1
|
Khadija HA, Alnees M, Gandelman G, George J, Blatt A. TAVI complication: Prosthetic valve leaflet dislodgment after post-dilatation. Int J Surg Case Rep 2024; 124:110441. [PMID: 39426092 DOI: 10.1016/j.ijscr.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure used to treat severe aortic stenosis. While TAVI is generally safe and effective, it can be complicated by rare adverse events such as prosthetic leaflet dislodgment leading to acute free aortic regurgitation. CASE PRESENTATION We report the case of a female patient who experienced acute free aortic regurgitation following elective TAVI. This complication arose due to prosthetic leaflet dislodgment after post-dilatation of the implanted valve. The timely identification and management of this rare complication are essential to prevent potentially fatal outcomes. CLINICAL DISCUSSION The moderate paravalvular regurgitation (PVR) observed in this case was likely caused by the unsealing of heavily calcified aortic valve leaflets. While post-dilatation is a routine practice to optimize valve function, it poses the risk of serious complications, including leaflet dislodgment. Transoesophageal echocardiography (TEE) confirmed the loss of function of the prosthetic leaflet, which was likely exacerbated by aggressive post-dilatation techniques. The use of intravascular lithotripsy could be considered to mitigate the risk of significant PVR by effectively modifying the calcified valve structure. CONCLUSIONS Acute prosthetic leaflet dislodgment leading to free aortic regurgitation is a very rare but serious complication of TAVI. Early recognition and immediate intervention are crucial to manage this life-threatening event and optimize patient outcomes.
Collapse
Affiliation(s)
- Haitham Abu Khadija
- Heart Center, Kaplan Medical Center, Rehovot, affiliated with the Hebrew University, Jerusalem, Israel
| | - Mohammad Alnees
- Heart Center, Kaplan Medical Center, Rehovot, affiliated with the Hebrew University, Jerusalem, Israel; Harvard Medical School, Postgraduate Medical Education, Global Clinical Scholars Research Training Program, Boston, USA.
| | - Gera Gandelman
- Heart Center, Kaplan Medical Center, Rehovot, affiliated with the Hebrew University, Jerusalem, Israel
| | - Jacob George
- Heart Center, Kaplan Medical Center, Rehovot, affiliated with the Hebrew University, Jerusalem, Israel.
| | - Alex Blatt
- Heart Center, Kaplan Medical Center, Rehovot, affiliated with the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
2
|
Reza S, Kovarovic B, Bluestein D. Assessing post-TAVR cardiac conduction abnormalities risk using an electromechanically coupled beating heart. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01893-9. [PMID: 39361113 DOI: 10.1007/s10237-024-01893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Transcatheter aortic valve replacement (TAVR) has rapidly displaced surgical aortic valve replacement (SAVR). However, certain post-TAVR complications persist, with cardiac conduction abnormalities (CCA) being one of the major ones. The elevated pressure exerted by the TAVR stent onto the conduction fibers situated between the aortic annulus and the His bundle, in proximity to the atrioventricular (AV) node, may disrupt the cardiac conduction leading to the emergence of CCA. In this study, an in silico framework was developed to assess the CCA risk, incorporating the effect of a dynamic beating heart and preprocedural parameters such as implantation depth and preexisting cardiac asynchrony in the new onset of post-TAVR CCA. A self-expandable TAVR device deployment was simulated inside an electromechanically coupled beating heart model in five patient scenarios, including three implantation depths and two preexisting cardiac asynchronies: (i) a right bundle branch block (RBBB) and (ii) a left bundle branch block (LBBB). Subsequently, several biomechanical parameters were analyzed to assess the post-TAVR CCA risk. The results manifested a lower cumulative contact pressure on the conduction fibers following TAVR for aortic deployment (0.018 MPa) compared to nominal condition (0.29 MPa) and ventricular deployment (0.52 MPa). Notably, the preexisting RBBB demonstrated a higher cumulative contact pressure (0.34 MPa) compared to the nominal condition and preexisting LBBB (0.25 MPa). Deeper implantation and preexisting RBBB cause higher stresses and contact pressure on the conduction fibers leading to an increased risk of post-TAVR CCA. Conversely, implantation above the MS landmark and preexisting LBBB reduces the risk.
Collapse
Affiliation(s)
- Symon Reza
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
3
|
Mutlu O, Saribay M, Yavuz MM, Salman HE, Al-Nabti ARDMH, Yalcin HC. Material modeling and recent findings in transcatheter aortic valve implantation simulations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108314. [PMID: 39024970 DOI: 10.1016/j.cmpb.2024.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Transcatheter aortic valve implantation (TAVI) has significantly transformed the management of aortic valve (AV) diseases, presenting a minimally invasive option compared to traditional surgical valve replacement. Computational simulations of TAVI become more popular and offer a detailed investigation by employing patient-specific models. On the other hand, employing accurate material modeling procedures and applying basic modeling steps are crucial to determining reliable numerical results. Therefore, this review aims to outline the basic modeling approaches for TAVI, focusing on material modeling and geometry extraction, as well as summarizing the important findings from recent computational studies to guide future research in the field. METHODS This paper explains the basic steps and important points in setting up and running TAVI simulations. The material properties of the leaflets, valves, stents, and tissues utilized in TAVI simulations are provided, along with a comprehensive explanation of the geometric extraction methods employed. The differences between the finite element analysis, computational fluid dynamics, and fluid-structure interaction approaches are pointed out and the important aspects of TAVI modeling are described by elucidating the recent computational studies. RESULTS The results of the recent findings on TAVI simulations are summarized to demonstrate its powerful potential. It is observed that the material properties of aortic tissues and components of implanted valves should be modeled realistically to determine accurate results. For patient-specific AV geometries, incorporating calcific deposits on the leaflets is essential for ensuring the accuracy of computational findings. The results of numerical TAVI simulations indicate the significance of the selection of optimal valves and precise deployment within the appropriate anatomical position. These factors collectively contribute to the effective functionality of the implanted valve. CONCLUSIONS Recent studies in the literature have revealed the critical importance of patient-specific modeling, the selection of accurate material models, and bio-prosthetic valve diameters. Additionally, these studies emphasize the necessity of precise positioning of bio-prosthetic valves to achieve optimal performance in TAVI, characterized by an increased effective orifice area and minimal paravalvular leakage.
Collapse
Affiliation(s)
- Onur Mutlu
- Qatar University, Biomedical Research Center, Doha, Qatar
| | - Murat Saribay
- Istanbul Bilgi University, Mechanical Engineering Department, Istanbul, Turkey
| | - Mehmet Metin Yavuz
- Middle East Technical University, Mechanical Engineering Department, Ankara, Turkey
| | - Huseyin Enes Salman
- TOBB University of Economics and Technology, Department of Mechanical Engineering, Ankara, Turkey
| | | | - Huseyin Cagatay Yalcin
- Qatar University, Biomedical Research Center, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Yin Z, Armour C, Kandail H, O'Regan DP, Bahrami T, Mirsadraee S, Pirola S, Xu XY. Fluid-structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024:e3865. [PMID: 39209425 DOI: 10.1002/cnm.3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject-specific fluid-structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject-specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject-specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject-specific boundary conditions were derived from 4D-flow MR imaging (4D-MRI). Strongly coupled FSI simulations were performed using a finite volume-based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D-MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.
Collapse
Affiliation(s)
- Zhongjie Yin
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Chlöe Armour
- Department of Chemical Engineering, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Declan P O'Regan
- Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Toufan Bahrami
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - Saeed Mirsadraee
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Radiology, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, London, UK
- Department of BioMechanical Engineering, TU Delft, Delft, The Netherlands
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
5
|
Meng Z, Zhang H, Cai Y, Gao Y, Liang C, Wang J, Chen X, Guo L, Wang S. Computational study of transcatheter aortic valve replacement based on patient-specific models-rapid surgical planning for self-expanding valves. Front Physiol 2024; 15:1407215. [PMID: 38903911 PMCID: PMC11187333 DOI: 10.3389/fphys.2024.1407215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Transcatheter aortic valve replacement (TAVR) is a minimally invasive interventional solution for treating aortic stenosis. The complex post-TAVR complications are associated with the type of valve implanted and the position of the implantation. The study aimed to establish a rapid numerical research method for TAVR to assess the performance differences of self-expanding valves released at various positions. It also aimed to calculate the risks of postoperative paravalvular leak and atrioventricular conduction block, comparing these risks to clinical outcomes to verify the method's effectiveness and accuracy. Based on medical images, six cases were established, including the aortic wall, native valve and calcification; one with a bicuspid aortic valve and five with tricuspid aortic valves. The parameters for the stent materials used by the patients were customized. High strain in the contact area between the stent and the valve annulus may lead to atrioventricular conduction block. Postoperatively, the self-expanding valve maintained a circular cross-section, reducing the risk of paravalvular leak and demonstrating favorable hemodynamic characteristics, consistent with clinical observations. The outcomes of the six simulations showed no significant difference in valve frame morphology or paravalvular leak risk compared to clinical results, thereby validating the numerical simulation process proposed for quickly selecting valve models and optimal release positions, aiding in TAVR preoperative planning based on patients'geometric characteristics.
Collapse
Affiliation(s)
- Zhuangyuan Meng
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Haishan Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Yunhan Cai
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Yuan Gao
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Changbin Liang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Jun Wang
- Department of Anesthesia, First Hospital of China Medical University, Shenyang, China
| | - Xin Chen
- Department of Cardiovascular Ultrasound, First Hospital of China Medical University, Shenyang, China
| | - Liang Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - ShengZhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Institute of Biomedical Engineering Technology, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Spanjaards M, Borowski F, Supp L, Ubachs R, Lavezzo V, van der Sluis O. A fast in silico model for preoperative risk assessment of paravalvular leakage. Biomech Model Mechanobiol 2024; 23:959-985. [PMID: 38341820 PMCID: PMC11101555 DOI: 10.1007/s10237-024-01816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/01/2024] [Indexed: 02/13/2024]
Abstract
In silico simulations can be used to evaluate and optimize the safety, quality, efficacy and applicability of medical devices. Furthermore, in silico modeling is a powerful tool in therapy planning to optimally tailor treatment for each patient. For this purpose, a workflow to perform fast preoperative risk assessment of paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is presented in this paper. To this end, a novel, efficient method is introduced to calculate the regurgitant volume in a simplified, but sufficiently accurate manner. A proof of concept of the method is obtained by comparison of the calculated results with results obtained from in vitro experiments. Furthermore, computational fluid dynamics (CFD) simulations are used to validate more complex stenosis scenarios. Comparing the simplified leakage model to CFD simulations reveals its potential for procedure planning and qualitative preoperative risk assessment of PVL. Finally, a 3D device deployment model and the efficient leakage model are combined to showcase the application of the presented leakage model, by studying the effect of stent size and the degree of stenosis on the regurgitant volume. The presented leakage model is also used to visualize the leakage path. To generalize the leakage model to a wide range of clinical applications, further validation on a large cohort of patients is needed to validate the accuracy of the model's prediction under various patient-specific conditions.
