1
|
Miao G, Wong JL, Chew JJ, Khaerudini DS, Sunarso J, Xu F. Deep eutectic solvent pretreatment of oil palm biomass: Promoted lignin pyrolysis and enzymatic digestibility of solid residues. Int J Biol Macromol 2024; 293:138847. [PMID: 39725101 DOI: 10.1016/j.ijbiomac.2024.138847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.56 % and 95.63 %, respectively, for EFB and 75.95 % and 88.60 %, for MSF. Uncondensed lignin enriched with 71.79-81.61 % of β-O-4 bonds was obtained from EFB and MSF using ChCl/OA/EG. 2D HSQC NMR and the density functional theory calculation confirmed that substituting the lignin Cα position by ethylene glycol changed the local potentials of the β-O-4 bonds, impeding the attack of protons (H+). The higher β-O-4 linkage content in ChCl/OA/EG-Ls led to the formation of several oxygenated alkyl methoxy phenols and alkyl methoxy phenols were promoted during the pyrolysis. Moreover, molecular dynamics simulations showed that the main factor affecting lignin extraction and dissolution in this study was the diffusion coefficient of lignin in DESs.
Collapse
Affiliation(s)
- Guohua Miao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jung Lin Wong
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia
| | - Jiuan Jing Chew
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia
| | - Deni Shidqi Khaerudini
- Research Center for Advanced Materials, National Research and Innovation Agency, Bld. 440 Kawasan Puspiptek Serpong, South Tangerang 15314, Banten, Indonesia
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Rajan K, Berton P, Rogers RD, Shamshina JL. Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development. Polymers (Basel) 2024; 16:3438. [PMID: 39684183 DOI: 10.3390/polym16233438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
By reflecting on the history and environmental impact of conventional biorefining, such as kraft pulping, we aim to explore important questions about how natural polymers can be more sustainably sourced to develop bio-products and reduce reliance on plastics. Since the Industrial Revolution, chemical pulping processes have enabled the mass production of cellulosic products from woody biomass. Kraft pulping, which dominates within modern pulp and paper mills, has significantly contributed to environmental pollution and carbon emissions due to sulfurous byproducts and its high water and energy consumption. While chemical pulping technologies have advanced over time, with improvements aimed at enhancing sustainability and economic feasibility, conventional biorefineries still face challenges related to biomass conversion efficiency and environmental impact. For example, efforts to fully utilize wood resources, such as isolating lignin from black liquor, have made limited progress. This perspective provides a thoughtful examination of the growth of chemical pulping, particularly the kraft process, in the production of consumer goods and its environmental consequences. It also presents key insights into the bottlenecks in developing truly sustainable biomass conversion technologies and explores potential alternatives to traditional chemical pulping.
Collapse
Affiliation(s)
- Kalavathy Rajan
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Paula Berton
- Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, AL 35403, USA
| | - Julia L Shamshina
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Fernandes C, Aliaño-González MJ, Cid Gomes L, Bernin D, Gaspar R, Fardim P, Reis MS, Alves L, Medronho B, Rasteiro MG, Varela C. Lignin extraction from acacia wood: Crafting deep eutectic solvents with a systematic D-optimal mixture-process experimental design. Int J Biol Macromol 2024; 280:135936. [PMID: 39322130 DOI: 10.1016/j.ijbiomac.2024.135936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Lignin is a complex biopolymer whose efficient extraction from biomass is crucial for various applications. Deep eutectic solvents (DES), particularly natural-origin DES (NADES), have emerged as promising systems for lignin fractionation and separation from other biomass components. While ternary DES offer enhanced fractionation performance, the role of each component in these mixtures remains unclear. In this study, the effects of adding tartaric acid (Tart) or citric acid (Cit) to a common binary DES mixture composed of lactic acid (Lact) and choline chloride (ChCl) were investigated for lignin extraction from acacia wood. Ternary Cit-based DES showed superior performance compared to Tart-based DES. Using a combined mixture-process D-Optimal experimental design, the Lact:Cit:ChCl DES composition and extraction temperature were optimized targeting maximum lignin yield and purity. The optimal conditions (i.e., Lact:Cit:ChCl, 0.6:0.3:0.1 molar ratio, 140 °C) resulted in a lignin extraction yield of 99.63 ± 1.24 % and a lignin purity of 91.45 ± 1.03 %. Furthermore, this DES exhibited feasible recyclability and reusability without sacrificing efficiency.
Collapse
Affiliation(s)
- Catarina Fernandes
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal.
| | - María José Aliaño-González
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; Analytical Chemistry Department, Faculty of Sciences, University of Cádiz, 11510 Cádiz, Spain
| | - Leandro Cid Gomes
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Diana Bernin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Rita Gaspar
- Chemical and Biochemical Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001 Leuven, Belgium
| | - Pedro Fardim
- Chemical and Biochemical Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001 Leuven, Belgium
| | - Marco S Reis
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Luís Alves
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Bruno Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; Surface and Colloid Engineering, FSCN Research Center, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Maria Graça Rasteiro
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Carla Varela
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Srinivasan S, Venkatachalam S. One pot green process for facile fractionation of sorghum biomass to lignin, cellulose and hemicellulose nanoparticles using deep eutectic solvent. Int J Biol Macromol 2024; 277:134295. [PMID: 39098673 DOI: 10.1016/j.ijbiomac.2024.134295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Complete valorization of lignocellulosic biomass is crucial for bio-based biorefineries to fulfil the circular bioeconomy concept. However, the existence of lignin carbohydrate complexes (LCC) in biomass hinders the simultaneous fractionation of biomass components, such as lignin, hemicellulose and cellulose, for subsequent biorefining processes. This study explores for the first time a novel approach tailored for the deconstruction of sorghum biomass components through efficient breakdown of LCC. Selective targeting of the major LCC linkages binding xylan and lignin was performed using an ultrasound-assisted deep eutectic solvent under mild treatment conditions. This process yielded a maximum cellulose content of 98.3 %, hemicellulose content of 95.2 %, and lignin content of 94.6 %, with the highest purities of 99.43 %, 96.71 %, and 98.12 %, respectively. FTIR, 2D-HSQC NMR and XRD analyses confirmed that most of the structural properties of lignin, hemicellulose, cellulose are retained. The lignocellulosic components were successfully valorised to cellulose, hemicellulose, and lignin nanoparticles with mean sizes of 64.5 ± 6 nm, 72.8 ± 4 nm and 57.2 ± 8 nm respectively, with good thermal stability. The proposed green process enables the complete utilization of agro-residue feedstock for the preparation of biomass-derived nanoparticles, thereby accelerating the economic and industrial prospects of bio-based biorefineries.
Collapse
Affiliation(s)
- Shobana Srinivasan
- Food Process Engineering Lab, Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai 600025, Tamil Nadu, India
| | - Sivakumar Venkatachalam
- Food Process Engineering Lab, Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai 600025, Tamil Nadu, India.
| |
Collapse
|
5
|
Elizondo Sada OM, Hiemstra IS, Chorhirankul N, Eppink M, Wijffels RH, Janssen AE, Kazbar A. Pressure-driven membrane processes for the recovery and recycling of deep eutectic solvents: A seaweed biorefinery case study. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00849. [PMID: 39050881 PMCID: PMC11268199 DOI: 10.1016/j.btre.2024.e00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Deep eutectic solvents (DES) are green alternatives for conventional solvents. They have gained attention for their potential to extract valuable compounds from biomass, such as seaweed. In this framework, a case study was developed to assess the feasibility of pressure-driven membrane processes as an efficient tool for the recovery of deep eutectic solvents and targeted biomolecules. For this purpose, a mixture composed of the DES choline chloride - ethylene glycol (ChCl-EG) 1:2, water and alginate was made to mimic a DES extraction from seaweed. An integrated separation process design was proposed where ultrafiltration-diafiltration-nanofiltration (UF-DF-NF) was coupled. UF and DF were found to be effective for the separation of alginate with an 85 % yield. DES was likewise recovered by 93 %, proving the membrane filtrations' technical feasibility. The NF performance to separate the DES from the water, for its recycling, laid by a 45 %-50 % retention and a final concentrated DES solution of 18 %(v/v).
