect early osteoarthritis (OA) development, 2) studies describing healthy and OA cartilage and biomechanics, 3) ACL injury and OA development, 4) meniscus injury and OA development, and 5) OA prevention, treatment, and management. CONCLUSIONS Mechanical loading is a critical factor in the maintenance of joint health. Abnormal mechanical loading can lead to the onset and progression of OA. Thus, recent studies have utilized various biomechanical models to better describe the etiology of OA development and the subsequent effects of OA on the mechanics of joint tissues and whole body biomechanics.
Collapse
Affiliation(s)
- Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Sophia Y. Kim-Wang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Zoë A. Englander
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Pathology, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
34
|
Lilly S, Seeber GH, Smith MP, McGaugh JM, James CR, Brismxsée JM, Sizer PS. THE EFFECTS OF POSTERIOR TIBIAL MOBILIZATION ON MENISCAL MOVEMENT: AN IN-SITU INVESTIGATION. Int J Sports Phys Ther 2019; 14:32-45. [PMID: 30746290 PMCID: PMC6350666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Anterior knee pain during knee extension may be related to a meniscal movement restriction and increased meniscal load during function. One method of treatment involves the use of manual posterior mobilization of the tibia to specifically target the meniscotibial interface of the knee joint. PURPOSE The purpose of this study was to measure motion at a cadaveric medial meniscus anterior horn during a posterior tibial mobilization. STUDY DESIGN Prospective, multifactorial, repeated-measures laboratory study. METHODS Eight unembalmed cadaveric knee specimens were mounted in a custom apparatus and markers were placed in the medial meniscus, tibia and femur. The tibia was posteriorly mobilized in two randomized knee positions (0 degrees and 25 degrees) using three randomly assigned loads (44.48N, 88.96N, and 177.93N). Markers were photographed and digitally measured and analyzed. RESULTS All load x position conditions produced anterior displacement of the meniscus on the tibia, where the displacement was significant [t (7) = -3.299; p = 0.013] at 0 degrees loaded with 177.93N (mean 0.41 ± 0.35 mm). The results of 2(position) x 3(load) repeated measures ANOVA for meniscotibial displacement produced no significant main effects for load [F (2,14) = 2.542; p = 0.114) or position [F (1,7) = 0.324, p = 0.587]. All load x position conditions produced significant posterior tibial and meniscal displacement on the femur. The 2(position) x 3(load) repeated measures ANOVA revealed a significant main effect for load for both femoral marker displacement relative to the tibial axis [F (2,14) = 77.994; p < 0.001] and meniscal marker displacement relative to the femoral marker [F (2,14) = 83.620; p < 0.001]. CONCLUSION Use of a mobilization technique to target the meniscotibial interface appears to move the meniscus anteriorly on the tibia. It appears that this technique may be most effective at the end range position. LEVEL OF EVIDENCE 2 (laboratory study).
Collapse
Affiliation(s)
| | | | | | - Janna M. McGaugh
- School of Health Professions, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, USA
| | - C. Roger James
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jean-Michel Brismxsée
- Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Phillip S. Sizer
- Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
35
|
Englander ZA, Cutcliffe HC, Utturkar GM, Garrett WE, Spritzer CE, DeFrate LE. A Comparison of Knee Abduction Angles Measured by a 3D Anatomic Coordinate System Versus Videographic Analysis: Implications for Anterior Cruciate Ligament Injury. Orthop J Sports Med 2019; 7:2325967118819831. [PMID: 30729143 PMCID: PMC6350144 DOI: 10.1177/2325967118819831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Knee positions involved in noncontact anterior cruciate ligament (ACL) injury have been studied via analysis of injury videos. Positions of high ACL strain have been identified in vivo. These methods have supported different hypotheses regarding the role of knee abduction in ACL injury. Purpose/Hypothesis The purpose of this study was to compare knee abduction angles measured by 2 methods: using a 3-dimensional (3D) coordinate system based on anatomic features of the bones versus simulated 2-dimensional (2D) videographic analysis. We hypothesized that knee abduction angles