Collapse
Affiliation(s)
- Michelle Spanjaards
- Philips Innovation and Strategy, High Tech Campus 34, Eindhoven, The Netherlands
| | - Finja Borowski
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, Rostock-Warnemünde, Germany
| | - Laura Supp
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, Rostock-Warnemünde, Germany
| | - René Ubachs
- Philips Innovation and Strategy, High Tech Campus 34, Eindhoven, The Netherlands
| | - Valentina Lavezzo
- Philips Innovation and Strategy, High Tech Campus 34, Eindhoven, The Netherlands
| | - Olaf van der Sluis
- Philips Innovation and Strategy, High Tech Campus 34, Eindhoven, The Netherlands.
- Eindhoven University of Technology, Groene Loper 15, Eindhoven, The Netherlands.
| |
Collapse
|
7
|
Jiang H, Li J, Kong Y, Song L, Liu J, Kong D, Wu Y, Wang S, Wang Z. Fish swim bladders as valve leaflets enhance the durability of transcatheter aortic valve replacement devices. Acta Biomater 2024:S1742-7061(24)00213-7. [PMID: 38663685 DOI: 10.1016/j.actbio.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Transcatheter aortic valve replacement (TAVR) has emerged as an effective therapy for inoperable patients with severe aortic stenosis (AS). However, calcification-induced limited durability restricts its application. Fish swim bladders (FSB), which are resistant to calcific degeneration, offer a viable solution to this challenge. In this study, we developed a new TAVR device using FSB as the valve leaflet. Furthermore, the in vitro durability, in vivo performance, and size selection of this TAVR device were assessed by an experimental study and finite element analysis. A self-expandable TAVR device was fabricated by suturing the FSB films into a 23 mm nitinol alloy frame. Further, hemodynamic performance, such as effective orifice area, transvalvular pressure difference and regurgitant fraction, the durability was tested by the pulsatile flow test and accelerated fatigue test, according to the ISO 5840-3. The effect of release size on hydrodynamic performance was also investigated. Finally, the in vivo performance of the TAVR device were examined using a porcine implantation model. The results showed that the strength of the FSB films satisfied the requirements for valve leaflets. The hemodynamic performance of the FSB TAVR device met the requirements of ISO 5840-3 standards. After 400 million cycles, the FSB showed no fiber loss, torn, perforation, or other valve failure phenomena. In porcine models, the devices were well-positioned, functioned well with no stenosis immediately after the operation. Collectively, we successfully developed a TAVR device with FSB as valve leaflets that exhibited good fatigue resistance. STATEMENT OF SIGNIFICANCE: The source of material for the leaflets of commercialized biological heart valves (BHVs) is mainly bovine pericardium, but this material suffers the following problems: large and uneven thickness of the material, the presence of α-Gal and Neu5Gc antigens, and the susceptibility to structural valve degradation (SVD). New material for BHVs leaflets is rarely reported. In this study, we prepared a transcatheter aortic valve (TAV) and performed long-term in vitro and short-term in vivo studies using fish swim bladder (FSB) as the leaflets. The study confirmed that FSB TAV device can complete 400 million fatigue tests and maintain the good morphology of the leaflets, and that it still maintains good functionality after a certain amount of compression, indicating that FSB is a promising material for leaflets.
Collapse
Affiliation(s)
- Honghui Jiang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jianming Li
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai 200433, China
| | - Yuanyuan Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lili Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yongjian Wu
- National Center for Cardiovascular Disease, Fuwai Hospital, Beijing 100037, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai 200433, China.
| | - Zhihong Wang
- Institute of Transplant Medicine, Nankai University School of Medicine, Tianjin 300071, China.
| |
Collapse
|
8
|
Reza S, Kovarovic B, Bluestein D. Assessing Post-TAVR Cardiac Conduction Abnormalities Risk Using a Digital Twin of a Beating Heart. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.28.24305028. [PMID: 38585979 PMCID: PMC10996731 DOI: 10.1101/2024.03.28.24305028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Transcatheter aortic valve replacement (TAVR) has rapidly displaced surgical aortic valve replacement (SAVR). However, certain post-TAVR complications persist, with cardiac conduction abnormalities (CCA) being one of the major ones. The elevated pressure exerted by the TAVR stent onto the conduction fibers situated between the aortic annulus and the His bundle, in proximity to the atrioventricular (AV) node, may disrupt the cardiac conduction leading to the emergence of CCA. In his study, an in-silico framework was developed to assess the CCA risk, incorporating the effect of a dynamic beating heart and pre-procedural parameters such as implantation depth and preexisting cardiac asynchrony in the new onset of post-TAVR CCA. A self-expandable TAVR device deployment was simulated inside an electro-mechanically coupled beating heart model in five patient scenarios, including three implantation depths, and two preexisting cardiac asynchronies: (i) a right bundle branch block (RBBB) and (ii) a left bundle branch block (LBBB). Subsequently, several biomechanical parameters were analyzed to assess the post-TAVR CCA risk. The results manifested a lower cumulative contact pressure on the conduction fibers following TAVR for aortic deployment (0.018 MPa) compared to baseline (0.29 MPa) and ventricular deployment (0.52 MPa). Notably, the preexisting RBBB demonstrated a higher cumulative contact pressure (0.34 MPa) compared to the baseline and preexisting LBBB (0.25 MPa). Deeper implantation and preexisting RBBB cause higher stresses and contact pressure on the conduction fibers leading to an increased risk of post-TAVR CCA. Conversely, implantation above the MS landmark and preexisting LBBB reduces the risk.
Collapse
|
9
|
Oks D, Reza S, Vázquez M, Houzeaux G, Kovarovic B, Samaniego C, Bluestein D. Effect of Sinotubular Junction Size on TAVR Leaflet Thrombosis: A Fluid-Structure Interaction Analysis. Ann Biomed Eng 2024; 52:719-733. [PMID: 38097896 DOI: 10.1007/s10439-023-03419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023]
Abstract
TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34 mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid-structure interaction analysis. The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm2 mean geometric orifice area (GOA), and the lowest mean residence time (TR)-indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in TR and elevated platelet stress accumulation. A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre-procedural planning and minimize the risk of TAVR leaflet thrombosis.
Collapse
Affiliation(s)
- David Oks
- Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Barcelona, Spain
| | - Symon Reza
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Mariano Vázquez
- Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Barcelona, Spain
- ELEM Biotech SL, Barcelona, Spain
| | - Guillaume Houzeaux
- Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Barcelona, Spain
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Cristóbal Samaniego
- Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Barcelona, Spain
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
10
|
Catalano C, Turgut T, Zahalka O, Götzen N, Cannata S, Gentile G, Agnese V, Gandolfo C, Pasta S. On the Material Constitutive Behavior of the Aortic Root in Patients with Transcatheter Aortic Valve Implantation. Cardiovasc Eng Technol 2024; 15:95-109. [PMID: 37985617 PMCID: PMC10884088 DOI: 10.1007/s13239-023-00699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure used to treat patients with severe aortic valve stenosis. However, there is limited knowledge on the material properties of the aortic root in TAVI patients, and this can impact the credibility of computer simulations. This study aimed to develop a non-invasive inverse approach for estimating reliable material constituents for the aortic root and calcified valve leaflets in patients undergoing TAVI. METHODS The identification of material parameters is based on the simultaneous minimization of two cost functions, which define the difference between model predictions and cardiac-gated CT measurements of the aortic wall and valve orifice area. Validation of the inverse analysis output was performed comparing the numerical predictions with actual CT shapes and post-TAVI measures of implanted device diameter. RESULTS A good agreement of the peak systolic shape of the aortic wall was found between simulations and imaging, with similarity index in the range in the range of 83.7% to 91.5% for n.20 patients. Not any statistical difference was observed between predictions and CT measures of orifice area for the stenotic aortic valve. After TAVI simulations, the measurements of SAPIEN 3 Ultra (S3) device diameter were in agreement with those from post-TAVI angio-CT imaging. A sensitivity analysis demonstrated a modest impact on the S3 diameters when altering the elastic material property of the aortic wall in the range of inverse analysis solution. CONCLUSIONS Overall, this study demonstrates the feasibility and potential benefits of using non-invasive imaging techniques and computational modeling to estimate material properties in patients undergoing TAVI.
Collapse
Affiliation(s)
- Chiara Catalano
- Department of Engineering, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
| | - Tahir Turgut
- 4RealSim Services BV, Groene Dijk 2B, 3401 NJ, IJsselstein, The Netherlands
| | - Omar Zahalka
- 4RealSim Services BV, Groene Dijk 2B, 3401 NJ, IJsselstein, The Netherlands
| | - Nils Götzen
- 4RealSim Services BV, Groene Dijk 2B, 3401 NJ, IJsselstein, The Netherlands
| | - Stefano Cannata
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Giovanni Gentile
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Valentina Agnese
- 3D printing and Virtual Reality Laboratory, Department of Research, IRCCS-ISMETT, IRCCS Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Via Tricomi, 5, Palermo, Italy
| | - Caterina Gandolfo
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy.
