1
|
Dinius A, Müller H, Kellhammer D, Deffur C, Schmideder S, Hammel JU, Krull R, Briesen H. 3D imaging and analysis to unveil the impact of microparticles on the pellet morphology of filamentous fungi. Biotechnol Bioeng 2024; 121:3128-3143. [PMID: 38943490 DOI: 10.1002/bit.28788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Controlling the morphology of filamentous fungi is crucial to improve the performance of fungal bioprocesses. Microparticle-enhanced cultivation (MPEC) increases productivity, most likely by changing the fungal morphology. However, due to a lack of appropriate methods, the exact impact of the added microparticles on the structural development of fungal pellets is mostly unexplored. In this study synchrotron radiation-based microcomputed tomography and three-dimensional (3D) image analysis were applied to unveil the detailed 3D incorporation of glass microparticles in nondestructed pellets of Aspergillus niger from MPEC. The developed method enabled the 3D analysis based on 375 pellets from various MPEC experiments. The total and locally resolved volume fractions of glass microparticles and hyphae were quantified for the first time. At increasing microparticle concentrations in the culture medium, pellets with lower hyphal fraction were obtained. However, the total volume of incorporated glass microparticles within the pellets did not necessarily increase. Furthermore, larger microparticles were less effective than smaller ones in reducing pellet density. However, the total volume of incorporated glass was larger for large microparticles. In addition, analysis of MPEC pellets from different times of cultivation indicated that spore agglomeration is decisive for the development of MPEC pellets. The developed 3D morphometric analysis method and the presented results will promote the general understanding and further development of MPEC for industrial application.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henri Müller
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Diana Kellhammer
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Charlotte Deffur
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Stefan Schmideder
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Jörg U Hammel
- Helmholtz-Zentrum hereon, Institute of Materials Physics, Geesthacht, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Heiko Briesen
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Lu Z, Chen Z, Liu Y, Hua X, Gao C, Liu J. Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives. J Microbiol Biotechnol 2024; 34:1197-1205. [PMID: 38693049 PMCID: PMC11239417 DOI: 10.4014/jmb.2402.02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.
Collapse
Affiliation(s)
- Zhengwu Lu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Yunguo Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Xuexue Hua
- Shandong Fufeng Fermentation Co., Ltd., Linyi 276600, P. R. China
| | - Cuijuan Gao
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
3
|
Ścigaczewska A, Boruta T, Bizukojć M. Morphological-metabolic analysis in Streptomyces rimosus microparticle-enhanced cultivations (MPEC). Bioprocess Biosyst Eng 2024; 47:891-902. [PMID: 38664238 PMCID: PMC11101530 DOI: 10.1007/s00449-024-03015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/19/2024]
Abstract
Streptomyces produce a broad spectrum of biologically active molecules such as oxytetracycline and rimocidin, which are widely used in human and animal treatments. microparticle-enhanced cultivation (MPEC) is one of the tools used for Streptomyces bioprocesses intensification by the control of mycelial morphology. In the present work, morphological changes of Streptomyces rimosus caused by the addition of 10 µm talc microparticles in MPEC were correlated with the biosynthetic activity of the microorganism. Comparing the runs with and without microparticles, major morphological changes were observed in MPEC, including the deformation of pellets, variation of their size, appearance of hyphae and clumps as well as the aggregation of mycelial objects. The presence of talc microparticles also influenced the levels of the studied secondary metabolites produced by S. rimosus. Comparing control and MPEC runs, the addition of talc microparticles increased the amounts of oxytetracycline (9-fold), 2-acetyl-2-decarboxamido-oxytetracycline (7-fold), milbemycin A3+4[O] (3-fold) and CE 108 (1.5-fold), while rimocidin (27-ethyl) and milbemycin β11+4[O] production was reduced. In summary, the addition of talc microparticles to S. rimosus cultivations led to the development of smaller morphological forms like hyphae and clumps as well as to the changes in the amounts of secondary metabolites.
Collapse
Affiliation(s)
- Anna Ścigaczewska
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wolczanska 213, 93-005, Lodz, Poland.
| | - Tomasz Boruta
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wolczanska 213, 93-005, Lodz, Poland
| | - Marcin Bizukojć
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wolczanska 213, 93-005, Lodz, Poland
| |
Collapse
|
4
|
Rohr K, Gremm L, Geinitz B, Jourdier E, Wiechert W, Ben Chaabane F, Oldiges M. Optimizing microbioreactor cultivation strategies for Trichoderma reesei: from batch to fed-batch operations. Microb Cell Fact 2024; 23:112. [PMID: 38622596 PMCID: PMC11334512 DOI: 10.1186/s12934-024-02371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l- 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h)- 1 , the lowest rate of 0.3 g (l h)- 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in β -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.
Collapse
Affiliation(s)
- Katja Rohr
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Lisa Gremm
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bertram Geinitz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Etienne Jourdier
- IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52074, Aachen, Germany
| | - Fadhel Ben Chaabane
- IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Cui FJ, Yang YM, Sun L, Zan XY, Sun WJ, Zeb U. Grifola frondosa polysaccharides: A review on structure/activity, biosynthesis and engineering strategies. Int J Biol Macromol 2024; 257:128584. [PMID: 38056754 DOI: 10.1016/j.ijbiomac.2023.128584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Polysaccharides are the main polymers in edible fungi Grifola frondosa, playing a crucial role in the physiology and representing the healthy benefits for humans. Recent efforts have well elucidated the fine structures and biological functions of G. frondosa polysaccharides. The recently-rapid developments and increasing availability in fungal genomes also accelerated the better understanding of key genes and pathways involved in biosynthesis of G. frondosa polysaccharides. Herein, we provide a brief overview of G. frondosa polysaccharides and their activities, and comprehensively outline the complex process, genes and proteins corresponding to G. frondosa polysaccharide biosynthesis. The regulation strategies including strain improvement, process optimization and genetic engineering were also summarized for maximum production of G. frondosa polysaccharides. Some remaining unanswered questions in describing the fine synthesis machinery were also pointed out to open up new avenues for answering the structure-activity relationship and improving polysaccharide biosynthesis in G. frondosa. The review hopefully presents a reasonable full picture of activities, biosynthesis, and production regulation of polysaccharide in G. frondosa.