measured in a 2D videographic analysis would differ from those measured from 3D bone anatomic features and that videographic knee abduction angles would depend on flexion angle and on the position of the camera relative to the patient. Study Design Descriptive laboratory study. Methods Models of the femur and tibia were created from magnetic resonance images of 8 healthy male participants. The models were positioned to match biplanar fluoroscopic images obtained as participants posed in lunges of varying flexion angles (FLAs). Knee abduction angle was calculated from the positioned models in 2 ways: (1) varus-valgus angle (VVA), defined as the angle between the long axis of the tibia and the femoral transepicondylar axis by use of a 3D anatomic coordinate system; and (2) coronal plane angle (CPA), defined as the angle between the long axis of the tibia and the long axis of the femur projected onto the tibial coronal plane to simulate a 2D videographic analysis. We then simulated how changing the position of the camera relative to the participant would affect knee abduction angles. Results During flexion, when CPA was calculated from a purely anterior or posterior view of the joint-an ideal scenario for measuring knee abduction from 2D videographic analysis-CPA was significantly different from VVA (P < .0001). CPA also varied substantially with the position of the camera relative to the participant. Conclusion How closely CPA (derived from 2D videographic analysis) relates to VVA (derived from a 3D anatomic coordinate system) depends on FLA and camera orientation. Clinical Relevance This study provides a novel comparison of knee abduction angles measured from 2D videographic analysis and those measured within a 3D anatomic coordinate system. Consideration of these findings is important when interpreting 2D videographic data regarding knee abduction angle in ACL injury.
Collapse
Affiliation(s)
- Zoë A Englander
- Department of Orthopaedics, Duke University, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Hattie C Cutcliffe
- Department of Orthopaedics, Duke University, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - William E Garrett
- Department of Orthopaedics, Duke University, Durham, North Carolina, USA
| | | | - Louis E DeFrate
- Department of Orthopaedics, Duke University, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
36
|
Grassi A, Bailey JR, Filardo G, Samuelsson K, Zaffagnini S, Amendola A. Return to Sport Activity After Meniscal Allograft Transplantation: At What Level and at What Cost? A Systematic Review and Meta-analysis. Sports Health 2019; 11:123-133. [PMID: 30638438 PMCID: PMC6391552 DOI: 10.1177/1941738118819723] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
CONTEXT: Meniscal injuries are common among both sport- and non-sport-related injuries, with over 1.7 million meniscal surgeries performed worldwide every year. As meniscal surgeries become more common, so does meniscal allograft transplantation (MAT). However, little is known about the outcomes of MAT in active patients who desire to go back to preinjury activities. OBJECTIVE: The purpose of this systematic review and meta-analysis was to evaluate return to sport, clinical outcome, and complications after MAT in sport-active patients. DATA SOURCES: A systematic search of MEDLINE, EMBASE, and CINAHL electronic databases was performed on February 25, 2018. STUDY SELECTION: Studies of level 1 through 4 evidence looking at MAT in physically active patients with reported return to activity outcomes and at least 2-year follow-up were included. STUDY DESIGN: Systematic review and meta-analysis. LEVEL OF EVIDENCE: Level 4. DATA EXTRACTION: Details of sport-related outcomes and reoperations were extracted and pooled in a meta-analysis. RESULTS: Nine studies were included in this systematic review. A majority (77%) of athletes and physically active patients were able to return to sport after MAT; two-thirds were able to perform at preinjury levels. Graft-related reoperations were reported in 13% of patients, while the joint replacement rate with partial or total knee prosthesis was 1.2%. CONCLUSION: Physical activity after MAT appears possible, especially for low-impact sports. However, because of the limited number of studies, their low quality, and the short-term follow-up, the participation recommendation for high-impact and strenuous activities should be considered with caution until high-quality evidence of long-term safety becomes available.