- 3D printing and Virtual Reality Laboratory, Department of Research, IRCCS-ISMETT, IRCCS Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Via Tricomi, 5, Palermo, Italy.
| |
Collapse
|
11
|
Shah I, Samaee M, Razavi A, Esmailie F, Ballarin F, Dasi LP, Veneziani A. Reduced Order Modeling for Real-Time Stent Deformation Simulations of Transcatheter Aortic Valve Prostheses. Ann Biomed Eng 2024; 52:208-225. [PMID: 37962675 DOI: 10.1007/s10439-023-03360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/01/2023] [Indexed: 11/15/2023]
Abstract
Computational modeling can be a critical tool to predict deployment behavior for transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis. However, due to the mechanical complexity of the aortic valve and the multiphysics nature of the problem, described by partial differential equations (PDEs), traditional finite element (FE) modeling of TAVR deployment is computationally expensive. In this preliminary study, a PDEs-based reduced order modeling (ROM) framework is introduced for rapidly simulating structural deformation of the Medtronic Evolut R valve stent frame. Using fifteen probing points from an Evolut model with parametrized loads enforced, 105 FE simulations were performed in the so-called offline phase, creating a snapshot library. The library was used in the online phase of the ROM for a new set of applied loads via the proper orthogonal decomposition-Galerkin (POD-Galerkin) approach. Simulations of small radial deformations of the Evolut stent frame were performed and compared to full order model (FOM) solutions. Linear elastic and hyperelastic constitutive models in steady and unsteady regimes were implemented within the ROM. Since the original POD-Galerkin method is formulated for linear problems, specific methods for the nonlinear terms in the hyperelastic case were employed, namely, the Discrete Empirical Interpolation Method. The ROM solutions were in strong agreement with the FOM in all numerical experiments, with a speed-up of at least 92% in CPU Time. This framework serves as a first step toward real-time predictive models for TAVR deployment simulations.
Collapse
Affiliation(s)
- Imran Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA
- Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA
| | - Milad Samaee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA
| | - Atefeh Razavi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA
| | - Fateme Esmailie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA
| | - Francesco Ballarin
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, 48 Via Della Garzetta, 25133, Brescia, Italy
| | - Lakshmi P Dasi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA.
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA.
- Department of Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Baylous K, Helbock R, Kovarovic B, Anam S, Slepian M, Bluestein D. In silico fatigue optimization of TAVR stent designs with physiological motion in a beating heart model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107886. [PMID: 37925854 DOI: 10.1016/j.cmpb.2023.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND OBJECTIVE The rapid expansion of TAVR to younger, low-risk patients raises concerns regarding device durability. Necessarily, extended stent lifetime will become more critical for new generation devices. In vitro methods commonly used for TAVR stent fatigue testing exclude the effects of the beating heart. We present a more realistic in silico stent fatigue analysis utilizing a beating heart model in which TAVR stents experience complex, nonuniform dynamic loading. METHODS Virtual TAVR deployments were simulated in the SIMULIA Living Heart Human Model of a beating heart using stent models of the self-expandable nitinol 26-mm CoreValve and Evolut R devices, and a 27-mm PolyV-2. Stent deformation was monitored over three cardiac cycles, and fatigue resistance was evaluated for the nitinol stents using finite element analysis via ABAQUS/Explicit. The average strain and strain amplitude of each stent element were tracked, and established thresholds were applied to determine potential fatigue failure. Fatigue performance of control stents was compared to parametrically modified models with a 20% increase or decrease in strut width. RESULTS Stents with reduced strut width applied lower radial force against the contracting myocardium of the beating heart, resulting in larger displacements and higher strain values. Formulas relating in vivo strain to stent design do not account for this. In all models, there were elements in which strains exceeded fatigue failure. The PolyV-2 stent had far fewer failing elements since its struts were optimized to reduce the strain in stent joints, achieving better fatigue resistance in the stent crown and waist elements. Different stent sections showed markedly different fatigue resistance due to the varying loading conditions. CONCLUSIONS Our analysis indicates that previous studies underestimate strain amplitudes that may cause stent failure. This study demonstrates the utility of advanced in silico analysis of devices deployed within a beating heart that mimics in vivo loading, offering a cost-effective alternative to human or animal trials and establishing a platform to assess the impact of device design on device durability. The limited fatigue life of TAVR stents indicated here highlights a clinical complication that may eventually develop as younger, lower-risk TAVR patients, age.
Collapse
Affiliation(s)
- Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA
| | - Marvin Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ 85721, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA.
| |
Collapse
|
13
|
Li J, Meng Z, Yan W, Wang W, Wei L, Wang S. Computational study of the balloon dilation steps on transcatheter aortic valve replacement. Front Bioeng Biotechnol 2023; 11:1333138. [PMID: 38179134 PMCID: PMC10765527 DOI: 10.3389/fbioe.2023.1333138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Balloon dilation is a commonly used assistant method in transcatheter aortic valve replacement (TAVR) and plays an important role during valve implantation procedure. The balloon dilation steps need to be fully considered in TAVR numerical simulations. This study aims to establish a TAVR simulation procedure with two different balloon dilation steps to analyze the impact of balloon dilation on the results of TAVR implantation. Two cases of aortic stenosis were constructed based on medical images. An implantation simulation procedure with self-expandable valve was established, and multiple models including different simulation steps such as balloon pre-dilation and balloon post-dilation were constructed to compare the different effects on vascular stress, stent morphology and paravalvular leakage. Results show that balloon pre-dilation of TAVR makes less impact on post-operative outcomes, while post-dilation can effectively improve the implantation morphology of the stent, which is beneficial to the function and durability of the valve. It can effectively improve the adhesion of the stent and reduce the paravalvular leakage volume more than 30% after implantation. However, balloon post-dilation may also lead to about 20% or more increased stress on the aorta and increase the risk of damage. The balloon dilation makes an important impact on the TAVR outcomes. Balloon dilation needs to be fully considered during pre-operative analysis to obtain a better clinical result.
Collapse
Affiliation(s)
- Jianming Li
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Zhuangyuan Meng
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Wentao Yan
- Shanghai Inspection and Research Institute for Medical Devices, Shanghai, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Institute of Biomedical Engineering Technology, Fudan University, Shanghai, China
- Zhuhai Fudan Innovation Institute, Zhuhai, China
| |
Collapse
|
14
|
Oks D, Reza S, Vázquez M, Houzeaux G, Kovarovic B, Samaniego C, Bluestein D. Effect of Sinotubular Junction Size on TAVR Leaflet Thrombosis: A Fluid-structure Interaction Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298476. [PMID: 38014278 PMCID: PMC10680880 DOI: 10.1101/2023.11.13.23298476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Purpose TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. Methods A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid- structure interaction analysis. Results The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm 2 mean geometric orifice area (GOA), and the lowest mean residence time (T R ) - indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in T R and elevated platelet stress accumulation. Conclusion A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre- procedural planning and minimize the risk of TAVR leaflet thrombosis.
Collapse
|
15
|
Liang L, Liu M, Elefteriades J, Sun W. PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107616. [PMID: 37230048 PMCID: PMC10330852 DOI: 10.1016/j.cmpb.2023.107616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Finite-element analysis (FEA) is widely used as a standard tool for stress and deformation analysis of solid structures, including human tissues and organs. For instance, FEA can be applied at a patient-specific level to assist in medical diagnosis and treatment planning, such as risk assessment of thoracic aortic aneurysm rupture/dissection. These FEA-based biomechanical assessments often involve both forward and inverse mechanics problems. Current commercial FEA software packages (e.g., Abaqus) and inverse methods exhibit performance issues in either accuracy or speed. METHODS In this study, we propose and develop a new library of FEA code and methods, named PyTorch-FEA, by taking advantage of autograd, an automatic differentiation mechanism in PyTorch. We develop a class of PyTorch-FEA functionalities to solve forward and inverse problems with improved loss functions, and we demonstrate the capability of PyTorch-FEA in a series of applications related to human aorta biomechanics. In one of the inverse methods, we combine PyTorch-FEA with deep neural networks (DNNs) to further improve performance. RESULTS We applied PyTorch-FEA in four fundamental applications for biomechanical analysis of human aorta. In the forward analysis, PyTorch-FEA achieved a significant reduction in computational time without compromising accuracy compared with Abaqus, a commercial FEA package. Compared to other inverse methods, inverse analysis with PyTorch-FEA achieves better performance in either accuracy or speed, or both if combined with DNNs. CONCLUSIONS We have presented PyTorch-FEA, a new library of FEA code and methods, representing a new approach to develop FEA methods to forward and inverse problems in solid mechanics. PyTorch-FEA eases the development of new inverse methods and enables a natural integration of FEA and DNNs, which will have numerous potential applications.
Collapse
Affiliation(s)
- Liang Liang
- Department of Computer Science, University of Miami, Coral Gables, FL, United States.
| | - Minliang Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - John Elefteriades
- Aortic Institute, School of Medicine, Yale University, New Haven, CT, United States
| | - Wei Sun
- Sutra Medical Inc, Lake Forest, CA, United States
| |
Collapse
|
16
|
Tahir AM, Mutlu O, Bensaali F, Ward R, Ghareeb AN, Helmy SMHA, Othman KT, Al-Hashemi MA, Abujalala S, Chowdhury MEH, Alnabti ARDMH, Yalcin HC. Latest Developments in Adapting Deep Learning for Assessing TAVR Procedures and Outcomes. J Clin Med 2023; 12:4774. [PMID: 37510889 PMCID: PMC10381346 DOI: 10.3390/jcm12144774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 07/30/2023] Open
Abstract
Aortic valve defects are among the most prevalent clinical conditions. A severely damaged or non-functioning aortic valve is commonly replaced with a bioprosthetic heart valve (BHV) via the transcatheter aortic valve replacement (TAVR) procedure. Accurate pre-operative planning is crucial for a successful TAVR outcome. Assessment of computational fluid dynamics (CFD), finite element analysis (FEA), and fluid-solid interaction (FSI) analysis offer a solution that has been increasingly utilized to evaluate BHV mechanics and dynamics. However, the high computational costs and the complex operation of computational modeling hinder its application. Recent advancements in the deep learning (DL) domain can offer a real-time surrogate that can render hemodynamic parameters in a few seconds, thus guiding clinicians to select the optimal treatment option. Herein, we provide a comprehensive review of classical computational modeling approaches, medical imaging, and DL approaches for planning and outcome assessment of TAVR. Particularly, we focus on DL approaches in previous studies, highlighting the utilized datasets, deployed DL models, and achieved results. We emphasize the critical challenges and recommend several future directions for innovative researchers to tackle. Finally, an end-to-end smart DL framework is outlined for real-time assessment and recommendation of the best BHV design for TAVR. Ultimately, deploying such a framework in future studies will support clinicians in minimizing risks during TAVR therapy planning and will help in improving patient care.
