1
|
Jang J, Pietrosimone BG, Blackburn JT, Tennant JN, Franz JR, Wikstrom EA. Conceptual modeling of structural malalignments and ankle joint contact forces during walking. Gait Posture 2025; 117:65-71. [PMID: 39674064 DOI: 10.1016/j.gaitpost.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Structural malalignments, such as talar malalignments and hindfoot varus, are hypothesized to contribute to early ankle joint degeneration by altering joint contact force (JCF). These malalignments, common in individuals with chronic ankle instability (CAI), can modify the articular geometry of the ankle joint, potentially leading to abnormal joint loading patterns. This study leverages musculoskeletal modeling and simulation to conceptualize the effects of increasing severity of these malalignments on ankle JCF during walking. RESEARCH QUESTION Using a theoretical framework based on biomechanical principles, how do increasing talar malalignments and rearfoot varus, as seen in CAI patients, influence ankle JCF during walking? METHODS A conceptual musculoskeletal modeling approach was employed to simulate the effects of structural alterations on ankle JCF in uninjured individuals. Using an instrumented treadmill, musculoskeletal modeling was used to estimate the effects of increasing talar positional malalignments and/or rearfoot varus, both in isolation and in combination, on ankle JCF during the stance phase of walking. Variables included peak, impulse, and loading rates for compressive, posterior shear, and lateral shear JCF. RESULTS Anterior translation and internal rotation of the talus significantly increased lateral shear JCF, while an increase in rearfoot varus decreased lateral shear JCF (p < 0.01). However, combining modifications of the talus and rearfoot varus had no significant effects on ankle JCF. SIGNIFICANCE This conceptual analysis highlights the effectiveness of musculoskeletal modeling in providing theoretical insights into how CAI-related structural malalignments affect ankle joint loading during walking. Talar positional malalignments increase lateral shear loading, whereas rearfoot varus reduces lateral shear loading. The effects of these structural alterations on lateral shear JCF counterbalance each other, highlighting the need to consider other factors of CAI to more accurately reflect the ankle JCF in those with CAI.
Collapse
Affiliation(s)
- Jaeho Jang
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX, United States.
| | - Brian G Pietrosimone
- MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, United States
| | - J Troy Blackburn
- MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, United States
| | - Joshua N Tennant
- Department of Orthopaedics, University of North Carolina at Chapel Hill, NC, United States
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | - Erik A Wikstrom
- MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, United States
| |
Collapse
|
2
|
Lee BH, Yang Z, Ho T, Wang Y, Tamura N, Webb S, Bone S, Ho SP. Sulfur-species in Zinc-specific Condylar Zones of a Rat Temporomandibular Joint. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623079. [PMID: 39605645 PMCID: PMC11601290 DOI: 10.1101/2024.11.11.623079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In this study, we performed synchrotron-based micro-X-ray fluorescence (μ-XRF) imaging of elements Zn and S, and X-ray absorption near edge spectroscopy (XANES) coupled with μ-XRF for identification of Zn and S species in the condylar zones of a rat temporomandibular joint (TMJ). Histologic localization of Zn and hypoxia-inducible factor-1α (HIF-1α) were mapped using an optical microscope. These data were visually correlated with μ-XRF and XANES data to provide insights into plausible biological S-species in Z-enriched condylar zones of a rat TMJ. Furthermore, μ-XRF coupled with micro-X-ray diffraction (μ-XRD) was used to underline Z-incorporated biological apatite in the subchondral bone and bone of the rat TMJ. Results illustrated the potential dependence between biometal Zn and nonmetal S and their collective governance of cell and tissue functions in a zone-specific manner. Elemental Zn with organic and inorganic S-species at the cartilage-bone interface and transformation of plausible Zn-enriched mineralization kinetics of biological apatite from subchondral bone to condylar bone were ascertained using μ-XRF-XANES and μ-XRD. The coupled μ-XRF-XANES complementing with μ-XRD and immunohistology provided an informative view of S and Zn and their association with zone-specific biological pathways in situ. Understanding the spatial distributions of the main S-species with redox-inert Zn in regions of cartilage, bone, and the interface is essential for further unlocking questions surrounding formation and resorption-related biomineralization pathways as related to osteoarthritis or genetically inherited diseases. Using these complementary techniques with microspectroscopic spatial information provided insights into the associations between biometal Zn and nonmetal S and a window into detecting the plausible early-stage diagnostic biomarkers for humans with TMJ osteoarthritis.
Collapse
Affiliation(s)
- Brandon H Lee
- Preventive and Restorative Dent. Sci., San Francisco, CA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA
| | - Zhiyuan Yang
- Preventive and Restorative Dent. Sci., San Francisco, CA
- School of Dentistry, University of Washington, Seattle, WA
| | - Tiffany Ho
- Preventive and Restorative Dent. Sci., San Francisco, CA
| | - Yongmei Wang
- Preventive and Restorative Dent. Sci., San Francisco, CA
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley Natl. Lab., Berkeley, CA
| | - Samuel Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA
| | - Sharon Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA
| | - Sunita P Ho
- Preventive and Restorative Dent. Sci., San Francisco, CA
- Urology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Garcia SA, White MS, Gallegos J, Balza I, Kahan S, Palmieri-Smith RM. Associations Between Body Mass Index, Gait Biomechanics, and In Vivo Cartilage Function After Exercise in Those With Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2024; 52:3295-3305. [PMID: 39503724 DOI: 10.1177/03635465241281333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
BACKGROUND Both high body mass index (BMI) and anterior cruciate ligament reconstruction (ACLR) independently influence knee osteoarthritis risk. Preliminary evidence shows the combination of these risk factors leads to poorer recovery and altered biomechanical outcomes after ACLR, but few studies have directly evaluated early changes in cartilage health between normal-BMI and high-BMI groups in this population. PURPOSE To evaluate ultrasound-based measures of cartilage strain and compositional changes (via echo-intensity [EI]) in response to an incline walking stress test between normal-BMI and high-BMI individuals with ACLR. A secondary evaluation was conducted of associations between habitual walking biomechanics (ie, ground-reaction forces, sagittal knee kinetics and kinematics) and cartilage strain and EI outcomes. STUDY DESIGN Controlled laboratory study. METHODS Gait biomechanics and femoral trochlear ultrasound analyses were evaluated in 64 participants with ACLR who had normal BMI (BMI < 27.0; n = 40) and high BMI (BMI ≥ 27.0; n = 24). Ultrasound images were collected bilaterally before and after an incline treadmill walk, and medial and lateral trochlear strain and EI changes pre-post exercise were used to compare BMI groups and limbs. Gait outcomes included ground-reaction forces, peak sagittal plane knee moments, angles, and excursions and were used to determine associations with cartilage outcomes in the entire cohort. RESULTS High-BMI individuals with ACLR exhibited greater medial trochlear cartilage strain in the ACLR limb compared with normal-BMI individuals (approximately 6%; P < .01). In those with high BMI, the ACLR limb exhibited greater medial trochlear strain relative to non-ACLR limbs (approximately 4%; P < .05), but between-limb differences were not observed in the normal-BMI group (P > .05). Medial trochlear EI changes were greater bilaterally in those with high BMI compared with normal-BMI ACLR counterparts (approximately 10%; P < .01). Last, individuals who walked with greater peak knee flexion angles exhibited less medial cartilage strain (ΔR2 = 0.06; P = .025). CONCLUSION The data suggested that high BMI affects cartilage functional properties after ACLR, whereas smaller knee flexion angles were associated with larger medial cartilage strain. CLINICAL RELEVANCE High-BMI individuals with ACLR may represent a subset of patients exhibiting earlier declines in cartilage functional integrity in response to loading, necessitating additional or more targeted interventions to mitigate disease development.
Collapse
Affiliation(s)
- Steven A Garcia
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - McKenzie S White
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Jovanna Gallegos
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabella Balza
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Seth Kahan
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Riann M Palmieri-Smith
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Firoozi S, Ley JC, Chasse DAD, Attarian DE, Wellman SS, Amendola A, McNulty AL. Healthy but not osteoarthritic human meniscus-derived matrix scaffolds promote meniscus repair. Front Bioeng Biotechnol 2024; 12:1495015. [PMID: 39534671 PMCID: PMC11554469 DOI: 10.3389/fbioe.2024.1495015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Meniscus tissue is commonly injured due to sports-related injuries and age-related degeneration and approximately 50% of individuals with a meniscus tear will develop post-traumatic osteoarthritis (PTOA). Given that the meniscus has limited healing potential, new therapeutic strategies are required to enhance meniscus repair. Porcine meniscus-derived matrix (MDM) scaffolds improve meniscus integrative repair, but sources of human meniscus tissue have not been investigated. Therefore, the objectives of this study were to generate healthy and osteoarthritic (OA) MDM scaffolds and to compare meniscus cellular responses and integrative repair. Meniscus cells showed high viability on both healthy and OA scaffolds. While DNA content was higher in cell-seeded OA scaffolds than cell-seeded healthy scaffolds, CCK-8, and both sGAG and collagen content were similar between scaffold types. After 28 days in an ex vivo meniscus defect model, healthy and OA scaffolds had similar DNA, sGAG, and collagen content. However, the shear strength of repair was reduced in defects containing OA scaffolds compared to healthy scaffolds. In conclusion, healthy human allograft tissue is a useful source for generating MDM scaffolds that can support cellular growth, ECM production, and ex vivo integrative repair of the meniscus, highlighting the potential suitability for tissue engineering approaches to improve meniscus repair.
Collapse
Affiliation(s)
- Saman Firoozi
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Jon C. Ley
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Dawn A. D. Chasse
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - David E. Attarian
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Samuel S. Wellman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Annunziato Amendola
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
Betsch K, Martinez VG, Lyons LP, Weinberg JB, Wittstein JR, McNulty AL. Shedding light on the effects of blood on meniscus tissue: the role of mononuclear leukocytes in mediating meniscus catabolism. Osteoarthritis Cartilage 2024; 32:938-949. [PMID: 38782253 PMCID: PMC11254574 DOI: 10.1016/j.joca.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Traumatic meniscal injuries can cause acute pain, hemarthrosis (bleeding into the joint), joint immobility, and post-traumatic osteoarthritis (PTOA). However, the exact mechanism(s) by which PTOA develops following meniscal injuries is unknown. Since meniscus tears commonly coincide with hemarthrosis, investigating the direct effects of blood and its constituents on meniscus tissue is warranted. The goal of this study was to determine the direct effects of blood and blood components on meniscus tissue catabolism. METHODS Porcine meniscus explants or primary meniscus cells were exposed to whole blood or various fractions of blood for 3 days to simulate blood exposure following injury. Explants were then washed and cultured for an additional 3 days prior to collection for biochemical analyses. RESULTS Whole blood increased matrix metalloproteinase (MMP) activity. Fractionation experiments revealed blood-derived red blood cells did not affect meniscus catabolism. Conversely, viable mononuclear leukocytes induced MMP activity, nitric oxide (NO) production, and loss of tissue sulfated glycosaminoglycan (sGAG) content, suggesting that these cells are mediating meniscus catabolism. CONCLUSIONS These findings highlight the potential challenges of meniscus healing in the presence of hemarthrosis and the need for further research to elucidate the in vivo effects of blood and blood-derived mononuclear leukocytes due to both hemarthrosis and blood-derived therapeutics.
Collapse
Affiliation(s)
- Kevin Betsch
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - Vianna G Martinez
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Lucas P Lyons
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - J Brice Weinberg
- Department of Medicine, VA Medical Center, Durham, NC, USA; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| | - Jocelyn R Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Bogner B, Wenning M, Jungmann PM, Reisert M, Lange T, Tennstedt M, Klein L, Diallo TD, Bamberg F, Schmal H, Jung M. T1ρ relaxation mapping in osteochondral lesions of the talus: a non-invasive biomarker for altered biomechanical properties of hyaline cartilage? Eur Radiol Exp 2024; 8:83. [PMID: 39046607 PMCID: PMC11269556 DOI: 10.1186/s41747-024-00488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND To evaluate T1ρ relaxation mapping in patients with symptomatic talar osteochondral lesions (OLT) and healthy controls (HC) at rest, with axial loading and traction. METHODS Participants underwent 3-T ankle magnetic resonance imaging at rest and with 500 N loading and 120 N traction, without axial traction for a subcohort of 17/29 HC. We used a fast low-angle shot sequence with variable spin-lock intervals for monoexponential T1ρ fitting. Cartilage was manually segmented to extract T1ρ values. RESULTS We studied 29 OLT patients (age 31.7 ± 7.5 years, 15 females, body mass index [BMI] 25.0 ± 3.4 kg/m2) and 29 HC (age 25.2 ± 4.3 years, 17 females, BMI 22.5 ± 2.3 kg/m2. T1ρ values of OLT (50.4 ± 3.4 ms) were higher than those of intact cartilage regions of OLT patients (47.2 ± 3.4 ms; p = 0.003) and matched HC cartilage (48.1 ± 3.3 ms; p = 0.030). Axial loading and traction induced significant T1ρ changes in the intact cartilage regions of patients (loading, mean difference -1.1 ms; traction, mean difference 1.4 ms; p = 0.030 for both) and matched HC cartilage (-2.2 ms, p = 0.003; 2.3 ms, p = 0.030; respectively), but not in the OLT itself (-1.3 ms; p = 0.150; +1.9 ms; p = 0.150; respectively). CONCLUSION Increased T1ρ values may serve as a biomarker of cartilage degeneration in OLT. The absence of load- and traction-induced T1ρ changes in OLT compared to intact cartilage suggests that T1ρ may reflect altered biomechanical properties of hyaline cartilage. TRIAL REGISTRATION DRKS, DRKS00024010. Registered 11 January 2021, https://drks.de/search/de/trial/DRKS00024010 . RELEVANCE STATEMENT T1ρ mapping has the potential to evaluate compositional and biomechanical properties of the talar cartilage and may improve therapeutic decision-making in patients with osteochondral lesions. KEY POINTS T1ρ values in osteochondral lesions increased compared to intact cartilage. Significant load- and traction-induced T1ρ changes were observed in visually intact regions and in healthy controls but not in osteochondral lesions. T1ρ may serve as an imaging biomarker for biomechanical properties of cartilage.