Collapse
Affiliation(s)
- Oscar M. Elizondo Sada
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Isa S.A. Hiemstra
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Nattawan Chorhirankul
- Food Process Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Michel Eppink
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
- Nord University, Faculty of Biosciences and Aquaculture, N8049, Bodo, Norway
| | - Anja E.M. Janssen
- Food Process Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| | - Antoinette Kazbar
- Bioprocess Engineering, Wageningen University & Research, PO Box 16 Wageningen 6700 AA, the Netherlands
| |
Collapse
|
6
|
Yue Z, Sun LL, Wen JL, Yao SQ, Sun SN, Cao XF. Simultaneous production of furfural, lignin and cellulose-rich residue from Eucalyptus urophylla × E. grandis by ChCl/1,2-propanediol/MIBK biphasic system pretreatment. Int J Biol Macromol 2024; 275:133522. [PMID: 38945325 DOI: 10.1016/j.ijbiomac.2024.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the β-O-4, β-β and β-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.
Collapse
Affiliation(s)
- Zhuang Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Zhang X, Huo D, Wei J, Wang J, Zhang Q, Yang Q, Zhang F, Fang G, Zhu H, Si C. Synthesis of amino-functionalized nanocellulose by guanidine based deep eutectic solvent and its application in fine fibers retention. Int J Biol Macromol 2024; 260:129473. [PMID: 38242405 DOI: 10.1016/j.ijbiomac.2024.129473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
A guanidine-based Deep Eutectic Solvent (DES) consisting of 1,3-diaminoguanidine monohydrochloride and glycerol was utilized to prepare C-CNC from dissolving pulp. The pulp fibers were oxidized to dialdehyde cellulose by periodate, then fibrillated through the hydrogen bonds shear of DES and aminocationized through Schiff base effect of the amino groups in the DES solvent to obtain C-CNC. The results revealed that the characterization of the DES (such as viscosity, polarity, and pH) was related to the molar ratio of glycerol/guanidine-salts. The hydrogen bond network structure of DES solvent with optimal system was simulated by DFT and its damage to fiber hydrogen bond network was predicted. The C-CNC produced under the optimal reaction conditions (molar ratio of 1:2, 90 °C for 2 h) was highly dispersible with an average length and diameter of 85 ± 35 nm and 5.0 ± 1.2 nm, a charge density of 2.916 mol/g. C-CNC exhibited excellent flocculation when added to fine fiber suspensions of chemomechanical slurries, achieving rapid flocculation and settling onto fibers in <1 min. The DES solvent maintained its reactivity after 5 cycles. This study lays the foundation for the batch preparation of nanocellulose in an environmentally friendly manner and its application as a green additive in paper industry.
Collapse
Affiliation(s)
- Xipeng Zhang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dan Huo
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying 275335, China; Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jiaxin Wei
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhua Wang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Zhang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiulin Yang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying 275335, China
| | - Guigan Fang
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chuangling Si
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Wu K, Shi R, Du C, Ma F, Gan F. A facile strategy to fabricate lignocellulose-based slow-release fertilizers via a high-performance treatment of rice straw using deep eutectic solvents. Int J Biol Macromol 2024; 257:128582. [PMID: 38056751 DOI: 10.1016/j.ijbiomac.2023.128582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/11/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Lignin-based slow-release fertilizers (SRFs) have attracted widespread attention due to their ability to enhance nutrient utilization efficiency and reduce environmental pollution in agricultural production. However, the extraction and separation processes of lignin from biomass sources are intricate, involving substantial quantities of non-reusable toxic reagents. Here, a sustainable and eco-friendly approach using deep eutectic solvents (DES) was employed to treat rice straw, effectively dissolving the lignin present. Subsequently, the in-situ lignin regeneration was facilitated through the addition of a zinc chloride solution. The regenerated lignin was tightly wrapped around and connected to cellulose micro/nanofibers, forming a homogeneous slurry. A simple coating technique was employed to uniformly coat urea particles with the lignocellulosic slurry, yielding lignocellulose-based SRFs. Results revealed that the nutrient release of the lignocellulose-based coated fertilizers in water exceeded 56 days. A pot trial demonstrated that the application of lignocellulose-based SRFs significantly promoted the growth of rice and improved grain yield (by 10.7 %) and nitrogen use efficiency (by 34.4 %) compared to the urea treatment in rice production. Furthermore, the DES demonstrated consistently high efficiency in biomass processing even after four cycles of reuse. This green strategy offers a novel approach for the preparation of SRFs coating materials, promoting agricultural sustainability.
Collapse
Affiliation(s)
- Ke Wu
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Rongyuan Shi
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Changwen Du
- The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 210008, China
| | - Fei Ma
- The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 210008, China
| | - Fangqun Gan
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China.
| |
Collapse
|
9
|
Chen X, Liu Q, Li B, Wang N, Liu C, Shi J, Liu L. Unveiling the potential of novel recyclable deep eutectic solvent pretreatment: Effective separation of lignin from poplar hydrolyzed residue. Int J Biol Macromol 2024; 259:129354. [PMID: 38218303 DOI: 10.1016/j.ijbiomac.2024.129354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/01/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
To effectively convert the fermentable sugars present in lignocellulosic biomass into biofuels and additional value-added products, it is crucial to remove lignin from the biomass. With the intention of expeditiously remove lignin from poplar wood and improve cellulose saccharification, an innovative ternary deep eutectic solvent (DES) benzyl triethyl ammonium chloride-ethylene glycol-FeCl3 (T-EG-F) was studied for the pretreatment of poplar hydrolyzed residue (PHR). The results revealed that following T-EG-F DES pretreatment at 130 °C for 4 h, the lignin removal rate reached 91.88 %. The effect of DES on PHR and regenerated lignin was comprehensively investigated using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Thermogravimetric (TG) and other characterization methods, providing valuable insights into the mechanism of this innovative biomass pretreatment. Moreover, there was a significant improvement in the enzyme digestibility of the DES pretreatment residue. At 48 h, the enzyme load of 30 FPU/g cellulose achieved a remarkable enzyme digestibility of 97.31 %, and this value exhibited a notable increase of 6.56 times compared to the untreated poplar sample. In addition, the T-EG-F could be recycled and reused. This study demonstrates that the potential of T-EG-F DES pretreatment as a green and efficient method for lignin dissociation from lignocellulosic biomass, offering a promising approach for biomass component separation.
Collapse
Affiliation(s)
- Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qianjing Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Caoyunrong Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
10
|
Xu L, Liaqat F, Khazi MI, Sun J, Zhu D. Natural deep eutectic solvents-based green extraction of vanillin: optimization, purification, and bioactivity assessment. Front Nutr 2024; 10:1279552. [PMID: 38375356 PMCID: PMC10875998 DOI: 10.3389/fnut.2023.1279552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2024] Open
Abstract
The sustainable extraction of natural compounds has recently attracted significant attention. The extraction of high-quality natural vanillin in active form is crucial for its efficient use in various industries, but conventional solvents are not suitable for this purpose. The flammability, volatility, and toxicity of organic solvents can harm extraction personnel, and their waste liquid can cause environmental pollution. Natural deep eutectic solvents (NADES) are cost-effective, environmentally friendly, biodegradable, and non-toxic organic alternative to conventional solvents. In this study, 20 different NADES were tested for the sustainable extraction of natural vanillin. Among these, a DES system composed of choline chloride: 1,4-butanediol: lactic acid exhibited the highest extraction rate (15.9 mg/g). Employing response surface methodology (RSM), optimal extraction conditions were determined, yielding a vanillin content 18.5 mg/g with water content of 33.9%, extraction temperature of 64.6°C, extraction time of 32.3 min, and a solid-liquid ratio of 44.9 mg/mL. Subsequently, the optimized NADES system was then assessed for reusability in extracting vanillin from vanilla pods and kraft lignin over three cycles, retaining 43% of its extraction efficiency and demonstrating potential for waste reduction. Purification of vanillin was achieved through chromatography using a non-polar resin SP700, with ethanol as a desorption eluent and a feed solution pH of 4.0, resulting in the highest vanillin purity. HPLC and GC-MS analyses confirmed purity, while antioxidant activity assays (DPPH and ABTS) showcased significant antioxidant activity of the purified vanillin. Moreover, vanillin exhibited notable antimicrobial activity against a panel of food-borne bacteria. This study introduces an environmentally friendly approach to vanillin extraction highlights using NADES, emphasizing the potential for producing high-quality bioactive vanillin with reduced environmental impact. The applicability of NADES systems extends beyond vanillin, offering a versatile method for extracting diverse natural compounds.