Collapse
Affiliation(s)
- Anas M Tahir
- Electrical and Computer Engineering Department, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Onur Mutlu
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Faycal Bensaali
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Rabab Ward
- Electrical and Computer Engineering Department, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Abdel Naser Ghareeb
- Heart Hospital, Hamad Medical Corporation, Doha 3050, Qatar
- Faculty of Medicine, Al Azhar University, Cairo 11884, Egypt
| | - Sherif M H A Helmy
- Noninvasive Cardiology Section, Cardiology Department, Heart Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Mohammed A Al-Hashemi
- Noninvasive Cardiology Section, Cardiology Department, Heart Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | | | | | | | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
17
|
Huang X, Zhang G, Zhou X, Yang X. A review of numerical simulation in transcatheter aortic valve replacement decision optimization. Clin Biomech (Bristol, Avon) 2023; 106:106003. [PMID: 37245279 DOI: 10.1016/j.clinbiomech.2023.106003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Recent trials indicated a further expansion of clinical indication of transcatheter aortic valve replacement to younger and low-risk patients. Factors related to longer-term complications are becoming more important for use in these patients. Accumulating evidence indicates that numerical simulation plays a significant role in improving the outcome of transcatheter aortic valve replacement. Understanding mechanical features' magnitude, pattern, and duration is a topic of ongoing relevance. METHODS We searched the PubMed database using keywords such as "transcatheter aortic valve replacement" and "numerical simulation" and reviewed and summarized relevant literature. FINDINGS This review integrated recently published evidence into three subtopics: 1) prediction of transcatheter aortic valve replacement outcomes through numerical simulation, 2) implications for surgeons, and 3) trends in transcatheter aortic valve replacement numerical simulation. INTERPRETATIONS Our study offers a comprehensive overview of the utilization of numerical simulation in the context of transcatheter aortic valve replacement, and highlights the advantages, potential challenges from a clinical standpoint. The convergence of medicine and engineering plays a pivotal role in enhancing the outcomes of transcatheter aortic valve replacement. Numerical simulation has provided evidence of potential utility for tailored treatments.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Cardiovascular Surgery, West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
| | - Guangming Zhang
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyan Yang
- Department of Cardiovascular Surgery, West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Liang L, Liu M, Elefteriades J, Sun W. PyTorch-FEA: Autograd-enabled Finite Element Analysis Methods with Applications for Biomechanical Analysis of Human Aorta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.533816. [PMID: 37034587 PMCID: PMC10081215 DOI: 10.1101/2023.03.27.533816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Motivation Finite-element analysis (FEA) is widely used as a standard tool for stress and deformation analysis of solid structures, including human tissues and organs. For instance, FEA can be applied at a patient-specific level to assist in medical diagnosis and treatment planning, such as risk assessment of thoracic aortic aneurysm rupture/dissection. These FEA-based biomechanical assessments often involve both forward and inverse mechanics problems. Current commercial FEA software packages (e.g., Abaqus) and inverse methods exhibit performance issues in either accuracy or speed. Methods In this study, we propose and develop a new library of FEA code and methods, named PyTorch-FEA, by taking advantage of autograd, an automatic differentiation mechanism in PyTorch. We develop a class of PyTorch-FEA functionalities to solve forward and inverse problems with improved loss functions, and we demonstrate the capability of PyTorch-FEA in a series of applications related to human aorta biomechanics. In one of the inverse methods, we combine PyTorch-FEA with deep neural networks (DNNs) to further improve performance. Results We applied PyTorch-FEA in four fundamental applications for biomechanical analysis of human aorta. In the forward analysis, PyTorch-FEA achieved a significant reduction in computational time without compromising accuracy compared with Abaqus, a commercial FEA package. Compared to other inverse methods, inverse analysis with PyTorch-FEA achieves better performance in either accuracy or speed, or both if combined with DNNs.
Collapse
|
19
|
Carbonaro D, Zambon S, Corti A, Gallo D, Morbiducci U, Audenino AL, Chiastra C. Impact of nickel-titanium super-elastic material properties on the mechanical performance of self-expandable transcatheter aortic valves. J Mech Behav Biomed Mater 2023; 138:105623. [PMID: 36535095 DOI: 10.1016/j.jmbbm.2022.105623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Self-expandable transcatheter aortic valves (TAVs) elastically resume their initial shape when implanted without the need for balloon inflation by virtue of the nickel-titanium (NiTi) frame super-elastic properties. Experimental findings suggest that NiTi mechanical properties can vary markedly because of a strong dependence on the chemical composition and processing operations. In this context, this study presents a computational framework to investigate the impact of the NiTi super-elastic material properties on the TAV mechanical performance. Finite element (FE) analyses of TAV implantation were performed considering two different TAV frames and three idealized aortic root anatomies, evaluating the device mechanical response in terms of pullout force magnitude exerted by the TAV frame and peak maximum principal stress within the aortic root. The widely adopted NiTi constitute model by Auricchio and Taylor (1997) was used. A multi-parametric sensitivity analysis and a multi-objective optimization of the TAV mechanical performance were conducted in relation to the parameters of the NiTi constitutive model. The results highlighted that: five NiTi material model parameters (EA, σtLS, σtUS, σtUE and σcLS) are significantly correlated with the FE outputs; the TAV frame geometry and aortic root anatomy have a marginal effect on the level of influence of each NiTi material parameter; NiTi alloy candidates with pareto-optimal characteristics in terms of TAV mechanical performance can be successfully identified. In conclusion, the proposed computational framework supports the TAV design phase, providing information on the relationship between the super-elastic behavior of the supplied NiTi alloys and the device mechanical response.
Collapse
Affiliation(s)
- Dario Carbonaro
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Sara Zambon
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Diego Gallo
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alberto L Audenino
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Chiastra
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
20
|
Patient-Specific Immersed Finite Element-Difference Model of Transcatheter Aortic Valve Replacement. Ann Biomed Eng 2023; 51:103-116. [PMID: 36264408 PMCID: PMC9832092 DOI: 10.1007/s10439-022-03047-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) first received FDA approval for high-risk surgical patients in 2011 and has been approved for low-risk surgical patients since 2019. It is now the most common type of aortic valve replacement, and its use continues to accelerate. Computer modeling and simulation (CM&S) is a tool to aid in TAVR device design, regulatory approval, and indication in patient-specific care. This study introduces a computational fluid-structure interaction (FSI) model of TAVR with Medtronic's CoreValve Evolut R device using the immersed finite element-difference (IFED) method. We perform dynamic simulations of crimping and deployment of the Evolut R, as well as device behavior across the cardiac cycle in a patient-specific aortic root anatomy reconstructed from computed tomography (CT) image data. These IFED simulations, which incorporate biomechanics models fit to experimental tensile test data, automatically capture the contact within the device and between the self-expanding stent and native anatomy. Further, we apply realistic driving and loading conditions based on clinical measurements of human ventricular and aortic pressures and flow rates to demonstrate that our Evolut R model supports a physiological diastolic pressure load and provides informative clinical performance predictions.
Collapse
|
21
|
Anam SB, Kovarovic BJ, Ghosh RP, Bianchi M, Hamdan A, Haj-Ali R, Bluestein D. Validating In Silico and In Vitro Patient-Specific Structural and Flow Models with Transcatheter Bicuspid Aortic Valve Replacement Procedure. Cardiovasc Eng Technol 2022; 13:840-856. [PMID: 35391657 DOI: 10.1007/s13239-022-00620-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/28/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, which had been treated off-label by transcatheter aortic valve replacement (TAVR) procedure for several years, until its recent approval by the Food and Drug Administration (FDA) and Conformité Européenne (CE) to treat BAVs. Post-TAVR complications tend to get exacerbated in BAV patients due to their inherent aortic root pathologies. Globally, due to the paucity of randomized clinical trials, clinicians still favor surgical AVR as the primary treatment option for BAV patients. While this warrants longer term studies of TAVR outcomes in BAV patient cohorts, in vitro experiments and in silico computational modeling can be used to guide the surgical community in assessing the feasibility of TAVR in BAV patients. Our goal is to combine these techniques in order to create a modeling framework for optimizing pre-procedural planning and minimize post-procedural complications. MATERIALS AND METHODS Patient-specific in silico models and 3D printed replicas of 3 BAV patients with different degrees of post-TAVR paravalvular leakage (PVL) were created. Patient-specific TAVR device deployment was modeled in silico and in vitro-following the clinical procedures performed in these patients. Computational fluid dynamics simulations and in vitro flow studies were performed in order to obtain the degrees of PVL in these models. RESULTS PVL degree and locations were consistent with the clinical data. Cross-validation comparing the stent deformation and the flow parameters between the in silico and the in vitro models demonstrated good agreement. CONCLUSION The current framework illustrates the potential of using simulations and 3D printed models for pre-TAVR planning and assessing post-TAVR complications in BAV patients.
Collapse
Affiliation(s)
- Salwa B Anam
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Brandon J Kovarovic
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ram P Ghosh
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Matteo Bianchi
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, 4941492, Petah Tikva, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Danny Bluestein
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA. .,Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
22
|
Pasta S, Catalano C, Cannata S, Guccione JM, Gandolfo C. Numerical simulation of transcatheter mitral valve replacement: The dynamic implication of LVOT obstruction in the valve-in-ring case. J Biomech 2022; 144:111337. [DOI: 10.1016/j.jbiomech.2022.111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
|
23
|
Nappi F, Avtaar Singh SS, Nappi P, Fiore A. Biomechanics of Transcatheter Aortic Valve Implant. Bioengineering (Basel) 2022; 9:bioengineering9070299. [PMID: 35877350 PMCID: PMC9312295 DOI: 10.3390/bioengineering9070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Transcatheter aortic valve implantation (TAVI) has grown exponentially within the cardiology and cardiac surgical spheres. It has now become a routine approach for treating aortic stenosis. Several concerns have been raised about TAVI in comparison to conventional surgical aortic valve replacement (SAVR). The primary concerns regard the longevity of the valves. Several factors have been identified which may predict poor outcomes following TAVI. To this end, the lesser-used finite element analysis (FEA) was used to quantify the properties of calcifications which affect TAVI valves. This method can also be used in conjunction with other integrated software to ascertain the functionality of these valves. Other imaging modalities such as multi-detector row computed tomography (MDCT) are now widely available, which can accurately size aortic valve annuli. This may help reduce the incidence of paravalvular leaks and regurgitation which may necessitate further intervention. Structural valve degeneration (SVD) remains a key factor, with varying results from current studies. The true incidence of SVD in TAVI compared to SAVR remains unclear due to the lack of long-term data. It is now widely accepted that both are part of the armamentarium and are not mutually exclusive. Decision making in terms of appropriate interventions should be undertaken via shared decision making involving heart teams.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
- Correspondence: ; Tel.: +33-149334104; Fax: +33-149334119
| | | | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Antonio Fiore
- Department of Cardiac Surgery, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94000 Creteil, France;
| |
Collapse
|
24
|
Barati S, Fatouraee N, Nabaei M, Petrini L, Migliavacca F, Luraghi G, Matas JFR. Patient-specific multi-scale design optimization of transcatheter aortic valve stents. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106912. [PMID: 35640391 DOI: 10.1016/j.cmpb.2022.106912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Transcatheter aortic valve implantation (TAVI) has become the standard treatment for a wide range of patients with aortic stenosis. Although some of the TAVI post-operative complications are addressed in newer designs, other complications and lack of long-term and durability data on the performance of these prostheses are limiting this procedure from becoming the standard for heart valve replacements. The design optimization of these devices with the finite element and optimization techniques can help increase their performance quality and reduce the risk of malfunctioning. Most performance metrics of these prostheses are morphology-dependent, and the design and the selection of the device before implantation should be planned for each individual patient. METHODS In this study, a patient-specific aortic root geometry was utilized for the crimping and implantation simulation of 50 stent samples. The results of simulations were then evaluated and used for developing regression models. The strut width and thickness, the number of cells and patterns, the size of stent cells, and the diameter profile of the stent were optimized with two sets of optimization processes. The objective functions included the maximum crimping strain, radial strength, anchorage area, and the eccentricity of the stent. RESULTS The optimization process was successful in finding optimal models with up to 40% decrease in the maximum crimping strain, 261% increase in the radial strength, 67% reduction in the eccentricity, and about an eightfold increase in the anchorage area compared to the reference device. CONCLUSIONS The stents with larger distal diameters perform better in the selected objective functions. They provide better anchorage in the aortic root resulting in a smaller gap between the device and the surrounding tissue and smaller contact pressure. This framework can be used in designing patient-specific stents and improving the performance of these devices and the outcome of the implantation process.