Collapse
Affiliation(s)
- Balázs Bogner
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Markus Wenning
- Department of Orthopedics, BDH Klinik Waldkirch, 79283, Waldkirch, Germany
- Praxis Drescher-Eberbach-Wenning, Orthopedic Surgeons, 79100, Freiburg, Germany
| | - Pia M Jungmann
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Marco Reisert
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Thomas Lange
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Marcel Tennstedt
- Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Lukas Klein
- Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Thierno D Diallo
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Matthias Jung
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
7
|
Miller EY, Lee W, Lowe T, Zhu H, Argote PF, Dresdner D, Kelly J, Frank RM, McCarty E, Bravman J, Stokes D, Emery NC, Neu CP. MRI-derived Articular Cartilage Strains Predict Patient-Reported Outcomes Six Months Post Anterior Cruciate Ligament Reconstruction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.27.24306484. [PMID: 38746083 PMCID: PMC11092718 DOI: 10.1101/2024.04.27.24306484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Key terms Multicontrast and Multiparametric, Magnetic Resonance Imaging, Osteoarthritis, Functional Biomechanical Imaging, Knee Joint Degeneration What is known about the subject: dualMRI has been used to quantify strains in a healthy human population in vivo and in cartilage explant models. Previously, OA severity, as determined by histology, has been positively correlated to increased shear and transverse strains in cartilage explants. What this study adds to existing knowledge: This is the first in vivo use of dualMRI in a participant demographic post-ACL reconstruction and at risk for developing osteoarthritis. This study shows that dualMRI-derived strains are more significantly correlated with patient-reported outcomes than any MRI relaxometry metric. Background Anterior cruciate ligament (ACL) injuries lead to an increased risk of osteoarthritis, characterized by altered cartilage tissue structure and function. Displacements under applied loading by magnetic resonance imaging (dualMRI) is a novel MRI technique that can be used to quantify mechanical strain in cartilage while undergoing a physiological load. Purpose To determine if strains derived by dualMRI and relaxometry measures correlate with patient-reported outcomes at six months post unilateral ACL reconstruction. Study Design Cohort study. Methods Quantitative MRI (T2, T2*, T1ρ) measurements and transverse, axial, and shear strains were quantified in the medial articular tibiofemoral cartilage of 35 participants at six-months post unilateral ACL reconstruction. The relationships between patient-reported outcomes (WOMAC, KOOS, MARS) and all qMRI relaxation times were quantified using general linear mixed-effects models. A combined best-fit multicontrast MRI model was then developed using backwards regression to determine the patient features and MRI metrics that are most predictive of patient-reported outcome scores. Results Higher femoral strains were significantly correlated with worse patient-reported functional outcomes. Femoral shear and transverse strains were positively correlated with six-month KOOS and WOMAC scores, after controlling for covariates. No relaxometry measures were correlated with patient-reported outcome scores. We identified the best-fit model for predicting WOMAC score using multiple MRI measures and patient-specific information, including sex, age, graft type, femoral transverse strain, femoral axial strain, and femoral shear strain. The best-fit model significantly predicted WOMAC score (p<0.001) better than any one individual MRI metric alone. When we regressed the model-predicted WOMAC scores against the patient-reported WOMAC scores, we found that our model achieved a goodness of fit exceeding 0.52. Conclusions This work presents the first use of dualMRI in vivo in a cohort of participants at risk for developing osteoarthritis. Our results indicate that both shear and transverse strains are highly correlated with patient-reported outcome severity could serve as novel imaging biomarkers to predict the development of osteoarthritis.
Collapse
|
8
|
Berni M, Marchiori G, Baleani M, Giavaresi G, Lopomo NF. Biomechanics of the Human Osteochondral Unit: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1698. [PMID: 38612211 PMCID: PMC11012636 DOI: 10.3390/ma17071698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding motion between bone segments. The OC unit is a multi-layer structure including articular cartilage, as well as subchondral and trabecular bone. The interplay between the OC tissues is essential in maintaining the joint functionality; altered loading patterns can trigger biological processes that could lead to degenerative joint diseases like osteoarthritis. Currently, no effective treatments are available to avoid degeneration beyond tissues' recovery capabilities. A thorough comprehension on the mechanical behaviour of the OC unit is essential to (i) soundly elucidate its overall response to intra-articular loads for developing diagnostic tools capable of detecting non-physiological strain levels, (ii) properly evaluate the efficacy of innovative treatments in restoring physiological strain levels, and (iii) optimize regenerative medicine approaches as potential and less-invasive alternatives to arthroplasty when irreversible damage has occurred. Therefore, the leading aim of this review was to provide an overview of the state-of-the-art-up to 2022-about the mechanical behaviour of the OC unit. A systematic search is performed, according to PRISMA standards, by focusing on studies that experimentally assess the human lower-limb joints' OC tissues. A multi-criteria decision-making method is proposed to quantitatively evaluate eligible studies, in order to highlight only the insights retrieved through sound and robust approaches. This review revealed that studies on human lower limbs are focusing on the knee and articular cartilage, while hip and trabecular bone studies are declining, and the ankle and subchondral bone are poorly investigated. Compression and indentation are the most common experimental techniques studying the mechanical behaviour of the OC tissues, with indentation also being able to provide information at the micro- and nanoscales. While a certain comparability among studies was highlighted, none of the identified testing protocols are currently recognised as standard for any of the OC tissues. The fibril-network-reinforced poro-viscoelastic constitutive model has become common for describing the response of the articular cartilage, while the models describing the mechanical behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most advanced studies have tested and modelled multiple tissues of the same OC unit but have done so individually rather than through integrated approaches. Therefore, efforts should be made in simultaneously evaluating the comprehensive response of the OC unit to intra-articular loads and the interplay between the OC tissues. In this regard, a multidisciplinary approach combining complementary techniques, e.g., full-field imaging, mechanical testing, and computational approaches, should be implemented and validated. Furthermore, the next challenge entails transferring this assessment to a non-invasive approach, allowing its application in vivo, in order to increase its diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gregorio Marchiori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Massimiliano Baleani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | | |
Collapse
|
9
|
Radke KL, Grotheer V, Kamp B, Müller-Lutz A, Kertscher J, Strunk R, Martirosian P, Valentin B, Wittsack HJ, Sager M, Windolf J, Antoch G, Schiffner E, Jungbluth P, Frenken M. Comparison of compositional MRI techniques to quantify the regenerative potential of articular cartilage: a preclinical minipig model after osteochondral defect treatments with autologous mesenchymal stromal cells and unseeded scaffolds. Quant Imaging Med Surg 2023; 13:7467-7483. [PMID: 37969627 PMCID: PMC10644139 DOI: 10.21037/qims-23-570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/28/2023] [Indexed: 11/17/2023]
Abstract
Background The field of orthopedics seeks effective, safer methods for evaluating articular cartilage regeneration. Despite various treatment innovations, non-invasive, contrast-free full quantitative assessments of hyaline articular cartilage's regenerative potential using compositional magnetic resonance (MR) sequences remain challenging. In this context, our aim was to investigate the effectiveness of different MR sequences for quantitative assessment of cartilage and to compare them with the current gold standard delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) measurements. Methods We employed ex vivo imaging in a preclinical minipig model to assess knee cartilage regeneration. Standardized osteochondral defects were drilled in the proximal femur of the specimens (n=14), which were divided into four groups. Porcine collagen scaffolds seeded with autologous adipose-derived stromal cells (ASC), autologous bone marrow stromal cells (BMSC), and unseeded scaffolds (US) were implanted in femoral defects. Furthermore, there was a defect group which received no treatment. After 6 months, the specimens were examined using different compositional MR methods, including the gold standard dGEMRIC as well as T1, T2, T2*, and T1ρ techniques. The statistical evaluation involved comparing the defect region with the uninjured tibia and femur cartilage layers and all measurements were performed on a clinical 3T MR Scanner. Results In the untreated defect group, we observed significant differences in the defect region, with dGEMRIC values significantly lower (404.86±64.2 ms, P=0.018) and T2 times significantly higher (44.24±2.75 ms, P<0.001). Contrastingly, in all three treatment groups (ASC, BMSC, US), there were no significant differences among the three regions in the dGEMRIC sequence, suggesting successful cartilage regeneration. However, T1, T2*, and T1ρ sequences failed to detect such differences, highlighting their lower sensitivity for cartilage regeneration. Conclusions As expected, dGEMRIC is well suited for monitoring cartilage regeneration. Interestingly, T2 imaging also proved to be a reliable cartilage imaging technique and thus offers a contrast agent-free alternative to the former gold standard for subsequent in vivo studies investigating the cartilage regeneration potential of different treatment modalities.
Collapse
Affiliation(s)
- Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Vera Grotheer
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Düsseldorf, Düsseldorf, Germany
| | - Benedikt Kamp
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Justus Kertscher
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Rosanna Strunk
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Petros Martirosian
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Birte Valentin
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs, University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Erik Schiffner
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Düsseldorf, Düsseldorf, Germany
| | - Pascal Jungbluth
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Düsseldorf, Düsseldorf, Germany
| | - Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Armitano-Lago C, Davis-Wilson HC, Evans-Pickett A, Lisee C, Kershner CE, Blackburn T, Franz JR, Kiefer AW, Nissman D, Pietrosimone B. Gait Variability Structure Linked to Worse Cartilage Composition Post-ACL Reconstruction. Med Sci Sports Exerc 2023; 55:1499-1506. [PMID: 36940200 PMCID: PMC10363223 DOI: 10.1249/mss.0000000000003174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
INTRODUCTION Aberrant gait variability has been observed after anterior cruciate ligament reconstruction (ACLR), yet it remains unknown if gait variability is associated with early changes in cartilage composition linked to osteoarthritis development. Our purpose was to determine the association between femoral articular cartilage T1ρ magnetic resonance imaging relaxation times and gait variability. METHODS T1ρ magnetic resonance imaging and gait kinematics were collected in 22 ACLR participants (13 women; 21 ± 4 yr old; 7.52 ± 1.43 months post-ACLR). Femoral articular cartilage from the ACLR and uninjured limbs were segmented into anterior, central, and posterior regions from the weight-bearing portions of the medial and lateral condyles. Mean T1ρ relaxation times were extracted from each region and interlimb ratios (ILR) were calculated (i.e., ACLR/uninjured limb). Greater T1ρ ILR values were interpreted as less proteoglycan density (worse cartilage composition) in the injured limb compared with the uninjured limb. Knee kinematics were collected at a self-selected comfortable walking speed on a treadmill with an eight-camera three-dimensional motion capture system. Frontal and sagittal plane kinematics were extracted, and sample entropy was used to calculate kinematic variability structure (KV structure ). Pearson's product-moment correlations were conducted to determine the associations between T1ρ and KV structure variables. RESULTS Lesser frontal plane KV structure was associated with greater mean T1ρ ILR in the anterior lateral ( r = - 0.44, P = 0.04) and anterior medial condyles ( r = - 0.47, P = 0 .03). Lesser sagittal plane KV structure was associated with greater mean T1ρ ILR in the anterior lateral condyle ( r = - 0.47, P = 0.03). CONCLUSIONS The association between less KV structure and worse femoral articular cartilage proteoglycan density suggests a link between less variable knee kinematics and deleterious changes joint tissue changes. The findings suggest that less knee kinematic variability structure is a mechanism linking aberrant gait to early osteoarthritis development.
Collapse
Affiliation(s)
- Cortney Armitano-Lago
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Hope C. Davis-Wilson
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Alyssa Evans-Pickett
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Caroline Lisee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Cassidy E. Kershner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Troy Blackburn
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jason R. Franz
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Adam W. Kiefer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Daniel Nissman
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
11
|
Coburn SL, Crossley KM, Kemp JL, Warden SJ, West TJ, Bruder AM, Mentiplay BF, Culvenor AG. Immediate and Delayed Effects of Joint Loading Activities on Knee and Hip Cartilage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:56. [PMID: 37450202 PMCID: PMC10348990 DOI: 10.1186/s40798-023-00602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The impact of activity-related joint loading on cartilage is not clear. Abnormal loading is considered to be a mechanical driver of osteoarthritis (OA), yet moderate amounts of physical activity and rehabilitation exercise can have positive effects on articular cartilage. Our aim was to investigate the immediate effects of joint loading activities on knee and hip cartilage in healthy adults, as assessed using magnetic resonance imaging. We also investigated delayed effects of activities on healthy cartilage and the effects of activities on cartilage in adults with, or at risk of, OA. We explored the association of sex, age and loading duration with cartilage changes. METHODS A systematic review of six databases identified studies assessing change in adult hip and knee cartilage using MRI within 48 h before and after application of a joint loading intervention/activity. Studies included adults with healthy cartilage or those with, or at risk of, OA. Joint loading activities included walking, hopping, cycling, weightbearing knee bends and simulated standing within the scanner. Risk of bias was assessed using the Newcastle-Ottawa Scale. Random-effects meta-analysis estimated the percentage change in compartment-specific cartilage thickness or volume and composition (T2 relaxation time) outcomes. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system evaluated certainty of evidence. RESULTS Forty studies of 653 participants were included after screening 5159 retrieved studies. Knee cartilage thickness or volume decreased immediately following all loading activities investigating healthy adults; however, GRADE assessment indicated very low certainty evidence. Patellar cartilage thickness and volume reduced 5.0% (95% CI 3.5, 6.4, I2 = 89.3%) after body weight knee bends, and tibial cartilage composition (T2 relaxation time) decreased 5.1% (95% CI 3.7, 6.5, I2 = 0.0%) after simulated standing within the scanner. Hip cartilage data were insufficient for pooling. Secondary outcomes synthesised narratively suggest knee cartilage recovers within 30 min of walking and 90 min of 100 knee bends. We found contrasting effects of simulated standing and walking in adults with, or at risk of, OA. An increase of 10 knee bend repetitions was associated with 2% greater reduction in patellar thickness or volume. CONCLUSION There is very low certainty evidence that minimal knee cartilage thickness and volume and composition (T2 relaxation time) reductions (0-5%) occur after weightbearing knee bends, simulated standing, walking, hopping/jumping and cycling, and the impact of knee bends may be dose dependent. Our findings provide a framework of cartilage responses to loading in healthy adults which may have utility for clinicians when designing and prescribing rehabilitation programs and providing exercise advice.