Collapse
Affiliation(s)
- Lingxia Xu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, China
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
11
|
Li Y, Pan L, He YC. Co-production of 2,5-dihydroxymethylfuran and furfuralcohol from sugarcane bagasse via chemobiocatalytic approach in a sustainable system. BIORESOURCE TECHNOLOGY 2023; 389:129819. [PMID: 37797802 DOI: 10.1016/j.biortech.2023.129819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
2,5-Dihydroxymethylfuran and furfuryl alcohol serve as versatile building-blocks in pharmaceuticals, polymers, and value-added intermediates. To develop an efficient and sustainable method for their production from biomass, a combined approach using deep eutectic solvent Citric acid:Betaine (CTA:BT) for bagasse catalysis and recombinant E. coli SCFD23 for bioreduction of bagasse-derived 5-hydroxymethylfurfural and furfural was devised. Bagasse was effectively transformed into 5-hydroxymethylfurfural (48 mM) and furfural (14 mM) in CTA:BT (8 wt%)-water at 170 °C for 30 min. Bioreduction of 5-hydroxymethylfurfural and furfural by SCFD23 cell co-expressing formate dehydrogenase and NAD(P)H-dependent aldehyde reductase (SsCR) yielded 2,5-dihydroxymethylfuran (90.0 % yield) and furfuryl alcohol (99.0 % yield) in 6 h, using biomass-derived formic acid, xylose and glucose as co-substrates. Molecular docking confirmed the stable binding and reductase activity of SsCR with the biomass-derived 5-hydroxymethylfurfural and furfural. An efficient and eco-friendly chemobiological approach was applied for co-production of 2,5-dihydroxymethylfuran and furfuryl alcohol from biomass in one-pot two-step reaction.
Collapse
Affiliation(s)
- Yucheng Li
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Lei Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
12
|
Zhou X, Li F, Li C, Li Y, Jiang D, Zhang T, Lu C, Zhang Q, Jing Y. Effect of deep eutectic solvent pretreatment on biohydrogen production from corncob: pretreatment temperature and duration. Bioengineered 2023; 14:2252218. [PMID: 37647338 PMCID: PMC10469458 DOI: 10.1080/21655979.2023.2252218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Deep eutectic solvent pretreatment with different temperatures and durations was applied to corncob to increase hydrogen yield via photo-fermentation. The correlation of composition, enzymatic hydrolysis, and hydrogen production in pretreated corncobs, as well as energy conversion was evaluated. Deep eutectic solvent pretreatment effectively dissolved lignin, retained cellulose, and enhanced both enzymatic hydrolysis and hydrogen production. The maximum cumulative hydrogen yield obtained under a pretreatment condition of 50°C and 12 h was 677.45 mL; this was 2.72 times higher than that of untreated corncob, and the corresponding lignin removal and enzymatic reduction of sugar concentration were 79.15% and 49.83 g/L, respectively; the highest energy conversion efficiency was 12.08%. The hydrogen production delay period was shortened, and the maximum shortening time was 18.9 h. Moreover, the cellulose content in pretreated corncob was positively correlated with both reducing sugar concentration and hydrogen yield and had the strongest influence on hydrogen production.
Collapse
Affiliation(s)
- Xiaokai Zhou
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Li
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Cunjie Li
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yameng Li
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Danping Jiang
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Tian Zhang
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chaoyang Lu
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Quanguo Zhang
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanyan Jing
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Deng HQ, Lin XH, Fan JT, Fu PZ, Guan JJ, Lei HL, Liu LH, Lai LH, Hou XD, Lou WY. Glycolic acid-based deep eutectic solvents boosting co-production of xylo-oligomers and fermentable sugars from corncob and the related kinetic mechanism. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:126. [PMID: 37550714 PMCID: PMC10408180 DOI: 10.1186/s13068-023-02369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Xylo-oligomers are a kind of high value-added products in biomass fractionation. Although there are several chemical methods to obtain xylo-oligomers from biomass, the reports about the deep eutectic solvents (DESs)-mediated co-production of xylo-oligomers and fermentable sugars and the related kinetic mechanism are limited. RESULTS In this work, glycolic acid-based DESs were used to obtain xylo-oligomers from corncob. The highest xylo-oligomers yield of 65.9% was achieved at 120 °C for 20 min, of which the functional xylo-oligosaccharides (XOSs, DP 2-5) accounted for up to 31.8%. Meanwhile, the enzymatic digestion of cellulose and xylan in residues reached 81.0% and 95.5%, respectively. Moreover, the addition of metal inorganic salts significantly accelerated the hydrolysis of xylan and even the degradation of xylo-oligomers in DES, thus resulting in higher selectivity of xylan removal. AlCl3 showed the strongest synergistic effect with DES on accelerating the processes, while FeCl2 is best one for xylo-oligomers accumulation, affording the highest xylo-oligomers yield of 66.1% for only 10 min. Furthermore, the kinetic study indicates that the 'potential hydrolysis degree' model could well describe the xylan hydrolysis processes and glycolic acid/lactic acid (3:1) is a promising solvent for xylo-oligomers production, in particular, it worked well with FeCl2 for the excellent accumulation of xylo-oligomers. CONCLUSIONS Glycolic acid-based deep eutectic solvents can be successfully applied in corncob fractionation with excellent xylo-oligomers and fermentable sugars yields on mild conditions, and the large amount of xylo-oligosaccharides accumulation could be achieved by specific process controlling. The strategies established here can be useful for developing high-valued products from biomass.