Collapse
Affiliation(s)
- Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| | - Yu-Meng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| | - Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
6
|
Pucci EFQ, Buffo MM, Del Bianco Sousa M, Tardioli PW, Badino AC. An innovative multi-enzymatic system for gluconic acid production from starch using Aspergillus niger whole-cells. Enzyme Microb Technol 2023; 171:110309. [PMID: 37690395 DOI: 10.1016/j.enzmictec.2023.110309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
The use of multi-enzymatic systems for the industrial production of chemical compounds is currently considered an important green tool in synthetic organic chemistry. Gluconic acid is a multi-functional organic acid widely used in the chemical, pharmaceutical, food, textile, and construction industries. Its industrial production from glucose by fermentation using Aspergillus niger has drawbacks including high costs related to cell growth and maintenance of cell viability. This study presents an innovative one-step multi-enzymatic system for gluconic acid production from starch using Aspergillus niger whole-cells in association with amylolytic enzymes. Using soluble starch as substrate, the following results were achieved for 96 h of reaction: 134.5 ± 4.3 g/L gluconic acid concentration, 98.2 ± 1.3 % gluconic acid yield, and 44.8 ± 1.4 gGA/gwhole-cells biocatalyst yield. Although the process has been developed using starch as raw material, the approach is feasible for any substrate or residue that can be hydrolyzed to glucose.
Collapse
Affiliation(s)
| | - Mariane Molina Buffo
- Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marina Del Bianco Sousa
- Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Paulo Waldir Tardioli
- Graduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil; Laboratory of Enzymatic Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Alberto Colli Badino
- Graduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil; Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Shi Z, Tan X, Li Y, Sheng Y, Zhang Q, Xu J, Yang Y. A novel fungal-algal coupling system for slaughterhouse wastewater treatment and lipid production. BIORESOURCE TECHNOLOGY 2023; 387:129585. [PMID: 37517707 DOI: 10.1016/j.biortech.2023.129585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
In this study, a novel fungal-algal coupling system was established for slaughterhouse wastewater treatment with Chlorella sp. DT025 and a new fungus, Penicillium sp. AHP141. With the optimization of cultivation conditions for the fungal-algal coupling system, the harvest efficiency of Chlorella sp. DT025 reached 99.79%. The mechanism of microalgae harvest of the fungal-algal system was revealed to be related to the morphological characteristics, surface charge, and the secretion of humic acid-like compounds and tryptophan on the surface of the fungi cells. For the original slaughterhouse wastewater treatment, the fungal-algal coupling system had a better removal efficiency of COD, TN, and TP than both monoculture systems. In the high-concentration artificial slaughterhouse wastewater, COD removal of the fungal-algal system reached more than 5350 mg/L. The lipid production of the fungal-algal coupling system in the high-concentration artificial slaughterhouse wastewater treatment was improved by 343.33% to 1.33 g/L compared to the microalgae monoculture treatment.
Collapse
Affiliation(s)
- Zhengsheng Shi
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xin Tan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yanbin Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Qin Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jialu Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yong Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
8
|
Yan Q, Han L, Liu Z, Zhou S, Zhou Z. Stepwise genetic modification for efficient expression of heterologous proteins in Aspergillus nidulans. Appl Microbiol Biotechnol 2023; 107:6923-6935. [PMID: 37698610 DOI: 10.1007/s00253-023-12755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023]
Abstract
Filamentous fungi are widely used in food fermentation and therapeutic protein production due to their prominent protein secretion and post-translational modification system. Aspergillus nidulans is an important model strain of filamentous fungi, but not a fully developed cell factory for heterologous protein expression. One of the limitations is its relatively low capacity of protein secretion. To alleviate this limitation, in this study, the protein secretory pathway and mycelium morphology were stepwise modified. With eGFP as a reporter protein, protein secretion was significantly enhanced through reducing the degradation of heterologous proteins by endoplasmic reticulum-associated protein degradation (ERAD) and vacuoles in the secretory pathway. Elimination of mycelial aggregation resulted in a 1.5-fold and 1.3-fold increase in secretory expression of eGFP in typical constitutive and inducible expression systems, respectively. Combined with these modifications, high secretory expression of human interleukin-6 (HuIL-6) was achieved. Consequently, a higher yield of secretory HuIL-6 was realized by further disruption of extracellular proteases. Overall, a superior chassis cell of A. nidulans suitable for efficient secretory expression of heterologous proteins was successfully obtained, providing a promising platform for biosynthesis using filamentous fungi as hosts. KEY POINTS: • Elimination of mycelial aggregation and decreasing the degradation of heterologous protein are effective strategies for improving the heterologous protein expression. • The work provides a high-performance chassis host △agsB-derA for heterologous protein secretory expression. • Human interleukin-6 (HuIL-6) was expressed efficiently in the high-performance chassis host △agsB-derA.
Collapse
Affiliation(s)
- Qin Yan
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongmei Liu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Zhemin Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
9
|
Danner C, Mach RL, Mach-Aigner AR. The phenomenon of strain degeneration in biotechnologically relevant fungi. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12615-z. [PMID: 37341752 DOI: 10.1007/s00253-023-12615-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Fungi are widely exploited for large-scale production in the biotechnological industry to produce a diverse range of substances due to their versatility and relative ease of growing on various substrates. The occurrence of a phenomenon-the so-called fungal strain degeneration-leads to the spontaneous loss or decline of production capacity and results in an economic loss on a tremendous scale. Some of the most commonly applied genera of fungi in the biotechnical industry, such as Aspergillus, Trichoderma, and Penicillium, are threatened by this phenomenon. Although fungal degeneration has been known for almost a century, the phenomenon and its underlying mechanisms still need to be understood. The proposed mechanisms causing fungi to degenerate can be of genetic or epigenetic origin. Other factors, such as culture conditions, stress, or aging, were also reported to have an influence. This mini-review addresses the topic of fungal degeneration by describing examples of productivity losses in biotechnical processes using Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, and Penicillium chrysogenum. Further, potential reasons, circumvention, and prevention methods are discussed. This is the first mini-review which provides a comprehensive overview on this phenomenon in biotechnologically used fungi, and it also includes a collection of strategies that can be useful to minimize economic losses which can arise from strain degeneration. KEY POINTS: • Spontaneous loss of productivity is evident in many fungi used in biotechnology. • The properties and mechanisms underlying this phenomenon are very versatile. • Only studying these underlying mechanisms enables the design of a tailored solution.
