1
|
Mummaleti G, Udo T, Mohan A, Kong F. Synthesis, characterization and application of microbial pigments in foods as natural colors. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39466660 DOI: 10.1080/10408398.2024.2417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Colorants have played a crucial role in various applications, particularly in food processing, with natural sources such as mineral ores, plants, insects, and animals being commonly used. However, the nineteenth century saw the development of synthetic dyes, which replaced these natural colorants. In recent years, there has been a growing demand for natural products, driving an increased interest in natural colorants. Microbial pigments have emerged as promising sources of natural pigments due to their numerous health benefits. They can be produced in large quantities rapidly and from more affordable substrates, making them economically attractive. This review focuses on the current advancements in the low-cost synthesis of microbial pigments, exploring their biological activities and commercial applications. Microbial pigments offer a sustainable and economically viable alternative to natural and synthetic colorants, meeting the growing demand for natural products. These pigments are relatively nontoxic and exhibit significant health benefits, making them suitable for a wide range of applications. As interest in natural products continues to rise, microbial pigments hold great potential in shaping the future of colorant production across various sectors.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Maglione G, Zinno P, Tropea A, Mussagy CU, Dufossé L, Giuffrida D, Mondello A. Microbes' role in environmental pollution and remediation: a bioeconomy focus approach. AIMS Microbiol 2024; 10:723-755. [PMID: 39219757 PMCID: PMC11362270 DOI: 10.3934/microbiol.2024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Bioremediation stands as a promising solution amid the escalating challenges posed by environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous contaminants into ecosystems has required innovative approaches for mitigation and restoration. The resilience of these compounds stems from their non-natural existence, distressing both human and environmental health. Microbes take center stage in this scenario, demonstrating their ability of biodegradation to catalyze environmental remediation. Currently, the scientific community supports a straight connection between biorefinery and bioremediation concepts to encourage circular bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the main microorganisms employed in bioremediation processes and the different bioremediation approaches applied. Moreover, focus has been given to the implementation of bioremediation as a novel approach to agro-industrial waste management, highlighting how it is possible to reduce environmental pollution while still obtaining value-added products with commercial value, meeting the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of bioremediation were also reported.
Collapse
Affiliation(s)
- Giuseppe Maglione
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168–Messina, Italy
| | - Cassamo U. Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Laurent Dufossé
- CHEMBIOPRO Laboratoire de Chimie et Biotechnologie des Produits Naturels, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, F-97400 Saint-Denis, Ile de La Réunion, France
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alice Mondello
- Department of Economics, University of Messina, Via dei Verdi, 75, 98122 Messina, Italy
| |
Collapse
|
3
|
El-Sayed ESR, Mousa SA, Strzała T, Boratyński F. Enhancing bioprocessing of red pigment from immobilized culture of gamma rays mutant of the endophytic fungus Monascus ruber SRZ112. J Biol Eng 2024; 18:44. [PMID: 39148082 PMCID: PMC11325623 DOI: 10.1186/s13036-024-00439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Considerable attention has been paid to exploring the biotechnological applications of several Monascus sp. for pigment production. In this study, our focus is on enhancing the bioprocessing of red pigment (RP) derived from the endophytic fungus Monascus ruber SRZ112. To achieve this, we developed a stable mutant strain with improved productivity through gamma irradiation. This mutant was then employed in the immobilization technique using various entrapment carriers. Subsequently, we optimized the culture medium for maximal RP production using the Response Surface Methodology. Finally, these immobilized cultures were successfully utilized for RP production using a semi-continuous mode of fermentation. After eight cycles of fermentation, the highest RP yield by immobilized mycelia reached 309.17 CV mL-1, a significant increase compared to the original titer. Importantly, this study marks the first report on the successful production of Monascus RP in a semi-continuous mode using gamma rays' mutant strain, offering prospects for commercial production.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław, 50-375, Poland.
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Shaimaa A Mousa
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tomasz Strzała
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Ul. Kożuchowska 7, Wrołcaw, 51-631, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław, 50-375, Poland
| |
Collapse
|
4
|
Zhang C, Cheng Y, Qin Y, Wang C, Wang H, Ablimit A, Sun Q, Dong H, Wang B, Wang C. Occurrence, Risk Implications, Prevention and Control of CIT in Monascus Cheese: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9567-9580. [PMID: 38627202 DOI: 10.1021/acs.jafc.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Monascus is a filamentous fungus that has been used in the food and pharmaceutical industries. When used as an auxiliary fermenting agent in the manufacturing of cheese, Monascus cheese is obtained. Citrinin (CIT) is a well-known hepatorenal toxin produced by Monascus that can harm the kidneys structurally and functionally and is frequently found in foods. However, CIT contamination in Monascus cheese is exacerbated by the metabolic ability of Monascus to product CIT, which is not lost during fermentation, and by the threat of contamination by Penicillium spp. that may be introduced during production and processing. Considering the safety of consumption and subsequent industrial development, the CIT contamination of Monascus cheese products needs to be addressed. This review aimed to examine its occurrence in Monascus cheese, risk implications, traditional control strategies, and new research advances in prevention and control to guide the application of biotechnology in the control of CIT contamination, providing more possibilities for the application of Monascus in the cheese industry.