Collapse
Affiliation(s)
- Hai-Qing Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Hui Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jun-Tao Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping-Zhang Fu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jia-Jun Guan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Han-Lin Lei
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li-Hao Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lin-Hao Lai
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xue-Dan Hou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
14
|
Usmani Z, Sharma M, Tripathi M, Lukk T, Karpichev Y, Gathergood N, Singh BN, Thakur VK, Tabatabaei M, Gupta VK. Biobased natural deep eutectic system as versatile solvents: Structure, interaction and advanced applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163002. [PMID: 37003333 DOI: 10.1016/j.scitotenv.2023.163002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/01/2023]
Abstract
The increasing emphasis on the development of green replacements to traditional organic solvents and ionic liquids (ILs) can be attributed to the rising concerns over human health and detrimental impacts of conventional solvents towards the environment. A new generation of solvents inspired by nature and extracted from plant bioresources has evolved over the last few years, and are referred to as natural deep eutectic solvents (NADES). NADES are mixtures of natural constituents like sugars, polyalcohols, sugar-based alcohols, amino acids and organic acids. Interest in NADES has exponentially grown over the last eight years, which is evident from an upsurge in the number of research projects undertaken. NADES are highly biocompatible as they can be biosynthesized and metabolized by nearly all living organisms. These solvents pose several noteworthy advantages, such as easy synthesis, tuneable physico-chemical properties, low toxicity, high biodegradability, solute sustainability and stabilization and low melting point. Research on the applicability of NADES in diverse areas is gaining momentum, which includes as - media for chemical and enzymatic reactions; extraction media for essential oils; anti-inflammatory and antimicrobial agent; extraction of bioactive composites; as chromatographic media; preservatives for labile compounds and in drug synthesis. This review gives a complete overview of the properties, biodegradability and toxicity of NADES which we propose can assist in further knowledge generation on their significance in biological systems and usage in green and sustainable chemistry. Information on applications of NADES in biomedical, therapeutic and pharma-biotechnology fields is also highlighted in the current article along with the recent progress and future perspectives in novel applications of NADES.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India; Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 ATH, Belgium
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh 224001, India
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nicholas Gathergood
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire LN6 7DL, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
15
|
Sawhney D, Vaid S, Bangotra R, Sharma S, Dutt HC, Kapoor N, Mahajan R, Bajaj BK. Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase. BIORESOURCE TECHNOLOGY 2023; 375:128791. [PMID: 36871702 DOI: 10.1016/j.biortech.2023.128791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Current study is the first report of the combined application of chemical (deep eutectic solvent), physical (microwave irradiation) and biological (laccase) pretreatment strategies for enhancing the enzymatic digestibility of rice straw biomass. Pretreated rice straw biomass was saccharified by cellulase/xylanase from Aspergillus japonicus DSB2 to get a sugar yield of 252.36 mg/g biomass. Design of Experiment based optimization of pretreatment and saccharification variables increased the total sugar yield by 1.67 times (421.5 mg/g biomass, saccharification efficiency 72.6%). Sugary hydrolysate was ethanol-fermented by Saccharomyces cerevisiae and Pichia stipitis to achieve an ethanol yield of 214 mg/g biomass (bioconversion efficiency 72.5%). Structural/chemical aberrations induced in the biomass due to pretreatment were elucidated by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and 1H nuclear magnetic resonance techniques to unravel the pretreatment mechanisms. Combined application of various physico-chemical/biological pretreatment may be a promising approach for proficient bioconversion of rice straw biomass.
Collapse
Affiliation(s)
- Diksha Sawhney
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Surbhi Vaid
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Ridhika Bangotra
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Surbhi Sharma
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | | | - Nisha Kapoor
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Ritu Mahajan
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | | |
Collapse
|
16
|
Yuansah SC, Laga A, Pirman. Production Strategy of Functional Oligosaccharides from Lignocellulosic Biomass Using Enzymatic Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
He W, He YC, Ye J. Efficient synthesis of furfurylamine from biomass via a hybrid strategy in an EaCl:Gly-water medium. Front Bioeng Biotechnol 2023; 11:1144787. [PMID: 37008036 PMCID: PMC10060961 DOI: 10.3389/fbioe.2023.1144787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The objective of this work was to develop an efficient approach for chemoenzymatically transforming biomass to furfurylamine by bridging chemocatalysis and biocatalysis in a deep eutectic solvent of EaCl:Gly-water. Using hydroxyapatite (HAP) as support, heterogeneous catalyst SO4 2-/SnO2-HAP was synthesized for transforming lignocellulosic biomass into furfural using organic acid as a co-catalyst. The turnover frequency (TOF) was correlated with the pKa value of the used organic acid. Corncob was transformed by oxalic acid (pKa = 1.25) (0.4 wt%) plus SO4 2-/SnO2-HAP (2.0 wt%) to produce furfural with a yield of 48.2% and a TOF of 6.33 h-1 in water. In deep eutectic solvent EaCl:Gly-water (1:2, v/v), co-catalysis with SO4 2-/SnO2-HAP and oxalic acid was utilized to transform corncob, rice straw, reed leaf, and sugarcane bagasse for the production of furfural with the yield of 42.4%-59.3% (based on the xylan content) at 180°C after 10 min. The formed furfural could be efficiently aminated to furfurylamine with E. coli CCZU-XLS160 cells in the presence of NH4Cl (as an amine donor). As a result of the biological amination of furfural derived from corncob, rice straw, reed leaf, and sugarcane bagasse for 24 h, the yields of furfurylamine reached >99%, with a productivity of 0.31-0.43 g furfurylamine per g xylan. In EaCl:Gly-water, an efficient chemoenzymatic catalysis strategy was employed to valorize lignocellulosic biomass into valuable furan chemicals.
Collapse
Affiliation(s)
- Wei He
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jianren Ye
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
18
|
Nawaz M, Jiang Y, Xiao Y, Yu H, Wang Z, Hu K, Zhang T, Hu J, Gao MT. Influence of Different Pretreatment Steps on the Ratio of Phenolic Compounds to Saccharides in Soluble Polysaccharides Derived from Rice Straw and Their Effect on Ethanol Fermentation. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04337-9. [PMID: 36701092 DOI: 10.1007/s12010-023-04337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
The complex structure of rice straw is such that its bioconversion requires multiple physical and chemical pretreatment steps. In this study, it was found that a large amount of soluble polysaccharides (SPs) are formed during the pretreatment of straw. The yield of NaOH-based SPs (4.8%) was much larger than that of ball-milled SPs (1.5%) and H2SO4-based SPs (1.1%). For all the pretreatments, the ratio of phenolic compounds to saccharides (P/S) for each type of SPs increased upon increasing the concentration of ethanol in the order of 90% > 70% > 50%. The yield of NaOH-based SPs was much higher than that of acid-based and ball-milled SPs. The changes in the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of SPs follow the same rule, i.e., the higher the P/S ratio, the higher the antioxidant values of the SPs. The flow cytometry and laser scanning microscopy results show that the P/S ratio can significantly influence the effect of SPs on microbial growth and cell membrane permeability. Upon varying the ethanol concentration in the range of 50-90%, the P/S ratio increased from 0.02 to 0.17, resulting in an increase in the promoting effects of the SPs on yeast cell growth. Furthermore, H2O2, NAD+/NADH, and NADP+/NADPH assays indicate that SPs with a high P/S ratio can reduce intracellular H2O2 and change the intracellular redox status.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yipeng Jiang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Ying Xiao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hao Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zikang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Kun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Tianao Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
19
|
Li P, Zhang Z, Zhang X, Li K, Jin Y, Wu W. DES: their effect on lignin and recycling performance. RSC Adv 2023; 13:3241-3254. [PMID: 36756401 PMCID: PMC9872775 DOI: 10.1039/d2ra06033g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Lignocellulosic biomass raw materials are renewable resources with abundant reserves in nature, and have many advantages, such as being green, biodegradable and cheap. Lignin, one of the three significant components of lignocellulose, possesses a chemical structure rich in phenylpropane and is a primary aromatic resource for the bio-based economy. For the extraction and degradation of lignin, the most common method is the pretreatment of lignocellulose with deep eutectic solvents (DES), which have similar physicochemical properties to ionic liquids (ILs) but address the disadvantages associated with ILs (DES have the advantages of low cost, low toxicity, and non-flammability). In lignocellulose pretreatment, a large amount of solvent is generally required to achieve the desired effect. However, after treatment, a substantial volume of solvent will be wasted, and thus, the problem of the recovery and reuse of DES solution needs to be adequately solved. The methods and mechanisms of perfect DES regeneration will be discussed from the perspective of the elemental composition and features of DESs in this review, which will also outline the present DES recovery methods, such as rotary evaporation, membrane separation, freeze-drying, electrodialysis, etc. The detailed process and the advantages and disadvantages of each method since 2018 are introduced in detail. Future DES recovery methods have been prospected, and the optimization of the functional properties of DESs after recovery is discussed. It is expected to find a convenient and efficient application method for DES extraction or degradation of lignin with low energy and low cost.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Zihui Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjing210037China
| | - Xiaoxue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
20
|
Liang X, Guo Y. High-efficiency recovery and regeneration of choline-polyol deep eutectic solvent for biorefinery via bipolar membrane electrodialysis and ultrafiltration. BIORESOURCE TECHNOLOGY 2022; 362:127805. [PMID: 36007766 DOI: 10.1016/j.biortech.2022.127805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Deep eutectic solvents (DES) have been widely studied for interesting solvent properties in resources utilization and green conversion of energy. Complex composition of DES and lack of recovery techniques restricts their further scale-up application. Exploring efficient recovery and regeneration methodology of DES in biorefinery could be beneficial for low-carbon circular bioeconomy. Recovery and regeneration of choline-polyol DES (choline chloride-ethylene glycol, ChCl-EG) after biomass pretreatment was studied using bipolar membrane electrodialysis (BMED) with ultrafiltration (UF). UF-BMED treatment worked based on the interception of macromolecular degradation products in pretreatment liquor and regional recovery of Ch+, Cl- with EG. Influence of major parameters on DES recovery performance was studied with emphasis. Maximum recovery ratio of DES reached 97.4% and minimum specific energy consumption of DES recovery approached 6.0 kW·h/kg. Cognition gained from this research revealed an efficient technique for DES recycling after biorefinery.
