1
|
Pan J, Yang N, Lv YL, Zhang ZY, Li CX, Xu JH. Screening of lipase TiL from Tilletia indica for chemo-enzymatic epoxidation of alkenes. Enzyme Microb Technol 2025; 183:110547. [PMID: 39591727 DOI: 10.1016/j.enzmictec.2024.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/25/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Lipase can mediate the chemo-enzymatic epoxidation of alkenes with the presence of free carboxylic acid and hydrogen peroxide. Four novel lipases with the abilities of chemo-enzymatic epoxidation were mined from the gene database. Lipase TiL originated from Tilletia indica was identified with significant activity on formation of methyl epoxystearate from methyl oleate. n-Heptanoic acid was determined as the optimal carboxylic acid substrate of TiL. Methyl oleate and α-pinene were efficiently converted to corresponding epoxy compound in micro-aqueous media and aqueous-organic biphase, respectively. A preparative scale chemo-enzymatic transformation of α-pinene was conduct using the optimized reaction condition, with 30 % yield of α-pinene oxide obtained.
Collapse
Affiliation(s)
- Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Nan Yang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yuan-Lin Lv
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zi-Yang Zhang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
2
|
Inoue H, Tachibana T, Bito T, Arima J. Acetylation of amines and alcohols catalyzed by acetylcholinesterase from Pseudomonas aeruginosa PAO1. Enzyme Microb Technol 2023; 165:110208. [PMID: 36753877 DOI: 10.1016/j.enzmictec.2023.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Acetylcholinesterase (AChE) from Pseudomonas aeruginosa PAO1 has a catalytic Ser residue in its active site. In this study, we examined the aminolysis and alcoholysis reactions of AChE that occurred alongside its hydrolysis reaction. The recombinant AChE recognized ethyl acetate as a substrate. Therefore, we evaluated acetylation of the amine and hydroxyl group by AChE, using acetylcholine and ethyl acetate as the acetyl donor. AChE recognized diaminoalkanes with 4- to 12-carbon chains and aminoalcohols with 4- to 8-carbon chains as acetyl acceptors, resulting in their acetylated products. In the acetylation of 1,6-diaminohexane, AChE preferentially used ethyl acetate as the acetyl donor above pH 8.0 and the efficiency increased with increasing pH. In contrast, the acetylation of 6-amino-1-hexanol was efficient with acetylcholine as the acetyl donor in the pH range of 4-10. In addition, acetylated 6-amino-1-hexanol was decomposed by AChE. The kinetic study indicated that the acetyl donor and acceptor are competitively recognized by AChE as substrates.
Collapse
Affiliation(s)
- Hisashi Inoue
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori 680-8553, Japan.
| | - Teruyuki Tachibana
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori 680-8553, Japan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori 680-8553, Japan.
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori 680-8553, Japan.
| |
Collapse
|
3
|
Lee AC, Ibrahim MF, Abd‐Aziz S. Lignin‐Degrading Enzymes. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:179-198. [DOI: 10.1002/9783527830756.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Facile fabrication of antibacterial and antiviral perhydrolase-polydopamine composite coatings. Sci Rep 2021; 11:12410. [PMID: 34127732 PMCID: PMC8203652 DOI: 10.1038/s41598-021-91925-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
In situ generation of antibacterial and antiviral agents by harnessing the catalytic activity of enzymes on surfaces provides an effective eco-friendly approach for disinfection. The perhydrolase (AcT) from Mycobacterium smegmatis catalyzes the perhydrolysis of acetate esters to generate the potent disinfectant, peracetic acid (PAA). In the presence of AcT and its two substrates, propylene glycol diacetate and H2O2, sufficient and continuous PAA is generated over an extended time to kill a wide range of bacteria with the enzyme dissolved in aqueous buffer. For extended self-disinfection, however, active and stable AcT bound onto or incorporated into a surface coating is necessary. In the current study, an active, stable and reusable AcT-based coating was developed by incorporating AcT into a polydopamine (PDA) matrix in a single step, thereby forming a biocatalytic composite onto a variety of surfaces. The resulting AcT-PDA composite coatings on glass, metal and epoxy surfaces yielded up to 7-log reduction of Gram-positive and Gram-negative bacteria when in contact with the biocatalytic coating. This composite coating also possessed potent antiviral activity, and dramatically reduced the infectivity of a SARS-CoV-2 pseudovirus within minutes. The single-step approach enables rapid and facile fabrication of enzyme-based disinfectant composite coatings with high activity and stability, which enables reuse following surface washing. As a result, this enzyme-polymer composite technique may serve as a general strategy for preparing antibacterial and antiviral surfaces for applications in health care and common infrastructure safety, such as in schools, the workplace, transportation, etc.