Collapse
Affiliation(s)
- Sally L. Coburn
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Kay M. Crossley
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Joanne L. Kemp
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Stuart J. Warden
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
- Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN USA
| | - Tom J. West
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Andrea M. Bruder
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Benjamin F. Mentiplay
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Adam G. Culvenor
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| |
Collapse
|
12
|
Wang B, Mao Z, Guo J, Yang J, Zhang S. The non-invasive evaluation technique of patellofemoral joint stress: a systematic literature review. Front Bioeng Biotechnol 2023; 11:1197014. [PMID: 37456733 PMCID: PMC10343958 DOI: 10.3389/fbioe.2023.1197014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Patellofemoral joint stress (PFJS) is an important parameter for understanding the mechanism of patellofemoral joint pain, preventing patellofemoral joint injury, and evaluating the therapeutic efficacy of PFP rehabilitation programs. The purpose of this systematic review was to identify and categorize the non-invasive technique to evaluate the PFJS. Methods: Literature searches were conducted from January 2000 to October 2022 in electronic databases, namely, PubMed, Web of Science, and EBSCO (Medline, SPORTDiscus). This review includes studies that evaluated the patellofemoral joint reaction force (PJRF) or PFJS, with participants including both healthy individuals and those with patellofemoral joint pain, as well as cadavers with no organic changes. The study design includes cross-sectional studies, case-control studies, and randomized controlled trials. The JBI quality appraisal criteria tool was used to assess the risk of bias in the included studies. Results: In total, 5016 articles were identified in the database research and the citation network, and 69 studies were included in the review. Discussion: Researchers are still working to improve the accuracy of evaluation for PFJS by using a personalized model and optimizing quadriceps muscle strength calculations. In theory, the evaluation method of combining advanced computational and biplane fluoroscopy techniques has high accuracy in evaluating PFJS. The method should be further developed to establish the "gold standard" for PFJS evaluation. In practical applications, selecting appropriate methods and approaches based on theoretical considerations and ecological validity is essential.
Collapse
|
13
|
Hamaguchi H, Kitagawa M, Sakamoto D, Katscher U, Sudo H, Yamada K, Kudo K, Tha KK. Quantitative Assessment of Intervertebral Disc Composition by MRI: Sensitivity to Diurnal Variation. Tomography 2023; 9:1029-1040. [PMID: 37218944 DOI: 10.3390/tomography9030084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Whether diurnal variation exists in quantitative MRI indices such as the T1rho relaxation time (T1ρ) of the intervertebral disc (IVD) is yet to be explored. This prospective study aimed to evaluate the diurnal variation in T1ρ, apparent diffusion coefficient (ADC), and electrical conductivity (σ) of lumbar IVD and its relationship with other MRI or clinical indices. Lumbar spine MRI, including T1ρ imaging, diffusion-weighted imaging (DWI), and electric properties tomography (EPT), was conducted on 17 sedentary workers twice (morning and evening) on the same day. The T1ρ, ADC, and σ of IVD were compared between the time points. Their diurnal variation, if any, was tested for correlation with age, body mass index (BMI), IVD level, Pfirrmann grade, scan interval, and diurnal variation in IVD height index. The results showed a significant decrease in T1ρ and ADC and a significant increase in the σ of IVD in the evening. T1ρ variation had a weak correlation with age and scan interval, and ADC variation with scan interval. Diurnal variation exists for the T1ρ, ADC, and σ of lumbar IVD, which should be accounted for in image interpretation. This variation is thought to be due to diurnal variations in intradiscal water, proteoglycan, and sodium ion concentration.
Collapse
Affiliation(s)
- Hiroyuki Hamaguchi
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Maho Kitagawa
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Daiki Sakamoto
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Ulrich Katscher
- Philips Research Laboratories, Roentgenstrasse 24-26, 22335 Hamburg, Germany
| | - Hideki Sudo
- Department of Orthopaedic Surgery, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo 060-8648, Japan
| | - Katsuhisa Yamada
- Department of Orthopaedic Surgery, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo 060-8648, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo 060-8648, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Khin Khin Tha
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
14
|
Karami P, Stampoultzis T, Guo Y, Pioletti DP. A guide to preclinical evaluation of hydrogel-based devices for treatment of cartilage lesions. Acta Biomater 2023; 158:12-31. [PMID: 36638938 DOI: 10.1016/j.actbio.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The drive to develop cartilage implants for the treatment of major defects in the musculoskeletal system has resulted in a major research thrust towards developing biomaterial devices for cartilage repair. Investigational devices for the restoration of articular cartilage are considered as significant risk materials by regulatory bodies and therefore proof of efficacy and safety prior to clinical testing represents a critical phase of the multidisciplinary effort to bridge the gap between bench and bedside. To date, review articles have thoroughly covered different scientific facets of cartilage engineering paradigm, but surprisingly, little attention has been given to the preclinical considerations revolving around the validation of a biomaterial implant. Considering hydrogel-based cartilage products as an example, the present review endeavors to provide a summary of the critical prerequisites that such devices should meet for cartilage repair, for successful implantation and subsequent preclinical validation prior to clinical trials. Considerations pertaining to the choice of appropriate animal model, characterization techniques for the quantitative and qualitative outcome measures, as well as concerns with respect to GLP practices are also extensively discussed. This article is not meant to provide a systematic review, but rather to introduce a device validation-based roadmap to the academic investigator, in anticipation of future healthcare commercialization. STATEMENT OF SIGNIFICANCE: There are significant challenges around translation of in vitro cartilage repair strategies to approved therapies. New biomaterial-based devices must undergo exhaustive investigations to ensure their safety and efficacy prior to clinical trials. These considerations are required to be applied from early developmental stages. Although there are numerous research works on cartilage devices and their in vivo evaluations, little attention has been given into the preclinical pathway and the corresponding approval processes. With a focus on hydrogel devices to concretely illustrate the preclinical path, this review paper intends to highlight the various considerations regarding the preclinical validation of hydrogel devices for cartilage repair, from regulatory considerations, to implantation strategies, device performance aspects and characterizations.
Collapse
Affiliation(s)
- Peyman Karami
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Theofanis Stampoultzis
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Yanheng Guo
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
15
|
Brenneman Wilson EC, Quenneville CE, Maly MR. Integrating MR imaging with full-surface indentation mapping of femoral cartilage in an ex vivo porcine stifle. J Mech Behav Biomed Mater 2023; 139:105651. [PMID: 36640543 DOI: 10.1016/j.jmbbm.2023.105651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 01/08/2023]
Abstract
The potential of MRI to predict cartilage mechanical properties across an entire cartilage surface in an ex vivo model would enable novel perspectives in modeling cartilage tolerance and predicting disease progression. The purpose of this study was to integrate MR imaging with full-surface indentation mapping to determine the relationship between femoral cartilage thickness and T2 relaxation change following loading, and cartilage mechanical properties in an ex vivo porcine stifle model. Matched-pairs of stifle joints from the same pig were randomized into either 1) an imaging protocol where stifles were imaged at baseline and after 35 min of static axial loading; and 2) full surface mapping of the instantaneous modulus (IM) and an electromechanical property named quantitative parameter (QP). The femur and femoral cartilage were segmented from baseline and post-intervention scans, then meshes were generated. Coordinate locations of the indentation mapping points were rigidly registered to the femur. Multiple linear regressions were performed at each voxel testing the relationship between cartilage outcomes (thickness change, T2 change) and mechanical properties (IM, QP) after accounting for covariates. Statistical Parametric Mapping was used to determine significance of clusters. No significant clusters were identified; however, this integrative method shows promise for future work in ex vivo modeling by identifying spatial relationships among variables.
Collapse
Affiliation(s)
| | - Cheryl E Quenneville
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, Hamilton, ON, Canada
| | - Monica R Maly
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
16
|
Lee W, Miller EY, Zhu H, Luetkemeyer CM, Schneider SE, Neu CP. High frame rate deformation analysis of knee cartilage by spiral dualMRI and relaxation mapping. Magn Reson Med 2023; 89:694-709. [PMID: 36300860 PMCID: PMC10017275 DOI: 10.1002/mrm.29487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Daily activities including walking impose high-frequency cyclic forces on cartilage and repetitive compressive deformation. Analyzing cartilage deformation during walking would provide spatial maps of displacement and strain and enable viscoelastic characterization, which may serve as imaging biomarkers for early cartilage degeneration when the damage is still reversible. However, the time-dependent biomechanics of cartilage is not well described, and how defects in the joint impact the viscoelastic response is unclear. METHODS We used spiral acquisition with displacement-encoding MRI to quantify displacement and strain maps at a high frame rate (25 frames/s) in tibiofemoral joints. We also employed relaxometry methods (T1 , T1ρ , T2 , T2 *) on the cartilage. RESULTS Normal and shear strains were concentrated on the bovine tibiofemoral contact area during loading, and the defected joint exhibited larger compressive strains. We also determined a positive correlation between the change of T1ρ in cartilage after cyclic loading and increased compressive strain on the defected joint. Viscoelastic behavior was quantified by the time-dependent displacement, where the damaged joint showed increased creep behavior compared to the intact joint. This technique was also successfully demonstrated on an in vivo human knee showing the gradual change of displacement during varus load. CONCLUSION Our results indicate that spiral scanning with displacement encoding can quantitatively differentiate the damaged from intact joint using the strain and creep response. The viscoelastic response identified with this methodology could serve as biomarkers to detect defects in joints in vivo and facilitate the early diagnosis of joint diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Woowon Lee
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Emily Y. Miller
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Hongtian Zhu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Callan M. Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Stephanie E. Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
17
|
Buchanan MW, Furman BD, McNulty AL, Olson SA. Combination of Lidocaine and IL-1Ra Is Effective at Reducing Degradation of Porcine Cartilage Explants. Am J Sports Med 2022; 50:1997-2006. [PMID: 35482438 DOI: 10.1177/03635465221090611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Posttraumatic inflammation after joint injury, ranging from sprains to articular fracture, contributes to the development of arthritis, and the administration of interleukin 1 (IL-1) receptor antagonist (IL-1Ra) is a potential intervention to mitigate this response. Although IL-1Ra mitigates cartilage degenerative changes induced by IL-1, lidocaine is used for local pain management in acute joint injury. Intra-articular delivery of both drugs in combination would be a novel and possibly disease-modifying treatment. However, it is not known whether the interaction with lidocaine at clinical concentrations (1%) would alter the efficacy of IL-1Ra to protect cartilage from the catabolic effects of IL-1. HYPOTHESIS Treatment of articular cartilage with IL-1Ra in combination with a clinically relevant concentration of lidocaine (1%) will inhibit the catabolic effects of IL-1α in a manner similar to treatment with IL-1Ra alone. STUDY DESIGN Controlled laboratory study. METHODS Fresh porcine cartilage explants were harvested, challenged with IL-1α, and incubated for 72 hours with IL-1Ra or a combination of IL-1Ra and lidocaine. The primary outcome was total sulfated glycosaminoglycan (sGAG) release. Additional experiments assessed the effect of storage temperature and premixing of IL-1Ra and lidocaine on sGAG release. All explants were histologically assessed for cartilage degradation using a modified Mankin grading scale. RESULTS The combination of IL-1Ra and lidocaine, premixed at various time points and stored at room temperature or 4°C, was as effective as IL-1Ra alone at inhibiting IL-1α-mediated sGAG release. Mankin histopathology scores supported these findings. CONCLUSION Our hypothesis was supported, and results indicated that the combination of IL-1Ra and lidocaine was as efficacious as IL-1Ra treatment alone in acutely mitigating biological cartilage injury due to IL-1α in an explant model. CLINICAL SIGNIFICANCE The combination of IL-1Ra and lidocaine is stable when reagents are stored in advance of administration at varying temperatures, providing clinically relevant information about storage of medications. The ability to premix and store this drug combination for intra-articular delivery may provide a novel treatment after joint injury to provide pain relief and block inflammation-induced catabolism of joint tissues.