Collapse
Affiliation(s)
- Xiaocong Liang
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China.
| | - Yongkang Guo
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
21
|
Liu X, Yu D, Luo H, Li C, Li H. Efficient Reaction Systems for Lignocellulosic Biomass Conversion to Furan Derivatives: A Minireview. Polymers (Basel) 2022; 14:3671. [PMID: 36080746 PMCID: PMC9460113 DOI: 10.3390/polym14173671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Lignocellulosic biomass as abundant, renewable, and sustainable carbon feedstock is an alternative to relieve the dependence on fossil fuels and satisfy the demands of chemicals and materials. Conversions of lignocellulosic biomass to high-value-added chemicals have drawn much attention recently due to the high availability of sustainable ways. This minireview surveys the recent trends in lignocellulosic biomass conversion into furan derivatives based on the following systems: (1) ionic liquids, (2) deep eutectic solvents, and (3) biphasic systems. Moreover, the current challenges and future perspectives in the development of efficient routes for lignocellulosic biomass conversion are provided.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Cassoni AC, Costa P, Vasconcelos MW, Pintado M. Systematic review on lignin valorization in the agro-food system: From sources to applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115258. [PMID: 35751227 DOI: 10.1016/j.jenvman.2022.115258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic biomass is the most abundant renewable resource on earth and currently most of this biomass is considered a low-value waste. Specifically, lignin is an underrated bioresource that is mostly burned for energy production and few value-added products have been created. Since the agro-food industry produces large amounts of wastes that can be potential sources of high-quality lignin, scientific efforts should be directed to this industry. Thus, this review provides a systematic overview of the trends and evolution of research on agro-food system-derived lignin (from 2010 to 2020), including the extraction of lignin from various agro-food sources and emergent applications of lignin in the agro-food chain. Crops with the highest average production/year (n = 26) were selected as potential lignin sources. The extraction process efficiency (yield) and lignin purity were used as indicators of the raw material potential. Overall, it is notable that research interest on agro-food lignin has increased exponentially over the years, both as source (567%) and application (128%). Wheat, sugarcane, and maize are the most studied sources and are the ones that render the highest lignin yields. As for the extraction methods used, alkaline and organosolv methods are the most employed (∼50%). The main reported applications are related to lignin incorporation in polymers (∼55%) and as antioxidant (∼24%). Studies on agro-food system-derived lignin is of most importance since there are numerous possible sources that are yet to be fully valorized and many promising applications that need to be further developed.
Collapse
Affiliation(s)
- Ana C Cassoni
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Patrícia Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
23
|
Sharma V, Tsai ML, Chen CW, Sun PP, Patel AK, Singhania RR, Nargotra P, Dong CD. Deep eutectic solvents as promising pretreatment agents for sustainable lignocellulosic biorefineries: A review. BIORESOURCE TECHNOLOGY 2022; 360:127631. [PMID: 35850394 DOI: 10.1016/j.biortech.2022.127631] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Increasing reliance on non-renewable fuels has shifted research attention to environmentally friendly and sustainable energy sources.The inherently recalcitrant nature of lignocellulosic biomass (LCB) makes downstream processing of the bioprocess challenging. Deep eutectic solvents (DESs) are popular and inexpensive green liquids found effective for LCB valorisation. DESs have negligible vapor-pressure and are non-flammable, recyclable, cost-economic, and thermochemically stable. This review provides a detailed overview on the DESs types, properties and their role in effective delignification and enzymatic digestibility of polysaccharides for cost-effective conversion of LCB into biofuels and bioproducts. The conglomeration of DESs with assistive pretreatment techniques can augment the process of biomass deconstruction. The current challenges in upscaling the DESs-based pretreatment technology up to commercial scale is summarized, with possible solutions and future directions. These insights would fill the knowledge-gaps to towards development of lignocellulosic biorefineries and to address the global energy crisis and environment issues.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | | | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
24
|
Effect of alkaline and deep eutectic solvents pretreatments on the recovery of lignin with antioxidant activity from grape stalks. Int J Biol Macromol 2022; 220:406-414. [PMID: 35931297 DOI: 10.1016/j.ijbiomac.2022.07.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
Grape stalks are lignocellulosic residues that can be valorized through the extraction of lignin - an underutilized biopolymer with high potential. Two lignin extraction methods, alkaline and deep eutectic solvents (DES), were studied, and experimental designs were carried out to obtain the best extraction conditions. The defined parameters for alkaline extraction allowed the recovery of ~48 % of lignin with low purity that was further improved with an autohydrolysis pretreatment (~79 % purity; ~32 % yield). Optimum parameters of DES method rendered high purity lignin (~90 %) without the need of a pretreatment and with a better yield (50.2 % (±2.3)) than the alkaline method. Both lignin fractions presented high antioxidant activities, being close to the antioxidant capacity of BHT for DPPH scavenging. Structural analysis proved the presence of lignin in both alkaline and DES samples with similar morphology. Overall, DES method was more efficient in the extraction of lignin from grape stalks besides its greener and sustainable nature. This work is uses DES to extract lignin from this biomass while comparing it with a commonly classical method, proving that grape stalks can be used to extract lignin with a sustainable and efficient method rendering a final ingredient with value-added properties.
Collapse
|
25
|
Zhang T, Li W, Xiao H, Jin Y, Wu S. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. BIORESOURCE TECHNOLOGY 2022; 354:127126. [PMID: 35398210 DOI: 10.1016/j.biortech.2022.127126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Furfural is a vital biomass-derived platform molecule, which can be used to synthesize a wide range of value-added chemicals. Furfural and its derivatives are promising alternatives to conventional petroleum chemicals. However, recent industrial production of furfural existed some thorny problems, including low efficiency, energy waste, and environmental pollution. Therefore, tremendous and continuous efforts have been made by researchers to develop novel furfural production processes with high economic viability, production efficiency, and sustainability. This review summarized the merits and shortcomings of disparate catalytic systems for the synthesis of furfural from biomass and biomass pretreatment hydrolysate on the basis of recently published literature. Furthermore, the suggestions for furfural production research were put forward.