Collapse
|
5
|
Jia W, Li H, Wang Q, Zheng K, Lin H, Li X, Huang J, Xu L, Dong W, Shu Z. Screening of perhydrolases to optimize glucose oxidase-perhydrolase-in situ chemical oxidation cascade reaction system and its application in melanin decolorization. J Biotechnol 2021; 328:106-114. [PMID: 33485863 DOI: 10.1016/j.jbiotec.2021.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
A novel glucose oxidase (GOD)-perhydrolase-in situ chemical oxidation (ISCO) cascade reaction system was designed, optimized, and verified the operation feasibility in this research. Among the determined four perhydrolases, acyltransferase from Mycobacterium smegmatis (MsAcT) displayed the highest specific activity for perhydrolysis reaction (76.4 U/mg) and the lowest Km value to hydrogen peroxide (13.9 mmol/L). GOD-MsAcT cascade reaction system also displayed high catalytic efficiency. Under the optimal parameters (50:1 activity unit ratio of GOD to MsAcT, pH 8.0, 50 mmol/L of β-d-glucose, and 15 mmol/L of glyceryl triacetate), the melanin decolorization rate using GOD-MsAcT-ISCO cascade reaction system reached 86.8 %. Kinetics of GOD-MsAcT-ISCO cascade reaction system for melanin decolorization fitted the kinetic model of Boltzmann sigmoid. As a substitutive skin whitening technology, GOD-MsAcT-ISCO cascade reaction system displayed an excellent application prospect.
Collapse
Affiliation(s)
- Wenjing Jia
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Huan Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Qian Wang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Kaixuan Zheng
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou, 350117, China
| | - Hong Lin
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Xin Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Jianzhong Huang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China.
| | - Linting Xu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
6
|
Domínguez de María P. Across the Board: Pablo Domínguez de María on the Biocatalytic Synthesis of Esters and Amides in Aqueous Media. CHEMSUSCHEM 2020; 13:5611-5613. [PMID: 33034407 DOI: 10.1002/cssc.202002298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In this series of articles, the board members of ChemSusChem discuss recent research articles that they consider of exceptional quality and importance for sustainability. This entry features Dr. P. Domínguez de María, who introduces the biocatalytic synthesis of esters and amides in aqueous media by means of some acyltransferases that seem to proceed against Le Chatelier's principle. Continuous processes with immobilized forms of these enzymes enable the efficient production of aroma esters and important amides (e. g., melatonin) in aqueous solutions and using natural substrates with limited environmental impact.
Collapse
Affiliation(s)
- Pablo Domínguez de María
- Sustainable Momentum SL, Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
7
|
Quarter of a Century after: A Glimpse at the Conformation and Mechanism of Candida antarctica Lipase B. CRYSTALS 2020. [DOI: 10.3390/cryst10050404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipase B from Candida antarctica (CAL-B) belongs to the family of α/β-hydrolases, and is one from the most extensively used biocatalysts in the kinetic resolution of amines and alcohols in a racemic state, in the desymmetrization of diacetates or diols, and in the stereoselective synthesis of chiral intermediate compounds for obtaining the various pharmaceuticals and agents which protect plants. There are also many cases of promiscuous reactions catalyzed by CAL-B. The number of very important results appeared recently in the literature in the years 2015–2019, regarding the crystal structure and conformation of CAL-B molecule. Before 2015, there was a long period of a complete lack of information concerning this enzyme’s structure. The earlier reports about CAL-B structure were dated between 1994–1995, and did not provide enough conclusions about the mechanism of the enzyme. The recently solved structures give a hint of the enzyme mechanism in three dimensions.