Collapse
Affiliation(s)
- Michael W Buchanan
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bridgette D Furman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven A Olson
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
18
|
Emanuel KS, Kellner LJ, Peters MJM, Haartmans MJJ, Hooijmans MT, Emans PJ. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis. Osteoarthritis Cartilage 2022; 30:650-662. [PMID: 34826570 DOI: 10.1016/j.joca.2021.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Early and non-invasive detection of osteoarthritis (OA) is required to enable early treatment and monitoring of interventions. Some of the earliest signs of OA are the change in proteoglycan and collagen composition. The aim of this study is to establish the relations between quantitative magnetic resonance imaging (MRI) and biochemical concentration and organization in knee articular cartilage. METHODS A preregistered systematic literature review was performed using the databases PubMed and Embase. Papers were included if quantitative MRI and a biochemical assay or polarized light microscopy (PLM) was performed on knee articular cartilage, and a quantified correlation was described. The extracted correlations were pooled using a random effects model. RESULTS 21 papers were identified. The strongest pooled correlation was found for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) vs proteoglycan concentration (r = 0.59). T1ρ relaxation times are inversely correlated to proteoglycan concentration (r = -0.54). A weak correlation between T2 relaxation times and proteoglycans was found (r = -0.38). No correlation between T2 relaxation time and collagen concentration was found (r = -0.02). A heterogeneous set of correlations between T2 relaxation times and PLM were identified, including strong correlations to anisotropy. CONCLUSION DGEMRIC measures are significantly correlated to proteoglycan concentration. The needed contrast agent is however a disadvantage; the T1ρ sequence was found as a non-invasive alternative. Remarkably, no correlation was found between T2 relaxation times and collagen concentration. T2 relaxation times is related to organization, rather than concentration of collagen fibers. PROSPERO ID CRD42020168337.
Collapse
Affiliation(s)
- K S Emanuel
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - L J Kellner
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - M J M Peters
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - M J J Haartmans
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - M T Hooijmans
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - P J Emans
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
19
|
Bjornsen E, Schwartz TA, Lisee C, Blackburn T, Lalush D, Nissman D, Spang J, Pietrosimone B. Loading during Midstance of Gait Is Associated with Magnetic Resonance Imaging of Cartilage Composition Following Anterior Cruciate Ligament Reconstruction. Cartilage 2022; 13:19476035211072220. [PMID: 35098719 PMCID: PMC9137315 DOI: 10.1177/19476035211072220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/27/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE A complex association exists between aberrant gait biomechanics and posttraumatic knee osteoarthritis (PTOA) development. Previous research has primarily focused on the link between peak loading during the loading phase of stance and joint tissue changes following anterior cruciate ligament reconstruction (ACLR). However, the associations between loading and cartilage composition at other portions of stance, including midstance and late stance, is unclear. The objective of this study was to explore associations between vertical ground reaction force (vGRF) at each 1% increment of stance phase and tibiofemoral articular cartilage magnetic resonance imaging (MRI) T1ρ relaxation times following ACLR. DESIGN Twenty-three individuals (47.82% female, 22.1 ±4.1 years old) with unilateral ACLR participated in a gait assessment and T1ρ MRI collection at 12.25 ± 0.61 months post-ACLR. T1ρ relaxation times were calculated for the articular cartilage of the weightbearing medial and lateral femoral (MFC, LFC) and tibial (MTC, LTC) condyles. Separate bivariate, Pearson product moment correlation coefficients (r) were used to estimate strength of associations between T1ρ MRI relaxation times in the medial and lateral tibiofemoral articular cartilage with vGRF across the entire stance phase. RESULTS Greater vGRF during midstance (46%-56% of stance phase) was associated with greater T1ρ MRI relaxation times in the MFC (r ranging between 0.43 and 0.46). CONCLUSIONS Biomechanical gait profiles that include greater vGRF during midstance are associated with MRI estimates of lesser proteoglycan density in the MFC. Inability to unload the ACLR limb during midstance may be linked to joint tissue changes associated with PTOA development.
Collapse
Affiliation(s)
- Elizabeth Bjornsen
- Human Movement Science Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Todd A. Schwartz
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline Lisee
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Troy Blackburn
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Lalush
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Nissman
- Department of Radiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey Spang
- Department of Orthopaedics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Cutcliffe HC, Kottamasu PK, McNulty AL, Goode AP, Spritzer CE, DeFrate LE. Mechanical metrics may show improved ability to predict osteoarthritis compared to T1rho mapping. J Biomech 2021; 129:110771. [PMID: 34627074 PMCID: PMC8744537 DOI: 10.1016/j.jbiomech.2021.110771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023]
Abstract
Changes in cartilage structure and composition are commonly observed during the progression of osteoarthritis (OA). Importantly, quantitative magnetic resonance imaging (MRI) methods, such as T1rho relaxation imaging, can noninvasively provide in vivo metrics that reflect changes in cartilage composition and therefore have the potential for use in early OA detection. Changes in cartilage mechanical properties are also hallmarks of OA cartilage; thus, measurement of cartilage mechanical properties may also be beneficial for earlier OA detection. However, the relative predictive ability of compositional versus mechanical properties in detecting OA has yet to be determined. Therefore, we developed logistic regression models predicting OA status in an ex vivo environment using several mechanical and compositional metrics to assess which metrics most effectively predict OA status. Specifically, in this study the compositional metric analyzed was the T1rho relaxation time, while the mechanical metrics analyzed were the stiffness and recovery (defined as a measure of how quickly cartilage returns to its original shape after loading) of the cartilage. Cartilage recovery had the best predictive ability of OA status both alone and in a multivariate model including the T1rho relaxation time. These findings highlight the potential of cartilage recovery as a non-invasive marker of in vivo cartilage health and motivate future investigation of this metric clinically.
Collapse
Affiliation(s)
- Hattie C Cutcliffe
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Pavan K Kottamasu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Adam P Goode
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, United States; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC 27710, United States
| | - Charles E Spritzer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Radiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
21
|
Andress B, Kim JH, Cutcliffe HC, Amendola A, Goode AP, Varghese S, DeFrate LE, McNulty AL. Meniscus cell regional phenotypes: Dedifferentiation and reversal by biomaterial embedding. J Orthop Res 2021; 39:2177-2186. [PMID: 33325039 PMCID: PMC8203760 DOI: 10.1002/jor.24954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Meniscus injuries are common and a major cause of long-term joint degeneration and disability. Current treatment options are limited, so novel regenerative therapies or tissue engineering strategies are urgently needed. The development of new therapies is hindered by a lack of knowledge regarding the cellular biology of the meniscus and a lack of well-established methods for studying meniscus cells in vitro. The goals of this study were to (1) establish baseline expression profiles and dedifferentiation patterns of inner and outer zone primary meniscus cells, and (2) evaluate the utility of poly(ethylene glycol) diacrylate (PEGDA) and gelatin methacrylate (GelMA) polymer hydrogels to reverse dedifferentiation trends for long-term meniscus cell culture. Using reverse transcription-quantitative polymerase chain reaction, we measured expression levels of putative meniscus phenotype marker genes in freshly isolated meniscus tissue, tissue explant culture, and monolayer culture of inner and outer zone meniscus cells from porcine knees to establish baseline dedifferentiation characteristics, and then compared these expression levels to PEGDA/GelMA embedded passaged meniscus cells. COL1A1 showed robust upregulation, while CHAD, CILP, and COMP showed downregulation with monolayer culture. Expression levels of COL2A1, ACAN, and SOX9 were surprisingly similar between inner and outer zone tissue and were found to be less sensitive as markers of dedifferentiation. When embedded in PEGDA/GelMA hydrogels, expression levels of meniscus cell phenotype genes were significantly modulated by varying the ratio of polymer components, allowing these materials to be tuned for phenotype restoration, meniscus cell culture, and tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Hattie C. Cutcliffe
- Department of Orthopaedic Surgery, Duke University School of Medicine,Department of Biomedical Engineering, Duke University
| | | | - Adam P. Goode
- Department of Orthopaedic Surgery, Duke University School of Medicine,Duke Clinical Research Institute, Duke University School of Medicine,Department of Population Health Science, Duke University School of Medicine
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine,Department of Biomedical Engineering, Duke University,Department of Mechanical Engineering and Materials Science, Duke University
| | - Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine,Department of Biomedical Engineering, Duke University,Department of Mechanical Engineering and Materials Science, Duke University
| | - Amy L. McNulty
- Department of Pathology, Duke University School of Medicine,Department of Orthopaedic Surgery, Duke University School of Medicine,Address for Correspondence: Dr. Amy L. McNulty, Duke University School of Medicine, DUMC 3093, Durham NC 27710 USA, Phone: (919) 684-6882,
| |
Collapse
|
22
|
Jang J, Migel KG, Kim H, Wikstrom EA. Acute Vibration Feedback During Gait Reduces Mechanical Ankle Joint Loading in Chronic Ankle Instability Patients. Gait Posture 2021; 90:261-266. [PMID: 34536690 DOI: 10.1016/j.gaitpost.2021.09.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with chronic ankle instability (CAI) exhibit altered vertical ground reaction forces (vGRF), a laterally shifted center of pressure, and an inverted foot position during walking. These neuromechanical alterations are linked with altered ankle joint loading in this population. Vibration-based gait retraining improves center of pressure positioning but effects on neuromechanical variables influencing joint loading remains unknown. RESEARCH QUESTION Do patients with CAI exhibit altered vGRF and ankle joint contact forces (JCF) after receiving a single session of vibration-based gait retraining? METHODS Ten individuals with CAI underwent a single session of vibration-based gait retraining. Kinematic and kinetic data were collected during walking on an instrumental treadmill with force plates embedded in it. Following a baseline gait assessment without feedback, participants walked at a self-selected speed for 10 minutes while receiving feedback. Data was collected during an early (1 st and 2 nd minute) and late adaptation phase (9 th and 10 th minute) and, compared to baseline values. Impact and propulsive vGRF variables (i.e. peak, time to peak, and loading rate) were obtained. Musculoskeletal modeling was used to calculate ankle JCF variables (peak, impulse, and loading rate) during stance phase. RESULTS Propulsive vGRF and ankle JCF outcomes were significantly reduced during the early and late adaptation phases (p ≤ 0.039). SIGNIFICANCE These results indicate that vibration-based gait retraining can immediately reduce propulsive vGRF and ankle JCF and may represent a modality that could help restore appropriate ankle joint loading patterns in those with CAI.
Collapse
Affiliation(s)
- Jaeho Jang
- MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, USA.
| | - Kimmery G Migel
- MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, USA
| | - Hoon Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Erik A Wikstrom
- MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
23
|
Said O, Schock J, Abrar DB, Schad P, Kuhl C, Nolte T, Knobe M, Prescher A, Truhn D, Nebelung S. In-Situ Cartilage Functionality Assessment Based on Advanced MRI Techniques and Precise Compartmental Knee Joint Loading through Varus and Valgus Stress. Diagnostics (Basel) 2021; 11:diagnostics11081476. [PMID: 34441410 PMCID: PMC8391314 DOI: 10.3390/diagnostics11081476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Stress MRI brings together mechanical loading and MRI in the functional assessment of cartilage and meniscus, yet lacks basic scientific validation. This study assessed the response-to-loading patterns of cartilage and meniscus incurred by standardized compartmental varus and valgus loading of the human knee joint. Eight human cadaveric knee joints underwent imaging by morphologic (i.e., proton density-weighted fat-saturated and 3D water-selective) and quantitative (i.e., T1ρ and T2 mapping) sequences, both unloaded and loaded to 73.5 N, 147.1 N, and 220.6 N of compartmental pressurization. After manual segmentation of cartilage and meniscus, morphometric measures and T2 and T1ρ relaxation times were quantified. CT-based analysis of joint alignment and histologic and biomechanical tissue measures served as references. Under loading, we observed significant decreases in cartilage thickness (p < 0.001 (repeated measures ANOVA)) and T1ρ relaxation times (p = 0.001; medial meniscus, lateral tibia; (Friedman test)), significant increases in T2 relaxation times (p ≤ 0.004; medial femur, lateral tibia; (Friedman test)), and adaptive joint motion. In conclusion, varus and valgus stress MRI induces meaningful changes in cartilage and meniscus secondary to compartmental loading that may be assessed by cartilage morphometric measures as well as T2 and T1ρ mapping as imaging surrogates of tissue functionality.
Collapse
Affiliation(s)
- Oliver Said
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
- Correspondence:
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
| | - Philipp Schad
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Teresa Nolte
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Matthias Knobe
- Department of Orthopedic and Trauma Surgery, Lucerne Cantonal Hospital, 6000, Lucerne, Switzerland;
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| |
Collapse
|
24
|
Hänninen NE, Nykänen O, Prakash M, Hanni M, Nieminen MT, Nissi MJ. Orientation anisotropy of quantitative MRI parameters in degenerated human articular cartilage. J Orthop Res 2021; 39:861-870. [PMID: 32543737 DOI: 10.1002/jor.24778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/08/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Quantitative magnetic resonance (MR) relaxation parameters demonstrate varying sensitivity to the orientation of the ordered tissues in the magnetic field. In this study, the orientation dependence of multiple relaxation parameters was assessed in cadaveric human cartilage with varying degree of natural degeneration, and compared with biomechanical testing, histological scoring, and quantitative histology. Twelve patellar cartilage samples were imaged at 9.4 T MRI with multiple relaxation parameters, including T1 , T2 , CW - T1ρ , and adiabatic T1ρ , at three different orientations with respect to the main magnetic field. Anisotropy of the relaxation parameters was quantified, and the results were compared with the reference measurements and between samples of different histological Osteoarthritis Research Society International (OARSI) grades. T2 and CW - T1ρ at 400 Hz spin-lock demonstrated the clearest anisotropy patterns. Radial zone anisotropy for T2 was significantly higher for samples with OARSI grade 2 than for grade 4. The proteoglycan content (measured as optical density) correlated with the radial zone MRI orientation anisotropy for T2 (r = 0.818) and CW - T1ρ with 400 Hz spin-lock (r = 0.650). Orientation anisotropy of MRI parameters altered with progressing cartilage degeneration. This is associated with differences in the integrity of the collagen fiber network, but it also seems to be related to the proteoglycan content of the cartilage. Samples with advanced OA had great variation in all biomechanical and histological properties and exhibited more variation in MRI orientation anisotropy than the less degenerated samples. Understanding the background of relaxation anisotropy on a molecular level would help to develop new MRI contrasts and improve the application of previously established quantitative relaxation contrasts.