Collapse
Affiliation(s)
- Chan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), No. 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Ying Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuhui Qin
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Congcong Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Haijiao Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Arzugul Ablimit
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qing Sun
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijun Dong
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bei Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), No. 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chengtao Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), No. 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
5
|
Wang B, Duan Y, Wang C, Liu C, Wang J, Jia J, Wu Q. Combined volatile compounds and non-targeted metabolomics analysis reveals variation in flavour characteristics, metabolic profiles and bioactivity of mulberry leaves after Monascus purpureus fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3294-3305. [PMID: 38087418 DOI: 10.1002/jsfa.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Mulberry leaves (MLs) are widely used in food because of their nutritional and functional characteristics. However, plant cell walls and natural bitterness influence nutrient release and the flavor properties of MLs. Liquid-state fermentation using Monascus purpureus (LFMP) is a common processing method used to improve food properties. The present study used headspace solid-phase micro extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and non-targeted metabolomics to examine changes in volatile and non-volatile metabolites in MLs. The transformation mechanism of LFMP was investigated by microscopic observation and dynamic analysis of enzyme activity, and changes in the biological activity of MLs were analyzed. RESULTS LFMP significantly increased total phenolics, total flavonoids, free amino acids and soluble sugars in MLs, at the same time as decreasing phytic acid levels. In total, 92 volatile organic compounds (VOCs) were identified and quantified. VOCs such as (2R,3R)-(-)-2,3-butanediol, terpineol and eugenol showed some improvement in the flavour characteristics of MLs. By using non-targeted metabolomics, 124 unique metabolites in total were examined. LFMP altered the metabolic profile of MLs, mainly in plant secondary metabolism, lipid metabolism and amino acid metabolism. Microscopic observation and dynamic analysis of enzyme activity indicated that LFMP promoted cell wall degradation and biotransformation of MLs. In addition, LFMP significantly increased the angiotensin I-converting enzyme and α-glucosidase inhibitory activity of MLs. CONCLUSION LFMP altered the flavour characteristics, metabolite profile and biological activity of MLs. These findings will provide ideas for the processing of MLs into functional foods. In addition, they also provide useful information for biochemical studies of fermented MLs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Biao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yichen Duan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chengmo Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chun Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Junqiang Jia
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qiongying Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
6
|
Singh Y, Sharma S, Kumar U, Sihag P, Balyan P, Singh KP, Dhankher OP. Strategies for economic utilization of rice straw residues into value-added by-products and prevention of environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167714. [PMID: 37832665 DOI: 10.1016/j.scitotenv.2023.167714] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Rice straw management, along with the prevalent practice of residue burning, poses multifaceted challenges with substantial environmental and human health implications. After harvest, a considerable amount of straw is left behind, often disposed of through burning, releasing several pollutants into the environment. Carbon dioxide (CO2) dominates at 70%, accompanied by methane (CH4) at 0.66%, carbon monoxide (CO) at 7%, and nitrous oxide (N2O) at 2.09%. This process further compounds issues by depleting soil nutrients like nitrogen and organic matter. This review focuses on strategies for residue management and using straw as value-added by-products. We address research gaps and offer potential recommendations for rice straw management using economically feasible and practical routes. We elaborate that to improve rice straw digestibility, utilization in mushroom cultivation, and other value-added products, low silica (Si) rice varieties must be developed using modern technologies including marker-assisted selection breeding or genome editing. Developing low Si rice could also reduce arsenic uptake by rice, as rice plants use the same transporters for the uptake of both elements. Conversely, silica is also indispensable for quality rice production; hence, optimizing silicon content in rice is worth investigating. More research is required to understand the extent of silicon's effect on the utilization of straw for various purposes. This review also discusses the importance of educating farmers about the straw burning issue and its environmental consequences. We highlight the significance of tailoring rice straw management methods to local suitability, moving away from a universal approach. More extension work is needed to encourage farmers to opt for environmentally and economically sound options for rice straw management. Policy intervention to incentivize farmers and develop technologies for the widespread use of rice straw for various industries and product development could help in the management of rice straw and will also create a circular economy.
Collapse
Affiliation(s)
- Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly-243006, India.
| | - Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University Meerut, 250001, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Chen D, Li H. Mannitol improves Monascus pigment biosynthesis with rice bran as a substrate in Monascus purpureus. Front Microbiol 2023; 14:1300461. [PMID: 38156009 PMCID: PMC10753769 DOI: 10.3389/fmicb.2023.1300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
To reduce the production cost of Monascus pigments (MPs), the utilization of rice bran (RB), an agricultural waste product, as a substrate in submerged fermentation was conducted in this study. To improve MP production, different nutritional ingredients including mannitol (Man), NH4NO3 (AN), ZnSO4 (Zn), and optimization (Opti), which was a synthesis of the three above ones, were added in rice bran (RB) medium. The yields of MPs, pigment constituents, and growth and development of Monascus purpureus M9 were investigated in this study. Man had the maximum color value of 3,532 U/g, which was 18.69 times more than that of RB and reached up to 76.65% of the value of rice (Rice) fermentation. Man significantly increased the production of two orange pigments, monascorubrin and rubropunctatin, of which the yields were 69.49 and 95.36% of the counterpart of Rice. The biomass and colony diameter of Opti presented the maximum value among different groups. AN and RB induced more asexual spore formation, whereas Opti and Man promoted sexual spore production. Comparative transcriptomic analysis showed that different nutritional ingredients led to changes in pigment production, promoting the growth and development of M. purpureus M9 through the regulation of related gene expression. Man and Opti improved MP production by regulating the primary metabolism, including the Embden-Meyerhof pathway (EMP), the pentose phosphate (PP) pathway, the tricarboxylic (TCA) cycle, fatty acid degradation (FAD), fatty acid biosynthesis (FAB), amino acid metabolism (AAM), and fructose and mannose metabolism (FMM), to provide the precursors (acetyl-CoA and malonyl-CoA) for MP biosynthesis. This study presents a low-cost method for increasing MP production and explains the molecular mechanisms of different nutritional ingredients for enhancing MP biosynthesis.
Collapse
Affiliation(s)
- Di Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | | |
Collapse
|
8
|
Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial Pigments: Major Groups and Industrial Applications. Microorganisms 2023; 11:2920. [PMID: 38138065 PMCID: PMC10745774 DOI: 10.3390/microorganisms11122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial pigments have many structures and functions with excellent characteristics, such as being biodegradable, non-toxic, and ecologically friendly, constituting an important source of pigments. Industrial production presents a bottleneck in production cost that restricts large-scale commercialization. However, microbial pigments are progressively gaining popularity because of their health advantages. The development of metabolic engineering and cost reduction of the bioprocess using industry by-products opened possibilities for cost and quality improvements in all production phases. We are thus addressing several points related to microbial pigments, including the major classes and structures found, the advantages of use, the biotechnological applications in different industrial sectors, their characteristics, and their impacts on the environment and society.