Collapse
Affiliation(s)
- Alberto Grassi
- Clinica Ortopedica e Traumatologica II, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James R. Bailey
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopaedic Surgery, Naval Medical Center San Diego, San Diego, California
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Kristian Samuelsson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica II, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Annunziato Amendola
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopaedic Surgery, Duke University, Durham, North Carolina
| |
Collapse
|
37
|
Taylor KA, Collins AT, Heckelman LN, Kim SY, Utturkar GM, Spritzer CE, Garrett WE, DeFrate LE. Activities of daily living influence tibial cartilage T1rho relaxation times. J Biomech 2019; 82:228-233. [PMID: 30455059 PMCID: PMC6492554 DOI: 10.1016/j.jbiomech.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Quantitative T1rho magnetic resonance imaging (MRI) can potentially help identify early-stage osteoarthritis (OA) by non-invasively assessing proteoglycan concentration in articular cartilage. T1rho relaxation times are negatively correlated with proteoglycan concentration. Cartilage compresses in response to load, resulting in water exudation, a relative increase in proteoglycan concentration, and a decrease in the corresponding T1rho relaxation times. To date, there is limited information on changes in cartilage composition resulting from daily activity. Therefore, the objective of this study was to quantify changes in tibial cartilage T1rho relaxation times in healthy human subjects following activities of daily living. It was hypothesized that water exudation throughout the day would lead to decreased T1rho relaxation times. Subjects underwent MR imaging in the morning and afternoon on the same day and were free to go about their normal activities between scans. Our findings confirmed the hypothesis that tibial cartilage T1rho relaxation times significantly decreased (by 7%) over the course of the day with loading, which is indicative of a relative increase in proteoglycan concentration. Additionally, baseline T1rho values varied with position within the cartilage, supporting a need for site-specific measurements of T1rho relaxation times. Understanding how loading alters the proteoglycan concentration in healthy cartilage may hold clinical significance pertaining to cartilage homeostasis and potentially help to elucidate a mechanism for OA development. These results also indicate that future studies using T1rho relaxation times as an indicator of cartilage health should control the loading history prior to image acquisition to ensure the appropriate interpretation of the data.
Collapse
Affiliation(s)
- Kevin A Taylor
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Amber T Collins
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Lauren N Heckelman
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Y Kim
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
Rustenburg CM, Emanuel KS, Peeters M, Lems WF, Vergroesen PA, Smit TH. Osteoarthritis and intervertebral disc degeneration: Quite different, quite similar. JOR Spine 2018; 1:e1033. [PMID: 31463450 PMCID: PMC6686805 DOI: 10.1002/jsp2.1033] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration describes the vicious cycle of the deterioration of intervertebral discs and can eventually result in degenerative disc disease (DDD), which is accompanied by low-back pain, the musculoskeletal disorder with the largest socioeconomic impact world-wide. In more severe stages, intervertebral disc degeneration is accompanied by loss of joint space, subchondral sclerosis, and osteophytes, similar to osteoarthritis (OA) in the articular joint. Inspired by this resemblance, we investigated the analogy between human intervertebral discs and articular joints. Although embryonic origin and anatomy suggest substantial differences between the two types of joint, some features of cell physiology and extracellular matrix in the nucleus pulposus and articular cartilage share numerous parallels. Moreover, there are great similarities in the response to mechanical loading and the matrix-degrading factors involved in the cascade of degeneration in both tissues. This suggests that the local environment of the cell is more important to its behavior than embryonic origin. Nevertheless, OA is widely regarded as a true disease, while intervertebral disc degeneration is often regarded as a radiological finding and DDD is undervalued as a cause of chronic low-back pain by clinicians, patients and society. Emphasizing the similarities rather than the differences between the two diseases may create more awareness in the clinic, improve diagnostics in DDD, and provide cross-fertilization of clinicians and scientists involved in both intervertebral disc degeneration and OA.
Collapse
Affiliation(s)
- Christine M.E. Rustenburg
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Kaj S. Emanuel
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Mirte Peeters
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Willem F. Lems
- Department of RheumatologyAmsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Theodoor H. Smit
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical BiologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
39
|
Englander ZA, Martin JT, Ganapathy PK, Garrett WE, DeFrate LE. Automatic registration of MRI-based joint models to high-speed biplanar radiographs for precise quantification of in vivo anterior cruciate ligament deformation during gait. J Biomech 2018; 81:36-44. [PMID: 30249338 PMCID: PMC6434938 DOI: 10.1016/j.jbiomech.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 11/25/2022]
Abstract
Understanding in vivo joint mechanics during dynamic activity is crucial for revealing mechanisms of injury and disease development. To this end, laboratories have utilized computed tomography (CT) to create 3-dimensional (3D) models of bone, which are then registered to high-speed biplanar radiographic data captured during movement in order to measure in vivo joint kinematics. In the present study, we describe a system for measuring dynamic joint mechanics using 3D surface models of the joint created from magnetic resonance imaging (MRI) registered to high-speed biplanar radiographs using a novel automatic registration algorithm. The use of MRI allows for modeling of both bony and soft tissue structures. Specifically, the attachment site footprints of the anterior cruciate ligament (ACL) on the femur and tibia can be modeled, allowing for measurement of dynamic ACL deformation. In the present study, we demonstrate the precision of this system by tracking the motion of a cadaveric porcine knee joint. We then utilize this system to quantify in vivo ACL deformation during gait in four healthy volunteers.