Collapse
|
8
|
Wu S, Liu Q, Tan H, Zhang F, Yin H. A Novel 2,5-Furandicarboxylic Acid Biosynthesis Route from Biomass-Derived 5-Hydroxymethylfurfural Based on the Consecutive Enzyme Reactions. Appl Biochem Biotechnol 2020; 191:1470-1482. [PMID: 32125648 DOI: 10.1007/s12010-020-03290-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/13/2020] [Indexed: 01/13/2023]
Abstract
2,5-Furandicarboxylic acid (FDCA) is a promising bio-based building block as a green alternative to petroleum-based terephthalate in polymer production. Most of FDCA is produced by the oxidation of 5-hydroxymethylfurfural (HMF), which is derived from hexose. Although the chemical conversion is widely applied, the biocatalytic conversion is expected due to the relatively mild condition and fewer toxic chemicals consumption. However, it's difficult to catalyze the conversion of HMF to FDCA by a single enzyme. Here, a newly enzymatic cascade reaction process was introduced with a yield of 94.0% by the combination of 5-hydroxymethylfurfural oxidase (HMFO) and lipase. Briefly, a flavine adenosine dinucleotide independent (FAD-independent) HMFO of Methylovorus sp. MP688 was used to convert HMF to 2,5-diformylfuran (DFF) and 5-formylfuroic acid (FFA), which consecutively transformed to FDCA by a lipase Novozym 435. To facilitate the purification, a coupled alkali precipitation was developed to recover FDCA from organic solvent with an improved purity from 84.4 to 99.0% and recovery of 78.1%. This work will help to construct the green biorefinery route for the bulk FDCA from biomass by enzymes.
Collapse
Affiliation(s)
- Shuli Wu
- Group of Natural Products and Glyco-Biotechnology, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.,College of Food Science and Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Qishun Liu
- Group of Natural Products and Glyco-Biotechnology, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| | - Haidong Tan
- Group of Natural Products and Glyco-Biotechnology, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Fuyun Zhang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Heng Yin
- Group of Natural Products and Glyco-Biotechnology, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| |
Collapse
|
9
|
Yang ZJ, Wang N, He WX, Yu Y, Gong QT, Yu XQ. Lipase-Catalyzed Highly Efficient 1,6-Conjugated Addition for Synthesis of Triarylmethanes. Catal Letters 2019. [DOI: 10.1007/s10562-019-03043-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Wilk M, Trzepizur D, Koszelewski D, Brodzka A, Ostaszewski R. Synthesis of (E)-α,β-unsaturated carboxylic esters derivatives from cyanoacetic acid via promiscuous enzyme-promoted cascade esterification/Knoevenagel reaction. Bioorg Chem 2019; 93:102816. [DOI: 10.1016/j.bioorg.2019.02.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
|
11
|
Re RN, Proessdorf JC, La Clair JJ, Subileau M, Burkart MD. Tailoring chemoenzymatic oxidation via in situ peracids. Org Biomol Chem 2019; 17:9418-9424. [PMID: 31650153 PMCID: PMC7751277 DOI: 10.1039/c9ob01814j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epoxidation chemistry often suffers from the challenging handling of peracids and thus requires in situ preparation. Here, we describe a two-phase enzymatic system that allows the effective generation of peracids and directly translate their activity to the epoxidation of olefins. We demonstrate the approach by application to lipid and olefin epoxidation as well as sulfide oxidation. These methods offer useful applications to synthetic modifications and scalable green processes.