Collapse
Affiliation(s)
- Caroline Danner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
| |
Collapse
|
10
|
Murphy EJ, Rezoagli E, Collins C, Saha SK, Major I, Murray P. Sustainable production and pharmaceutical applications of β-glucan from microbial sources. Microbiol Res 2023; 274:127424. [PMID: 37301079 DOI: 10.1016/j.micres.2023.127424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
β-glucans are a large class of complex polysaccharides found in abundant sources. Our dietary sources of β-glucans are cereals that include oats and barley, and non-cereal sources can consist of mushrooms, microalgae, bacteria, and seaweeds. There is substantial clinical interest in β-glucans; as they can be used for a variety of diseases including cancer and cardiovascular conditions. Suitable sources of β-glucans for biopharmaceutical applications include bacteria, microalgae, mycelium, and yeast. Environmental factors including culture medium can influence the biomass and ultimately β-glucan content. Therefore, cultivation conditions for the above organisms can be controlled for sustainable enhanced production of β-glucans. This review discusses the various sources of β-glucans and their cultivation conditions that may be optimised to exploit sustainable production. Finally, this article discusses the immune-modulatory potential of β-glucans from these sources.
Collapse
Affiliation(s)
- Emma J Murphy
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland; PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland.
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Catherine Collins
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Sushanta Kumar Saha
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Ian Major
- PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Patrick Murray
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| |
Collapse
|
11
|
Thakur M, Kumar P, Rajput D, Yadav V, Dhaka N, Shukla R, Kumar Dubey K. Genome-guided approaches and evaluation of the strategies to influence bioprocessing assisted morphological engineering of Streptomyces cell factories. BIORESOURCE TECHNOLOGY 2023; 376:128836. [PMID: 36898554 DOI: 10.1016/j.biortech.2023.128836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Streptomyces genera serve as adaptable cell factories for secondary metabolites with various and distinctive chemical structures that are relevant to the pharmaceutical industry. Streptomyces' complex life cycle necessitated a variety of tactics to enhance metabolite production. Identification of metabolic pathways, secondary metabolite clusters, and their controls have all been accomplished using genomic methods. Besides this, bioprocess parameters were also optimized for the regulation of morphology. Kinase families were identified as key checkpoints in the metabolic manipulation (DivIVA, Scy, FilP, matAB, and AfsK) and morphology engineering of Streptomyces. This review illustrates the role of different physiological variables during fermentation in the bioeconomy coupled with genome-based molecular characterization of biomolecules responsible for secondary metabolite production at different developmental stages of the Streptomyces life cycle.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Punit Kumar
- Department of Morphology and Physiology, Karaganda Medical University, Karaganda 100008 Kazakhstan
| | - Deepanshi Rajput
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Namrata Dhaka
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Rishikesh Shukla
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura- 281406, U.P., India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
12
|
Simultaneous lipase production and immobilization: morphology and physiology study of Penicillium simplicissimum in submerged and solid-state fermentation with polypropylene as an inert support. Enzyme Microb Technol 2023; 164:110173. [PMID: 36529062 DOI: 10.1016/j.enzmictec.2022.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The influence of different carbon sources (glucose (G), olive oil (O), and a combination of both (GO)) in the physiology (biomass and lipase production) and morphology (light and environmental and scanning electron microscopy) of the fungus Penicillium simplicissimum by applying submerged (SmF) and solid-state (SSF) fermentations was investigated. The cultivation was carried out using polypropylene as hydrophobic inert support in SmF and SSF to understand better the influence of a support for the fungus growth and also provides the immobilization of lipases during its production. Micrographs show different morphologies: in SSF, the fungus grows on and inside the inert support independent of the media; in SmF, the formation of high-density spherical pellets obtained in medium GO leads to the best productivity and specific product yield Yp/x..Conidiation is observed mainly in SSF, a few in SmF with polypropylene as inert support and not in SmF, which may indicate a stress condition in SSF. Possibly, the morphology acquired by the fungus under stressful conditions may be the key to the higher biomass and lipase productivity at SSF. The developed process with simultaneous production and immobilization of lipase leads to a new promissory biocatalyst once it can be directly applied with no need for downstream processes.
Collapse
|
13
|
Dinius A, Kozanecka ZJ, Hoffmann KP, Krull R. Intensification of bioprocesses with filamentous microorganisms. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Many industrial biotechnological processes use filamentous microorganisms to produce platform chemicals, proteins, enzymes and natural products. Product formation is directly linked to their cellular morphology ranging from dispersed mycelia over loose clumps to compact pellets. Therefore, the adjustment and control of the filamentous cellular morphology pose major challenges for bioprocess engineering. Depending on the filamentous strain and desired product, optimal morphological shapes for achieving high product concentrations vary. However, there are currently no overarching strain- or product-related correlations to improve process understanding of filamentous production systems. The present book chapter summarizes the extensive work conducted in recent years in the field of improving product formation and thus intensifying biotechnological processes with filamentous microorganisms. The goal is to provide prospective scientists with an extensive overview of this scientifically diverse, highly interesting field of study. In the course of this, multiple examples and ideas shall facilitate the combination of their acquired expertise with promising areas of future research. Therefore, this overview describes the interdependence between filamentous cellular morphology and product formation. Moreover, the currently most frequently used experimental techniques for morphological structure elucidation will be discussed in detail. Developed strategies of morphology engineering to increase product formation by tailoring and controlling cellular morphology and thus to intensify processes with filamentous microorganisms will be comprehensively presented and discussed.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Zuzanna J. Kozanecka
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Kevin P. Hoffmann
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Rainer Krull
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| |
Collapse
|
14
|
Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. Chitin Biosynthesis in Aspergillus Species. J Fungi (Basel) 2023; 9:jof9010089. [PMID: 36675910 PMCID: PMC9865612 DOI: 10.3390/jof9010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
Collapse
Affiliation(s)
- Veronica S. Brauer
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - André M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Marinaldo P. Cavalcanti-Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Rio de Janeiro 27965-045, Brazil
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
- Correspondence: (L.N.A.R.); (F.A.)