Collapse
Affiliation(s)
- Zoë A Englander
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - John T Martin
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | | | | | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
40
|
Selective Enzymatic Digestion of Proteoglycans and Collagens Alters Cartilage T1rho and T2 Relaxation Times. Ann Biomed Eng 2018; 47:190-201. [PMID: 30288634 DOI: 10.1007/s10439-018-02143-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
Our objective was to determine the relationship of T1rho and T2 relaxation mapping to the biochemical and biomechanical properties of articular cartilage through selective digestion of proteoglycans and collagens. Femoral condyles were harvested from porcine knee joints and treated with either chondroitinase ABC (cABC) followed by collagenase, or collagenase followed by cABC. Magnetic resonance images were acquired and cartilage explants were harvested for biochemical, biomechanical, and histological analyses before and after each digestion. Targeted enzymatic digestion of proteoglycans with cABC resulted in elevated T1rho relaxation times and decreased sulfated glycosaminoglycan content without affecting T2 relaxation times. In contrast, extractable collagen and T2 relaxation times were increased by collagenase digestion; however, neither was altered by cABC digestion. Aggregate modulus decreased with digestion of both components. Overall, we found that targeted digestion of proteoglycans and collagens had varying effects on biochemical, biomechanical, and imaging properties. T2 relaxation times were altered with changes in extractable collagen, but not changes in proteoglycan. However, T1rho relaxation times were altered with proteoglycan loss, which may also coincide with collagen disruption. Since it is unclear which matrix components are disrupted first in osteoarthritis, both markers may be important for tracking disease progression.
Collapse
|
41
|
Abstract
Menisci in the knee joint are thought to provide stability, increased contact area, decreased contact pressures, and offer protection to the underlying articular cartilage and bone during joint loading. Meniscal loss or injury is typically accompanied by degenerative changes in the knee, leading to an increased risk for osteoarthritis in animals including humans. However, the detailed mechanisms underlying joint degeneration and the development of osteoarthritis remain largely unknown, and the acute effects of meniscal loss have not been studied systematically. We developed a microscopy-based system to study microscale joint mechanics in living mice loaded by controlled muscular contractions. Here, we show how meniscal loss is associated with rapid chondrocyte death (necrosis) in articular cartilage within hours of injury, and how intact menisci protect chondrocytes in vivo in the presence of intense muscle-based joint loading and/or injury to the articular cartilage. Our findings suggest that loading the knee after meniscal loss is associated with extensive cell death in intact and injured knees, and that early treatment interventions should be aimed at preventing chondrocyte death.