Collapse
Affiliation(s)
- Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenzhi Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
26
|
Maibam PD, Goyal A. Approach to an efficient pretreatment method for rice straw by deep eutectic solvent for high saccharification efficiency. BIORESOURCE TECHNOLOGY 2022; 351:127057. [PMID: 35337995 DOI: 10.1016/j.biortech.2022.127057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvent comprising choline chloride (ChCl) and acetic acid (AA) was used for rice straw (RS) pretreatment. Effect of ChCl: AA molar ratio, time and temperature on lignin removal and retainment of total carbohydrate content (TCC) in pretreatment process were evaluated by central composite design (CCD) approach. The pretreatment temperature and molar ratio of AA to ChCl played a significant role in delignification. The optimized conditions for RS pretreatment were 1:3.59 (ChCl:AA molar ratio), 126 °C and 150 min. ChCl:AA pretreated RS (CApRS) gave 83.1% delignification, 679 mg/gCApRS TCC and 83.7% pretreatment efficiency. CApRS contained enriched cellulose content, 0.73 g/gCApRS as compared with 0.43 g/graw RS in raw RS. CApRS showed 31% higher crystallinity index, 17-fold higher surface area than raw RS. The morphological study of CApRS displayed porous surface. Saccharification of CApRS by commercial cellulase gave total reducing sugar of 18.8 g/L in hydrolysate with saccharification efficiency, 92.2%.
Collapse
Affiliation(s)
- Premeshworii Devi Maibam
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
27
|
Gong L, Zha J, Pan L, Ma C, He YC. Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/organic solvent system. BIORESOURCE TECHNOLOGY 2022; 351:126945. [PMID: 35247562 DOI: 10.1016/j.biortech.2022.126945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Sunflower stalk was utilized as a source of raw material and catalyst for furfural production, and efficient conversion of xylose-rich hydrolysate into furfural was developed in an aqueous deep eutectic solvent/organic solvent medium by carbonaceous solid acid catalyst SO42-/SnO2-SSXR. The structural characteristics of SO42-/SnO2-SSXR was characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Fourier-transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Pyridine Adsorption Fourier-transform Infrared (Py-IR) and Raman. Under the optimum catalytic conditions, furfural (110.1 mM) yield reached 82.6% in a ChCl-MAA/toluene medium at 180 °C in 15 min by 3.6 wt% SO42-/SnO2-SSXR. Additionally, quite importantly, SO42-/SnO2-SSXR, ChCl-MAA and toluene had good recyclability for furfural production. The potential catalytic path of xylose dehydration into furfural was proposed by co-catalysis with SO42-/SnO2-SSXR and ChCl-MAA. This study revealed high potential sustainable application of furfural production.
Collapse
Affiliation(s)
- Lei Gong
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Jingjian Zha
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Lei Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
28
|
Moreira BP, Draszewski CP, Celante D, Brondani L, Lachos-Perez D, Mayer FD, Abaide ER, Castilhos F. Defatted rice bran pretreated with deep eutectic solvents and sequential use as feedstock for subcritical water hydrolysis. BIORESOURCE TECHNOLOGY 2022; 351:127063. [PMID: 35351560 DOI: 10.1016/j.biortech.2022.127063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Deffated rice bran has potential to processing into ethanol due to its lignocellulosic composition and agricultural productivity. The composition of the pretreated deffated rice bran with Deep Eutectic Solvent was investigated aiming the production of sugars and bioproducts using subcritical water hydrolysis. Changes in the deffated rice bran composition at different pretreatment times and mixtures of deep eutectic solvent were evaluated by the derivative of thermogravimetric analysis. The pretreated deffated rice bran presented an enrichment in the content of hemicelluloses (281.0%) and delignification (59.3 %). Under the same condition of subcritical water hydrolysis (230 °C/R-100) the yield of fermentable sugars increased 2.20 times in the same study time interval (20 min) when comparing pretreated and untreated deffated rice bran.
Collapse
Affiliation(s)
- Bárbara P Moreira
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Crisleine P Draszewski
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Dian Celante
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Leoni Brondani
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Daniel Lachos-Perez
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flávio D Mayer
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Fernanda Castilhos
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
29
|
Sun LL, Yue Z, Sun SC, Sun SN, Cao XF, Yuan TQ, Wen JL. Exploration of deep eutectic solvent-based biphasic system for furfural production and enhancing enzymatic hydrolysis: Chemical, topochemical, and morphological changes. BIORESOURCE TECHNOLOGY 2022; 352:127074. [PMID: 35346816 DOI: 10.1016/j.biortech.2022.127074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Developing a biorefinery process for a highly integrated valorization and fractionation of lignocellulose is crucial for its utilization. Herein, a biphasic system comprising choline chloride/lactic acid and 2-methyltetrahydrofuran with Al2(SO4)3 and H2SO4 as catalysts was applied to pretreat Eucalyptus. Results showed that under the optimized conditions (150 °C, 30 min, 0.2 M Al2(SO4)3, 0.075 M H2SO4), the furfural yield and enzymatic hydrolysis efficiency could reach 54.7% and 97.0%, respectively. The efficient cellulose conversion was attributed to remarkable removal of lignin (91.0%) and hemicelluloses (100.0%), thereby causing the disruption of cell wall structure and enhancement of cellulose accessibility. Meanwhile, confocal Raman microscope and atomic force microscope displayed that the pretreatment resulted in the decreasing intensities of carbohydrates and lignin different regions of cell walls, and exposing of the embedded microfibers from noncellulosic polymers. Overall, the deep eutectic solvent-based biphasic system displayed high performance for effective utilization of carbohydrate components in lignocellulose.
Collapse
Affiliation(s)
- Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhuang Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
30
|
Hou X, Li Z, Yao Z, Zhao L, Luo J, Shen R. 深度共熔溶剂预处理木质纤维素研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Yao L, Cui P, Chen X, Yoo CG, Liu Q, Meng X, Xiong L, Ragauskas AJ, Yang H. A combination of deep eutectic solvent and ethanol pretreatment for synergistic delignification and enhanced enzymatic hydrolysis for biorefinary process. BIORESOURCE TECHNOLOGY 2022; 350:126885. [PMID: 35217157 DOI: 10.1016/j.biortech.2022.126885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
A novel pretreatment system containing deep eutectic solvents and ethanol (DES-E) for synergistic carbohydrate conversion and delignification was reported in this study. The DES-E pretreatment resulted in an enhanced glucose yield compared to individual DES and ethanol pretreatment for the three tested biomass, including Broussonetia papyrifera, corn stover and pine. To further explore the delignification mechanism, the solubilized lignin and residual lignin from Broussonetia papyrifera was recovered and extracted, then thoroughly characterized. The highest total OH content was found in the DES-E solubilized lignin, which could be used as antioxidant. The presence of ethanol in pretreatment liquor could protect the β-O-4 substructure from breakage and reduce lignin condensation, which favors the subsequent enzymatic hydrolysis. Comparable glucose yield and delignification performance was achieved by recycled DES. DES-E pretreatment offers a promising method for lignin isolation and cellulose digestibility improvement simultaneously.
Collapse
Affiliation(s)
- Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, PR China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China
| | - Pingping Cui
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Qianting Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996-2200, USA
| | - Long Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996-2200, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Knoxville, Institute of Agriculture, Knoxville, TN 37996-2200, USA
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, PR China.
| |
Collapse
|
32
|
Di J, Zhao N, Fan B, He YC, Ma C. Efficient Valorization of Sugarcane Bagasse into Furfurylamine in Benign Deep Eutectic Solvent ChCl:Gly-Water. Appl Biochem Biotechnol 2022; 194:2204-2218. [PMID: 35048280 DOI: 10.1007/s12010-021-03784-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Recently, highly efficient production of valuable furan-based chemicals from available and renewable lignocellulosic biomass has attracted more and more attention via a chemoenzymatic route in an environmentally friendly reaction system. In this work, the feasibility of chemoenzymatically catalyzing sugarcane bagasse into furfurylamine with heterogeneous catalyst and ω-transaminase biocatalyst was developed in the deep eutectic solvent (DES) ChCl:Gly-water. Sulfonated Al-Laubanite was firstly synthesized to catalyze sugarcane bagasse to furfural. SEM, BET, XRD, and FT-IR were used to characterize Al-Laubanite. Catalyst Al-Laubanite structure was significantly different from carrier laubanite. High furfural yield (60.9%) was achieved by catalyzing sugarcane bagasse in 20 min at 170 ℃ and pH 1.0 by Al-Laubanite (2.4 wt%) in the presence of ChCl:Gly (20 wt%). Potential catalytic mechanism was proposed under the optimized catalytic condition. In addition, one recombinant E. coli CV harboring ω-transaminase could completely transform biomass-derived furfural to furfurylamine at 40 °C and pH 7.5 using L-alanine as amine donor in ChCl:Gly-water (20:80, wt:wt). This established chemoenzymatic cascade reaction strategy was successfully utilized for valorization of biomass into furan-based chemicals in the benign ChCl:Gly-water system.