Collapse
Affiliation(s)
| | | | | | | | - Alane Beatriz Vermelho
- Bioinovar Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.V.d.O.B.); (L.M.C.); (A.N.J.); (M.C.P.P.R.-M.)
| |
Collapse
|
9
|
Uğurlu Ş, Günan Yücel H, Aksu Z. Valorization of food wastes with a sequential two-step process for microbial β-carotene production: A zero waste approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:118003. [PMID: 37105102 DOI: 10.1016/j.jenvman.2023.118003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Here, two consecutive β-carotene fermentation processes were carried out with Rhodotorula glutinis yeast in the growth media obtained from orange and grape wastes. Firstly, waste biomasses were subjected to hot water extraction. Effects of waste type, drying pretreatment, particle size and solid/liquid ratio on the total concentration and yield of sugars recovered were tested. The highest sugar concentration was obtained by the hot water extraction of fresh grape pomace as 61.2 g total reducing sugars (TRS)/L at a solid/liquid ratio of 100 g/L. In the first fermentation process, effect of solid/liquid ratio (initial TRS concentration) on β-carotene production pattern of R. glutinis was investigated in the media obtained directly by hot water extraction of the wastes. Microorganism and β-carotene concentrations increased with increasing solid/liquid ratio (range 10-100 g/L), and the microbial growth data fit the Monod model well for all cases. Maximum β-carotene concentration in the growth medium obtained from hot water extraction of 100 g/L of grape pomace was determined as 5988.6 mg/L. In the second fermentation process, β-carotene was produced in the acid hydrolysate of extraction residues. 10.1 g/L and 6.7 g/L of TRS was obtained after acid hydrolysis of orange and grape residues, respectively, and the highest β-carotene concentration of 370.0 mg/L was found in the medium of hydrolyzed orange peel extraction residue. Total β-carotene production increased to 1777.1 and 3279.6 mg/L (26% and 4.9% of increase) after the second fermentation step. 85.3% and 80.2% of reduction in orange and grape waste weights were observed at the end of the process, which was an indicator of efficient waste biomass disposal. Two sequential β-carotene fermentation steps offered significant advantages in terms of both efficiency and a zero waste approach.
Collapse
Affiliation(s)
- Şenay Uğurlu
- Department of Chemical Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Hande Günan Yücel
- Department of Chemical Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Zümriye Aksu
- Department of Chemical Engineering, Hacettepe University, 06800, Ankara, Turkey.
| |
Collapse
|
10
|
Louhasakul Y, Wado H, Lateh R, Cheirsilp B. Solid-state fermentation of Saba banana peel for pigment production by Monascus purpureus. Braz J Microbiol 2023; 54:93-102. [PMID: 36348258 PMCID: PMC9943817 DOI: 10.1007/s42770-022-00866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Eco-friendly natural pigment demand has ever-increasing popularity due to health and environmental concerns. In this context, the aim of this study was to evaluate the feasibility use of Saba banana peel as low-cost fermentable substrate for the production of pigments, xylanase and cellulase enzymes by Monascus purpureus. Among the strains tested, M. purpureus TISTR 3385 produced pigments better and had higher enzyme activities. Under the optimal pigment-producing conditions at the initial moisture content of 40% and initial pH of 6.0, the pigments comprising yellow, orange, and red produced by the fungi were achieved in the range of 0.40-0.93 UA/g/day. The maximum xylanase and cellulase activities of 8.92 ± 0.46 U/g and 4.72 ± 0.04 U/g were also obtained, respectively. More importantly, solid-state fermentation of non-sterile peel could be achieved without sacrificing the production of the pigments and both enzymes. These indicated the potential use of the peel as fermentable feedstock for pigment production by the fungi and an environmental-friendly approach for sustainable waste management and industrial pigment and enzyme application.
Collapse
Affiliation(s)
- Yasmi Louhasakul
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand.
| | - Hindol Wado
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | - Rohana Lateh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
11
|
Wu A, Li L, Zhang S, Lin Q, Liu J. Optimization of the hongqu starter preparation process for the manufacturing of red mold rice with high gamma-aminobutyric acid production by solid-state fermentation. Biotechnol Appl Biochem 2023; 70:458-468. [PMID: 35662255 DOI: 10.1002/bab.2370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Red mold rice (RMR) generally contains gamma-aminobutyric acid (GABA), which has several physiological functions. Monascus purpureus M162, with a high GABA production of 15.10 mg/g was generated by atmospheric and room temperature plasma mutation. Furthermore, we conducted a response surface methodology to produce a premium hongqu starter. The results revealed that under optimal conditions, that is, a substrate containing brown rice and bran in a brown rice: bran ratio of 9:1 (wt/wt), an inoculation size of 21.50 mL/100 g, a mixing frequency of one time/9 h, and a cultivation time of 7.20 days, the number of active spores, α-amylase activity, and saccharification power activity was 4.15 × 107 spores/g, 155 U/g, and 3260 U/g in the high-quality starter, respectively. These values were 224.32-fold, 139.64%, and 141.74% higher than those obtained with M. purpureus M162 inoculated into steamed indica rice, respectively, and 153.70-fold, 267.24%, and 151.63% higher than those obtained with the parent strain M. purpureus M1, respectively. The premium hongqu starter of M. purpureus M162 was inoculated into steamed indica rice to produce RMR with 15.93 mg/g of GABA. In conclusion, we proposed a novel strategy for functional RMR production with high GABA concentrations by solid-state fermentation with Monascus spp.