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
- Correspondence: (L.N.A.R.); (F.A.)
| |
Collapse
|
15
|
Dinius A, Schrinner K, Schrader M, Kozanecka ZJ, Brauns H, Klose L, Weiß H, Kwade A, Krull R. Morphology engineering for novel antibiotics: Effect of glass microparticles and soy lecithin on rebeccamycin production and cellular morphology of filamentous actinomycete Lentzea aerocolonigenes. Front Bioeng Biotechnol 2023; 11:1171055. [PMID: 37091334 PMCID: PMC10116066 DOI: 10.3389/fbioe.2023.1171055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Lentzea aerocolonigenes, as an actinomycete, is a natural producer of the antibiotic and antitumoral drug rebeccamycin. Due to the filamentous cellular morphology handling in cultivations is challenging; therefore, morphology engineering techniques are mandatory to enhance productivity. One promising approach described in the literature is the addition of mineral particles in the micrometer range to precisely adjust cellular morphology and the corresponding product synthesis (microparticle-enhanced cultivation, MPEC). Glass microparticles are introduced in this study as a novel supplementation type for bioprocess intensification in filamentous organisms. Several investigations were conducted to screen for an optimal particle setup, including particle size and concentration regarding their impact and effects on enhanced productivity, microparticle incorporation behavior into the biopellets, the viability of pellets, and morphological changes. Glass microparticles (10 g·L-1) with a median diameter of 7.9 µm, for instance, induced an up to fourfold increase in product synthesis accompanied by overall enhanced viability of biomass. Furthermore, structural elucidations showed that biopellets isolated from MPEC tend to have lower hyphal density than unsupplemented control pellets. In this context, oxygen microprofiling was conducted to better understand how internal structural changes interwind with oxygen supply into the pellets. Here, the resulting oxygen profiles are of a contradictive trend of steeper oxygen consumption with increasing glass microparticle supplementation. Eventually, MPEC was combined with another promising cultivation strategy, the supplementation of soy lecithin (7.5 g·L-1), to further increase the cultivation performance. A combination of both techniques in an optimized setup resulted in a rebeccamycin concentration of 213 mg·L-1 after 10 days of cultivation, the highest value published so far for microparticle-supplemented shake flask cultivations of L. aerocolonigenes.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin Schrinner
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcel Schrader
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Zuzanna Justyna Kozanecka
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henry Brauns
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Leon Klose
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hannah Weiß
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Rainer Krull,
| |
Collapse
|
16
|
Effect of Microparticles on Fungal Fermentation for Fermentation-Based Product Productions. Processes (Basel) 2022. [DOI: 10.3390/pr10122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ranging from simple food ingredients to complex pharmaceuticals, value-added products via microbial fermentation have many advantages over their chemically synthesized alternatives. Some of such advantages are environment-friendly production pathways, more specificity in the case of enzymes as compared to the chemical catalysts and reduction of harmful chemicals, such as heavy metals or strong acids and bases. Fungal fermentation systems include yeast and filamentous fungal cells based on cell morphology and culture conditions. However, filamentous fungal fermentation has gained attention in the past few decades because of the diversity of microbial products and robust production of some of the most value-added commodities. This type of fungal fermentation is usually carried out by solid-state fermentation. However, solid-state fermentation poses problems during the scale-up for industrial production. Therefore, submerged fermentation for value-added products is usually preferred for scaling-up purposes. The main problem with submerged fungal fermentation is the formation of complex mycelial clumps or pellets. The formation of such pellets increases the viscosity of the media and hinders the efficient transfer of oxygen and nutrient resources in the liquid phase. The cells at the center of the clump or pellet start to die because of a shortage of resources and, thus, productivity decreases substantially. To overcome this problem, various morphological engineering techniques are being researched. One approach is the use of microparticles. Microparticles are inert particles with various size ranges that are used in fermentation. These microparticles are shown to have positive effects, such as high enzyme productivity or smaller pellets with fungal fermentation. Therefore, this review provides a background about the types of microparticles and summarizes some of the recent studies with special emphasis on the fungal morphology changes and microparticle types along with the applications of microparticles in filamentous fungal fermentations.
Collapse
|
17
|
Chaverra-Muñoz L, Hüttel S. Optimization of the production process for the anticancer lead compound illudin M: process development in stirred tank bioreactors. Microb Cell Fact 2022; 21:145. [PMID: 35843931 PMCID: PMC9290264 DOI: 10.1186/s12934-022-01870-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/06/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The fungal natural products illudin S and M have been investigated as precursors for the development of semisynthetic anticancer agents such as Irofulven (illudin S derivative) which is currently in phase II clinical trials. Recently, illudin M derivatives have shown improved in vitro selectivity towards cancer cells encouraging further investigation. This requires a stable supply of the precursor which is produced by Basidiomycota of the genus Omphalotus. We have recently reported a robust shake flask process for the production of gram quantities of illudin M from Omphalotus nidiformis aiming to transfer that process into stirred tank bioreactors, which can be used in a commercial production set-up. However, process transfer across different systems is not straightforward and particularly challenging when the producer is morphologically complex. There are only a few reports that address the development of bioprocesses for the production of compounds from Basidiomycota as these organisms have not been extensively studied because of their complex life cycles and often are difficult to cultivate under laboratory conditions. RESULTS The recently developed shake flask process delivering stable titers of ~ 940 mg L-1 of illudin M was investigated using off-gas analysis to identify critical parameters which facilitated the transfer from shaken into stirred tank bioreactors. Comparable titers to the shake flask process were achieved in 2 L stirred tank bioreactors (1.5 L working volume) by controlling growth of biomass with a carefully timed pH-shift combined with an improved precursor-feeding strategy. A scale-up experiment in a 15 L bioreactor (10 L working volume), resembling the process at 1.5 L resulted in 523 mg L-1 and is the starting point for optimization of the identified parameters at that scale. CONCLUSION By identifying and controlling key process parameters, the production process for illudin M was transferred from shake flasks into 2 L stirred tank bioreactors reaching a comparable titer (> 900 mg L-1), which is significantly higher than any previously reported. The insights obtained from 10 L scale pave the way towards further scale-up studies that will enable a sustainable supply of illudin M to support preclinical and clinical development programs.