Collapse
Affiliation(s)
- Rebecca N Re
- Department of Chemistry and Biochemistry, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
12
|
China H, Ogino H. A useful propionate cofactor enhancing activity for organic solvent-tolerant recombinant metal-free bromoperoxidase (perhydrolase) from Streptomyces aureofaciens. Biochem Biophys Res Commun 2019; 516:327-332. [PMID: 31204052 DOI: 10.1016/j.bbrc.2019.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022]
Abstract
The oxidative brominating activity of an organic solvent-tolerant recombinant metal-free bromoperoxidase BPO-A1 with C-terminal His-tag (rBPO-A1), from Streptomyces aureofaciens found to depend on various additives. These included carboxylic acids, used as cofactors and alcohols, used as water-miscible organic solvents. Enzyme activity was significantly enhanced by using propanoic acid (PA) as a cofactor, which had a high Log D at pH 5.0 and ethylene glycol with a low Log P. The positional specificity of oxidative hydroxybromination for olefins, using rBPO-A1 and PA in the presence of methanol, was higher compared to a non-enzymatic reaction using peracetic acid. The oxidative bromination step, occurring after enzymatic peroxidation step, is suggested to be pseudoenzymatic.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan; Department of Applied Chemistry, College of Life Sciences Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
13
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
14
|
Szelwicka A, Zawadzki P, Sitko M, Boncel S, Czardybon W, Chrobok A. Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Szelwicka
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Magdalena Sitko
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
15
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Elena Fernández‐Fueyo
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Milja Pesic
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Sandy Schmidt
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sabry Younes
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
16
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- JiaJia Dong
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Sandy Schmidt
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Sabry Younes
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
17
|
|
18
|
Lv N, He W, Fang Z, Sun Q, Qiu C, Guo K. Epoxidation of Methyl Oleate and Subsequent Ring‐Opening Catalyzed by Lipase from
Candida
sp. 99–125. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Niuniu Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing 211816PR China
| | - Wei He
- Department of Chemistry, Fudan University220 Handan RoadShanghai 200433PR China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing 211816PR China
| | - Qin Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing 211816PR China
| | - Chuanhong Qiu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing 211816PR China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing 211816PR China
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Nanjing Tech UniversityNanjing 210009PR China
| |
Collapse
|
19
|
de Souza ROMA, Miranda LSM, Bornscheuer UT. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry 2017; 23:12040-12063. [DOI: 10.1002/chem.201702235] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
20
|
Lee CW, Kwon S, Park SH, Kim BY, Yoo W, Ryu BH, Kim HW, Shin SC, Kim S, Park H, Kim TD, Lee JH. Crystal Structure and Functional Characterization of an Esterase (EaEST) from Exiguobacterium antarcticum. PLoS One 2017; 12:e0169540. [PMID: 28125606 PMCID: PMC5268438 DOI: 10.1371/journal.pone.0169540] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
A novel microbial esterase, EaEST, from a psychrophilic bacterium Exiguobacterium antarcticum B7, was identified and characterized. To our knowledge, this is the first report describing structural analysis and biochemical characterization of an esterase isolated from the genus Exiguobacterium. Crystal structure of EaEST, determined at a resolution of 1.9 Å, showed that the enzyme has a canonical α/β hydrolase fold with an α-helical cap domain and a catalytic triad consisting of Ser96, Asp220, and His248. Interestingly, the active site of the structure of EaEST is occupied by a peracetate molecule, which is the product of perhydrolysis of acetate. This result suggests that EaEST may have perhydrolase activity. The activity assay showed that EaEST has significant perhydrolase and esterase activity with respect to short-chain p-nitrophenyl esters (≤C8), naphthyl derivatives, phenyl acetate, and glyceryl tributyrate. However, the S96A single mutant had low esterase and perhydrolase activity. Moreover, the L27A mutant showed low levels of protein expression and solubility as well as preference for different substrates. On conducting an enantioselectivity analysis using R- and S-methyl-3-hydroxy-2-methylpropionate, a preference for R-enantiomers was observed. Surprisingly, immobilized EaEST was found to not only retain 200% of its initial activity after incubation for 1 h at 80°C, but also retained more than 60% of its initial activity after 20 cycles of reutilization. This research will serve as basis for future engineering of this esterase for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Sena Kwon
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Boo-Young Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
| | - Han-Woo Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Seung Chul Shin