Collapse
Affiliation(s)
- Anqi Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Liangyi Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Song Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Waring, Changsha, China
| |
Collapse
|
12
|
Antipova TV, Zhelifonova VP, Zaitsev KV, Vainshtein MB. Fungal Azaphilone Pigments as Promising Natural Colorants. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261722601737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
13
|
Nawaz M, Jiang Y, Xiao Y, Yu H, Wang Z, Hu K, Zhang T, Hu J, Gao MT. Influence of Different Pretreatment Steps on the Ratio of Phenolic Compounds to Saccharides in Soluble Polysaccharides Derived from Rice Straw and Their Effect on Ethanol Fermentation. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04337-9. [PMID: 36701092 DOI: 10.1007/s12010-023-04337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
The complex structure of rice straw is such that its bioconversion requires multiple physical and chemical pretreatment steps. In this study, it was found that a large amount of soluble polysaccharides (SPs) are formed during the pretreatment of straw. The yield of NaOH-based SPs (4.8%) was much larger than that of ball-milled SPs (1.5%) and H2SO4-based SPs (1.1%). For all the pretreatments, the ratio of phenolic compounds to saccharides (P/S) for each type of SPs increased upon increasing the concentration of ethanol in the order of 90% > 70% > 50%. The yield of NaOH-based SPs was much higher than that of acid-based and ball-milled SPs. The changes in the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of SPs follow the same rule, i.e., the higher the P/S ratio, the higher the antioxidant values of the SPs. The flow cytometry and laser scanning microscopy results show that the P/S ratio can significantly influence the effect of SPs on microbial growth and cell membrane permeability. Upon varying the ethanol concentration in the range of 50-90%, the P/S ratio increased from 0.02 to 0.17, resulting in an increase in the promoting effects of the SPs on yeast cell growth. Furthermore, H2O2, NAD+/NADH, and NADP+/NADPH assays indicate that SPs with a high P/S ratio can reduce intracellular H2O2 and change the intracellular redox status.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yipeng Jiang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Ying Xiao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hao Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zikang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Kun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Tianao Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
14
|
Oliveira CFD, Cardoso LADC, Vendruscolo F. Production of pigments by Monascus ruber CCT0302 in culture media containing maltose as substrate. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1029017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to show how maltose production residues can be used to obtain natural pigments by Monascus ruber CCT 3802 in solid and submerged cultures. The microbial growth and the colour and heat stability characteristics of the pigments produced in both solid and submerged media, with different maltose syrup concentrations, were determined. The results showed that the addition of maltose provided significant increases in the velocity of microbial growth and production of red pigments. The highest radial growth velocity of Monascus ruber (0.1053 mm h−1) was obtained when cultivated in a medium containing 5 g L−1 of maltose syrup, corresponding to a 71.7% increase in growth as compared to the growth velocity in the control medium. Using submerged fermentation, the culture medium containing 10 g L−1 of maltose syrup provided the greatest concentrations of red pigments (14.54 AU510nm g−1 dry biomass) with an intense dark red colour, showing that Monascus ruber CCT 3802 had the capacity to assimilate the substrate and produce pigments. The red pigments produced in the cultures showed good heat stability with activation energies of 13.735 Kcal mol−1.
Collapse
|
15
|
Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigments from bacteria, fungi, yeast, cyanobacteria, and microalgae have been gaining more demand in the food, leather, and textile industries due to their natural origin and effective bioactive functions. Mass production of microbial pigments using inexpensive and ecofriendly agro-industrial residues is gaining more demand in the current research due to their low cost, natural origin, waste utilization, and high pigment stimulating characteristics. A wide range of natural substrates has been employed in submerged fermentation as carbon and nitrogen sources to enhance the pigment production from these microorganisms to obtain the required quantity of pigments. Submerged fermentation is proven to yield more pigment when added with agro-waste residues. Hence, in this review, aspects of potential pigmented microbes such as diversity, natural substrates that stimulate more pigment production from bacteria, fungi, yeast, and a few microalgae under submerged culture conditions, pigment identification, and ecological functions are detailed for the benefit of industrial personnel, researchers, and other entrepreneurs to explore pigmented microbes for multifaceted applications. In addition, some important aspects of microbial pigments are covered herein to disseminate the knowledge.
Collapse
|
16
|
El-Sayed ESR, Gach J, Olejniczak T, Boratyński F. A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Sci Rep 2022; 12:12611. [PMID: 35871189 PMCID: PMC9308793 DOI: 10.1038/s41598-022-16269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
A number of biopigment applications in various industrial sectors are gaining importance due to the growing consumer interest in their natural origin. Thus, this work was conducted to valorize endophytic fungi as an efficient production platform for natural pigments. A promising strain isolated from leaves of Origanum majorana was identified as Monascus ruber SRZ112 produced several types of pigments. The nature of the pigments, mainly rubropunctamine, monascin, ankaflavin, rubropunctatin, and monascorubrin in the fungal extract was studied by LC/ESI-MS/MS analyses. As a first step towards developing an efficient production of red pigments, the suitability of seven types of agro-industrial waste was evaluated. The highest yield of red pigments was obtained using potato peel moistened with mineral salt broth as a culture medium. To increase yield of red pigments, favourable culture conditions including incubation temperature, incubation period, pH of moistening agent, inoculum concentration, substrate weight and moisture level were evaluated. Additionally, yield of red pigments was intensified after the exposure of M. ruber SRZ112 spores to 1.00 KGy gamma rays. The final yield was improved by a 22.12-fold increase from 23.55 to 3351.87 AU g-1. The anticancer and antioxidant properties of the pigment's extract from the fungal culture were also studied. The obtained data indicated activity of the extract against human breast cancer cell lines with no significant cytotoxicity against normal cell lines. The extract also showed a free radical scavenging potential. This is the first report, to our knowledge, on the isolation of the endophytic M. ruber SRZ112 strain with the successful production of natural pigments under solid-state fermentation using potato peel as a substrate.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