Collapse
Affiliation(s)
- Junhua Di
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, People's Republic of China
| | - Nana Zhao
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, People's Republic of China
| | - Bo Fan
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, People's Republic of China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, People's Republic of China. .,State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
33
|
Ippolitov V, Anugwom I, van Deun R, Mänttäri M, Kallioinen-Mänttäri M. Cellulose Membranes in the Treatment of Spent Deep Eutectic Solvent Used in the Recovery of Lignin from Lignocellulosic Biomass. MEMBRANES 2022; 12:membranes12010086. [PMID: 35054613 PMCID: PMC8780560 DOI: 10.3390/membranes12010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 02/04/2023]
Abstract
Ultrafiltration was employed in the purification of spent Deep Eutectic Solvent (DES, a mixture of choline chloride and lactic acid, 1:10, respectively) used in the extraction of lignin from lignocellulosic biomass. The aim of this was to recover different lignin fractions and to purify spent solvent. The results revealed that the commercial regenerated cellulose membranes—RC70PP and Ultracel 5 kDa UF membranes—could be used in the treatment of the spent DES. The addition of cosolvent (ethanol) to the spent DES decreased solvent’s viscosity, which enabled filtration. With two-pass ultrafiltration process with 10 kDa and 5 kDa membranes about 95% of the dissolved polymeric compounds (lignin and hemicelluloses) were removed from the spent DES. The utilized membranes also showed the capability to fractionate polymeric compounds into two fractions—above and under 10,000 Da. Moreover, the 10 kDa cellulose-based membrane showed good stability during a continuous period of three weeks exposure to the solution of DES and ethanol. Its pure water permeability decreased only by 3%. The results presented here demonstrate the possibility to utilize cellulose membranes in the treatment of spent DES to purify the solvent and recover the interesting compounds.
Collapse
Affiliation(s)
- Vadim Ippolitov
- Department of Separation Science, LUT School of Engineering Science, LUT University, P.O. Box 20, 53851 Lappeenranta, Finland; (I.A.); (M.M.); (M.K.-M.)
- Correspondence: ; Tel.: +358-442417273
| | - Ikenna Anugwom
- Department of Separation Science, LUT School of Engineering Science, LUT University, P.O. Box 20, 53851 Lappeenranta, Finland; (I.A.); (M.M.); (M.K.-M.)
| | - Robin van Deun
- Department of Applied Engineering, Chemical Engineering Technology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Mika Mänttäri
- Department of Separation Science, LUT School of Engineering Science, LUT University, P.O. Box 20, 53851 Lappeenranta, Finland; (I.A.); (M.M.); (M.K.-M.)
| | - Mari Kallioinen-Mänttäri
- Department of Separation Science, LUT School of Engineering Science, LUT University, P.O. Box 20, 53851 Lappeenranta, Finland; (I.A.); (M.M.); (M.K.-M.)
| |
Collapse
|
34
|
Orejuela-Escobar LM, Landázuri AC, Goodell B. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
35
|
Fernandes C, Melro E, Magalhães S, Alves L, Craveiro R, Filipe A, Valente AJM, Martins G, Antunes FE, Romano A, Medronho B. New deep eutectic solvent assisted extraction of highly pure lignin from maritime pine sawdust (Pinus pinaster Ait.). Int J Biol Macromol 2021; 177:294-305. [PMID: 33607141 DOI: 10.1016/j.ijbiomac.2021.02.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Lignocellulosic biomass is a renewable and sustainable feedstock, mainly composed of cellulose, hemicellulose, and lignin. Lignin, as the most abundant natural aromatic polymer occurring on Earth, has great potential to produce value-added products. However, the isolation of highly pure lignin from biomass requires the use of efficient methods during lignocellulose fractionation. Therefore, in this work, novel acidic deep eutectic solvents (DESs) were prepared, characterized and screened for lignin extraction from maritime pine wood (Pinus pinaster Ait.) sawdust. The use of cosolvents and the development of new DES were also evaluated regarding their extraction and selectivity performance. The results show that an 1 h extraction process at 175 °C, using a novel DES composed of lactic acid, tartaric acid and choline chloride, named Lact:Tart:ChCl, in a molar ratio of 4:1:1, allows the recovery of 95 wt% of the total lignin present in pine biomass with a purity of 89 wt%. Such superior extraction of lignin with remarkable purity using a "green" solvent system makes this process highly appealing for future large-scale applications.
Collapse
Affiliation(s)
- Catarina Fernandes
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - Elodie Melro
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Solange Magalhães
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Luís Alves
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Rita Craveiro
- LAQV@Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandra Filipe
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Artur J M Valente
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - Gabriela Martins
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - Filipe E Antunes
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - Anabela Romano
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Bruno Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; FSCN, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| |
Collapse
|
36
|
Xu H, Kong Y, Peng J, Song X, Liu Y, Su Z, Li B, Gao C, Tian W. Comprehensive analysis of important parameters of choline chloride-based deep eutectic solvent pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 319:124209. [PMID: 33045547 DOI: 10.1016/j.biortech.2020.124209] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 05/12/2023]
Abstract
Choline chloride based deep eutectic solvents have showed great potential in lignocellulosic biomass pretreatment. In this study, for DES pretreatment with different hydrogen bond donners of different raw materials under different reaction conditions, multivariate analysis methods including principal component analysis and partial least squares analysis were used for reveal the pretreatment mechanism by evaluating the inner relationships among 42 key process factors. Furthermore, based on molecular simulation, the detailed relationships between key variables were further analyzed. Meanwhile, four-dimensional color graphs were used to intuitively reveal the synergistic influence of multivariate conditions variables on pretreatment effect to obtain better economic benefits and energy consumption indicators for DES pretreatment. The results showed that HBD hydrophilic ability, HBD polarity, HBD acidity, HBD ability to form hydrogen bonds, molar ratio of HBD to choline chloride and pretreatment severity had great influence on the Choline chloride based deep eutectic solvents pretreatment effect.
Collapse
Affiliation(s)
- Huanfei Xu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yi Kong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianjun Peng
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoming Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yaoze Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhenning Su
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Dalian National Laboratory for Clean Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wende Tian
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
37
|
Process development for biomass delignification using deep eutectic solvents. Conceptual design supported by experiments. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Cronin DJ, Chen X, Moghaddam L, Zhang X. Deep Eutectic Solvent Extraction of High-Purity Lignin from a Corn Stover Hydrolysate. CHEMSUSCHEM 2020; 13:4678-4690. [PMID: 32671961 DOI: 10.1002/cssc.202001243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/04/2020] [Indexed: 06/11/2023]
Abstract
A lactic acid/chlorine chloride-based deep eutectic solvent (DES) was used for the extraction of high-purity lignin (up to 94.7 %) in high yield (up to 75 %) from the hydrolysis/fermentation residue corn stover hydrolysate (CSH), which was generated from a pilot-plant-scale biorefinery. A range of extraction conditions were investigated, which involved varying reaction temperature, time, and DES composition. The relationship between lignin yield, purity, and structural characteristics with DES treatment conditions was determined. The extraction of high-purity lignin from hydrolysis/fermentation residues presents a promising approach for enhancing the economic feasibility of a lignocellulose biorefinery. It was also determined that DES extraction can produce lignin with a controlled range of molecular weight and functional group content.