Collapse
Affiliation(s)
- Sara Barati
- Biological Fluid Dynamics Research Laboratory, Biomedical Engineering Department, Amirkabir University of Technology, 350 Hafez Ave, Tehran, Iran
| | - Nasser Fatouraee
- Biological Fluid Dynamics Research Laboratory, Biomedical Engineering Department, Amirkabir University of Technology, 350 Hafez Ave, Tehran, Iran.
| | - Malikeh Nabaei
- Biological Fluid Dynamics Research Laboratory, Biomedical Engineering Department, Amirkabir University of Technology, 350 Hafez Ave, Tehran, Iran
| | - Lorenza Petrini
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy.
| | - Josè Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy.
| |
Collapse
|
25
|
Nappi F, Nenna A, Chello M. Structural Heart Valve Disease in the Era of Change and Innovation: The Crosstalk between Medical Sciences and Engineering. Bioengineering (Basel) 2022; 9:230. [PMID: 35735473 PMCID: PMC9220173 DOI: 10.3390/bioengineering9060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, both cardiology and cardiovascular surgery have witnessed an era of consistently evolving changes which have dramatically transformed the course and management of cardiovascular disease [...].
Collapse
Affiliation(s)
- Francesco Nappi
- Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, 93200 Paris, France
| | - Antonio Nenna
- Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.N.); (M.C.)
| | - Massimo Chello
- Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.N.); (M.C.)
| |
Collapse
|
26
|
Design of an aortic polymeric valve with asymmetric leaflets and evaluation of its performance by finite element method. Comput Biol Med 2022; 145:105440. [PMID: 35339848 DOI: 10.1016/j.compbiomed.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The geometry of leaflets plays a significant role in prosthetic valves' (PVs) performance. Typically, natural aortic valves have three unequal leaflets, which differ in size. The present study aims to design an asymmetric tri-leaflet polymeric valve with one large and two small leaflets based on commissure lengths and leaflet eccentricities. METHODS Eccentricity was related to commissure lengths based on the deformation of the free margins for the fully-opened state of leaflets. The polystyrene-block-polyethylene-polypropylene-block-polystyrene polymer characterized the material properties of the leaflets. The Finite Element Method (FEM) was used to evaluate performance parameters, including maximum geometric orifice area (GOA), average GOA, maximum von Mises stress, and leaflet's coaptation surface area (CSA). RESULTS Asymmetric valves with no eccentricity provided a low level of GOA because the asymmetric form of small leaflets caused them to close faster than the large leaflet, leading to a sudden drop in the GOA during systole. As the radial curve tends towards a straight line, an undesirable coaptation occurs, and peak stress increases despite higher GOAs. A new radial curve consisting of two straight lines connected by an arc that provided 25.64 mm2 coaptation surface area (CAS) and 117.54 mm2 average GOA, was proposed to improve coaptation and GOA. CONCLUSION The radial curve of leaflets affects the valve's performance more than other geometric parameters. The combination of straight lines and arcs for radial curves was selected as the reference model for asymmetric valves with one large and two small leaflets.
Collapse
|
27
|
Karnibad M, Sharabi M, Lavon K, Morany A, Hamdan A, Haj-Ali R. The effect of the fibrocalcific pathological process on aortic valve stenosis in female patients: a finite element study. Biomed Phys Eng Express 2022; 8. [PMID: 35120335 DOI: 10.1088/2057-1976/ac5223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valvular disease in the developed world. Most of the relevant research has been sex-blind, ignoring sex-related biological variables and thus under-appreciate sex differences. However, females present pronounced fibrosis for the same aortic stenosis (AS) severity compared with males, who exhibit more calcification. Herein, we present a computational model of fibrocalcific AV, aiming to investigate its effect on AS development. A parametric study was conducted to explore the influence of the total collagen fiber volume and its architecture on the aortic valve area (AVA). Towards that goal, computational models were generated for three females with stenotic AVs and different volumes of calcium. We have tested the influence of fibrosis on various parameters as fiber architecture, fibrosis location, and transvalvular pressure. We found that increased fiber volume with a low calcium volume could actively contribute to AS and reduce the AVA similarly to high calcium volume. Thus, the computed AVAs for our fibrocalcific models were 0.94 and 0.84 cm2and the clinical (Echo) AVAs were 0.82 and 0.8 cm2. For the heavily calcified model, the computed AVA was 0.8 cm2and the clinical AVA was 0.73 cm2. The proposed models demonstrated how collagen thickening influence the fibrocalcific-AS process in female patients. These models can assist in the clinical decision-making process and treatment development in valve therapy for female patients.
Collapse
Affiliation(s)
- Maya Karnibad
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Mirit Sharabi
- Ariel University, Department of Mechanical engineering and Mechatronics, Ariel, 407000, ISRAEL
| | - Karin Lavon
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Adi Morany
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Ashraf Hamdan
- Tel Aviv University, Department of Cardiology, Rabin Medical Center, Tel Aviv, 69978, ISRAEL
| | - Rami Haj-Ali
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| |
Collapse
|
28
|
Finite element analysis of transcatheter aortic valve implantation: Insights on the modelling of self-expandable devices. J Mech Behav Biomed Mater 2021; 123:104772. [PMID: 34481297 DOI: 10.1016/j.jmbbm.2021.104772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 01/24/2023]
Abstract
Computational simulations of Transcatheter Aortic Valve Implantation (TAVI) have reached a high level of complexity and accuracy for the prediction of possible implantation scenarios during the decision-making process. However, when focusing on the prosthetic device, currently different devices are available on the market which not only have different geometries, but also different material properties. The present work focuses on the calibration of Nitinol constitutive parameters of four self-expandable devices starting from experimental radial force tests on the prosthetic samples. Beside providing optimal material properties for each specific device, we also perform a patient-specific simulation, comparing the results obtained using both "literature" and calibrated parameters with the aim of investigating the impact of metallic frame parameters choice on simulation results.
Collapse
|
29
|
Transcatheter Heart Valve Implantation in Bicuspid Patients with Self-Expanding Device. Bioengineering (Basel) 2021; 8:bioengineering8070091. [PMID: 34356198 PMCID: PMC8301021 DOI: 10.3390/bioengineering8070091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Bicuspid aortic valve (BAV) patients are conventionally not treated by transcathether aortic valve implantation (TAVI) because of anatomic constraint with unfavorable outcome. Patient-specific numerical simulation of TAVI in BAV may predict important clinical insights to assess the conformability of the transcathether heart valves (THV) implanted on the aortic root of members of this challenging patient population. We aimed to develop a computational approach and virtually simulate TAVI in a group of n.6 stenotic BAV patients using the self-expanding Evolut Pro THV. Specifically, the structural mechanics were evaluated by a finite-element model to estimate the deformed THV configuration in the oval bicuspid anatomy. Then, a fluid–solid interaction analysis based on the smoothed-particle hydrodynamics (SPH) technique was adopted to quantify the blood-flow patterns as well as the regions at high risk of paravalvular leakage (PVL). Simulations demonstrated a slight asymmetric and elliptical expansion of the THV stent frame in the BAV anatomy. The contact pressure between the luminal aortic root surface and the THV stent frame was determined to quantify the device anchoring force at the level of the aortic annulus and mid-ascending aorta. At late diastole, PVL was found in the gap between the aortic wall and THV stent frame. Though the modeling framework was not validated by clinical data, this study could be considered a further step towards the use of numerical simulations for the assessment of TAVI in BAV, aiming at understanding patients not suitable for device implantation on an anatomic basis.
Collapse
|
30
|
Martinolli M, Biasetti J, Zonca S, Polverelli L, Vergara C. Extended finite element method for fluid-structure interaction in wave membrane blood pump. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3467. [PMID: 33884770 DOI: 10.1002/cnm.3467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Numerical simulations of cardiac blood pump systems are integral to the optimization of device design, hydraulic performance and hemocompatibility. In wave membrane blood pumps, blood propulsion arises from the wave propagation along an oscillating immersed membrane, which generates small pockets of fluid that are pushed towards the outlet against an adverse pressure gradient. We studied the Fluid-Structure Interaction between the oscillating membrane and the blood flow via three-dimensional simulations using the Extended Finite Element Method (XFEM), an unfitted numerical technique that avoids remeshing by using a fluid fixed mesh. Our three-dimensional numerical simulations in a realistic pump geometry highlighted, for the first time in this field of application, that XFEM is a reliable strategy to handle complex industrial problems. Moreover, they showed the role of the membrane deformation in promoting a blood flow towards the outlet despite an adverse pressure gradient. We also simulated the pump system at different pressure conditions and we validated the numerical results against in-vitro experimental data.