17
|
Omeroglu MA, Gonul-Baltaci N, Arslan NP, Adiguzel A, Taskin M. Microbial conversion of waste baklava syrup to biofuels and bioproducts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Bai J, Gong Z, Shu M, Zhao H, Ye F, Tang C, Zhang S, Zhou B, Lu D, Zhou X, Lin Q, Liu J. Increased Water-Soluble Yellow Monascus Pigment Productivity via Dual Mutagenesis and Submerged Repeated-Batch Fermentation of Monascus purpureus. Front Microbiol 2022; 13:914828. [PMID: 35756045 PMCID: PMC9218666 DOI: 10.3389/fmicb.2022.914828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Monascus pigments (MPs) have been used in the food industry for more than 2,000 years and are known for their safety, bold coloring, and physiological activity. MPs are mainly yellow (YMPs), orange (OMPs), and red (RMPs). In this study, a mutant strain Monascus purpureus H14 with high production of water-soluble YMPs (WSYMPs, λmax at 370 nm) was generated instead of primary YMPs (λmax at 420 nm), OMPs (λmax at 470 nm), and RMPs (λmax at 510 nm) produced by the parent strain M. purpureus LQ-6 through dual mutagenesis of atmospheric and room-temperature plasma and heavy ion beam irradiation (HIBI), producing 22.68 U/ml extracellular YMPs and 10.67 U/ml intracellular YMPs. WSYMP production was increased by 289.51% in optimal conditions after response surface methodology was applied in submerged fermentation. Application of combined immobilized fermentation and extractive fermentation improved productivity to 16.89 U/ml/day, 6.70 times greater than with conservative submerged fermentation. The produced WSYMPs exhibited good tone stability to environmental factors, but their pigment values were unstable to pH, light, and high concentrations of Ca2+, Zn2+, Fe2+, Cu2+, and Mg2+. Furtherly, the produced exYMPs were identified as two yellow monascus pigment components (monascusone B and C21H27NO7S) by UHPLC-ESI-MS. This strategy may be extended to industrial production of premium WSYMPs using Monascus.
Collapse
Affiliation(s)
- Jie Bai
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Zihan Gong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Meng Shu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Hui Zhao
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Fanyu Ye
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Chenglun Tang
- Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing, China.,Jiangsu Institute of Industrial Biotechnology JITRI Co. Ltd., Nanjing, China
| | - Song Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhou
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Dong Lu
- Biophysics Research Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang Zhou
- Biophysics Research Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Jun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China.,Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Waring, Changsha, China
| |
Collapse
|
19
|
Abdel-Raheam HEF, Alrumman SA, Gadow SI, El-Sayed MH, Hikal DM, Hesham AEL, Ali MMA. Optimization of Monascus purpureus for Natural Food Pigments Production on Potato Wastes and Their Application in Ice Lolly. Front Microbiol 2022; 13:862080. [PMID: 35722342 PMCID: PMC9199577 DOI: 10.3389/fmicb.2022.862080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
During potato chips manufacturing, large amounts of wastewater and potato powder wastes are produced. The wastewater obtained at washing after cutting the peeled potatoes into slices was analyzed, and a large quantity of organic compounds and minerals such as starch (1.69%), protein (1.5%), total carbohydrate (4.94%), reducing sugar (0.01%), ash (0.14%), crude fat (0.11%), Ca (28 mg/L), Mg (245 mg/L), Fe (45.5 mg/L), and Zn (6.5 mg/L) were recorded; these wastes could be considered as valuable by-products if used as a fermentation medium to increase the value of the subsequent products and to exceed the cost of reprocessing. In this study, we used wastewater and potato powder wastes as a growth medium for pigment and biomass production by Monascus purpureus (Went NRRL 1992). The response surface methodology was used to optimize total pigment and fungal biomass production. The influence of potato powder waste concentration, fermentation period, and peptone concentration on total pigment and biomass production was investigated using the Box-Behnken design method with 3-factors and 3-levels. The optimal production parameters were potato powder waste concentration of 7.81%, fermentation period of 12.82 days, and peptone concentration of 2.87%, which produced a maximum total pigment of 29.86 AU/ml that include, respectively, a maximum biomass weight of 0.126 g/ml and the yield of pigment of 236.98 AU/g biomass. The pigments produced were used as coloring agents for ice lolly. This study has revealed that the ice lolly preparations supplemented with these pigments received high acceptability. Finally, we recommend using wastewater and potato powder wastes for pigment and biomass production, which could reduce the cost of the pigment production process on an industrial scale in the future.
Collapse
Affiliation(s)
| | - Sulaiman A. Alrumman
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Samir I. Gadow
- Department of Agricultural Microbiology, National Research Centre, Agriculture and Biology Research Institute, Cairo, Egypt
| | - Mohamed H. El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Dalia M. Hikal
- Nutrition and Food Science, Home Economics Department, Faculty of Specific Education, Mansoura University, Mansoura, Egypt
| | - Abd El-Latif Hesham
- Department of Genetics, Faculty of Agriculture, Beni-Suef University, Beni Suef, Egypt
| | - Maysa M. A. Ali
- Botany and Microbiology Department, Faculty of Science, Assuit University, Assuit, Egypt
| |
Collapse
|
20
|
Analysis of secondary metabolite gene clusters and chitin biosynthesis pathways of Monascus purpureus with high production of pigment and citrinin based on whole-genome sequencing. PLoS One 2022; 17:e0263905. [PMID: 35648754 PMCID: PMC9159588 DOI: 10.1371/journal.pone.0263905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Monascus is a filamentous fungus that is widely used for producing Monascus pigments in the food industry in Southeast Asia. While the development of bioinformatics has helped elucidate the molecular mechanism underlying metabolic engineering of secondary metabolite biosynthesis, the biological information on the metabolic engineering of the morphology of Monascus remains unclear. In this study, the whole genome of M. purpureus CSU-M183 strain was sequenced using combined single-molecule real-time DNA sequencing and next-generation sequencing platforms. The length of the genome assembly was 23.75 Mb in size with a GC content of 49.13%, 69 genomic contigs and encoded 7305 putative predicted genes. In addition, we identified the secondary metabolite biosynthetic gene clusters and the chitin synthesis pathway in the genome of the high pigment-producing M. purpureus CSU-M183 strain. Furthermore, it is shown that the expression levels of most Monascus pigment and citrinin clusters located genes were significantly enhanced via atmospheric room temperature plasma mutagenesis. The results provide a basis for understanding the secondary metabolite biosynthesis, and constructing the metabolic engineering of the morphology of Monascus.