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Sunghwan Kim
- New Drug Development Center, Daegu-Gyeongpuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - T. Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
- * E-mail: (JHL); (TDK)
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
- * E-mail: (JHL); (TDK)
| |
Collapse
|
21
|
Shu Z, Wu H, Lin H, Li T, Liu Y, Ye F, Mu X, Li X, Jiang X, Huang J. Decolorization of Remazol Brilliant Blue R using a novel acyltransferase-ISCO ( in situ chemical oxidation) coupled system. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Fengjuan Yang, Zhang X, Li F, Wang Z, Wang L. Chemoenzymatic Synthesis of α-Cyano Epoxides by a Tandem-Knoevenagel-Epoxidation Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Efficient production of peracetic acid in aqueous solution with cephalosporin-deacetylating acetyl xylan esterase from Bacillus subtilis. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Manoel EA, Ribeiro MF, dos Santos JC, Coelho MAZ, Simas AB, Fernandez-Lafuente R, Freire DM. Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia : Application to the kinetic resolution of myo -inositol derivatives. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
China H, Okada Y, Ogino H. Production mechanism of active species on the oxidative bromination following perhydrolase activity. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hideyasu China
- Department of Applied Chemistry, College of Life Sciences; Ritsumeikan University; 1-1-1 Nojihigashi Kusatsu Shiga 525-8577 Japan
- Department of Chemical Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Nakaku Sakai Osaka 599-8531 Japan
| | - Yutaka Okada
- Department of Applied Chemistry, College of Life Sciences; Ritsumeikan University; 1-1-1 Nojihigashi Kusatsu Shiga 525-8577 Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Nakaku Sakai Osaka 599-8531 Japan
| |
Collapse
|
26
|
González-Martínez D, Rodríguez-Mata M, Méndez-Sánchez D, Gotor V, Gotor-Fernández V. Lactonization reactions through hydrolase-catalyzed peracid formation. Use of lipases for chemoenzymatic Baeyer–Villiger oxidations of cyclobutanones. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Pollegioni L, Tonin F, Rosini E. Lignin-degrading enzymes. FEBS J 2015; 282:1190-213. [DOI: 10.1111/febs.13224] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/29/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- The Protein Factory; Centro Interuniversitario di Biotecnologie Proteiche; Politecnico di Milano; ICRM CNR Milano; Università degli Studi dell'Insubria; Italy
| | - Fabio Tonin
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- The Protein Factory; Centro Interuniversitario di Biotecnologie Proteiche; Politecnico di Milano; ICRM CNR Milano; Università degli Studi dell'Insubria; Italy
| |
Collapse
|
28
|
Yang Q, Zhou LH, Wu WX, Zhang W, Wang N, Yu XQ. Lipase-catalyzed regioselective domino reaction for the synthesis of chromenone derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra13267c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2H-Chromenones and 2-hydroxyl-2H-chromenones were synthesized under BPL- and PFL-catalyzed domino reactions from the same substrates respectively.
Collapse
Affiliation(s)
- Qi Yang
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Long-Hua Zhou
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Wan-Xia Wu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Wei Zhang
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Na Wang
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
29
|
Bayat S, Abd Malek E, Yahaya NM, Salleh AB, Tejo BA, Abdul Rahman MB. Asymmetric aldol reactions catalyzed by the promiscuous aldo–ketoreductase enzyme. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Chemo-enzymatic epoxidation catalyzed by C. antarctica lipase immobilized in microemulsion-based organogels. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Evaluation of styrene-divinylbenzene beads as a support to immobilize lipases. Molecules 2014; 19:7629-45. [PMID: 24918537 PMCID: PMC6271320 DOI: 10.3390/molecules19067629] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/03/2022] Open
Abstract
A commercial and very hydrophobic styrene-divinylbenzene matrix, MCI GEL® CHP20P, has been compared to octyl-Sepharose® beads as support to immobilize three different enzymes: lipases from Thermomyces lanuginosus (TLL) and from Rhizomucor miehie (RML) and Lecitase® Ultra, a commercial artificial phospholipase. The immobilization mechanism on both supports was similar: interfacial activation of the enzymes versus the hydrophobic surface of the supports. Immobilization rate and loading capacity is much higher using MCI GEL® CHP20P compared to octyl-Sepharose® (87.2 mg protein/g of support using TLL, 310 mg/g using RML and 180 mg/g using Lecitase® Ultra). The thermal stability of all new preparations is much lower than that of the standard octyl-Sepharose® immobilized preparations, while the opposite occurs when the inactivations were performed in the presence of organic co-solvents. Regarding the hydrolytic activities, the results were strongly dependent on the substrate and pH of measurement. Octyl-Sepharose® immobilized enzymes were more active versus p-NPB than the enzymes immobilized on MCI GEL® CHP20P, while RML became 700-fold less active versus methyl phenylacetate. Thus, the immobilization of a lipase on this matrix needs to be empirically evaluated, since it may present very positive effects in some cases while in other cases it may have very negative ones.