Collapse
|
42
|
Zhang H, Heckelman LN, Spritzer CE, Owusu-Akyaw KA, Martin JT, Taylor DC, Moorman C, Garrigues GE, DeFrate LE. In Vivo Assessment of Exercise-Induced Glenohumeral Cartilage Strain. Orthop J Sports Med 2018; 6:2325967118784518. [PMID: 30023404 PMCID: PMC6047251 DOI: 10.1177/2325967118784518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The human shoulder joint is the most mobile joint in the body. While in vivo shoulder kinematics under minimally loaded conditions have been studied, it is unclear how glenohumeral cartilage responds to high-demand loaded exercise. HYPOTHESIS A high-demand upper extremity exercise, push-ups, will induce compressive strain in the glenohumeral articular cartilage, which can be measured with validated magnetic resonance imaging (MRI)-based techniques. STUDY DESIGN Descriptive laboratory study. METHODS High-resolution MRI was used to measure in vivo glenohumeral cartilage thickness before and after exercise among 8 study participants with no history of upper extremity injury or disease. Manual MRI segmentation and 3-dimensional modeling techniques were used to generate pre- and postexercise thickness maps of the humeral head and glenoid cartilage. Strain was calculated as the difference between pre- and postexercise cartilage thickness, normalized to the pre-exercise cartilage thickness. RESULTS Significant compressive cartilage strains of 17% ± 6% and 15% ± 7% (mean ± 95% CI) were detected in the humeral head and glenoid cartilage, respectively. The anterior region of the glenoid cartilage experienced a significantly higher mean strain (19% ± 6%) than the posterior region of the glenoid cartilage (12% ± 8%). No significant regional differences in postexercise humeral head cartilage strain were observed. CONCLUSION Push-ups induce compressive strain on the glenohumeral joint articular cartilage, particularly at the anterior glenoid. This MRI-based methodology can be applied to further the understanding of chondral changes in the shoulder under high-demand loading conditions. CLINICAL RELEVANCE These results improve the understanding of healthy glenohumeral cartilage mechanics in response to loaded upper extremity exercise. In the future, these methods can be applied to identify which activities induce high glenohumeral cartilage strains and deviations from normal shoulder function.
Collapse
Affiliation(s)
- Hanci Zhang
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - Lauren N. Heckelman
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Kwadwo A. Owusu-Akyaw
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - John T. Martin
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - Dean C. Taylor
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - C.T. Moorman
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - Grant E. Garrigues
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - Louis E. DeFrate
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
43
|
Wiggenhauser PS, Schwarz S, Rotter N. The distribution patterns of COMP and matrilin-3 in septal, alar and triangular cartilages of the human nose. Histochem Cell Biol 2018; 150:291-300. [PMID: 29721643 DOI: 10.1007/s00418-018-1672-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2018] [Indexed: 01/07/2023]
Abstract
The biomechanical characteristics of septal cartilage depend strongly on the distinct extracellular matrix of cartilage tissue; therefore, it is essential that the components of this matrix are identified and understood. Cartilage oligomeric matrix protein (COMP) and matrilin-3 are localised in articular cartilage. This study was the first to examine all subtypes of mature human nasal cartilages (alar, triangular and septal) with specific attention to the distribution of COMP and matrilin-3. Three whole fresh-frozen noses from human donors were dissected, and exemplary biopsies were examined using histochemical staining (haematoxylin and eosin and Alcian blue) and immunohistochemistry (collagen II, COMP and matrilin-3). The following three zones within the nasal cartilage were identified: superficial, intermediate and central. COMP was detected as highest in the intermediate zones in all three subtypes of nasal cartilage, whereas matrilin-3 was detected with pericellular deposition mainly within septal cartilage predominantly in the superficial zones. The distinct staining patterns of COMP and matrilin-3 underscore the different functional roles of both proteins in nasal cartilage. According to the literature, COMP might be involved with collagen II in the formation of networks, whereas matrilin-3 is reported to prevent ossification or regulate mechanosensitivity. The predominant staining observed in septal cartilage suggests matrilin-3's modulatory role because of its presence in the osteochondral junctional zone and given that the biomechanical load in septal cartilage is different from that in alar or triangular cartilage. In conclusion, COMP and matrilin-3 were detected in mature human nasal cartilage but displayed different staining patterns that might be explained by the functional roles of the respective matrix protein; however, further research is necessary to identify and define the functional aspects of this morphological difference.
Collapse
Affiliation(s)
- Paul Severin Wiggenhauser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany.