Collapse
|
21
|
Zhang S, Zhao W, Nkechi O, Lu P, Bai J, Lin Q, Liu J. Utilization of low-cost agricultural by-product rice husk for Monascus pigments production via submerged batch-fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2454-2463. [PMID: 34642943 DOI: 10.1002/jsfa.11585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Monascus pigments (MPs) produced by the genus Monascus, have been utilized for more than 2000 years in the food industry. In the present study, by submerged batch-fermentation (SBF), we were able to obtain a mutant strain with a high tolerance of inhibitory compounds generated from rice husk hydrolysate, allowing the production of MPs. RESULTS The mutant strain, M. Purpureus M523 with high rice husk hydrolysate tolerance was obtained using the atmospheric and room temperature plasma (ARTP) screening system, producing 39.48 U mL-1 extracellular total MPs (yellow and orange MPs), using non-detoxified rice husk diluted sulfuric acid hydrolysate (RHSAH) as the carbon source in SBF. Extracellular MPs (exMPs) production was enhanced to 72.1 and 80.7 U mL-1 in supplemented SBF (SSBF) and immobilized fermentation (IF) using non-detoxified RHSAH, with productivities of 0.16 and 0.37 U mL-1 h-1 , respectively. In addition, our findings revealed that despite having a high RHSAH tolerance, the mutant strain was unable to degrade phenolic compounds. Furthermore, we discovered that inhibitory compounds, including furfural (Fur) and 5'-hydroxymethyl furfural (5'-HMF), not only inhibit MP biosynthesis, but also regulate the conversion of pigment components. CONCLUSION The low-cost agricultural by-product, rice husk, can serve as an efficient substitute for MP production with high productivity via IF by Monascus spp. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Song Zhang
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Wen Zhao
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
- Henan Zhumadian Agricultural School, Zhumadian, China
| | - Omeoga Nkechi
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Pengxin Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Jie Bai
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Jun Liu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
22
|
de Medeiros TDM, Dufossé L, Bicas JL. Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chem X 2022; 13:100223. [PMID: 35128384 PMCID: PMC8808281 DOI: 10.1016/j.fochx.2022.100223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
The search for sustainable processes is constantly increasing in the last years, so reusing, recycling and adding value to residues and by-products from agroindustry is a consolidated area of research. Particularly in the field of fermentation technology, the lignocellulosic substrates have been used to produce a diversity of chemicals, fuels and food additives. These residues or by-products are rich sources of carbon, which may be used to yield fermentescible sugars upon hydrolysis, but are usually inaccessible to enzyme and microbial attack. Therefore, pre-treatments (e.g. hydrolysis, steam explosion, biological pretreatment or others) are required prior to microbial action. Biopigments are added-value compounds that can be produced biotechnologically, including fermentation processes employing lignocellulosic substrates. These molecules are important not only for their coloring properties, but also for their biological activities. Therefore, this paper discusses the most recent and relevant processes for biopigment production using lignocellulosic substrates (solid-state fermentation) or their hydrolysates.
Collapse
Affiliation(s)
- Tiago Daniel Madureira de Medeiros
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CEDEX 9, F-97744 Saint-Denis, France
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| |
Collapse
|
23
|
Shi J, Qin X, Zhao Y, Sun X, Yu X, Feng Y. Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Grewal J, Woła̧cewicz M, Pyter W, Joshi N, Drewniak L, Pranaw K. Colorful Treasure From Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Front Microbiol 2022; 13:832918. [PMID: 35173704 PMCID: PMC8841802 DOI: 10.3389/fmicb.2022.832918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Colors with their attractive appeal have been an integral part of human lives and the easy cascade of chemical catalysis enables fast, bulk production of these synthetic colorants with low costs. However, the resulting hazardous impacts on the environment and human health has stimulated an interest in natural pigments as a safe and ecologically clean alternative. Amidst sources of natural producers, the microbes with their diversity, ease of all-season production and peculiar bioactivities are attractive entities for industrial production of these marketable natural colorants. Further, in line with circular bioeconomy and environmentally clean technologies, the use of agro-industrial wastes as feedstocks for carrying out the microbial transformations paves way for sustainable and cost-effective production of these valuable secondary metabolites with simultaneous waste management. The present review aims to comprehensively cover the current green workflow of microbial colorant production by encompassing the potency of waste feedstocks and fermentation technologies. The commercially important pigments viz. astaxanthin, prodigiosin, canthaxanthin, lycopene, and β-carotene produced by native and engineered bacterial, fungal, or yeast strains have been elaborately discussed with their versatile applications in food, pharmaceuticals, textiles, cosmetics, etc. The limitations and their economic viability to meet the future market demands have been envisaged. The most recent advances in various molecular approaches to develop engineered microbiological systems for enhanced pigment production have been included to provide new perspectives to this burgeoning field of research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Production of soluble dietary fibers and red pigments from potato pomace in submerged fermentation by Monascus purpureus. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Chen X, Chen M, Wu X, Li X. Cost-effective process for the production of Monascus pigments using potato pomace as carbon source by fed-batch submerged fermentation. Food Sci Nutr 2021; 9:5415-5427. [PMID: 34646512 PMCID: PMC8497832 DOI: 10.1002/fsn3.2496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
Potato pomace, generated from starch-processing industry, was applied as a cost-effective resource for producing Monascus pigments via submerged fermentation. First, the pigment-production capacity of potato pomace and its hydrolysate was compared. The results indicated that potato pomace was superior to its hydrolysate when used for producing Monascus pigments. The red and yellow pigments produced in potato pomace medium reached 27.8 and 19.7 OD units/ml in 7 days, with the yield of total pigments at 1,187.5 OD units/g, respectively, increased by 127.9%, 19.4%, and 46.3% compared with the data obtained from hydrolysate. Meanwhile, the citrinin produced in potato pomace medium decreased by 22.6%. Afterward, potato pomace, without hydrolysis, was used as carbon source to obtain the optimal pigment production conditions. In the batch fermentation process, it was found that high amount of pomace inhibited the growth rate of mycelia and the productivity of pigments, and the fed-batch fermentation process could enhance the yield and productivity of pigments. With the same final amount of pomace (80 g/L), the maximal levels of total pigments and productivity obtained from fed-batch process reached 118.8 OD units/ml and 13.2 OD units/(ml·day), which presented an increase of 35.2% and 67.1% compared with the not fed-batch group, respectively. The results demonstrated that potato pomace was a cost-effective substrate for producing Monascus pigments in terms of pigment production capacity and productivity when fed-batch submerged fermentation was applied.