Collapse
Affiliation(s)
- Dylan J Cronin
- Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, USA
| | - Xiaowen Chen
- National Renewable Energy Laboratory, 15013, Denver W Pkwy, Golden, CO, USA
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2432, 2 George St, Brisbane, QLD, Australia
| | - Xiao Zhang
- Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, USA
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
39
|
Xu H, Peng J, Kong Y, Liu Y, Su Z, Li B, Song X, Liu S, Tian W. Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. BIORESOURCE TECHNOLOGY 2020; 310:123416. [PMID: 32334906 DOI: 10.1016/j.biortech.2020.123416] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 05/22/2023]
Abstract
Deep eutectic solvent (DES) has been considered as a novel green solvent for lignocellulosic biomass pretreatment. The efficiency of DES pretreatment is affected by the synergy of various process parameters. The study of effect of DES physicochemical properties and pretreatment reaction conditions on the mechanism of lignocellulose biomass fractionation was of great significance for the development of biomass conversion. Form the view of process control, this review summarized recent advances in DES pretreatment, analyzed the challenges, and prospected the future development of this research field.
Collapse
Affiliation(s)
- Huanfei Xu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China.
| | - Jianjun Peng
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yi Kong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yaoze Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhenning Su
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Dalian National Laboratory for Clean Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China
| | - Xiaoming Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shiwei Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China
| | - Wende Tian
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China
| |
Collapse
|
40
|
Novel Single-step Pretreatment of Steam Explosion and Choline Chloride to De-lignify Corn Stover for Enhancing Enzymatic Edibility. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Choline chloride-based deep eutectic solvents for efficient delignification of Bambusa bambos in bio-refinery applications. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01259-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Hu S, Meng F, Huang D, Huang J, Lou W. Hydrolysis of corn stover pretreated by DESs with carbon-based solid acid catalyst. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
43
|
|
44
|
Tan YT, Chua ASM, Ngoh GC. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products - A review. BIORESOURCE TECHNOLOGY 2020; 297:122522. [PMID: 31818720 DOI: 10.1016/j.biortech.2019.122522] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Since the introduction of deep eutectic solvent (DES) in biomass processing field, the efficiency of DES in lignocellulosic biopolymer model compounds' (cellulose, hemicellulose and lignin) solubilisation and conversion was widely recognized. Nevertheless, DES's potential for biorefinery application can be reflected more accurately through their performance in raw lignocellulosic biomass processing rather than model compound conversion. Therefore, this review examines the studies on raw lignocellulosic biomass fractionation using DES and the subsequent conversion of DES-fractionated products into bio-based products. The review stresses on three key parts: performance of varying types of DESs and pretreatment schemes for biopolymer fractionation, properties and conversion of fractionated saccharides as well as DES-extracted lignin. The prospects and challenges of DES implementation in biomass processing will also be discussed. This review provides a front-to-end view on the DES's performance, starting from pretreatment to DES-fractionated products conversion, which would be helpful in devising a comprehensive biomass utilization process.
Collapse
Affiliation(s)
- Yee Tong Tan
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
45
|
Smink D, Juan A, Schuur B, Kersten SRA. Understanding the Role of Choline Chloride in Deep Eutectic Solvents Used for Biomass Delignification. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03588] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Dhar P, Jose AM, Pilloni G, Vinu R. Development of Novel Imidazole–Poly(ethylene glycol) Solvent for the Conversion of Lignocellulosic Agro-Residues to Valuable Chemicals. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Piyali Dhar
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ann Mary Jose
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| | - Giovanni Pilloni
- Corporate Strategic Research, Exxon Mobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Ravikrishnan Vinu
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
47
|
Alternate Ultrasound/Microwave Digestion for Deep Eutectic Hydro-distillation Extraction of Essential Oil and Polysaccharide from Schisandra chinensis (Turcz.) Baill. Molecules 2019; 24:molecules24071288. [PMID: 30987021 PMCID: PMC6479861 DOI: 10.3390/molecules24071288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
An alternating synergetic ultrasound/microwave method was applied to the simultaneous extraction of essential oils and polysaccharides with deep eutectic solvent (DES) from Schisandra chinensis. Under the optimal conditions, extract in the selected choline chloride-ethylene glycol 1:3 solvent yielded 12.2 mL/kg and 8.56 g/100g of essential oils and polysaccharides, respectively. The free radical scavenging and immunological activities of the polysaccharides and the antioxidant activity of the essential oils have also been investigated. The lymphocyte proliferation capacity was substantially improved by adding concanavalin A or lipopolysaccharides to polysaccharides (0.20 mg/mL). The IC50 values of the essential oils for scavenging DPPH obtained by hydro-distillation and DES ultrasound/microwave-assisted hydro-distillation (DES UMHD) were 52.34 µg/mL and 29.82 µg/mL, respectively. The essential oil obtained by DES UMHD had the highest reducing power (856.05 (TE)/g) at 150 g/mL and had the strongest inhibitory capacity (SC% = 18.12%). S. chinensis has the potential to be developed as a natural antioxidant.
Collapse
|
48
|
Chambon CL, Mkhize TY, Reddy P, Brandt-Talbot A, Deenadayalu N, Fennell PS, Hallett JP. Pretreatment of South African sugarcane bagasse using a low-cost protic ionic liquid: a comparison of whole, depithed, fibrous and pith bagasse fractions. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:247. [PMID: 30214485 PMCID: PMC6131805 DOI: 10.1186/s13068-018-1247-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/31/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Sugarcane bagasse is an abundant and geographically widespread agro-industrial residue with high carbohydrate content, making it a strong candidate feedstock for the bio-based economy. This study examines the use of the low-cost protic ionic liquid triethylammonium hydrogen sulfate ([TEA][HSO4]) to fractionate a range of South African sugarcane bagasse preparations into a cellulose-rich pulp and lignin. The study seeks to optimize pretreatment conditions and examine the necessity of applying a depithing step on bagasse prior to pretreatment. RESULTS Pretreatment of five bagasse preparations, namely whole, industrially depithed, laboratory depithed (short and long fiber) and pith bagasse with [TEA][HSO4]:[H2O] (4:1 w/w) solutions produced highly digestible cellulose-rich pulps, as assessed by residual lignin analysis and enzymatic hydrolysis. Pretreatment under the optimized condition of 120 °C for 4 h produced a pretreated cellulose pulp with up to 90% of the lignin removed and enabled the release of up to 69% glucose contained in the bagasse via enzymatic hydrolysis. Glucose yields from whole and depithed bagasse preparations were very similar. Significant differences in lignin recovery were obtained for laboratory depithed bagasse compared with whole and industrially depithed bagasse. The silica-rich ash components of bagasse were seen to partition mainly with the pulp, from where they could be easily recovered in the post-hydrolysis solids. CONCLUSIONS The five bagasse preparations were compared but did not show substantial differences in composition or cellulose digestibility after pretreatment. Evidence was presented that a depithing step appears to be unnecessary prior to ionoSolv fractionation, potentially affording significant cost and energy savings. Instead, lignin re-deposition onto the pulp surface (and, in turn, particle size and shape) appeared to be major factors affecting the conditioning of bagasse with the applied IL. We show that pith bagasse, a common by-product of paper making, can be successfully conditioned for high glucose release while allowing recovery of lignin and silica-rich ash. The glucose yields obtained for bagasse using [TEA][HSO4]-water mixtures were ~ 75% as high as for conventional aprotic ionic liquids such as [Emim][OAc]; this result is highly promising for commercialization of ionoSolv processing given [TEA][HSO4] is 40 times less expensive, thermally stable and recyclable.
Collapse
Affiliation(s)
- Clementine L. Chambon
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Thandeka Y. Mkhize
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban, 4000 South Africa
| | - Prashant Reddy
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban, 4000 South Africa
| | - Agnieszka Brandt-Talbot
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban, 4000 South Africa
| | - Paul S. Fennell
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Jason P. Hallett
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| |
Collapse
|