Collapse
Affiliation(s)
- Marco Martinolli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Stefano Zonca
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
31
|
Moscarelli M, Gallo F, Gallone G, Kim WK, Reifart J, Veulemans V, Zeus T, Toggweiler S, De Backer O, Søndergaard L, Mangieri A, De Marco F, Regazzoli D, Reimers B, Muntané-Carol G, Lauriero RE, Armario X, Mylotte D, Bhadra OD, Conradi L, Donday LAM, Nombela-Franco L, Barbanti M, Reddavid C, Brugaletta S, Nicolini E, Tzanis G, Rodes-Cabau J, Colombo A, Giannini F. Aortic angle distribution and predictors of horizontal aorta in patients undergoing transcatheter aortic valve replacement. Int J Cardiol 2021; 338:58-62. [PMID: 34090956 DOI: 10.1016/j.ijcard.2021.05.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Horizontal aorta (HA) is an anatomical feature that can pose significant technical challenges for the successful positioning of the bioprosthetic valve during transcatheter aortic valve replacement (TAVR). Physiological range of aortic angle (AA) is unknown; hence there is no cutoff AA for classifying HA. Moreover, patient characteristics predicting HA are under-investigated. METHODS This was a retrospective analysis of prospective collected data from 16 heart valve centers in Europe. The study utilized a common dataset with a priori agreed-upon definitions and variables. Eligible patients underwent TAVR between 2014 and 2020 and had multidetector computed tomographic imaging data available for determining the AA. The analysis described the distribution of AA and potential predictors of HA. Inter-center variability was also explored. RESULTS For 4022 patients analyzed, the mean AA ± standard deviation was 49.4° ± 9.4° (median 49°, inter-quartile range [IQR] 12°, range 18-90°). There was no significant difference in mean AA between men and women (49.4° ± 9.1° vs. 49.6° ± 9.3°, respectively; p = 0.53); therefore, 49.4° was accepted as the cutoff value for HA in subsequent analyses. Covariates significantly associated with HA included age (odds ratio [OR]: 1.02, 95% confidence interval [CI]: 1.01-1.04, p < 0.001), body mass index (OR: 1.06, 95% CI: 1.05-1.08, p < 0.01), previous cardiac surgery (OR: 0.58, 95% CI: 0.45-0.75, p < 0.001), and porcelain aorta (OR: 0.66, 95% CI: 0.52-0.85, p = 0.001). Some inter-center variability was observed. CONCLUSIONS We defined 49.4° as the mean AA, and also associated predictors of HA in a large case series of patients with severe aortic stenosis candidates for TAVR.
Collapse
Affiliation(s)
- Marco Moscarelli
- Department of Cardiovascular Surgery, GVM Care & Research, Bari, Italy.
| | - Francesco Gallo
- Interventional Cardiology Unit, Maria Cecilia Hospital, GVM Care and Research, Italy
| | - Guglielmo Gallone
- Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Won-Keun Kim
- Department of Cardiology, Kerckhoff Heart and Thorax Centre, Bad Nauheim, Germany
| | - Jörg Reifart
- Department of Cardiology, Kerckhoff Heart and Thorax Centre, Bad Nauheim, Germany
| | - Verena Veulemans
- Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Tobias Zeus
- Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Düsseldorf, Germany
| | | | - Ole De Backer
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Søndergaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Antonio Mangieri
- Interventional Cardiology Unit, Maria Cecilia Hospital, GVM Care and Research, Italy
| | - Federico De Marco
- Department of Clinical and Interventional Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Damiano Regazzoli
- Department of Clinical and Interventional Cardiology, Cardio Center, Humanitas Research Hospital, Rozzano-Milano, Italy
| | - Bernhard Reimers
- Department of Clinical and Interventional Cardiology, Cardio Center, Humanitas Research Hospital, Rozzano-Milano, Italy
| | | | | | - Xavier Armario
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Darren Mylotte
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Oliver Daniel Bhadra
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Lenard Conradi
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | | | - Luis Nombela-Franco
- Cardiovascular Institute, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Marco Barbanti
- Division of Cardiology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Claudia Reddavid
- Division of Cardiology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Salvatore Brugaletta
- Cardiovascular Institute, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisa Nicolini
- Interventional Cardiology, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Giorgos Tzanis
- Department of Interventional Cardiology, Henry Dunant Hospital Center, Athens, Greece
| | - Josep Rodes-Cabau
- Department of Clinical and Interventional Cardiology, Cardio Center, Humanitas Research Hospital, Rozzano-Milano, Italy
| | - Antonio Colombo
- Interventional Cardiology Unit, Maria Cecilia Hospital, GVM Care and Research, Italy
| | - Francesco Giannini
- Interventional Cardiology Unit, Maria Cecilia Hospital, GVM Care and Research, Italy
| |
Collapse
|
32
|
Percutaneous versus Surgical Intervention for Severe Aortic Valve Stenosis: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3973924. [PMID: 34136565 PMCID: PMC8175165 DOI: 10.1155/2021/3973924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
Aortic stenosis is a disease that is increasing in prevalence and manifests as decreased cardiac output, which if left untreated can result in heart failure and ultimately death. It is primarily a disease of the elderly who often have multiple comorbidities. The advent of transcatheter aortic valve therapies has changed the way we treat these conditions. However, long-term results of these therapies remain uncertain. Recently, there has been an increasing number of studies examining the role of both surgical aortic valve replacement and transcatheter aortic valve replacement. We therefore performed a systematic review using Ovid MEDLINE, Ovid Embase, and the Cochrane Library. Two investigators searched papers published between January 1, 2007, and to date using the following terms: "aortic valve stenosis," "aortic valve operation," and "transcatheter aortic valve therapy." Both strategies in aortic stenosis treatment highlighted specific indications alongside the pitfalls such as structural valve degeneration and valve thrombosis which have a bearing on clinical outcomes. We propose some recommendations to help clinicians in the decision-making process as technological improvements make both surgical and transcatheter therapies viable options for patients with aortic stenosis. Finally, we assess the role of finite element analysis in patient selection for aortic valve replacement. THVT and AVR-S are both useful tools in the armamentarium against aortic stenosis. The decision between the two treatment strategies should be best guided by a strong robust evidence base, ideally with a long-term follow-up. This is best performed by the heart team with the patient as the center of the discussion.
Collapse
|
33
|
Kusner J, Luraghi G, Khodaee F, Rodriguez Matas JF, Migliavacca F, Edelman ER, Nezami FR. Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study. PLoS One 2021; 16:e0251579. [PMID: 33999969 PMCID: PMC8128244 DOI: 10.1371/journal.pone.0251579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.
Collapse
Affiliation(s)
- Jonathan Kusner
- Harvard Medical School, Boston, MA, United States of America
| | - Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Farhan Khodaee
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - José Félix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Farhad R. Nezami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Thoracic and Cardiac Surgery Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail: ,
| |
Collapse
|
34
|
Nappi F, Mazzocchi L, Spadaccio C, Attias D, Timofeva I, Macron L, Iervolino A, Morganti S, Auricchio F. CoreValve vs. Sapien 3 Transcatheter Aortic Valve Replacement: A Finite Element Analysis Study. Bioengineering (Basel) 2021; 8:bioengineering8050052. [PMID: 33925437 PMCID: PMC8146716 DOI: 10.3390/bioengineering8050052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: to investigate the factors implied in the development of postoperative complications in both self-expandable and balloon-expandable transcatheter heart valves by means of finite element analysis (FEA). Materials and methods: FEA was integrated into CT scans to investigate two cases of postoperative device failure for valve thrombosis after the successful implantation of a CoreValve and a Sapien 3 valve. Data were then compared with two patients who had undergone uncomplicated transcatheter heart valve replacement (TAVR) with the same types of valves. Results: Computational biomechanical modeling showed calcifications persisting after device expansion, not visible on the CT scan. These calcifications determined geometrical distortion and elliptical deformation of the valve predisposing to hemodynamic disturbances and potential thrombosis. Increased regional stress was also identified in correspondence to the areas of distortion with the associated paravalvular leak. Conclusion: the use of FEA as an adjunct to preoperative imaging might assist patient selection and procedure planning as well as help in the detection and prevention of TAVR complications.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint Denis, France
- Correspondence: ; Tel.: +33-149-334-104; Fax: +33-149-334-119
| | - Laura Mazzocchi
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (L.M.); (F.A.)
| | - Cristiano Spadaccio
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - David Attias
- Department of Cardiology, Centre Cardiologique du Nord, 93200 Saint Denis, France;
| | - Irina Timofeva
- Department of Imaging, Centre Cardiologique du Nord, 93200 Saint Denis, France; (I.T.); (L.M.)
| | - Laurent Macron
- Department of Imaging, Centre Cardiologique du Nord, 93200 Saint Denis, France; (I.T.); (L.M.)
| | - Adelaide Iervolino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Simone Morganti
- Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy;
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (L.M.); (F.A.)
| |
Collapse
|
35
|
Finotello A, Romarowski RM, Gorla R, Bianchi G, Bedogni F, Auricchio F, Morganti S. Performance of high conformability vs. high radial force devices in the virtual treatment of TAVI patients with bicuspid aortic valve. Med Eng Phys 2021; 89:42-50. [PMID: 33608124 DOI: 10.1016/j.medengphy.2021.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Transcatheter Aortic Valve Implantation (TAVI) is a consolidated procedure showing a low operative risk and excellent long-term outcomes in patients with aortic stenosis. Patients presenting a bicuspid aortic valve (BAV) often require valve replacement due to the highly calcific nature of the aortic leaflets. However, BAV patients have usually been contraindicated for TAVI due to their complex valve anatomy. The aim of this work was to compare the performance of devices featuring high conformability (HC) against those with high radial force (HRF). METHODS Four BAV patients undergoing TAVI were retrospectively selected. The aortic roots including the native leaflets and calcifications were reconstructed from pre-operative Computed Tomography scans. In each patient, both HC and HRF devices were virtually implanted using Finite Element Analysis simulations. After implantation, paravalvular orifice area, von Mises stress distribution, root contact area, and device eccentricity were calculated. RESULTS Simulations showed good agreement with intraoperative imaging. In 3 out of 4 patients, the HRF device resulted in a lower paravalvular area than the HC. Stress distribution was also more homogeneously distributed in the HRF group as compared with the HC group. Despite their lower adaptability, HRF devices showed consistently higher stent-root contact area. CONCLUSION HRF devices showed improved results with respect to HC valves after being deployed in BAV anatomies. We hypothesize that the ability to reshape the annulus is the major determinant of success in this subgroup of patients featuring highly calcified leaflets.