Collapse
Affiliation(s)
- Lillibeth Chaverra-Muñoz
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| |
Collapse
|
18
|
Soerjawinata W, Kockler I, Wommer L, Frank R, Schüffler A, Schirmeister T, Ulber R, Kampeis P. Novel bioreactor internals for the cultivation of spore-forming fungi in pellet form. Eng Life Sci 2022; 22:474-483. [PMID: 35865648 PMCID: PMC9288991 DOI: 10.1002/elsc.202100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
This study introduced an automated long-term fermentation process for fungals grown in pellet form. The goal was to reduce the overgrowth of bioreactor internals and sensors while better rheological properties in the fermentation broth, such as oxygen transfer and mixing time, can be achieved. Because this could not be accomplished with continuous culture and fed-batch fermentation, repeated-batch fermentation was implemented with the help of additional bioreactor internals ("sporulation supports"). This should capture some biomass during fermentation. After harvesting the suspended biomass, intermediate cleaning was performed using a cleaning device. The biomass retained on the sporulation support went through the sporulation phase. The spores were subsequently used as inocula for the next batch. The reason for this approach was that the retained pellets could otherwise cause problems (e.g., overgrowth on sensors) in subsequent batches because the fungus would then show undesirable hyphal growth. Various sporulation supports were tested for sufficient biomass fixation to start the next batch. A reproducible spore concentration within the range of the requirements could be achieved by adjusting the sporulation support (design and construction material), and an intermediate cleaning adapted to this.
Collapse
Affiliation(s)
- Winda Soerjawinata
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Isabelle Kockler
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Lars Wommer
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Robert Frank
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff‐Forschung gGmbH (IBWF)MainzGermany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg University of MainzMainzGermany
| | - Roland Ulber
- Institute of Bioprocess EngineeringTechnical University KaiserslauternKaiserslauternGermany
| | - Percy Kampeis
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| |
Collapse
|
19
|
A Special Phenotype of Aconidial Aspergillus niger SH2 and Its Mechanism of Formation via CRISPRi. J Fungi (Basel) 2022; 8:jof8070679. [PMID: 35887436 PMCID: PMC9319794 DOI: 10.3390/jof8070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The complex morphological structure of Aspergillus niger influences its production of proteins, metabolites, etc., making the genetic manipulation and clonal purification of this species increasingly difficult, especially in aconidial Aspergillus niger. In this study, we found that N-acetyl-D-glucosamine (GlcNAc) could induce the formation of spore-like propagules in the aconidial Aspergillus niger SH2 strain. The spore-like propagules possessed life activities such as drug resistance, genetic transformation, and germination. Transcriptomic analysis indicated that the spore-like propagules were resting conidia entering dormancy and becoming more tolerant to environmental stresses. The Dac1 gene and the metabolic pathway of GlcNAc converted to glycolysis are related to the formation of the spore-like propagules, as evidenced by the CRISPRi system, qPCR, and semi-quantitative RT-PCR. Moreover, a method based on the CRISPR-Cas9 tool to rapidly recycle screening tags and recover genes was suitable for Aspergillus niger SH2. To sum up, this suggests that the spore-like propagules are resting conidia and the mechanism of their formation is the metabolic pathway of GlcNAc converted to glycolysis, particularly the Dac1 gene. This study can improve our understanding of the critical factors involved in mechanisms of phenotypic change and provides a good model for researching phenotypic change in filamentous fungi.
Collapse
|
20
|
Phoenicin Switch: Discovering the Trigger for Radical Phoenicin Production in Multiple Wild-Type Penicillium Species. Appl Environ Microbiol 2022; 88:e0030222. [PMID: 35670582 DOI: 10.1128/aem.00302-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Society faces the challenge of storing energy from sustainable sources in inexpensive, nontoxic ways that do not deplete the limited resources of Earth. In this regard, quinone redox flow batteries have been proposed as ideal; however, industrially used quinones have traditionally been synthesized from fossil fuels. Therefore, we investigated the production of phoenicin (compound 1), a deep violet dibenzoquinone produced by certain Penicillium species, for its industrial potential. Strains grew as surface cultures on customized growth media with varying production parameters, and phoenicin production was assessed by ultrahigh-performance liquid chromatography-diode array detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOF MS) analysis of the supernatant. Phoenicin production was reliant on the sucrose concentration, and by varying that, we produced 4.94 ± 0.56 g/L phoenicin on a Czapek yeast autolysate broth (CY)-based medium with Penicillium phoeniceum (CBS 249.32) as the production host, with 71.91% phoenicin purity in the resulting medium broth. Unexpectedly, metabolites corresponding to phoenicin polymers were tentatively identified in P. phoeniceum, of which the dimer (diphoenicin) was a major chromatographic peak. An MS-based metabolomics study was conducted on P. atrosanguineum using feature-based molecular networking and multivariate statistics, and it was found that few or no known secondary metabolites besides phoenicin were secreted into the growth medium. Finally, the effects of sucrose, sodium nitrate, and yeast extract (YE) in the growth medium were investigated in a 23 full factorial design. The results indicated an optimal sucrose concentration of 92.87 g/L on CY when NaNO3 and YE were fixed at 3 and 5 g/L, respectively. IMPORTANCE This work was undertaken to explore the production of fungal quinones in wild-type strains for use as electrolytes in redox flow batteries. As society converts energy production in a more sustainable direction, it becomes increasingly more important to store sustainable energy in smart ways. Conventional battery technologies imply the use of highly toxic, expensive, and rare metals; thus, quinone redox flow batteries have been proposed to be a desirable alternative. In this study, we explored the possibility of producing the fungal quinone phoenicin in Penicillium spp. by changing the growth parameters. The production of other secondary metabolites and known mycotoxins was also investigated in a metabolomics study. It was shown that phoenicin production was activated by optimizing the carbon concentration of the medium, resulting in high titers and purity of the single metabolite.