Collapse
|
32
|
Sharma S, Kanwar SS. Organic solvent tolerant lipases and applications. ScientificWorldJournal 2014; 2014:625258. [PMID: 24672342 PMCID: PMC3929378 DOI: 10.1155/2014/625258] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022] Open
Abstract
Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.
Collapse
Affiliation(s)
- Shivika Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher S. Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| |
Collapse
|
33
|
Kara S, Spickermann D, Schrittwieser JH, Weckbecker A, Leggewie C, Arends IWCE, Hollmann F. Access to Lactone Building Blocks via Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactonization. ACS Catal 2013. [DOI: 10.1021/cs400535c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Selin Kara
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | - Joerg H. Schrittwieser
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | - Isabel W. C. E. Arends
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| |
Collapse
|
34
|
Krystof M, Pérez-Sánchez M, Domínguez de María P. Lipase-mediated selective oxidation of furfural and 5-hydroxymethylfurfural. CHEMSUSCHEM 2013; 6:826-30. [PMID: 23576295 DOI: 10.1002/cssc.201200954] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Indexed: 05/24/2023]
Abstract
Furfural and 5-hydroxymethylfurfural (HMF) are important biomass-derived platform chemicals that can be obtained from the dehydration of lignocellulosic sugars. A possible route for the derivatization of furanics is their oxidation to afford a broad range of chemicals with promising applications (e.g., diacids, hydroxyl acids, aldehyde acids, monomers for novel polymers). Herein we explore the organic peracid-assisted oxidation of furanics under mild reaction conditions. Using lipases as biocatalysts, alkyl esters as acyl donors, and aqueous solutions of hydrogen peroxide (30 % v/v) added stepwise, peracids are formed in situ, which subsequently oxidize the aldehyde groups to afford carboxylic acids with high yields and excellent selectivities. Furthermore, the use of an immobilized silica-based 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) affords the selective oxidation of the hydroxymethyl group of HMF to afford 2,5-diformylfuran. That product can be subsequently oxidized using again lipases for the in situ peracid formation to yield 2,5-furandicarboxylic acid, which is considered to be a key building block for biorefineries. These lipase-mediated reactions proceeded efficiently even with high substrate loadings under still non-optimized conditions. Overall, a proof-of-concept for the oxidation of furanics (based on in situ formed organic peracids as oxidants) is provided.
Collapse
Affiliation(s)
- Monika Krystof
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | | |
Collapse
|
35
|
Krystof M, Pérez-Sánchez M, Domínguez de María P. Lipase-catalyzed (trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents. CHEMSUSCHEM 2013; 6:630-634. [PMID: 23456887 DOI: 10.1002/cssc.201200931] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Indexed: 06/01/2023]
Abstract
5-Hydroxymethylfurfural (HMF) is a valuable biomass-derived building block. Among possible HMF valorization products, a broad range of HMF esters can be synthesized. These HMF esters have found some promising applications, such as monomers, fuels, additives, surfactants, and fungicides, and thus several catalytic approaches for HMF (trans)esterifications have been reported. The intrinsic reactivity of HMF is challenging, forcing the use of mild reaction conditions to avoid by-product formation. This paper explores the lipase-catalyzed (trans)esterification of HMF with different acyl donors (carboxylic acids and methyl- and ethyl esters) mostly in solvent-free conditions. The results demonstrate that lipases may be promising alternatives for the synthesis of HMF esters-with high productivities and reactions at high substrate loadings-provided that robust systems for lipase immobilization are applied to assure an adequate reusability of the enzymes. Once (trans)esterifications have been conducted, the separation of unreacted HMF and HMF esters is performed by using deep-eutectic solvents (DES) as separation agents. DES are able to dissolve hydrogen-bond donors (e.g., HMF), whereas non-hydrogen-bond donors (in this case HMF esters) form a second phase. By using this approach, high ester purities (>99 %) and efficiencies (up to >90 % HMF ester recovery) in separations were obtained by using choline chloride-based DES.