- Department of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig-Maximilians University, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - Silke Schwarz
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, Salzburg, 90419, Nuremberg, Germany
| | - Nicole Rotter
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
- Department of Oto-Rhino-Laryngology, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
44
|
Microscale frictional strains determine chondrocyte fate in loaded cartilage. J Biomech 2018; 74:72-78. [PMID: 29729853 DOI: 10.1016/j.jbiomech.2018.04.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 01/01/2023]
Abstract
Mounting evidence suggests that altered lubricant levels within synovial fluid have acute biological consequences on chondrocyte homeostasis. While these responses have been connected to increased friction, the mechanisms behind this response remain unknown. Here, we combine a frictional bioreactor with confocal elastography and image-based cellular assays to establish the link between cartilage friction, microscale shear strain, and acute, adverse cellular responses. Our incorporation of cell-scale strain measurements reveals that elevated friction generates high shear strains localized near the tissue surface, and that these elevated strains are closely associated with mitochondrial dysfunction, apoptosis, and cell death. Collectively, our data establish two pathways by which chondrocytes negatively respond to friction: an immediate necrotic response and a longer term pathway involving mitochondrial dysfunction and apoptosis. Specifically, in the surface region, where shear strains can exceed 0.07, cells are predisposed to acute death; however, below this surface region, cells exhibit a pathway consistent with apoptosis in a manner predicted by local shear strains. These data reveal a mechanism through which cellular damage in cartilage arises from compromised lubrication and show that in addition to boundary lubricants, there are opportunities upstream of apoptosis to preserve chondrocyte health in arthritis therapy.
Collapse
|
45
|
Martin JT, Oldweiler AB, Spritzer CE, Soher BJ, Erickson MM, Goode AP, DeFrate LE. A magnetic resonance imaging framework for quantifying intervertebral disc deformation in vivo: Reliability and application to diurnal variations in lumbar disc shape. J Biomech 2018; 71:291-295. [PMID: 29456171 DOI: 10.1016/j.jbiomech.2018.01.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
Abstract
Low back pain is a significant socioeconomic burden in the United States and lumbar intervertebral disc degeneration is frequently implicated as a cause. The discs play an important mechanical role in the spine, yet the relationship between disc function and back pain is poorly defined. The objective of this work was to develop a technique using magnetic resonance imaging (MRI) and three-dimensional modeling to measure in vivo disc deformations. Using this method, we found that disc geometry was measurable with precision less than the in-plane dimensions of a voxel (≈100 µm, 10% of the MRI pixel size). Furthermore, there was excellent agreement between mean disc height, disc perimeter, disc volume and regional disc height measurements for multiple trials from an individual rater (standard deviation <3.1% across all measurements) and between mean height, perimeter, and volume measurements made by two independent raters (error <1.5% across all measurements). We then used this measurement system to track diurnal deformations in the L5-S1 disc in a young, healthy population (n = 8; age 24.1 ± 3.3 yrs; 2 M/6F). We measured decreases in the mean disc height (-8%) and volume (-9%) with no changes in perimeter over an eight-hour workday. We found that the largest height losses occurred in the posterior (-13%) and posterior-lateral (-14%) regions adjacent to the outer annulus fibrosus. Diurnal annulus fibrosus (AF) strains induced by posterior and posterior-lateral height loss may increase the risk for posterior disc herniation or posterior AF tears. These preliminary findings lay a foundation for determining how deviations from normal deformations may contribute to back pain.
Collapse
Affiliation(s)
- John T Martin
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Alexander B Oldweiler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Charles E Spritzer
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Brian J Soher
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Melissa M Erickson
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Adam P Goode
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States; Duke Clinical Research Institute, Durham, NC, United States
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States.
| |
Collapse
|
46
|
Whitney KE, Liebowitz A, Bolia IK, Chahla J, Ravuri S, Evans TA, Philippon MJ, Huard J. Current perspectives on biological approaches for osteoarthritis. Ann N Y Acad Sci 2018; 1410:26-43. [PMID: 29265418 DOI: 10.1111/nyas.13554] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Musculoskeletal injuries that disrupt the structure and function of diarthrodial joints can cause permanent biomechanical alterations and lead to a more severe, chronic condition. Despite advancements that have been made to restore tissue function and delay the need for joint replacement, there are currently no disease-modifying therapies for osteoarthritis (OA). To reduce the risk of OA, innovative preventive medicine approaches have been developed over the last decade to treat the underlying pathology. Several biological approaches are promising treatment modalities for various stages of OA owing to their minimally invasive nature and actively dynamic physiological mechanisms that attenuate tissue degradation and inflammatory responses. Individualized growth factor and cytokine therapies, tissue-engineered biomaterials, and cell-based therapies have revolutionary potential for orthopedic applications; however, the paucity of standardization and categorization of biological components and their counterparts has made it difficult to determine their clinical and biological efficacy. Cell-based therapies and tissue-engineered biologics have become lucrative in sports medicine and orthopedics; nonetheless, there is a continued effort to produce a biological treatment modality tailored to target intra-articular structures that recapitulates tissue function. Advanced development of these biological treatment modalities will potentially optimize tissue healing, regeneration, and joint preservation strategies. Therefore, the purpose of this paper is to review current concepts on several biological treatment approaches for OA.