Collapse
|
21
|
Chaverra-Muñoz L, Briem T, Hüttel S. Optimization of the production process for the anticancer lead compound illudin M: improving titers in shake-flasks. Microb Cell Fact 2022; 21:98. [PMID: 35643529 PMCID: PMC9148526 DOI: 10.1186/s12934-022-01827-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The fungal sesquiterpenes Illudin M and S are important base molecules for the development of new anticancer agents due to their strong activity against some resistant tumor cell lines. Due to nonspecific toxicity of the natural compounds, improvement of the pharmacophore is required. A semisynthetic derivative of illudin S (Irofulven) entered phase II clinical trials for the treatment of castration-resistant metastatic prostate cancer. Several semisynthetic illudin M derivatives showed increased in vitro selectivity and improved therapeutic index against certain tumor cell lines, encouraging further investigation. This requires a sustainable supply of the natural compound, which is produced by Basidiomycota of the genus Omphalotus. We aimed to develop a robust biotechnological process to deliver illudin M in quantities sufficient to support medicinal chemistry studies and future preclinical and clinical development. In this study, we report the initial steps towards this goal. RESULTS After establishing analytical workflows, different culture media and commercially available Omphalotus strains were screened for the production of illudin M.Omphalotus nidiformis cultivated in a medium containing corn steep solids reached ~ 38 mg L-1 setting the starting point for optimization. Improved seed preparation in combination with a simplified medium (glucose 13.5 g L-1; corn steep solids 7.0 g L- 1; Dox broth modified 35 mL), reduced cultivation time and enhanced titers significantly (~ 400 mg L-1). Based on a reproducible cultivation method, a feeding strategy was developed considering potential biosynthetic bottlenecks. Acetate and glucose were fed at 96 h (8.0 g L-1) and 120 h (6.0 g L-1) respectively, which resulted in final illudin M titer of ~ 940 mg L-1 after eight days. This is a 25 fold increase compared to the initial titer. CONCLUSION After strict standardization of seed-preparation and cultivation parameters, a combination of experimental design, empirical trials and additional supply of limiting biosynthetic precursors, led to a highly reproducible process in shake flasks with high titers of illudin M. These findings are the base for further work towards a scalable biotechnological process for a stable illudin M supply.
Collapse
Affiliation(s)
- Lillibeth Chaverra-Muñoz
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Theresa Briem
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| |
Collapse
|
22
|
Ramli ANM, Yusof S, Bhuyar P, Aminan AW, Tajuddin SN, Hamid HA. Production of Volatile Compounds by a Variety of Fungi in Artificially Inoculated and Naturally Infected Aquilaria malaccensis. Curr Microbiol 2022; 79:151. [PMID: 35397007 DOI: 10.1007/s00284-022-02840-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
Aquilaria malaccensis, the resinous agarwood, is highly valued in the perfumery and medicinal industry. The formation of fragrant agarwood resin inconsistently by various fungi is still not clearly understood. The current study investigated the agarwood quality and fungal diversity in artificially inoculated and naturally infected A. malaccensis. The chemical analysis of volatile compounds of agarwood was performed using the Solid Phase Micro Extraction (SPME) method, and the identification of fungi was made through a morphological observation using a light microscope. Gas chromatography analysis revealed the presence of essential compounds related to high-quality agarwood, such as 4-phenyl-2-butanone, β-selinene, α-bulnesene, and agarospirol in both artificially inoculated and naturally infected agarwood but with some differences in the abundance. Further studies on the fungi associated with agarwood volatile compounds formation showed a total of ten fungal group isolates, which were identified based on morphological and molecular studies. The study revealed that agarwood from both artificial and natural sources were naturally infected with Fusarium, Botryosphaeria, Aspergillus, Schizophyllum, Phanerochaete, Lasiodiplodia, Polyporales, and Ceriporia species. This study has offered a potential opportunity to research further the promising development of fungal strains for artificial inducement of high-quality agarwood formation from A. malaccensis trees.
Collapse
Affiliation(s)
- Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun RazakGambang, 26300, Kuantan, Pahang, Malaysia. .,Bio Aromatic Research Centre of Excellent, Universiti Malaysia Pahang, Lebuhraya Tun RazakGambang, 26300, Kuantan, Pahang, Malaysia.
| | - Sufihana Yusof
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun RazakGambang, 26300, Kuantan, Pahang, Malaysia
| | - Prakash Bhuyar
- Program in Organic Agriculture Management, Maejo University International College (MJU-IC), Maejo University, Chiang Mai, 50290, Thailand
| | - Aimi Wahidah Aminan
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun RazakGambang, 26300, Kuantan, Pahang, Malaysia
| | - Saiful Nizam Tajuddin
- Bio Aromatic Research Centre of Excellent, Universiti Malaysia Pahang, Lebuhraya Tun RazakGambang, 26300, Kuantan, Pahang, Malaysia
| | - Hazrulrizawati Abd Hamid
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun RazakGambang, 26300, Kuantan, Pahang, Malaysia
| |
Collapse
|
23
|
Zheng X, Cairns TC, Ni X, Zhang L, Zhai H, Meyer V, Zheng P, Sun J. Comprehensively dissecting the hub regulation of PkaC on high-productivity and pellet macromorphology in citric acid producing Aspergillus niger. Microb Biotechnol 2022; 15:1867-1882. [PMID: 35213792 PMCID: PMC9151341 DOI: 10.1111/1751-7915.14020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Aspergillus niger, an important industrial workhorse for citric acid production, is characterized by polar hyphal growth with complex pelleted, clumped or dispersed macromorphologies in submerged culture. Although organic acid titres are dramatically impacted by these growth types, studies that assess productivity and macromorphological changes are limited. Herein, we functionally analysed the role of the protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP) signalling cascade during fermentation by disrupting and conditionally expressing the pkaC gene. pkaC played multiple roles during hyphal, colony and conidiophore growth. By overexpressing pkaC, we could concomitantly modify hyphal growth at the pellet surface and improve citric acid titres up to 1.87‐fold. By quantitatively analysing hundreds of pellets during pilot fermentation experiments, we provide the first comprehensive correlation between A. niger pellet surface morphology and citric acid production. Finally, by intracellular metabolomics analysis and weighted gene coexpression network analysis (WGCNA) following titration of pkaC expression, we unveil the metabolomic and transcriptomic basis underpin hyperproductivity and pellet growth. Taken together, this study confirms pkaC as hub regulator linking submerged macromorphology and citric acid production and provides high‐priority genetic leads for future strain engineering programmes.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Timothy C Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Xiaomei Ni