Collapse
Affiliation(s)
- Xiaoju Chen
- College of Chemistry and Material EngineeringChaohu UniversityChaohuChina
| | - Minmin Chen
- College of Chemistry and Material EngineeringChaohu UniversityChaohuChina
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| |
Collapse
|
27
|
Chaudhary V, Katyal P, Poonia AK, Kaur J, Puniya AK, Panwar H. Natural pigment from Monascus: The production and therapeutic significance. J Appl Microbiol 2021; 133:18-38. [PMID: 34569683 DOI: 10.1111/jam.15308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The present review highlights the advantages of using natural colorant over the synthetic one. We have discussed the fermentation parameters that can enhance the productivity of Monascus pigment on agricultural wastes. BACKGROUND Food industry is looking for natural colours because these can enhance the esthetic value, attractiveness, and acceptability of food while remaining nontoxic. Many synthetic food colours (Azorubine Carmoisine, quinoline) have been prohibited due to their toxicity and carcinogenicity. Increasing consumer awareness towards the food safety has forced the manufacturing industries to look for suitable alternatives. In addition to safety, natural colorants have been found to have nutritional and therapeutic significance. Among the natural colorants, microbial pigments can be considered as a viable option because of scalability, easier production, no seasonal dependence, cheaper raw materials and easier extraction. Fungi such as Monascus have a long history of safety and therefore can be used for production of biopigments. METHOD The present review summarizes the predicted biosynthetic pathways and pigment gene clusters in Monascus purpureus. RESULTS The challenges faced during the pilot-scale production of Monascus biopigment and taming it by us of low-cost agro-industrial substrates for solid state fermentation has been suggested. CONCLUSION Keeping in mind, therapeutic properties of Monascus pigments and their derivatives, they have huge potential for industrial and pharmaceutical application. APPLICATION Though the natural pigments have wide scope in the food industry. However, stabilization of pigment is the greatest challenge and attempts are being made to overcome this by complexion with hydrocolloids or metals and by microencapsulation.
Collapse
Affiliation(s)
- Vishu Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priya Katyal
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anuj Kumar Poonia
- Department of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jaspreet Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
28
|
Aman Mohammadi M, Ahangari H, Mousazadeh S, Hosseini SM, Dufossé L. Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess Biosyst Eng 2021; 45:1-12. [PMID: 34373951 DOI: 10.1007/s00449-021-02621-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Synthetic coloring agents have been broadly utilized in several industries such as food, pharmaceuticals, cosmetic and textile. Recent surveys on the potential of teratogenicity and carcinogenicity of synthetic dyes have expressed concerns regarding their use in foods. Worldwide, food industries have need for safe, natural and new colorings to add variety to foods and make them appealing to consumers. Natural colorings not only expand the marketability of the food product, but also add further healthful features such as antibacterial, antioxidant, anticancer and antiviral properties. Novel microbial strains should be explored to meet the increasing global search of natural pigments and suitable techniques must be developed for the marketable production of new pigments, using microbial cultures, viz., fungi, and bacteria. To address the issue of the natural coloring agents, this review presents the recent trends in several studies of microbial pigments, their biological properties and industrial applications.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Mousazadeh
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Laurent Dufossé
- CHEMBIOPRO Lab, Ecole Supérieure d'Ingénieurs Réunion Océan Indien (ESIROI), Université de La Réunion, Département Agroalimentaire, 97744, Saint-Denis, France.
| |
Collapse
|
29
|
Pimenta LPS, Gomes DC, Cardoso PG, Takahashi JA. Recent Findings in Azaphilone Pigments. J Fungi (Basel) 2021; 7:541. [PMID: 34356920 PMCID: PMC8307326 DOI: 10.3390/jof7070541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/23/2022] Open
Abstract
Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.