Collapse
Affiliation(s)
- Kaitlyn E Whitney
- Steadman Philippon Research Institute, Vail, Colorado.,The Steadman Clinic, Vail, Colorado
| | | | | | - Jorge Chahla
- Steadman Philippon Research Institute, Vail, Colorado
| | | | - Thos A Evans
- Steadman Philippon Research Institute, Vail, Colorado.,The Steadman Clinic, Vail, Colorado
| | - Marc J Philippon
- Steadman Philippon Research Institute, Vail, Colorado.,The Steadman Clinic, Vail, Colorado
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado.,The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
47
|
Yin P, Li JS, Kernkamp WA, Tsai TY, Baek SH, Hosseini A, Lin L, Tang P, Li G. Analysis of in-vivo articular cartilage contact surface of the knee during a step-up motion. Clin Biomech (Bristol, Avon) 2017; 49:101-106. [PMID: 28910722 PMCID: PMC5681875 DOI: 10.1016/j.clinbiomech.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies have reported on the tibiofemoral articular cartilage contact kinematics, however, no data has been reported on the articular cartilage geometry at the contact area. This study investigated the in-vivo tibiofemoral articular cartilage contact biomechanics during a dynamic step-up motion. METHODS Ten healthy subjects were imaged using a validated magnetic resonance and dual fluoroscopic imaging technique during a step-up motion. Three-dimensional bone and cartilage models were constructed from the magnetic resonance images. The cartilage contact along the motion path was analyzed, including cartilage contact location and the cartilage surface geometry at the contact area. FINDINGS The cartilage contact excursions were similar in anteroposterior and mediolateral directions in the medial and lateral compartments of the tibia plateau (P>0.05). Both medial and lateral compartments were under convex (femur) to convex (tibia) contact in the sagittal plane, and under convex (femur) to concave (tibia) contact in the coronal plane. The medial tibial articular contact radius was larger than the lateral side in the sagittal plane along the motion path (P<0.001). INTERPRETATIONS These data revealed that both the medial and lateral compartments of the knee experienced convex (femur) to convex (tibia) contact in sagittal plane (or anteroposterior direction) during the dynamic step-up motion. These data could provide new insight into the in-vivo cartilage contact biomechanics research, and may provide guidelines for development of anatomical total knee arthroplasties that are aimed to reproduce normal knee joint kinematics.
Collapse
Affiliation(s)
- Peng Yin
- Orthopaedic Biomechanics Laboratory, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA,Department of Orthopaedics, Beijing Chao-Yang Hospital, China Capital Medical University, No. 8 GongTiNanLu, Chao-Yang District, Beijing, 100020, China
| | - Jing-Sheng Li
- Orthopaedic Biomechanics Laboratory, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Willem A. Kernkamp
- Orthopaedic Biomechanics Laboratory, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Tsung-Yuan Tsai
- Orthopaedic Biomechanics Laboratory, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Seung-Hoon Baek
- Orthopaedic Biomechanics Laboratory, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ali Hosseini
- Orthopaedic Biomechanics Laboratory, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Lin Lin
- Institute of Sports Medicine, Peking University Third hospital, North Garden Road, Haidian District, Beijing, 100191, PR China
| | - Peifu Tang
- Department of Orthopaedics, Chinese PLA General Hospital, No. 28 Fuxin Road, Beijing 100853, P.R. China
| | - Guoan Li
- Orthopaedic Biomechanics Laboratory, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA,CORRESPONDING AUTHOR. Guoan Li, Orthopaedic Biomechanics Laboratory, Harvard Medical School and Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA. (G. Li)
| |
Collapse
|
48
|
Liu B, Lad NK, Collins AT, Ganapathy PK, Utturkar GM, McNulty AL, Spritzer CE, Moorman CT, Sutter EG, Garrett WE, DeFrate LE. In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking. Am J Sports Med 2017; 45:2817-2823. [PMID: 28671850 PMCID: PMC5629119 DOI: 10.1177/0363546517712506] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage. STUDY DESIGN Descriptive laboratory study. METHODS Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity. RESULTS Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P < .001). After 20 minutes of walking, all 4 regions experienced significant cartilage thickness decreases ( P < .01). The covered medial region experienced significantly less strain than the uncovered medial region ( P = .04). No difference in strain was detected between the covered and uncovered regions in the lateral compartment ( P = .40). CONCLUSION In response to walking, cartilage that is covered by the meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.