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Lihui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Huanhuan Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Vera Meyer
- Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
24
|
Schmitt V, Derenbach L, Ochsenreither K. Enhanced l-Malic Acid Production by Aspergillus oryzae DSM 1863 Using Repeated-Batch Cultivation. Front Bioeng Biotechnol 2022; 9:760500. [PMID: 35083199 PMCID: PMC8784810 DOI: 10.3389/fbioe.2021.760500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
l-Malic acid is a C4-dicarboxylic acid and a potential key building block for a bio-based economy. At present, malic acid is synthesized petrochemically and its major market is the food and beverages industry. In future, malic acid might also serve as a building block for biopolymers or even replace the commodity chemical maleic anhydride. For a sustainable production of l-malic acid from renewable resources, the microbial synthesis by the mold Aspergillus oryzae is one possible route. As CO2 fixation is involved in the biosynthesis, high yields are possible, and at the same time greenhouse gases can be reduced. In order to enhance the production potential of the wild-type strain Aspergillus oryzae DSM 1863, process characteristics were studied in shake flasks, comparing batch, fed-batch, and repeated-batch cultivations. In the batch process, a prolonged cultivation time led to malic acid consumption. Keeping carbon source concentration on a high level by pulsed feeding could prolong cell viability and cultivation time, however, did not result in significant higher product levels. In contrast, continuous malic acid production could be achieved over six exchange cycles and a total fermentation time of 19 days in repeated-batch cultivations. Up to 178 g/L l-malic acid was produced. The maximum productivity (0.90 ± 0.05 g/L/h) achieved in the repeated-batch cultivation had more than doubled than that achieved in the batch process and also the average productivity (0.42 ± 0.03 g/L/h for five exchange cycles and 16 days) was increased considerably. Further repeated-batch experiments confirmed a positive effect of regular calcium carbonate additions on pH stability and malic acid synthesis. Besides calcium carbonate, nitrogen supplementation proved to be essential for the prolonged malic acid production in repeated-batch. As prolonged malic acid production was only observed in cultivations with product removal, product inhibition seems to be the major limiting factor for malic acid production by the wild-type strain. This study provides a systematic comparison of different process strategies under consideration of major influencing factors and thereby delivers important insights into natural l-malic acid production.
Collapse
Affiliation(s)
- Vanessa Schmitt
- Institute of Process Engineering in Life Sciences 2: Technical Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Laura Derenbach
- Institute of Process Engineering in Life Sciences 2: Technical Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences 2: Technical Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
25
|
Tong LL, Wang Y, Du YH, Yuan L, Liu MZ, Mu XY, Chen ZL, Zhang YD, He SJ, Li XJ, Guo DS. Transcriptomic Analysis of Morphology Regulatory Mechanisms of Microparticles to Paraisaria dubia in Submerged Fermentation. Appl Biochem Biotechnol 2022; 194:4333-4347. [PMID: 35083705 DOI: 10.1007/s12010-022-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/25/2022]
Abstract
Liquid submerged fermentation is an effective strategy to achieve large-scale production of active ingredients by macrofungi, and controlling mycelium morphology is a key factor restricting the development of this technology. Mining for superior morphological regulatory factors and elucidation of their regulatory mechanisms are vital for the further development of macrofungal fermentation technology. In this study, microparticles were used to control the morphology of Paraisaria dubia (P. dubia) in submerged fermentation, and the underlying regulatory mechanisms were revealed by transcriptomic. The relative frequency of S-type pellet diameter increased significantly from 7.14 to 88.31%, and biomass increased 1.54 times when 15 g/L talc was added. Transcriptome analysis showed that the morphological regulation of filamentous fungi was a complex biological process, which involved signal transduction, mycelium polar growth, cell wall synthesis and cell division, etc. It also showed a positive impact on the basic and secondary metabolism of P. dubia. We provided a theoretical basis for controlling the mycelium morphology of P. dubia in submerged fermentation, which will promote the development of macrofungal fermentation technology.
Collapse
Affiliation(s)
- Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Meng-Zhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Xin-Ya Mu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yi-Dan Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Xiu-Juan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China.
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China.
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 210023, People's Republic of China.
| |
Collapse
|
26
|
Adamian Y, Lonappan L, Alokpa K, Agathos SN, Cabana H. Recent Developments in the Immobilization of Laccase on Carbonaceous Supports for Environmental Applications - A Critical Review. Front Bioeng Biotechnol 2021; 9:778239. [PMID: 34938721 PMCID: PMC8685458 DOI: 10.3389/fbioe.2021.778239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Τhe ligninolytic enzyme laccase has proved its potential for environmental applications. However, there is no documented industrial application of free laccase due to low stability, poor reusability, and high costs. Immobilization has been considered as a powerful technique to enhance laccase's industrial potential. In this technology, appropriate support selection for laccase immobilization is a crucial step since the support could broadly affect the properties of the resulting catalyst system. Through the last decades, a large variety of inorganic, organic, and composite materials have been used in laccase immobilization. Among them, carbon-based materials have been explored as a support candidate for immobilization, due to their properties such as high porosity, high surface area, the existence of functional groups, and their highly aromatic structure. Carbon-based materials have also been used in culture media as supports, sources of nutrients, and inducers, for laccase production. This study aims to review the recent trends in laccase production, immobilization techniques, and essential support properties for enzyme immobilization. More specifically, this review analyzes and presents the significant benefits of carbon-based materials for their key role in laccase production and immobilization.