Collapse
Affiliation(s)
- Monika Krystof
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | | |
Collapse
|
36
|
Wiermans L, Pérez-Sánchez M, Domínguez de María P. Lipase-mediated oxidative delignification in non-aqueous media: formation of de-aromatized lignin-oil and cellulase-accessible polysaccharides. CHEMSUSCHEM 2013; 6:251-255. [PMID: 23303647 DOI: 10.1002/cssc.201200704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/03/2012] [Indexed: 06/01/2023]
Abstract
Pulp & Oil: We report the unprecedented formation of de-aromatized lignin oil together with a white polysaccharide fraction when lignocellulose is treated with peracids, which are formed in situ by enzymes. A preliminary characterization of the lignin oil is provided, together with the evidence that the delignified lignocellulose is accessible to cellulases to afford fermentable sugars. As a first proof-of-concept, the reported approach may bring promising new research lines in the future.
Collapse
Affiliation(s)
- Lotte Wiermans
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | | |
Collapse
|
37
|
Xie ZB, Wang N, Jiang GF, Yu XQ. Biocatalytic asymmetric aldol reaction in buffer solution. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.12.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Wu Q, Soni P, Reetz MT. Laboratory Evolution of Enantiocomplementary Candida antarctica Lipase B Mutants with Broad Substrate Scope. J Am Chem Soc 2013; 135:1872-81. [DOI: 10.1021/ja310455t] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s
Republic of China
- Max-Planck-Institut
für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der
Ruhr, Germany
| | - Pankaj Soni
- Max-Planck-Institut
für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der
Ruhr, Germany
- CSIR-Institute
of Microbial Technology,
Chandigarh, 160036, India
| | - Manfred T. Reetz
- Max-Planck-Institut
für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der
Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse,
35032 Marburg, Germany
| |
Collapse
|
39
|
Gupta MN, Mukherjee J, Malhotra D. Use of high activity enzyme preparations in neat organic solvents for organic synthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2053-7670-1-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Despotovic D, Vojcic L, Prodanovic R, Martinez R, Maurer KH, Schwaneberg U. Fluorescent Assay for Directed Evolution of Perhydrolases. ACTA ACUST UNITED AC 2012; 17:796-805. [DOI: 10.1177/1087057112438464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Directed evolution offers opportunities to improve promiscuous activities of hydrolases in rounds of diversity generation and high-throughput screening. In this article, we developed and validated a screening platform to improve the perhydrolytic activity of proteases and likely other hydrolases (e.g., lipases or esterases). Key was the development of a highly sensitive fluorescent assay (sensitivity in the µM range) based on 3-carboxy-7-hydroxycoumarin (HCC) formation. HCC is released through an hypobromite-mediated oxidation of 7-(4′-aminophenoxy)-3-carboxycoumarin (APCC), which enables for the first time a continuous measurement of peroxycarboxylic acid formation with a standard deviation of 11% in microtiter plates with a wide pH range window (5–9). As example, subtilisin Carlsberg was subjected to site saturation mutagenesis at position G165, yielding a variant T58A/G165L/L216W with 5.4-fold increased kcat for perhydrolytic activity compared with wild type.