Collapse
Affiliation(s)
- Nina Elina Hänninen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mithilesh Prakash
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Matti Hanni
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Miika Tapio Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Mikko Johannes Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Boling MC, Dupell M, Pfeiffer SJ, Wallace K, Lalush D, Spang JT, Nissman D, Pietrosimone B. In vivo Compositional Changes in the Articular Cartilage of the Patellofemoral Joint following Anterior Cruciate Ligament Reconstruction. Arthritis Care Res (Hoboken) 2021; 74:1172-1178. [PMID: 33460530 PMCID: PMC8286261 DOI: 10.1002/acr.24561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To compare T1ρ relaxation times of the medial and lateral regions of the patella and femoral trochlea at 6 and 12 months post-anterior cruciate ligament reconstruction (ACLR) on the ACLR and contralateral limb. Greater T1ρ relaxation times are associated with a lesser proteoglycan density of articular cartilage. METHODS Twenty individuals (11 males, 9 females; age=22±3.9yrs; mass=76.11±13.48kg; height=178.32±12.32) who underwent a previous unilateral ACLR using a patellar tendon autograft. Magnetic resonance images from both limbs were acquired at 6 and 12 months post-ACLR. Voxel by voxel T1ρ relaxation times were calculated using a five-image sequence. The medial and lateral regions of the femoral trochlea and patellar articular cartilage were manually segmented on both limbs. Separate limb (ACLR and contralateral limb) by time (6-months and 12-months) ANOVAs were performed for each region (P<0.05). RESULTS For the medial patella and lateral trochlea, T1ρ relaxation times increased in both limbs between 6 and 12-months post-ACLR (medial patella: P=0.012; lateral trochlea: P=0.043). For the lateral patella, T1ρ relaxation times were significantly greater on the contralateral limb compared to the ACLR limb (P=0.001). The T1ρ relaxation times of the medial trochlea on the ACLR limb were significantly greater at 6 (P=0.005) and 12-months (P<0.001) compared to the contralateral limb. T1ρ relaxation times of the medial trochlea significantly increased from 6 to 12-months on the ACLR limb (P=0.003). CONCLUSION Changes in T1ρ relaxation times occur within the first 12 months following ACLR in specific regions of the patellofemoral joint on the ACLR and contralateral limb.
Collapse
Affiliation(s)
- Michelle C Boling
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Matthew Dupell
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Steven J Pfeiffer
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Kyle Wallace
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - David Lalush
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Jeffrey T Spang
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Daniel Nissman
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | | |
Collapse
|
26
|
Collins AT, Hu G, Newman H, Reinsvold MH, Goldsmith MR, Twomey-Kozak JN, Leddy HA, Sharma D, Shen L, DeFrate LE, Karner CM. Obesity alters the collagen organization and mechanical properties of murine cartilage. Sci Rep 2021; 11:1626. [PMID: 33452305 PMCID: PMC7810701 DOI: 10.1038/s41598-020-80599-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is a debilitating disease characterized by cartilage degradation and altered cartilage mechanical properties. Furthermore, it is well established that obesity is a primary risk factor for osteoarthritis. The purpose of this study was to investigate the influence of obesity on the mechanical properties of murine knee cartilage. Two-month old wild type mice were fed either a normal diet or a high fat diet for 16 weeks. Atomic force microscopy-based nanoindentation was used to quantify the effective indentation modulus of medial femoral condyle cartilage. Osteoarthritis progression was graded using the OARSI system. Additionally, collagen organization was evaluated with picrosirius red staining imaged using polarized light microscopy. Significant differences between diet groups were assessed using t tests with p < 0.05. Following 16 weeks of a high fat diet, no significant differences in OARSI scoring were detected. However, we detected a significant difference in the effective indentation modulus between diet groups. The reduction in cartilage stiffness is likely the result of disrupted collagen organization in the superficial zone, as indicated by altered birefringence on polarized light microscopy. Collectively, these results suggest obesity is associated with changes in knee cartilage mechanical properties, which may be an early indicator of disease progression.
Collapse
Affiliation(s)
- Amber T Collins
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Guoli Hu
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Hunter Newman
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Michael H Reinsvold
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Monique R Goldsmith
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - John N Twomey-Kozak
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Holly A Leddy
- Shared Materials Instrumentation Facility, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Leyao Shen
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA.
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA.
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
27
|
Collins AT, Kulvaranon M, Spritzer CE, McNulty AL, DeFrate LE. The Influence of Obesity and Meniscal Coverage on In Vivo Tibial Cartilage Thickness and Strain. Orthop J Sports Med 2020; 8:2325967120964468. [PMID: 33330731 PMCID: PMC7720327 DOI: 10.1177/2325967120964468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
Background Obesity, which potentially increases loading at the knee, is a common and modifiable risk factor for the development of knee osteoarthritis. The menisci play an important role in distributing joint loads to the underlying cartilage. However, the influence of obesity on the role of the menisci in cartilage load distribution in vivo is currently unknown. Purpose To measure tibial cartilage thickness and compressive strain in response to walking in areas covered and uncovered by the menisci in participants with normal body mass index (BMI) and participants with high BMI. Study Design Controlled laboratory study. Methods Magnetic resonance (MR) images of the right knees of participants with normal BMI (<25 kg/m2; n = 8) and participants with high BMI (>30 kg/m2; n = 7) were obtained before and after treadmill walking. The outer margins of the tibia, the medial and lateral cartilage surfaces, and the meniscal footprints were segmented on each MR image to create 3-dimensional models of the joint. Cartilage thickness was measured before and after walking in areas covered and uncovered by the menisci. Cartilage compressive strain was then determined from changes in thickness resulting from the walking task. Results Before exercise, medial and lateral uncovered cartilage of the tibial plateau was significantly thicker than covered cartilage in both BMI groups. In the uncovered region of the lateral tibial plateau, participants with high BMI had thinner preexercise cartilage than those with a normal BMI. Cartilage compressive strain was significantly greater in medial and lateral cartilage in participants with high BMI compared with those with normal BMI in both the regions covered and those uncovered by the menisci. Conclusion Participants with high BMI experienced greater cartilage strain in response to walking than participants with normal BMI in both covered and uncovered regions of cartilage, which may indicate that the load-distributing function of the meniscus is not sufficient to moderate the effects of obesity. Clinical Relevance These findings demonstrate the critical effect of obesity on cartilage function and thickness in regions covered and uncovered by the menisci.
Collapse
Affiliation(s)
- Amber T Collins
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micaela Kulvaranon
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Physics, Duke University, Durham, North Carolina, USA
| | - Charles E Spritzer
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, North Carolina, USA.,Department of Mechanical Engineering and Materials Science, Duke University, North Carolina, USA
| |
Collapse
|
28
|
Ai QYH, Chen W, So TY, Lam WKJ, Jiang B, Poon DMC, Qamar S, Mo FKF, Blu T, Chan Q, Ma BBY, Hui EP, Chan KCA, King AD. Quantitative T1ρ MRI of the Head and Neck Discriminates Carcinoma and Benign Hyperplasia in the Nasopharynx. AJNR Am J Neuroradiol 2020; 41:2339-2344. [PMID: 33122214 DOI: 10.3174/ajnr.a6828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE T1ρ imaging is a new quantitative MR imaging pulse sequence with the potential to discriminate between malignant and benign tissue. In this study, we evaluated the capability of T1ρ imaging to characterize tissue by applying T1ρ imaging to malignant and benign tissue in the nasopharynx and to normal tissue in the head and neck. MATERIALS AND METHODS Participants with undifferentiated nasopharyngeal carcinoma and benign hyperplasia of the nasopharynx prospectively underwent T1ρ imaging. T1ρ measurements obtained from the histogram analysis for nasopharyngeal carcinoma in 43 participants were compared with those for benign hyperplasia and for normal tissue (brain, muscle, and parotid glands) in 41 participants using the Mann-Whitney U test. The area under the curve of significant T1ρ measurements was calculated and compared using receiver operating characteristic analysis and the Delong test, respectively. A P < . 05 indicated statistical significance. RESULTS There were significant differences in T1ρ measurements between nasopharyngeal carcinoma and benign hyperplasia and between nasopharyngeal carcinoma and normal tissue (all, P < . 05). Compared with benign hyperplasia, nasopharyngeal carcinoma showed a lower T1ρ mean (62.14 versus 65.45 × ms), SD (12.60 versus 17.73 × ms), and skewness (0.61 versus 0.76) (all P < .05), but no difference in kurtosis (P = . 18). The T1ρ SD showed the highest area under the curve of 0.95 compared with the T1ρ mean (area under the curve = 0.72) and T1ρ skewness (area under the curve = 0.72) for discriminating nasopharyngeal carcinoma and benign hyperplasia (all, P < .05). CONCLUSIONS Quantitative T1ρ imaging has the potential to discriminate malignant from benign and normal tissue in the head and neck.
Collapse
Affiliation(s)
- Q Y H Ai
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - W Chen
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - T Y So
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - W K J Lam
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Chemical Pathology (W.K.J.L., K.C.A.C.), State Key Laboratory in Oncology in South China, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR
| | - B Jiang
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - D M C Poon
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - S Qamar
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - F K F Mo
- Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - T Blu
- Department of Electrical Engineering (T.B.), The Chinese University of Hong Kong, Hong Kong, SAR
| | - Q Chan
- Philips Healthcare (Q.C.), Hong Kong, SAR
| | - B B Y Ma
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - E P Hui
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - K C A Chan
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Chemical Pathology (W.K.J.L., K.C.A.C.), State Key Laboratory in Oncology in South China, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR
| | - A D King
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| |
Collapse
|
29
|
Cutcliffe HC, Davis KM, Spritzer CE, DeFrate L. The Characteristic Recovery Time as a Novel, Noninvasive Metric for Assessing In Vivo Cartilage Mechanical Function. Ann Biomed Eng 2020; 48:2901-2910. [PMID: 32666421 PMCID: PMC7723945 DOI: 10.1007/s10439-020-02558-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/25/2020] [Indexed: 12/01/2022]
Abstract
Osteoarthritis (OA) is a disease characterized by the degeneration of cartilage tissue, and is a leading cause of disability in the United States. The clinical diagnosis of OA includes the presence of pain and radiographic imaging findings, which typically do not present until advanced stages of the disease when treatment is difficult. Therefore, identifying new methods of OA detection that are sensitive to earlier pathological changes in cartilage, which may be addressed prior to the development of irreversible OA, is critical for improving OA treatment. A potentially promising avenue for developing early detection methods involves measuring the tissue’s in vivo mechanical response to loading, as changes in mechanical function are commonly observed in ex vivo studies of early OA. However, thus far the mechanical function of cartilage has not been widely assessed in vivo. Therefore, the purpose of this study was to develop a novel methodology that can be used to measure an in vivo mechanical property of cartilage: the characteristic recovery time. Specifically, in this study we quantified the characteristic recovery time of cartilage thickness after exercise in relatively young subjects with asymptomatic cartilage. Additionally, we measured baseline cartilage thickness and T1rho and T2 relaxation times (quantitative MRI) prior to exercise in these subjects to assess whether baseline MRI measures are predictive of the characteristic recovery time, to understand whether or not the characteristic recovery time provides independent information about cartilage’s mechanical state. Our results show that the mean recovery strain response across subjects was well-characterized by an exponential approach with a characteristic time of 25.2 min, similar to literature values of human characteristic times measured ex vivo. Further, we were unable to detect a statistically significant linear relationship between the characteristic recovery time and the baseline metrics measured here (T1rho relaxation time, T2 relaxation time, and cartilage thickness). This might suggest that the characteristic recovery time has the potential to provide additional information about the mechanical state of cartilage not captured by these baseline MRI metrics. Importantly, this study presents a noninvasive methodology for quantifying the characteristic recovery time, an in vivo mechanical property of cartilage. As mechanical response may be indicative of cartilage health, this study underscores the need for future studies investigating the characteristic recovery time and in vivo cartilage mechanical response at various stages of OA.
Collapse
Affiliation(s)
- Hattie C Cutcliffe
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keithara M Davis
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Charles E Spritzer
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Louis DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA. .,Department of Biomedical Engineering, Duke University, Durham, NC, USA. .,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Quantifying the biochemical state of knee cartilage in response to running using T1rho magnetic resonance imaging. Sci Rep 2020; 10:1870. [PMID: 32024873 PMCID: PMC7002650 DOI: 10.1038/s41598-020-58573-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Roughly 20% of Americans run annually, yet how this exercise influences knee cartilage health is poorly understood. To address this question, quantitative magnetic resonance imaging (MRI) can be used to infer the biochemical state of cartilage. Specifically, T1rho relaxation times are inversely related to the proteoglycan concentration in cartilage. In this study, T1rho MRI was performed on the dominant knee of eight asymptomatic, male runners before, immediately after, and 24 hours after running 3 and 10 miles. Overall, (mean ± SEM) patellar, tibial, and femoral cartilage T1rho relaxation times significantly decreased immediately after running 3 (65 ± 3 ms to 62 ± 3 ms; p = 0.04) and 10 (69 ± 4 ms to 62 ± 3 ms; p < 0.001) miles. No significant differences between pre-exercise and recovery T1rho values were observed for either distance (3 mile: p = 0.8; 10 mile: p = 0.08). Percent decreases in T1rho relaxation times were significantly larger following 10 mile runs as compared to 3 mile runs (11 ± 1% vs. 4 ± 1%; p = 0.02). This data suggests that alterations to the relative proteoglycan concentration of knee cartilage due to water flow are mitigated within 24 hours of running up to 10 miles. This information may inform safe exercise and recovery protocols in asymptomatic male runners by characterizing running-induced changes in knee cartilage composition.