Collapse
Affiliation(s)
- Betty Liu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA,Department of Biomedical Engineering, Duke University School of Medicine, Durham, NC USA
| | - Nimit K. Lad
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA
| | - Amber T. Collins
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA
| | - Pramodh K. Ganapathy
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA
| | - Gangadhar M. Utturkar
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA,Department of Pathology, Duke University School of Medicine, Durham, NC USA
| | | | - Claude T. Moorman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA
| | - E. Grant Sutter
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA
| | - William E. Garrett
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA
| | - Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC USA,Department of Biomedical Engineering, Duke University School of Medicine, Durham, NC USA
| |
Collapse
|
49
|
Liukkonen MK, Mononen ME, Tanska P, Saarakkala S, Nieminen MT, Korhonen RK. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint. Comput Methods Biomech Biomed Engin 2017; 20:1453-1463. [PMID: 28895760 DOI: 10.1080/10255842.2017.1375477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.
Collapse
Affiliation(s)
- Mimmi K Liukkonen
- a Department of Applied Physics , University of Eastern Finland , Kuopio , Finland.,b Diagnostic Imaging Centre , Kuopio University Hospital , Kuopio , Finland
| | - Mika E Mononen
- a Department of Applied Physics , University of Eastern Finland , Kuopio , Finland
| | - Petri Tanska
- a Department of Applied Physics , University of Eastern Finland , Kuopio , Finland
| | - Simo Saarakkala
- c Research Unit of Medical Imaging, Physics and Technology , University of Oulu , Oulu , Finland.,d Medical Research Center Oulu , University of Oulu , Oulu , Finland.,e Department of Diagnostic Radiology , Oulu University Hospital , Oulu , Finland
| | - Miika T Nieminen
- c Research Unit of Medical Imaging, Physics and Technology , University of Oulu , Oulu , Finland.,d Medical Research Center Oulu , University of Oulu , Oulu , Finland.,e Department of Diagnostic Radiology , Oulu University Hospital , Oulu , Finland
| | - Rami K Korhonen
- a Department of Applied Physics , University of Eastern Finland , Kuopio , Finland.,b Diagnostic Imaging Centre , Kuopio University Hospital , Kuopio , Finland
| |
Collapse
|
50
|
Liukkonen MK, Mononen ME, Klets O, Arokoski JP, Saarakkala S, Korhonen RK. Simulation of Subject-Specific Progression of Knee Osteoarthritis and Comparison to Experimental Follow-up Data: Data from the Osteoarthritis Initiative. Sci Rep 2017; 7:9177. [PMID: 28835668 PMCID: PMC5569023 DOI: 10.1038/s41598-017-09013-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 01/05/2023] Open
Abstract
Economic costs of osteoarthritis (OA) are considerable. However, there are no clinical tools to predict the progression of OA or guide patients to a correct treatment for preventing OA. We tested the ability of our cartilage degeneration algorithm to predict the subject-specific development of OA and separate groups with different OA levels. The algorithm was able to predict OA progression similarly with the experimental follow-up data and separate subjects with radiographical OA (Kellgren-Lawrence (KL) grade 2 and 3) from healthy subjects (KL0). Maximum degeneration and degenerated volumes within cartilage were significantly higher (p < 0.05) in OA compared to healthy subjects, KL3 group showing the highest degeneration values. Presented algorithm shows a great potential to predict subject-specific progression of knee OA and has a clinical potential by simulating the effect of interventions on the progression of OA, thus helping decision making in an attempt to delay or prevent further OA symptoms.
Collapse
Affiliation(s)
- Mimmi K Liukkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Olesya Klets
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jari P Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|