Collapse
Affiliation(s)
- Lúcia P. S. Pimenta
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| | - Dhionne C. Gomes
- Department of Food Science, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| | - Patrícia G. Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, Lavras CEP 37200-900, MG, Brazil;
| | - Jacqueline A. Takahashi
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| |
Collapse
|
30
|
He J, Jia M, Li W, Deng J, Ren J, Luo F, Bai J, Liu J. Toward improvements for enhancement the productivity and color value of Monascus pigments: a critical review with recent updates. Crit Rev Food Sci Nutr 2021; 62:7139-7153. [PMID: 34132617 DOI: 10.1080/10408398.2021.1935443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monascus pigments are a kind of high-quality natural edible pigments fermented by Monascus filamentous fungi, which have been widely used in food, cosmetics, medicine, textiles, dyes and chemical industries as active functional ingredients. Moreover, Monascus pigments have a good application prospect because of a variety of biological functions such as antibacterial, antioxidation, anti-inflammatory, regulating cholesterol, and anti-cancer. However, the low productivity and color value of pigments restrict their development and application. In this review, we introduced the categories, structures, biosynthesis and functions of Monascus pigments, and summarized the current methods for improving the productivity and color value of pigments, including screening and mutagenesis of strains, optimization of fermentation conditions, immobilized fermentation, mixed fermentation, additives, gene knockout and overexpression technologies, which will help to develop the foundation for the industrial production of Monascus pigments.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - MingXi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - JiaLi Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - FeiJun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jun Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
31
|
Utilization of Whey for Red Pigment Production by Monascus purpureus in Submerged Fermentation. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various biotechnological approaches have been employed to convert food waste into value-added bioproducts through fermentation processes. Whey, a major waste generated by dairy industries, is considered an important environmental pollutant due to its massive production and high organic content. The purpose of this study is to investigate the effect of different fermentation parameters in simultaneous hydrolysis and fermentation (SHF) of whey for pigment production with Monascus purpureus. The submerged culture fermentation parameters optimized were type and pretreatment of whey, pH, inoculation ratio, substrate concentration and monosodium glutamate (MSG) concentration. Demineralized (DM), deproteinized (DP), and raw whey (W) powders were used as a substrate for pigment production by simultaneous hydrolysis and fermentation (SHF). The maximum red pigment production was obtained as 38.4 UA510 nm (absorbance units) at the optimized condition of SHF. Optimal conditions of SHF were 2% (v/v) inoculation ratio, 75 g/L of lactose as carbon source, 25 g/L of MSG as nitrogen source, and fermentation medium pH of 7.0. The specific growth rate of M. purpureus on whey and the maximum pigment production yield values were 0.023 h−1 and 4.55 UAd−1, respectively. This study is the first in the literature to show that DM whey is a sustainable substrate in the fermentation process of the M. purpureus red pigment.
Collapse
|
32
|
Application of Lactic Acid Bacteria in Fermentation Processes to Obtain Tannases Using Agro-Industrial Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteria have been used in the food industry to produce flavors, dyes, thickeners, and to increase food value, because bacterial fermentations favor the obtention of different metabolites such as tannins and different nutritional compounds in food. Lactiplantibacillus plantarum was one the first species to be studied for industrial purposes, and its efficacy to obtaining tannins using fermentation processes. Bacterial fermentation helps to obtain a product with an added value of better quality and without the need to use strong solvents that can reduce their quality and safety. To release tannins, it is necessary to subject the substrate to different conditions to activate the enzyme tannin acyl hydrolase (tannase). The tannase-released compounds can have beneficial effects on health such as antioxidant, anticancer and cardioprotective properties, among others. Therefore, this review analyzes tannase release and other metabolites by fermentation processes.
Collapse
|
33
|
Da Silva VL, Ienczak JL, Moritz D. Agro-industrial residues for the production of red biopigment by Monascus ruber: rice flour and sugarcane molasses. Braz J Microbiol 2021; 52:587-596. [PMID: 33651332 DOI: 10.1007/s42770-021-00456-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/11/2021] [Indexed: 12/23/2022] Open
Abstract
Three culture media were studied for red pigment production by Monascus ruber in submerged cultivation: rice flour (20 g L-1), sugarcane molasses (30 g L-1), and, finally, molasses + rice flour (10 g L-1+10 g L-1); all culture media were added of 5 g L-1 glycine as nitrogen source. Rice flour showed pigment production of 7.05 UA510nm and molasses 5.08 UA510nm, and the mixture of rice flour and molasses showed the best result of 16.38 UA510nm. Molasses culture presented good results for cell biomass production of 11.09 g L-1. With these results, it was observed that one substrate presented good pigment production (rice flour) and another attained better results for cell biomass growth (molasses), and a third medium containing 10 g L-1 of rice flour + 10 g L-1 of molasses was formulated. The results for this mixture showed satisfactory results, with global pigment productivity of 0.097 UA510nm h-1 and maximum productivity rate of 0.17 UA510nm h-1. The high production and productivity obtained for the mixture of rice flour and molasses indicated that the production of red pigment by submerged fermentation, using the mixture of these low-cost culture media, may be promising in terms of commercial production.
Collapse
Affiliation(s)
- V L Da Silva
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Zip Code 88040-900, Brazil
| | - J L Ienczak
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Zip Code 88040-900, Brazil
| | - D Moritz
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Zip Code 88040-900, Brazil.
| |
Collapse
|
34
|
Production of Bio-Based Pigments from Food Processing Industry By-Products (Apple, Pomegranate, Black Carrot, Red Beet Pulps) Using Aspergillus c arbonarius. J Fungi (Basel) 2020; 6:jof6040240. [PMID: 33105686 PMCID: PMC7712229 DOI: 10.3390/jof6040240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Food processing industry by-products (apple, pomegranate, black carrot, and red beet pulps) were evaluated as raw materials in pigment production by the filamentous fungi Aspergillus carbonarius. The effect of fermentation conditions (solid and submerged-state), incubation period (3, 6, 9, 12, and 15 d), initial substrate pH (4.5, 5.5, 6.5, 7.5, and 8.5), and pulp particle size (<1.4, 1.4–2.0, 2–4, and >4 mm) on fungal pigment production were tested to optimize the conditions. Pigment extraction analysis carried out under solid-state fermentation conditions showed that the maximum pigment production was determined as 9.21 ± 0.59 absorbance unit at the corresponding wavelength per gram (AU/g) dry fermented mass (dfm) for pomegranate pulp (PP) by A. carbonarius for 5 d. Moreover, the highest pigment production was obtained as 61.84 ± 2.16 AU/g dfm as yellowish brown at initial pH 6.5 with < 1.4 mm of substrate particle size for 15-d incubation period. GC×GC-TOFMS results indicate that melanin could be one of the main products as a pigment. SEM images showed that melanin could localize on the conidia of A. carbonarius.
Collapse
|
35
|
Pailliè-Jiménez ME, Stincone P, Brandelli A. Natural Pigments of Microbial Origin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.590439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|