Collapse
|
31
|
Comparison of Cartilage Mechanical Properties Measured During Creep and Recovery. Sci Rep 2020; 10:1547. [PMID: 32005844 PMCID: PMC6994684 DOI: 10.1038/s41598-020-58220-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
The diagnosis of osteoarthritis (OA) currently depends on the presence of pain and radiographic imaging findings, which generally do not present until later stages of the disease when the condition is difficult to treat. Therefore, earlier detection of OA pathology is needed for improved disease management. Ex vivo cartilage studies indicate that changes in the mechanical function of cartilage occur as degeneration progresses during OA. Thus, measurement of the in vivo cartilage mechanical response may serve as an earlier indicator of OA pathology. Though mechanical characterization is classically performed during loading, the unloading (recovery) response of cartilage may also enable determination of mechanical response. Therefore, the purpose of this study was to validate the use of the recovery response for mechanical characterization of cartilage in a controlled, ex vivo environment. To do so, confined compression creep and recovery tests were conducted on cartilage explants (N = 10), and the resulting mechanical properties from both the creep and recovery phases were compared. No statistically significant differences were found in the mechanical properties between the two phases, reinforcing the hypothesis that unloading (recovery) may be a good surrogate for loading.
Collapse
|
32
|
Hidalgo Perea S, Lyons LP, Nishimuta JF, Weinberg JB, McNulty AL. Evaluation of culture conditions for in vitro meniscus repair model systems using bone marrow-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:322-337. [PMID: 31661326 PMCID: PMC7188595 DOI: 10.1080/03008207.2019.1680656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Meniscal injury and loss of meniscus tissue lead to osteoarthritis development. Therefore, novel biologic strategies are needed to enhance meniscus tissue repair. The purpose of this study was to identify a favorable culture medium for both bone marrow-derived mesenchymal stem cells (MSCs) and meniscal tissue, and to establish a novel meniscus tissue defect model that could be utilized for in vitro screening of biologics to promote meniscus repair.Materials and Methods: In parallel, we analyzed the biochemical properties of MSC - seeded meniscus-derived matrix (MDM) scaffolds and meniscus repair model explants cultured in different combinations of serum, dexamethasone (Dex), and TGF-β. Next, we combined meniscus tissue and MSC-seeded MDM scaffolds into a novel meniscus tissue defect model to evaluate the effects of chondrogenic and meniscal media on the tissue biochemical properties and repair strength.Results: Serum-free medium containing TGF-β and Dex was the most promising formulation for experiments with MSC-seeded scaffolds, whereas serum-containing medium was the most effective for meniscus tissue composition and integrative repair. When meniscus tissue and MSC-seeded MDM scaffolds were combined into a defect model, the chondrogenic medium (serum-free with TGF-β and Dex) enhanced the production of proteoglycans and promoted integrative repair of meniscus tissue. As well, cross-linked scaffolds improved repair over the MDM slurry.Conclusions: The meniscal tissue defect model established in this paper can be used to perform in vitro screening to identify and optimize biological treatments to enhance meniscus tissue repair prior to conducting preclinical animal studies.
Collapse
Affiliation(s)
- Sofia Hidalgo Perea
- Department of Biology, Duke University, Durham, North
Carolina, USA,Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - James F. Nishimuta
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - J. Brice Weinberg
- Department of Medicine, Duke University School of Medicine,
Durham, North Carolina, USA,VA Medical Center, Durham, NC, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA,Department of Pathology, Duke University School of
Medicine, Durham, North Carolina, USA,Corresponding Author: Amy L. McNulty,
PhD, Duke University School of Medicine, 355A Medical Sciences Research Building
1, DUMC Box 3093, Durham, NC 27710, Phone: 919-684-6882,
| |
Collapse
|
33
|
Lyons LP, Hidalgo Perea S, Weinberg JB, Wittstein JR, McNulty AL. Meniscus-Derived Matrix Bioscaffolds: Effects of Concentration and Cross-Linking on Meniscus Cellular Responses and Tissue Repair. Int J Mol Sci 2019; 21:ijms21010044. [PMID: 31861690 PMCID: PMC6981607 DOI: 10.3390/ijms21010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Meniscal injuries, particularly in the avascular zone, have a low propensity for healing and are associated with the development of osteoarthritis. Current meniscal repair techniques are limited to specific tear types and have significant risk for failure. In previous work, we demonstrated the ability of meniscus-derived matrix (MDM) scaffolds to augment the integration and repair of an in vitro meniscus defect. The objective of this study was to determine the effects of percent composition and dehydrothermal (DHT) or genipin cross-linking of MDM bioscaffolds on primary meniscus cellular responses and integrative meniscus repair. In all scaffolds, the porous microenvironment allowed for exogenous cell infiltration and proliferation, as well as endogenous meniscus cell migration. The genipin cross-linked scaffolds promoted extracellular matrix (ECM) deposition and/or retention. The shear strength of integrative meniscus repair was improved with increasing percentages of MDM and genipin cross-linking. Overall, the 16% genipin cross-linked scaffolds were most effective at enhancing integrative meniscus repair. The ability of the genipin cross-linked scaffolds to attract endogenous meniscus cells, promote glycosaminoglycan and collagen deposition, and enhance integrative meniscus repair reveals that these MDM scaffolds are promising tools to augment meniscus healing.
Collapse
Affiliation(s)
- Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
| | - Sofia Hidalgo Perea
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - J. Brice Weinberg
- Department of Medicine, VA Medical Center, Durham, NC 27705, USA;
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jocelyn R. Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-919-684-6882
| |
Collapse
|
34
|
Martín Noguerol T, Raya JG, Wessell DE, Vilanova JC, Rossi I, Luna A. Functional MRI for evaluation of hyaline cartilage extracelullar matrix, a physiopathological-based approach. Br J Radiol 2019; 92:20190443. [PMID: 31433668 DOI: 10.1259/bjr.20190443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MRI of articular cartilage (AC) integrity has potential to become a biomarker for osteoarthritis progression. Traditional MRI sequences evaluate AC morphology, allowing for the measurement of thickness and its change over time. In the last two decades, more advanced, dedicated MRI cartilage sequences have been developed aiming to assess AC matrix composition non-invasively and detect early changes in cartilage not captured on morphological sequences. T2-mapping and T1ρ sequences can be used to estimate the relaxation times of water inside the AC. These sequences have been introduced into clinical protocols and show promising results for cartilage assessment. Extracelullar matrix can also be assessed using diffusion-weighted imaging and diffusion tensor imaging as the movement of water is limited by the presence of extracellular matrix in AC. Specific techniques for glycosaminoglycans (GAG) evaluation, such as delayed gadolinium enhanced MRI of cartilage or Chemical Exchange Saturation Transfer imaging of GAG, as well as sodium imaging have also shown utility in the detection of AC damage. This manuscript provides an educational update on the physical principles behind advanced AC MRI techniques as well as a comprehensive review of the strengths and weaknesses of each approach. Current clinical applications and potential future applications of these techniques are also discussed.
Collapse
Affiliation(s)
| | - Jose G Raya
- Department of Radiology, NYU School of Medicine, NY, USA
| | | | - Joan C Vilanova
- Department of Radiology, Clínica Girona. Institute Diagnostic Imaging (IDI), University of Girona, Girona, Spain
| | | | - Antonio Luna
- MRI unit, Radiology department, Health Time, Jaén, Spain
| |
Collapse
|
35
|
Pietrosimone B, Pfeiffer SJ, Harkey MS, Wallace K, Hunt C, Blackburn JT, Schmitz R, Lalush D, Nissman D, Spang JT. Quadriceps weakness associates with greater T1ρ relaxation time in the medial femoral articular cartilage 6 months following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27:2632-2642. [PMID: 30560446 DOI: 10.1007/s00167-018-5290-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Quadriceps weakness following anterior cruciate ligament reconstruction (ACLR) is linked to decreased patient-reported function, altered lower extremity biomechanics and tibiofemoral joint space narrowing. It remains unknown if quadriceps weakness is associated with early deleterious changes to femoral cartilage composition that are suggestive of posttraumatic osteoarthritis development. The purpose of the cross-sectional study was to determine if quadriceps strength was associated with T1ρ relaxation times, a marker of proteoglycan density, of the articular cartilage in the medial and lateral femoral condyles 6 months following ACLR. It is hypothesized that individuals with weaker quadriceps would demonstrate lesser proteoglycan density. METHODS Twenty-seven individuals (15 females, 12 males) with a patellar tendon autograft ACLR underwent isometric quadriceps strength assessments in 90°of knee flexion during a 6-month follow-up exam. Magnetic resonance images (MRI) were collected bilaterally and voxel by voxel T1ρ relaxation times were calculated using a five-image sequence and a monoexponential equation. Following image registration, the articular cartilage for the weight-bearing surfaces of the medial and lateral femoral condyles (MFC and LFC) were manually segmented and further sub-sectioned into posterior, central and anterior regions of interest (ROI) based on the corresponding meniscal anatomy viewed in the sagittal plane. Univariate linear regression models were used to determine the association between quadriceps strength and T1ρ relaxation times in the entire weight-bearing MFC and LFC, as well as the ROI in each respective limb. RESULTS Lesser quadriceps strength was significantly associated with greater T1ρ relaxation times in the entire weight-bearing MFC (R2 = 0.14, P = 0.05) and the anterior-MFC ROI (R2 = 0.22, P = 0.02) of the ACLR limb. A post hoc analysis found lesser strength and greater T1ρ relaxation times were significantly associated in a subsection of participants (n = 18) without a concomitant medial tibiofemoral compartment meniscal or chondral injury in the entire weight-bearing MFC, as well as anterior-MFC and central-MFC ROI of the ACLR and uninjured limb. CONCLUSIONS The association between weaker quadriceps and greater T1ρ relaxation times in the MFC suggests deficits in lower extremity muscle strength may be related to cartilage composition as early as 6 months following ACLR. Maximizing quadriceps strength in the first 6 months following ACLR may be critical for promoting cartilage health early following ACLR. LEVEL OF EVIDENCE Prognostic level 1.
Collapse
Affiliation(s)
- Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, CB# 8700, 209 Fetzer Hall South Road, Chapel Hill, NC, 27599, USA. .,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Fetzer Hall 209 South Road, Chapel Hill, NC, 27599, USA. .,Department of Orthopaedics, University of North Carolina at Chapel Hill, 102 Mason Farm Rd # 2, Chapel Hill, NC, 27599, USA.
| | - Steven J Pfeiffer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, CB# 8700, 209 Fetzer Hall South Road, Chapel Hill, NC, 27599, USA.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Fetzer Hall 209 South Road, Chapel Hill, NC, 27599, USA
| | - Matthew S Harkey
- Division of Rheumatology, Tufts Medical Center, 800 Washington Street, South Building, 3rd Floor, Boston, MA, 02111, USA
| | - Kyle Wallace
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, CB# 8700, 209 Fetzer Hall South Road, Chapel Hill, NC, 27599, USA
| | - Christian Hunt
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, CB# 8700, 209 Fetzer Hall South Road, Chapel Hill, NC, 27599, USA
| | - J Troy Blackburn
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, CB# 8700, 209 Fetzer Hall South Road, Chapel Hill, NC, 27599, USA.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Fetzer Hall 209 South Road, Chapel Hill, NC, 27599, USA.,Department of Orthopaedics, University of North Carolina at Chapel Hill, 102 Mason Farm Rd # 2, Chapel Hill, NC, 27599, USA
| | - Randy Schmitz
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman Building, 1408 Walker Avenue, Greensboro, NC, 27402, USA
| | - David Lalush
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 333 S Columbia St, Raleigh, NC, 27514, USA
| | - Daniel Nissman
- Department of Radiology, University of North Carolina at Chapel Hill, 101 Manning Dr # 2, Chapel Hill, NC, 27599, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, 102 Mason Farm Rd # 2, Chapel Hill, NC, 27599, USA
| |
Collapse
|
36
|
Ruprecht JC, Waanders TD, Rowland CR, Nishimuta JF, Glass KA, Stencel J, DeFrate LE, Guilak F, Weinberg JB, McNulty AL. Meniscus-Derived Matrix Scaffolds Promote the Integrative Repair of Meniscal Defects. Sci Rep 2019; 9:8719. [PMID: 31213610 PMCID: PMC6582057 DOI: 10.1038/s41598-019-44855-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023] Open
Abstract
Meniscal tears have a poor healing capacity, and damage to the meniscus is associated with significant pain, disability, and progressive degenerative changes in the knee joint that lead to osteoarthritis. Therefore, strategies to promote meniscus repair and improve meniscus function are needed. The objective of this study was to generate porcine meniscus-derived matrix (MDM) scaffolds and test their effectiveness in promoting meniscus repair via migration of endogenous meniscus cells from the surrounding meniscus or exogenously seeded human bone marrow-derived mesenchymal stem cells (MSCs). Both endogenous meniscal cells and MSCs infiltrated the MDM scaffolds. In the absence of exogenous cells, the 8% MDM scaffolds promoted the integrative repair of an in vitro meniscal defect. Dehydrothermal crosslinking and concentration of the MDM influenced the biochemical content and shear strength of repair, demonstrating that the MDM can be tailored to promote tissue repair. These findings indicate that native meniscus cells can enhance meniscus healing if a scaffold is provided that promotes cellular infiltration and tissue growth. The high affinity of cells for the MDM and the ability to remodel the scaffold reveals the potential of MDM to integrate with native meniscal tissue to promote long-term repair without necessarily requiring exogenous cells.