Collapse
Affiliation(s)
- Alice Finotello
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Rodrigo M Romarowski
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, Via Fellini, 4 20097 San Donato Milanese, Italy.
| | - Riccardo Gorla
- Department of Clinical and Interventional Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Bianchi
- Department of Clinical and Interventional Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Bedogni
- Department of Clinical and Interventional Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Simone Morganti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Yaakobovich H, Plitman Mayo R, Zaretsky U, Finkelstein A, Weiss D, Marom G. The effect of clinically recommended Evolut sizes on anchorage forces after BASILICA. J Biomech 2021; 118:110303. [PMID: 33601185 DOI: 10.1016/j.jbiomech.2021.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/16/2021] [Indexed: 11/28/2022]
Abstract
Coronary artery obstruction (CAO), a fatal complication of transcatheter aortic valve replacement (TAVR), is commonly found after Valve-in-Valve implantation inside a degenerated bioprosthetic valve. Leaflet laceration (BASILICA technique) has been proposed to prevent CAO and to potentially reduce the risk of leaflet thrombosis. We have previously demonstrated that this technique can reduce the anchorage forces of the TAVR device, which may lead to future complications. In this short communication, we hypothesize that the anchorage force reduction can be minimized by implanting a TAVR with a larger diameter, if two sizes are clinically recommended. We evaluated this hypothesis by employing finite element models of the deployments of the Evolut 26 and 29 mm inside a 27 mm Mitroflow valve, with and without leaflet lacerations. The results show that a laceration substantially decreases the contact area between the Evolut stent and the Mitroflow valve. The larger Evolut has a larger contact area and stronger anchorage forces. Additionally, the anchorage forces are less sensitive to additional lacerations in the larger Evolut (29 case). The results suggest that a larger self-expending device can ensure stronger anchorage and can lower the risk of possible migration, when TAVR is performed in a lacerated bioprosthesis.
Collapse
Affiliation(s)
- Halit Yaakobovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Uri Zaretsky
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Dar Weiss
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; Department of Biomedical Engineering, Yale University, CT, USA
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
37
|
Ibanez I, de Azevedo Gomes BA, Nieckele AO. Effect of percutaneous aortic valve position on stress map in ascending aorta: A fluid-structure interaction analysis. Artif Organs 2021; 45:O195-O206. [PMID: 33326639 DOI: 10.1111/aor.13883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
Transcatheter aortic valve implantation (TAVI) is an increasingly widespread procedure. Although this intervention is indicated for high and low surgical risk patients, some issues still remain, such as prosthesis positioning optimization in the aortic annulus. Coaxial positioning of the percutaneous prosthesis influences directly on the aortic wall stress map. The determination of the mechanical stress that acts on the vascular endothelium resulting from blood flow can be considered an important task, since TAVI positioning can lead to unfavorable hemodynamic patterns, resulting in changes in parietal stress, such as those found in post-stenotic dilatation region. This research aims to investigate the influence of the prosthetic valve inclination angle in the mechanical stresses acting in the ascending aortic wall. Aortic compliance and blood flow during cardiac cycle were numerically obtained using fluid structure interaction. The aortic model was developed through segmentation of a computed tomography image of a specific patient submitted to TAVI. When compared to standard position (coaxiality match between the prosthesis and the aortic annulus), the inclination of 4° directed to the left main coronary artery decreased the aortic wall area with high values of wall shear stress and pressure. Coaxial positioning optimization of percutaneous aortic prosthesis may decrease the high mechanical stress area. These changes may be important to reduce the aortic remodeling process, vascular calcification or even the prosthesis half-life. Computational fluid dynamics makes room for personalized medicine, with manufactured prosthesis tailored to each patient.
Collapse
Affiliation(s)
- Ivan Ibanez
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno A de Azevedo Gomes
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Cardiologia - MS, Rio de Janeiro, Brazil
| | - Angela O Nieckele
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Bioengineering Case Study to Evaluate Complications of Adverse Anatomy of Aortic Root in Transcatheter Aortic Valve Replacement: Combining Biomechanical Modelling with CT imaging. Bioengineering (Basel) 2020; 7:bioengineering7040121. [PMID: 33019739 PMCID: PMC7712517 DOI: 10.3390/bioengineering7040121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Gated computed tomography (CT) might not adequately predict occurrence of post-implantation transcatheter aortic valve replacement (TAVR) complications in hostile aortic root as it would require a more complex integration of morphological, functional and hemodynamical parameters. We used a computational framework based on finite element analysis (FEA) to simulate patient-specific implantation. Application of biomechanical modelling using FEA to gated-CT was able to demonstrate the relation of the device with voluminous calcification, its consequent misalignment and a significant stent deformation. Use of FEA and other advanced computed predictive modelling techniques as an adjunct to CT scan could improve our understanding of TAVR, potentially predict complications and fate of the devices after implantation and inform patient-specific treatment.
Collapse
|
39
|
Pasta S, Cannata S, Gentile G, Agnese V, Pilato M, Gandolfo C. Simulation of left ventricular outflow tract (LVOT) obstruction in transcatheter mitral valve-in-ring replacement. Med Eng Phys 2020; 82:40-48. [DOI: 10.1016/j.medengphy.2020.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/30/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
|
40
|
Nappi F, Nenna A, Sing SSA, Timofeeva I, Mihos C, Gentile F, Chello M. Are the dynamic changes of the aortic root determinant for thrombosis or leaflet degeneration after transcatheter aortic valve replacement? J Thorac Dis 2020; 12:2919-2925. [PMID: 32642204 PMCID: PMC7330384 DOI: 10.21037/jtd.2020.02.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the aortic root is to convert the accumulated elastic energy during systole into kinetic flow energy during diastole, in order to improve blood distribution in the coronary tree. Therefore, the sinuses of Valsalva of the aortic root are not predisposed to accept any bulky material, especially in case of uncrushed solid calcific agglomerates. This concept underlines the differences between surgical aortic valve replacement, in which decalcification is a main part of the procedure, and transcatheter aortic valve replacement (TAVR). Cyclic changes in shape and size of the aortic root influence blood flow in the Valsalva sinuses. Recent papers have been investigating the dynamic changes of the aortic root and whether those differences might be correlated with clinical effects, and this paper aims to summarize part of this flourishing literature. Post-TAVR aortic root remodeling, dynamic flow and TAVR complications might have a fluidodynamic background, and clinically observed side effects such as thrombosis or leaflet degeneration should be further investigated in basic researches. Also, aortic root changes could impact valve type and size selection, affecting the decision of over-sizing or under-sizing in order to prevent valve embolization or coronary ostia obstruction.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sanjeet Singh Avvtar Sing
- Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Irina Timofeeva
- Department of Imaging, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Christos Mihos
- Echocardiography Lab, Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami, USA
| | | | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
41
|
Nappi F, Nenna A, Timofeeva I, Mihos C, Gentile F, Chello M. Mitral regurgitation after transcatheter aortic valve replacement. J Thorac Dis 2020; 12:2926-2935. [PMID: 32642205 PMCID: PMC7330403 DOI: 10.21037/jtd.2020.01.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Patients undergoing transcatheter aortic valve replacement (TAVR) might have an associated significant MR that can potentially lead to left ventricular (LV) failure after procedure. Considering the specific alterations in the mitral valve in TAVR scenario and the widespread use of TAVR in recent years, it appears important to know and understand the anatomical, functional and clinical implications to develop adequate strategies for the future. Patients with severe mitral regurgitation (MR) have been generally excluded from randomized clinical trials, making poor the impact that associated MR can have on clinical outcomes after TAVR. Several factors must be considered whose presence influences the severity of MR. For example, the elevated prevalence of coronary disease with consequent ischemic MR may account for LV dilation observed at the end stage of aortic stenosis. Evidence randomized studies and registries suggests that the rate of concomitant moderate-to-severe MR in patients undergoing TAVR oscillates between 2% and 33%, and patients with moderate to severe MR may have hemodynamic frailty with clinical deterioration during mechanical intervention. Short- and long-term outcomes, including cardiac mortality, appear to be influenced by the existence of preoperative moderate-to-severe MR or by the postprocedural worsening of mild MR, generally due to adverse LV remodeling. The incidence and the prognostic effect of concomitant MR in patients undergoing TAVR requires specific attention as might trigger adjunctive strategy treatment which should be carefully evaluated in clinical trials.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Irina Timofeeva
- Department of Imaging, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Christos Mihos
- Division of Cardiology, Columbia University, Mount Sinai Heart Institute, Miami Beach, FL USA
| | | | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
42
|
Nappi F, Mazzocchi L, Timofeva I, Macron L, Morganti S, Avtaar Singh SS, Attias D, Congedo A, Auricchio F. A Finite Element Analysis Study from 3D CT to Predict Transcatheter Heart Valve Thrombosis. Diagnostics (Basel) 2020; 10:diagnostics10040183. [PMID: 32225097 PMCID: PMC7235717 DOI: 10.3390/diagnostics10040183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Transcatheter aortic valve replacement has proved its safety and effectiveness in intermediate- to high-risk and inoperable patients with severe aortic stenosis. However, despite current guideline recommendations, the use of transcatheter aortic valve replacement (TAVR) to treat severe aortic valve stenosis caused by degenerative leaflet thickening and calcification has not been widely adopted in low-risk patients. This reluctance among both cardiac surgeons and cardiologists could be due to concerns regarding clinical and subclinical valve thrombosis. Stent performance alongside increased aortic root and leaflet stresses in surgical bioprostheses has been correlated with complications such as thrombosis, migration and structural valve degeneration. Materials and Methods: Self-expandable catheter-based aortic valve replacement (Medtronic, Minneapolis, MN, USA), which was received by patients who developed transcatheter heart valve thrombosis, was investigated using high-resolution biomodelling from computed tomography scanning. Calcific blocks were extracted from a 250 CT multi-slice image for precise three-dimensional geometry image reconstruction of the root and leaflets. Results: Distortion of the stent was observed with incomplete cranial and caudal expansion of the device. The incomplete deployment of the stent was evident in the presence of uncrushed refractory bulky calcifications. This resulted in incomplete alignment of the device within the aortic root and potential dislodgment. Conclusion: A Finite Element Analysis (FEA) investigation can anticipate the presence of calcified refractory blocks, the deformation of the prosthetic stent and the development of paravalvular orifice, and it may prevent subclinical and clinical TAVR thrombosis. Here we clearly demonstrate that using exact geometry from high-resolution CT scans in association with FEA allows detection of persistent bulky calcifications that may contribute to thrombus formation after TAVR procedure.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, 93200 Paris, France
- Correspondence: ; Tel.: +331-4933-4104; Fax: +331-4933-4119
| | - Laura Mazzocchi
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (L.M.); (F.A.)