Collapse
Affiliation(s)
| | | | - Radivoje Prodanovic
- RWTH Aachen University, Worringerweg, Aachen, Germany
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | - Karl-Heinz Maurer
- International Research Laundry & Home Care, Biotechnology, Düsseldorf, Germany
- Present address: AB Enzymes GmbH, Feldbergstraße, Darmstadt, Germany
| | | |
Collapse
|
41
|
Hu W, Guan Z, Deng X, He YH. Enzyme catalytic promiscuity: The papain-catalyzed Knoevenagel reaction. Biochimie 2012; 94:656-61. [PMID: 21963435 DOI: 10.1016/j.biochi.2011.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/19/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Hu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | |
Collapse
|
42
|
Domínguez de María P. Recent developments in the biotechnological production of hydrocarbons: paving the way for bio-based platform chemicals. CHEMSUSCHEM 2011; 4:327-329. [PMID: 21394920 DOI: 10.1002/cssc.201000306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/12/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Pablo Domínguez de María
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
43
|
|
44
|
|
45
|
Bitencourt TB, Nascimento MDG. The influence of organic solvent and ionic liquids on the selective formation of 2-(2-ethylhexyl)-3-phenyl-1,2-oxaziridine mediated by lipases. J PHYS ORG CHEM 2010. [DOI: 10.1002/poc.1778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Cruz JC, Pfromm PH, Tomich JM, Rezac ME. Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I. Tertiary structure. Colloids Surf B Biointerfaces 2010; 79:97-104. [DOI: 10.1016/j.colsurfb.2010.03.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/25/2022]
|
47
|
Rodrigues RC, Fernandez-Lafuente R. Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.02.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Tzialla AA, Pavlidis IV, Felicissimo MP, Rudolf P, Gournis D, Stamatis H. Lipase immobilization on smectite nanoclays: characterization and application to the epoxidation of alpha-pinene. BIORESOURCE TECHNOLOGY 2010; 101:1587-1594. [PMID: 19910187 DOI: 10.1016/j.biortech.2009.10.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
The immobilization of lipase B from Candida antarctica on smectite group nanoclays (Laponite, SWy-2 and Kunipia), as well as on their organically modified derivatives, was investigated. A combination of techniques, namely X-ray diffraction, thermal analysis, X-ray photoelectron and FT-IR spectroscopy, was used for characterization of the novel immobilized biocatalyst. Structural and biochemical characterization have revealed that the hydrophobic microenvironment created by the organo-modified clays induces minor changes on the secondary structure of the enzyme, resulting in enhanced catalytic behaviour in hydrophobic media. The immobilized lipase on such modified nanoclays can be effectively applied for the indirect epoxidation of alpha-pinene using hydrogen peroxide as substrate. The amount of alpha-pinene epoxide produced in a single-step biocatalytic process is up to 3-fold higher than that of free enzyme or enzyme immobilized in non-modified clays. Moreover, lipase immobilized in modified clays retains up to 90% of its initial activity, even after 48h of incubation in the presence of oxidant, and up to 60% after four reaction cycles, while other forms of the enzyme retain less than 10%.
Collapse
Affiliation(s)
- Aikaterini A Tzialla
- Department of Biological Applications and Technologies, University of Ioannina, GR-45110 Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
49
|
Domínguez de María P, van Gemert RW, Straathof AJJ, Hanefeld U. Biosynthesis of ethers: unusual or common natural events? Nat Prod Rep 2010; 27:370-92. [PMID: 20179877 DOI: 10.1039/b809416k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ether bonds are found in a wide variety of natural products--mainly secondary metabolites--including lipids, oxiranes, terpenoids, flavonoids, polyketides, and carbohydrate derivatives, to name some representative examples. To furnish such a biodiversity of structures, a large number of different enzymes are involved in several different biosynthetic pathways. Depending on the compound and on the (micro) environment in which the reaction is performed, ethers are produced by very different (enzymatic) reactions, thus providing an impressive display of how Nature has combined evolution and thermodynamics to be able to produce a vast number of compounds. In addition, many of these compounds possess different biological activities of pharmacological interest. Moreover, some of these ethers (i.e., epoxides) have high chemical reactivity, and can be useful starting materials for further synthetic processes. This review aims to provide an overview of the different strategies that are found in Nature for the formation of these "bioethers". Both fundamental and practical insights of the biosynthetic processes will be discussed.
Collapse
|
50
|
Busto E, Gotor-Fernández V, Gotor V. Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem Soc Rev 2010; 39:4504-23. [DOI: 10.1039/c003811c] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|