Collapse
Affiliation(s)
- Jacob C Ruprecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Taylor D Waanders
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Christopher R Rowland
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - James F Nishimuta
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Katherine A Glass
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jennifer Stencel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Louis E DeFrate
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA
| | - J Brice Weinberg
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,VA Medical Center, Durham, NC, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA. .,Department of Pathology, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Van Rossom S, Wesseling M, Van Assche D, Jonkers I. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking. Cartilage 2019; 10:229-237. [PMID: 29322877 PMCID: PMC6425544 DOI: 10.1177/1947603517752057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. DESIGN MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. RESULTS Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. CONCLUSIONS The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.
Collapse
Affiliation(s)
- Sam Van Rossom
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium,Sam Van Rossom, Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Tervuursevest 101, Box 1501, 3001 Leuven, Belgium.
| | - Mariska Wesseling
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dieter Van Assche
- Musculoskeletal Rehabilitation Research Group, Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Wan C, Ge L, Souza RB, Tang SY, Alliston T, Hao Z, Li X. T 1ρ-based fibril-reinforced poroviscoelastic constitutive relation of human articular cartilage using inverse finite element technology. Quant Imaging Med Surg 2019; 9:359-370. [PMID: 31032184 DOI: 10.21037/qims.2019.03.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Mapping of T1ρ relaxation time is a quantitative magnetic resonance (MR) method and is frequently used for analyzing microstructural and compositional changes in cartilage tissues. However, there is still a lack of study investigating the link between T1ρ relaxation time and a feasible constitutive relation of cartilage which can be used to model complicated mechanical behaviors of cartilage accurately and properly. Methods Three-dimensional finite element (FE) models of ten in vitro human tibial cartilage samples were reconstructed such that each element was assigned by material-level parameters, which were determined by a corresponding T1ρ value from MR maps. A T1ρ-based fibril-reinforced poroviscoelastic (FRPE) constitutive relation for human cartilage was developed through an inverse FE optimization technique between the experimental and simulated indentations. Results A two-parameter exponential relationship was obtained between the T1ρ and the volume fraction of the hydrated solid matrix in the T1ρ-based FRPE constitutive relation. Compared with the common FRPE constitutive relation (i.e., without T1ρ), the T1ρ-based FRPE constitutive relation indicated similar indentation depth results but revealed some different local changes of the stress distribution in cartilages. Conclusions Our results suggested that the T1ρ-based FRPE constitutive relation may improve the detection of changes in the heterogeneous, anisotropic, and nonlinear mechanical properties of human cartilage tissues associated with joint pathologies such as osteoarthritis (OA). Incorporating T1ρ relaxation time will provide a more precise assessment of human cartilage based on the individual in vivo MR quantification.
Collapse
Affiliation(s)
- Chao Wan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.,Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Liang Ge
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Richard B Souza
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Zhixiu Hao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.,Program of Advanced Musculoskeletal Imaging, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
39
|
DeFrate LE, Kim-Wang SY, Englander ZA, McNulty AL. Osteoarthritis year in review 2018: mechanics. Osteoarthritis Cartilage 2019; 27:392-400. [PMID: 30597275 PMCID: PMC6489451 DOI: 10.1016/j.joca.2018.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review recent biomechanics literature focused on the interactions between biomechanics and articular cartilage health, particularly focused on macro-scale and human studies. DESIGN A literature search was conducted in PubMed using the search terms (biomechanics AND osteoarthritis) OR (biomechanics AND cartilage) OR (mechanics AND osteoarthritis) OR (mechanics AND cartilage) for publications from April 2017 to April 2018. RESULTS Abstracts from the 559 articles generated from the literature search were reviewed. Due to the wide range of topics, 62 full texts with a focus on in vivo biomechanical studies were included for further discussion. Several overarching themes in the recent literature were identified and are summarized, including 1) new methods to detect early osteoarthritis (OA) development, 2) studies describing healthy and OA cartilage and biomechanics, 3) ACL injury and OA development, 4) meniscus injury and OA development, and 5) OA prevention, treatment, and management. CONCLUSIONS Mechanical loading is a critical factor in the maintenance of joint health. Abnormal mechanical loading can lead to the onset and progression of OA. Thus, recent studies have utilized various biomechanical models to better describe the etiology of OA development and the subsequent effects of OA on the mechanics of joint tissues and whole body biomechanics.
Collapse
Affiliation(s)
- Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Sophia Y. Kim-Wang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Zoë A. Englander
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Pathology, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
40
|
Paranjape CS, Cutcliffe HC, Grambow SC, Utturkar GM, Collins AT, Garrett WE, Spritzer CE, DeFrate LE. A New Stress Test for Knee Joint Cartilage. Sci Rep 2019; 9:2283. [PMID: 30783146 PMCID: PMC6381136 DOI: 10.1038/s41598-018-38104-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Cartilage metabolism—both the synthesis and breakdown of cartilage constituents and architecture—is influenced by its mechanical loading. Therefore, physical activity is often recommended to maintain cartilage health and to treat or slow the progression of osteoarthritis, a debilitating joint disease causing cartilage degeneration. However, the appropriate exercise frequency, intensity, and duration cannot be prescribed because direct in vivo evaluation of cartilage following exercise has not yet been performed. To address this gap in knowledge, we developed a cartilage stress test to measure the in vivo strain response of healthy human subjects’ tibial cartilage to walking exercise. We varied both walk duration and speed in a dose-dependent manner to quantify how these variables affect cartilage strain. We found a nonlinear relationship between walk duration and in vivo compressive strain, with compressive strain initially increasing with increasing duration, then leveling off with longer durations. This work provides innovative measurements of cartilage creep behavior (which has been well-documented in vitro but not in vivo) during walking. This study showed that compressive strain increased with increasing walking speed for the speeds tested in this study (0.9–2.0 m/s). Furthermore, our data provide novel measurements of the in vivo strain response of tibial cartilage to various doses of walking as a mechanical stimulus, with maximal strains of 5.0% observed after 60 minutes of walking. These data describe physiological benchmarks for healthy articular cartilage behavior during walking and provide a much-needed baseline for studies investigating the effect of exercise on cartilage health.
Collapse
Affiliation(s)
| | - Hattie C Cutcliffe
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Steven C Grambow
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | | - Amber T Collins
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | | | | | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA. .,Department of Biomedical Engineering, Duke University, Durham, NC, USA. .,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
41
|
Taylor KA, Collins AT, Heckelman LN, Kim SY, Utturkar GM, Spritzer CE, Garrett WE, DeFrate LE. Activities of daily living influence tibial cartilage T1rho relaxation times. J Biomech 2019; 82:228-233. [PMID: 30455059 PMCID: PMC6492554 DOI: 10.1016/j.jbiomech.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Quantitative T1rho magnetic resonance imaging (MRI) can potentially help identify early-stage osteoarthritis (OA) by non-invasively assessing proteoglycan concentration in articular cartilage. T1rho relaxation times are negatively correlated with proteoglycan concentration. Cartilage compresses in response to load, resulting in water exudation, a relative increase in proteoglycan concentration, and a decrease in the corresponding T1rho relaxation times. To date, there is limited information on changes in cartilage composition resulting from daily activity. Therefore, the objective of this study was to quantify changes in tibial cartilage T1rho relaxation times in healthy human subjects following activities of daily living. It was hypothesized that water exudation throughout the day would lead to decreased T1rho relaxation times. Subjects underwent MR imaging in the morning and afternoon on the same day and were free to go about their normal activities between scans. Our findings confirmed the hypothesis that tibial cartilage T1rho relaxation times significantly decreased (by 7%) over the course of the day with loading, which is indicative of a relative increase in proteoglycan concentration. Additionally, baseline T1rho values varied with position within the cartilage, supporting a need for site-specific measurements of T1rho relaxation times. Understanding how loading alters the proteoglycan concentration in healthy cartilage may hold clinical significance pertaining to cartilage homeostasis and potentially help to elucidate a mechanism for OA development. These results also indicate that future studies using T1rho relaxation times as an indicator of cartilage health should control the loading history prior to image acquisition to ensure the appropriate interpretation of the data.
Collapse
Affiliation(s)
- Kevin A Taylor
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Amber T Collins
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Lauren N Heckelman
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Y Kim
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
42
|
Sutter EG, Liu B, Utturkar GM, Widmyer MR, Spritzer CE, Cutcliffe HC, Englander ZA, Goode AP, Garrett WE, DeFrate LE. Effects of Anterior Cruciate Ligament Deficiency on Tibiofemoral Cartilage Thickness and Strains in Response to Hopping. Am J Sports Med 2019; 47:96-103. [PMID: 30365903 PMCID: PMC6559720 DOI: 10.1177/0363546518802225] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Changes in knee kinematics after anterior cruciate ligament (ACL) injury may alter loading of the cartilage and thus affect its homeostasis, potentially leading to the development of posttraumatic osteoarthritis. However, there are limited in vivo data to characterize local changes in cartilage thickness and strain in response to dynamic activity among patients with ACL deficiency. PURPOSE/HYPOTHESIS The purpose was to compare in vivo tibiofemoral cartilage thickness and cartilage strain resulting from dynamic activity between ACL-deficient and intact contralateral knees. It was hypothesized that ACL-deficient knees would show localized reductions in cartilage thickness and elevated cartilage strains. STUDY DESIGN Controlled laboratory study. METHODS Magnetic resonance images were obtained before and after single-legged hopping on injured and uninjured knees among 8 patients with unilateral ACL rupture. Three-dimensional models of the bones and articular surfaces were created from the pre- and postactivity scans. The pre- and postactivity models were registered to each other, and cartilage strain (defined as the normalized difference in cartilage thickness pre- and postactivity) was calculated in regions across the tibial plateau, femoral condyles, and femoral cartilage adjacent to the medial intercondylar notch. These measurements were compared between ACL-deficient and intact knees. Differences in cartilage thickness and strain between knees were tested with multiple analysis of variance models with alpha set at P < .05. RESULTS Compressive strain in the intercondylar notch was elevated in the ACL-deficient knee relative to the uninjured knee. Furthermore, cartilage in the intercondylar notch and adjacent medial tibia was significantly thinner before activity in the ACL-deficient knee versus the intact knee. In these 2 regions, thinning was significantly influenced by time since injury, with patients with more chronic ACL deficiency (>1 year since injury) experiencing greater thinning. CONCLUSION Among patients with ACL deficiency, the medial femoral condyle adjacent to the intercondylar notch in the ACL-deficient knee exhibited elevated cartilage strain and loss of cartilage thickness, particularly with longer time from injury. It is hypothesized that these changes may be related to posttraumatic osteoarthritis development. CLINICAL RELEVANCE This study suggests that altered mechanical loading is related to localized cartilage thinning after ACL injury.
Collapse
Affiliation(s)
- E. Grant Sutter
- Department of Orthopaedic Surgery, Duke University, Durham,
NC
| | - Betty Liu
- Department of Biomedical Engineering, Duke University,
Durham, NC
| | | | | | | | | | - Zoë A. Englander
- Department of Biomedical Engineering, Duke University,
Durham, NC
| | - Adam P. Goode
- Department of Orthopaedic Surgery, Duke University, Durham,
NC
| | | | - Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham,
NC,Department of Biomedical Engineering, Duke University,
Durham, NC,Department of Mechanical Engineering and Materials Science,
Duke University, Durham, NC
| |
Collapse
|
43
|
Collins AT, Kulvaranon ML, Cutcliffe HC, Utturkar GM, Smith WAR, Spritzer CE, Guilak F, DeFrate LE. Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI. Arthritis Res Ther 2018; 20:232. [PMID: 30333058 PMCID: PMC6235204 DOI: 10.1186/s13075-018-1727-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/19/2018] [Indexed: 01/17/2023] Open
Abstract
Background Obesity is a primary risk factor for the development of knee osteoarthritis (OA). However, there remains a lack of in vivo data on the influence of obesity on knee cartilage mechanics and composition. The purpose of this study was to determine the relationship between obesity and tibiofemoral cartilage properties. Methods Magnetic resonance images (3T) of cartilage geometry (double-echo steady-state) and T1rho relaxation of the knee were obtained in healthy subjects with a normal (n = 8) or high (n = 7) body mass index (BMI) before and immediately after treadmill walking. Subjects had no history of lower limb injury or surgery. Bone and cartilage surfaces were segmented and three-dimensional models were created to measure cartilage thickness and strain. T1rho relaxation times were measured before exercise in both the tibial and femoral cartilage in order to characterize biochemical composition. Body fat composition was also measured. Results Subjects with a high BMI exhibited significantly increased tibiofemoral cartilage strain and T1rho relaxation times (P <0.05). Tibial pre-exercise cartilage thickness was also affected by BMI (P <0.05). Correlational analyses revealed that pre-exercise tibial cartilage thickness decreased with increasing BMI (R2 = 0.43, P <0.01) and body fat percentage (R2 = 0.58, P <0.01). Tibial and femoral cartilage strain increased with increasing BMI (R2 = 0.45, P <0.01; R2 = 0.51, P <0.01, respectively) and increasing body fat percentage (R2 = 0.40, P <0.05; R2 = 0.38, P <0.05, respectively). Additionally, tibial T1rho was positively correlated with BMI (R2 = 0.39, P <0.05) and body fat percentage (R2 = 0.47, P <0.01). Conclusions Strains and T1rho relaxation times in the tibiofemoral cartilage were increased in high BMI subjects compared with normal BMI subjects. Additionally, pre-exercise tibial cartilage thickness decreased with obesity. Reduced proteoglycan content may be indicative of pre-symptomatic osteoarthritic degeneration, resulting in reduced cartilage thickness and increased deformation of cartilage in response to loading.