| | - Irina Timofeva
- Department of Imaging, Centre Cardiologique du Nord de Saint-Denis, 93200 Paris, France; (I.T.); (L.M.)
| | - Laurent Macron
- Department of Imaging, Centre Cardiologique du Nord de Saint-Denis, 93200 Paris, France; (I.T.); (L.M.)
| | - Simone Morganti
- Department of Electrical, Computer, and Biomedical Engineering University of Pavia, 27100 Pavia, Italy;
| | | | - David Attias
- Department of Cardiology, Centre Cardiologique du Nord de Saint-Denis, 93200 Paris, France;
| | - Antonio Congedo
- Department of Electronic Engineering, AKTIVE Reeds Manufacturing, Computer Science, 80123 Naples, Italy;
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (L.M.); (F.A.)
| |
Collapse
|
43
|
Navigating the “Optimal Implantation Depth” With a Self-Expandable TAVR Device in Daily Clinical Practice. JACC Cardiovasc Interv 2020; 13:679-688. [DOI: 10.1016/j.jcin.2019.07.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
|
44
|
Ghosh RP, Marom G, Bianchi M, D'souza K, Zietak W, Bluestein D. Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis. Biomech Model Mechanobiol 2020; 19:1725-1740. [PMID: 32095912 DOI: 10.1007/s10237-020-01304-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/02/2020] [Indexed: 01/11/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure that provides an effective alternative to open-heart surgical valve replacement for treating advanced calcific aortic valve disease patients. However, complications, such as valve durability, device migration, paravalvular leakage (PVL), and thrombogenicity may lead to increased overall post-TAVR morbidity and mortality. A series of numerical studies involving a self-expandable TAVR valve were performed to evaluate these complications. Structural studies were performed with finite element (FE) analysis, followed by computational fluid dynamics (CFD) simulations, and fluid-structure interaction (FSI) analysis. The FE analysis was utilized to study the effect of TAVR valve implantation depth on valve anchorage in the Living Heart Human Model, which is capable of simulating beating heart during repeated cardiac cycles. The TAVR deployment cases where no valve migration was observed were then used to calculate the post-deployment thrombogenic potential via CFD simulations. FSI analysis followed to further assess the post-deployment TAVR hemodynamic performance for different implantation depths. The deployed valves PVL, geometric and effective orifice areas, and the leaflets structural and flow stress magnitudes were compared to determine the device optimal landing zone. The combined structural and hemodynamic analysis indicated that with the TAVR valve deployed at an aft ventricle position an optimal performance was achieved in the specific anatomy studied. Given the TAVR's rapid expansion to younger lower-risk patients, the comprehensive numerical methodology proposed here can potentially be used as a predictive tool for both procedural planning and valve design optimization to minimize the reported complications.
Collapse
Affiliation(s)
- Ram P Ghosh
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Matteo Bianchi
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Karl D'souza
- Dassault Systèmes SIMULIA Corp, Johnston, RI, 02919, USA
| | - Wojtek Zietak
- Capvidia NV, Research Park Haasrode, Technologielaan 3, 3001, Leuven, Belgium
| | - Danny Bluestein
- Department of Biomedical Engineering, Health Sciences Center T08-050, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
45
|
Pasta S, Cannata S, Gentile G, Di Giuseppe M, Cosentino F, Pasta F, Agnese V, Bellavia D, Raffa GM, Pilato M, Gandolfo C. Simulation study of transcatheter heart valve implantation in patients with stenotic bicuspid aortic valve. Med Biol Eng Comput 2020; 58:815-829. [DOI: 10.1007/s11517-020-02138-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
|
46
|
Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu MC. Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2019; 357:112556. [PMID: 32831419 PMCID: PMC7442159 DOI: 10.1016/j.cma.2019.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The transcatheter aortic valve replacement (TAVR) has emerged as a minimally invasive alternative to surgical treatments of valvular heart disease. TAVR offers many advantages, however, the safe anchoring of the transcatheter heart valve (THV) in the patients anatomy is key to a successful procedure. In this paper, we develop and apply a novel immersogeometric fluid-structure interaction (FSI) framework for the modeling and simulation of the TAVR procedure to study the anchoring ability of the THV. To account for physiological realism, methods are proposed to model and couple the main components of the system, including the arterial wall, blood flow, valve leaflets, skirt, and frame. The THV is first crimped and deployed into an idealized ascending aorta. During the FSI simulation, the radial outward force and friction force between the aortic wall and the THV frame are examined over the entire cardiac cycle. The ratio between these two forces is computed and compared with the experimentally estimated coefficient of friction to study the likelihood of valve migration.
Collapse
Affiliation(s)
- Michael C. H. Wu
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
- School of Engineering, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA
| | - Heather M. Muchowski
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
- Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, Iowa 50011, USA
| | - Emily L. Johnson
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| | - Manoj R. Rajanna
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| |
Collapse
|
47
|
Rocatello G, De Santis G, De Bock S, De Beule M, Segers P, Mortier P. Optimization of a Transcatheter Heart Valve Frame Using Patient-Specific Computer Simulation. Cardiovasc Eng Technol 2019; 10:456-468. [PMID: 31197702 DOI: 10.1007/s13239-019-00420-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/07/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE This study proposes a new framework to optimize the design of a transcatheter aortic valve through patient-specific finite element and fluid dynamics simulation. METHODS Two geometrical parameters of the frame, the diameter at ventricular inflow and the height of the first row of cells, were examined using the central composite design. The effect of those parameters on postoperative complications was investigated by response surface methodology, and a Nonlinear Programming by Quadratic Lagrangian algorithm was used in the optimization. Optimal and initial devices were then compared in 12 patients. The comparison was made in terms of device performance [i.e., reduced contact pressure on the atrioventricular conduction system and paravalvular aortic regurgitation (AR)]. RESULTS Results suggest that large diameters and high cells favor higher anchoring of the device within the aortic root reducing the contact pressure and favor a better apposition of the device to the aortic root preventing AR. Compared to the initial device, the optimal device resulted in almost threefold lower predicted contact pressure and limited AR in all patients. CONCLUSIONS In conclusion, patient-specific modelling and simulation could help to evaluate device performance prior to the actual first-in-human clinical study and, combined with device optimization, could help to develop better devices in a shorter period.
Collapse
Affiliation(s)
| | | | - Sander De Bock
- FEops NV, Technologiepark-Zwijnaarde 122, 9052, Ghent, Belgium
| | | | | | - Peter Mortier
- FEops NV, Technologiepark-Zwijnaarde 122, 9052, Ghent, Belgium.
| |
Collapse
|
48
|
Luraghi G, Migliavacca F, García-González A, Chiastra C, Rossi A, Cao D, Stefanini G, Rodriguez Matas JF. On the Modeling of Patient-Specific Transcatheter Aortic Valve Replacement: A Fluid-Structure Interaction Approach. Cardiovasc Eng Technol 2019; 10:437-455. [PMID: 31309527 DOI: 10.1007/s13239-019-00427-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Transcatheter aortic valve replacement (TAVR) is a minimally invasive treatment for high-risk patients with aortic diseases. Despite its increasing use, many influential factors are still to be understood and require continuous investigation. The best numerical approach capable of reproducing both the valves mechanics and the hemodynamics is the fluid-structure interaction (FSI) modeling. The aim of this work is the development of a patient-specific FSI methodology able to model the implantation phase as well as the valve working conditions during cardiac cycles. METHODS The patient-specific domain, which included the aortic root, native valve and calcifications, was reconstructed from CT images, while the CAD model of the device, metallic frame and pericardium, was drawn from literature data. Ventricular and aortic pressure waveforms, derived from the patient's data, were used as boundary conditions. The proposed method was applied to two real clinical cases, which presented different outcomes in terms of paravalvular leakage (PVL), the main complication after TAVR. RESULTS The results confirmed the clinical prognosis of mild and moderate PVL with coherent values of regurgitant volume and effective regurgitant orifice area. Moreover, the final release configuration of the device and the velocity field were compared with postoperative CT scans and Doppler traces showing a good qualitative and quantitative matching. CONCLUSION In conclusion, the development of realistic and accurate FSI patient-specific models can be used as a support for clinical decisions before the implantation.
Collapse
Affiliation(s)
- Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy.
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Alberto García-González
- Laboratori de Càlcul Numèric (LaCàN), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034, Barcelona, Spain
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy.,PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
49
|
Numerical models of valve-in-valve implantation: effect of intentional leaflet laceration on the anchorage. Biomech Model Mechanobiol 2019; 19:415-426. [DOI: 10.1007/s10237-019-01218-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/22/2019] [Indexed: 11/26/2022]
|
50
|
Rocatello G, El Faquir N, de Backer O, Swaans MJ, Latib A, Vicentini L, Segers P, De Beule M, de Jaegere P, Mortier P. The Impact of Size and Position of a Mechanical Expandable Transcatheter Aortic Valve: Novel Insights Through Computational Modelling and Simulation. J Cardiovasc Transl Res 2019; 12:435-446. [PMID: 31444672 DOI: 10.1007/s12265-019-09877-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/22/2019] [Indexed: 10/26/2022]
Abstract
Transcatheter aortic valve implantation has become an established procedure to treat severe aortic stenosis. Correct device sizing/positioning is crucial for optimal outcome. Lotus valve sizing is based upon multiple aortic root dimensions. Hence, it often occurs that two valve sizes can be selected. In this study, patient-specific computer simulation is adopted to evaluate the influence of Lotus size/position on paravalvular aortic regurgitation (AR) and conduction abnormalities, in patients with equivocal aortic root dimensions. First, simulation was performed in 62 patients to validate the model in terms of predicted AR and conduction abnormalities using postoperative echocardiographic, angiographic and ECG-based data. Then, two Lotus sizes were simulated at two positions in patients with equivocal aortic root dimensions. Large valve size and deep position were associated with higher contact pressure, while only large size, not position, significantly reduced the predicted AR. Despite general trends, simulations revealed that optimal device size/position is patient-specific.
Collapse
Affiliation(s)
| | - Nahid El Faquir
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ole de Backer
- Department of Cardiology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Martin J Swaans
- Department of Cardiology, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Azeem Latib
- Department of Cardiology, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vicentini
- Department of Cardiology, San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Peter de Jaegere
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Peter Mortier
- FEops NV, Technologiepark 122, 9052, Ghent, Belgium.
| |
Collapse
|