Collapse
Affiliation(s)
- Amber T Collins
- Department of Orthopaedic Surgery, Duke University, Box 3093, Duke University Medical Center, Durham, NC, 27710, USA
| | - Micaela L Kulvaranon
- Department of Orthopaedic Surgery, Duke University, Box 3093, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hattie C Cutcliffe
- Department of Orthopaedic Surgery, Duke University, Box 3093, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Biomedical Engineering, Duke University, Campus Box 90281, 101 Science Drive, Durham, 27708, NC, USA
| | - Gangadhar M Utturkar
- Department of Orthopaedic Surgery, Duke University, Box 3093, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wyatt A R Smith
- Department of Orthopaedic Surgery, Duke University, Box 3093, Duke University Medical Center, Durham, NC, 27710, USA
| | - Charles E Spritzer
- Department of Radiology, Duke University, Box 3808, Duke University Medical Center, Durham, 27710, NC, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University and Shriners Hospitals for Children, Campus Box 8233, Couch Research Building, Room 3121, St. Louis, 63110, MO, USA
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University, Box 3093, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Biomedical Engineering, Duke University, Campus Box 90281, 101 Science Drive, Durham, 27708, NC, USA. .,Department of Mechanical Engineering and Materials Science, Duke University, Campus Box 90300, Hudson Hall, Durham, 27708, NC, USA.
| |
Collapse
|
44
|
Selective Enzymatic Digestion of Proteoglycans and Collagens Alters Cartilage T1rho and T2 Relaxation Times. Ann Biomed Eng 2018; 47:190-201. [PMID: 30288634 DOI: 10.1007/s10439-018-02143-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
Our objective was to determine the relationship of T1rho and T2 relaxation mapping to the biochemical and biomechanical properties of articular cartilage through selective digestion of proteoglycans and collagens. Femoral condyles were harvested from porcine knee joints and treated with either chondroitinase ABC (cABC) followed by collagenase, or collagenase followed by cABC. Magnetic resonance images were acquired and cartilage explants were harvested for biochemical, biomechanical, and histological analyses before and after each digestion. Targeted enzymatic digestion of proteoglycans with cABC resulted in elevated T1rho relaxation times and decreased sulfated glycosaminoglycan content without affecting T2 relaxation times. In contrast, extractable collagen and T2 relaxation times were increased by collagenase digestion; however, neither was altered by cABC digestion. Aggregate modulus decreased with digestion of both components. Overall, we found that targeted digestion of proteoglycans and collagens had varying effects on biochemical, biomechanical, and imaging properties. T2 relaxation times were altered with changes in extractable collagen, but not changes in proteoglycan. However, T1rho relaxation times were altered with proteoglycan loss, which may also coincide with collagen disruption. Since it is unclear which matrix components are disrupted first in osteoarthritis, both markers may be important for tracking disease progression.
Collapse
|
45
|
Rexwinkle JT, Werner NC, Stoker AM, Salim M, Pfeiffer FM. Investigating the relationship between proteomic, compositional, and histologic biomarkers and cartilage biomechanics using artificial neural networks. J Biomech 2018; 80:136-143. [DOI: 10.1016/j.jbiomech.2018.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/09/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
46
|
Pfeiffer S, Harkey MS, Stanley LE, Blackburn JT, Padua DA, Spang JT, Marshall SW, Jordan JM, Schmitz R, Nissman D, Pietrosimone B. Associations Between Slower Walking Speed and T1ρ Magnetic Resonance Imaging of Femoral Cartilage Following Anterior Cruciate Ligament Reconstruction. Arthritis Care Res (Hoboken) 2018; 70:1132-1140. [PMID: 29193888 DOI: 10.1002/acr.23477] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/21/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To determine whether walking speed, collected at 6 and 12 months following anterior cruciate ligament reconstruction (ACLR), is associated with inter-extremity differences in proteoglycan density, measured via T1ρ magnetic resonance imaging, in tibiofemoral articular cartilage 12 months following ACLR. METHODS Twenty-one individuals with a unilateral patellar-tendon autograft ACLR (10 women and 11 men, mean ± SD age 23.9 ± 2.7 years, mean ± SD body mass index 23.9 ± 2.7 kg/m2 ) were recruited for participation in this study. Walking speed was collected using 3-dimensional motion capture at 6 and 12 months following ACLR. The articular cartilage of the medial femoral condyle (MFC) and lateral femoral condyle and medial and lateral tibial condyles was manually segmented and subsectioned into 3 regions of interest (anterior, central, and posterior) based on the location of the meniscus in the sagittal plane. Inter-extremity mean T1ρ relaxation time ratios (T1ρ ACLR extremity / T1ρ contralateral extremity) were calculated and used for analysis. Pearson product-moment correlations were used to determine associations between walking speed and inter-extremity differences in T1ρ relaxation time ratios. RESULTS Slower walking speed 6 months post-ACLR was significantly associated with higher T1ρ relaxation time ratios in the MFC of the ACLR extremity 12 months following ACLR (posterior MFC, r = -0.51, P = 0.02; central MFC, r = -0.47, P = 0.04). Similarly, slower walking speed at 12 months post-ACLR was significantly associated with higher T1ρ relaxation time ratios in the posterior MFC ACLR extremity (r = -0.47, P = 0.04) 12 months following ACLR. CONCLUSION Slower walking speed at 6 and 12 months following ACLR may be associated with early proteoglycan density changes in medial femoral compartment cartilage health in the first 12 months following ACLR.
Collapse
|
47
|
Zhang H, Heckelman LN, Spritzer CE, Owusu-Akyaw KA, Martin JT, Taylor DC, Moorman C, Garrigues GE, DeFrate LE. In Vivo Assessment of Exercise-Induced Glenohumeral Cartilage Strain. Orthop J Sports Med 2018; 6:2325967118784518. [PMID: 30023404 PMCID: PMC6047251 DOI: 10.1177/2325967118784518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The human shoulder joint is the most mobile joint in the body. While in vivo shoulder kinematics under minimally loaded conditions have been studied, it is unclear how glenohumeral cartilage responds to high-demand loaded exercise. HYPOTHESIS A high-demand upper extremity exercise, push-ups, will induce compressive strain in the glenohumeral articular cartilage, which can be measured with validated magnetic resonance imaging (MRI)-based techniques. STUDY DESIGN Descriptive laboratory study. METHODS High-resolution MRI was used to measure in vivo glenohumeral cartilage thickness before and after exercise among 8 study participants with no history of upper extremity injury or disease. Manual MRI segmentation and 3-dimensional modeling techniques were used to generate pre- and postexercise thickness maps of the humeral head and glenoid cartilage. Strain was calculated as the difference between pre- and postexercise cartilage thickness, normalized to the pre-exercise cartilage thickness. RESULTS Significant compressive cartilage strains of 17% ± 6% and 15% ± 7% (mean ± 95% CI) were detected in the humeral head and glenoid cartilage, respectively. The anterior region of the glenoid cartilage experienced a significantly higher mean strain (19% ± 6%) than the posterior region of the glenoid cartilage (12% ± 8%). No significant regional differences in postexercise humeral head cartilage strain were observed. CONCLUSION Push-ups induce compressive strain on the glenohumeral joint articular cartilage, particularly at the anterior glenoid. This MRI-based methodology can be applied to further the understanding of chondral changes in the shoulder under high-demand loading conditions. CLINICAL RELEVANCE These results improve the understanding of healthy glenohumeral cartilage mechanics in response to loaded upper extremity exercise. In the future, these methods can be applied to identify which activities induce high glenohumeral cartilage strains and deviations from normal shoulder function.
Collapse
Affiliation(s)
- Hanci Zhang
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - Lauren N. Heckelman
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Kwadwo A. Owusu-Akyaw
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - John T. Martin
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - Dean C. Taylor
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - C.T. Moorman
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - Grant E. Garrigues
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
| | - Louis E. DeFrate
- Department of Orthopaedic Surgery, James R. Urbaniak, MD, Sports Sciences Institute, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
48
|
Kumar D, Su F, Wu D, Pedoia V, Heitkamp L, Ma B, Souza RB, Li X. Frontal Plane Knee Mechanics and Early Cartilage Degeneration in People With Anterior Cruciate Ligament Reconstruction: A Longitudinal Study. Am J Sports Med 2018; 46:378-387. [PMID: 29125920 PMCID: PMC6709529 DOI: 10.1177/0363546517739605] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Abnormal frontal plane gait mechanics are known risk factors for knee osteoarthritis, but their role in early cartilage degeneration after anterior cruciate ligament reconstruction (ACLR) is not well understood. Hypothesis/Purpose: The objective was to evaluate the association of frontal plane gait mechanics with medial knee cartilage magnetic resonance (MR) relaxation times over 1 year in patients with ACLR and controls. It was hypothesized that (1) there will be an increase in frontal plane medial knee loading and medial knee MR relaxation times over time in the patients with ACLR, and (2) increases in frontal plane medial knee loading will be associated with an increase in medial knee MR relaxation times. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS Patients with ACLR (n = 37) underwent walking gait analyses and bilateral quantitative MR imaging (MRI) before surgery and at 6 and 12 months after ACLR. Healthy control participants (n = 13) were evaluated at baseline and 12 months. Gait variables included peak knee adduction moment (KAM), KAM impulse, and peak knee adduction angle. MRI variables included medial femur and medial tibia whole compartment and subregional T1ρ and T2 relaxation times. Statistical analyses included a comparison of changes over time for gait and MRI variables, correlations between changes in gait and MRI variables over time, and differences in change in MRI variables in patients who showed an increase versus decrease in KAM impulse. RESULTS There were significant increases in medial T1ρ (Δ 4%-11%) and T2 (Δ 2%-10%) relaxation times from baseline to 6 months for both knees in the ACLR group and in KAM (Δ 13%) for the injured knee. From baseline to 6 months, patients who had an increase in KAM impulse in the injured knee had a greater increase in medial T1ρ and T2 relaxation times as compared with those who did not have an increase in KAM impulse. Longitudinal changes for the control group were not significant. CONCLUSION There is an increase in medial knee relaxation times over the first 6 months after ACLR. People with an increase in medial knee loading show an increase in medial knee relaxation times when compared with those who do not have an increase in medial knee loading over the first 6 months.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Physical Therapy & Athletic Training, Boston University, Boston, MA,Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Favian Su
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Daniel Wu
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Valentina Pedoia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Lauren Heitkamp
- Department of Health Professions, Medical University of South Carolina, Charleston, SC
| | - Benjamin Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Richard B. Souza
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA,Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA
| | - Xiaojuan Li
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| |
Collapse
|
49
|
Nebelung S, Sondern B, Jahr H, Tingart M, Knobe M, Thüring J, Kuhl C, Truhn D. Non-invasive T1ρ mapping of the human cartilage response to loading and unloading. Osteoarthritis Cartilage 2018; 26:236-244. [PMID: 29175373 DOI: 10.1016/j.joca.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To define the physiological response to sequential loading and unloading in histologically intact human articular cartilage using serial T1ρ mapping, as T1ρ is considered to indicate the tissue's macromolecular content. METHOD 18 macroscopically intact cartilage-bone samples were obtained from the central lateral femoral condyles of 18 patients undergoing total knee replacement. Serial T1ρ mapping was performed on a clinical 3.0-T MRI system using a modified prostate coil. Spin-lock multiple gradient-echo sequences prior to, during and after standardized indentation loading (displacement controlled, strain 20%) were used to obtain seven serial T1ρ maps: unloaded (δ0), quasi-statically loaded (indentation1-indentation3) and under subsequent relaxation (relaxation1-relaxation3). After manual segmentation, zonal and regional regions-of-interest were defined. ROI-specific relative changes were calculated and statistically assessed using paired t-tests. Histological (Mankin classification) and biomechanical (unconfined compression) evaluations served as references. RESULTS All samples were histologically and biomechanically grossly intact (Mankin sum: 1.8 ± 1.2; Young's Modulus: 0.7 ± 0.4 MPa). Upon loading, T1ρ consistently increased throughout the entire sample thickness, primarily subpistonally (indentation1 [M ± SD]: 9.5 ± 7.8% [sub-pistonal area, SPA] vs 4.2 ± 5.8% [peri-pistonal area, PPA]; P < 0.001). T1ρ further increased with ongoing loading (indentation3: 14.1 ± 8.1 [SPA] vs 7.7 ± 5.9% [PPA]; P < 0.001). Even upon unloading (i.e., relaxation), T1ρ persistently increased in time. CONCLUSION Serial T1ρ-mapping reveals distinct and complex zonal and regional changes in articular cartilage as a function of loading and unloading. Thereby, longitudinal adaptive processes in hyaline cartilage become evident, which may be used for the tissue's non-invasive functional characterization by T1ρ.
Collapse
Affiliation(s)
- S Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - B Sondern
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - H Jahr
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Tingart
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany.
| | - J Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - D Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
50
|
Fleck AK, Kruger U, Carlson K, Waltz C, McCallum SA, Lucas Lu X, Wan LQ. Zonal variation of MRI-measurable parameters classifies cartilage degradation. J Biomech 2017; 65:176-184. [DOI: 10.1016/j.jbiomech.2017.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/29/2017] [Accepted: 10/15/2017] [Indexed: 01/26/2023]
|