Collapse
Affiliation(s)
- Younes Adamian
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Linson Lonappan
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Komla Alokpa
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Spiros N. Agathos
- Laboratory of Bioengineering, Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Nie Y, Wang Z, Zhang R, Ma J, Zhang H, Li S, Li J. Aspergillus oryzae, a novel eco-friendly fungal bioflocculant for turbid drinking water treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Ścigaczewska A, Boruta T, Bizukojć M. Quantitative Morphological Analysis of Filamentous Microorganisms in Cocultures and Monocultures: Aspergillus terreus and Streptomyces rimosus Warfare in Bioreactors. Biomolecules 2021; 11:1740. [PMID: 34827738 PMCID: PMC8615777 DOI: 10.3390/biom11111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to quantitatively characterize the morphology of the filamentous microorganisms Aspergillus terreus ATCC 20542 and Streptomyces rimosus ATCC 10970, cocultivated in stirred tank bioreactors, and to characterize their mutual influence with the use of quantitative image analysis. Three distinct coculture initiation strategies were applied: preculture versus preculture, spores versus spores and preculture versus preculture with time delay for one of the species. Bioreactor cocultures were accompanied by parallel monoculture controls. The results recorded for the mono- and cocultures were compared in order to investigate the effect of cocultivation on the morphological evolution of A. terreus and S. rimosus. Morphology-related observations were also confronted with the analysis of secondary metabolism. The morphology of the two studied filamentous species strictly depended on the applied coculture initiation strategy. In the cocultures initiated by the simultaneous inoculation, S. rimosus gained domination or advance over A. terreus. The latter microorganism dominated only in these experiments in which S. rimosus was introduced with a delay.
Collapse
Affiliation(s)
- Anna Ścigaczewska
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland; (T.B.); (M.B.)
| | | | | |
Collapse
|
29
|
Ichikawa H, Miyazawa K, Komeiji K, Susukida S, Zhang S, Muto K, Orita R, Takeuchi A, Kamachi Y, Hitosugi M, Yoshimi A, Shintani T, Kato Y, Abe K. Improved recombinant protein production in Aspergillus oryzae lacking both α-1,3-glucan and galactosaminogalactan in batch culture with a lab-scale bioreactor. J Biosci Bioeng 2021; 133:39-45. [PMID: 34627690 DOI: 10.1016/j.jbiosc.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/22/2022]
Abstract
Filamentous fungi are used as production hosts for various commercially valuable enzymes and chemicals including organic acids and secondary metabolites. We previously revealed that α-1,3-glucan and galactosaminogalactan (GAG) contribute to hyphal aggregation in the industrial fungus Aspergillus oryzae, and that production of recombinant protein in shake-flask culture is higher in a mutant lacking both α-1,3-glucan and GAG (AGΔ-GAGΔ) than in the parental strain. Here, we compared the productivity of the wild type, AGΔ-GAGΔ, and mutants lacking α-1,3-glucan (AGΔ) or GAG (GAGΔ) in batch culture with intermittent addition of glucose in a 5-L lab-scale bioreactor. The hyphae of the wild type and all mutants were dispersed by agitation, although the wild type and AGΔ formed small amounts of aggregates. Although mycelial weight was similar among the strains, the concentration of a secreted recombinant protein (CutL1) was the highest in AGΔ-GAGΔ. Evaluation of fluid properties revealed that the apparent viscosities of mycelial cultures of the wild type and AGΔ-GAGΔ decreased as the agitation speed was increased. The apparent viscosity of the AGΔ-GAGΔ culture tended to be lower than that of the wild-type strain at each agitation speed, and was significantly lower at 600 rpm. Overall, the lack of α-1,3-glucan and GAG in the hyphae improved culture rheology, resulting in an increase in recombinant protein production in AGΔ-GAGΔ. This is the first report of flow behavior improvement by a cell-surface component defect in a filamentous fungus.
Collapse
Affiliation(s)
- Hikaru Ichikawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keisuke Komeiji
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shunya Susukida
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Silai Zhang
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kiyoaki Muto
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ryutaro Orita
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ayumu Takeuchi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yuka Kamachi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Masahiro Hitosugi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan; ABE-Project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Takahiro Shintani
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yoshikazu Kato
- Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan; ABE-Project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| |
Collapse
|
30
|
Aspergillus sp. assisted bioflocculation of Chlorella MJ 11/11 for the production of biofuel from the algal-fungal co-pellet. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Maumela P, Rose S, van Rensburg E, Chimphango AFA, Görgens JF. Bioprocess Optimisation for High Cell Density Endoinulinase Production from Recombinant Aspergillus niger. Appl Biochem Biotechnol 2021; 193:3271-3286. [PMID: 34117627 DOI: 10.1007/s12010-021-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Endoinulinase gene was expressed in recombinant Aspergillus niger for selective and high-level expression using an exponential fed-batch fermentation. The effects of the growth rate (μ), glucose feed concentration, nitrogen concentration and fungal morphology on enzyme production were evaluated. A recombinant endoinulinase with a molecular weight of 66 kDa was secreted. Endoinulinase production was growth associated at μ> 0.04 h-1, which is characteristic of the constitutive gpd promoter used for the enzyme production. The highest volumetric activity (670 U/ml) was achieved at a growth rate of 93% of μmax (0.07 h-1), while enzyme activity (506 U/ml) and biomass substrate yield (0.043 gbiomassDW/gglucose) significantly decreased at low μ (0.04 h-1). Increasing the feed concentration resulted in high biomass concentrations and viscosity, which necessitated high agitation to enhance the mixing efficiency and oxygen. However, the high agitation and low DO levels (ca. 8% of saturation) led to pellet disruption and growth in dispersed morphology. Enzyme production profiles, product (Yp/s) and biomass (Yx/s) yield coefficients were not affected by feed concentration and morphological change. The gradual increase in the concentration of nitrogen sources showed that, a nitrogen limited culture was not suitable for endoinulinase production in recombinant A. niger. Moreover, the increase in enzyme volumetric activity was still directly related to an increase in biomass concentration. An increase in nitrogen concentration, from 3.8 to 12 g/L, resulted in volumetric activity increase from 393 to 670 U/ml, but the Yp/s (10053 U/gglucose) and Yx/s (0.049 gbiomasDWs/gglucose) did not significantly change. The data demonstrated the potential of recombinant A. niger and high cell density fermentation for the development of large-scale endoinulinase production system.
Collapse
Affiliation(s)
- Pfariso Maumela
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Shaunita Rose
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | | | - Johann Ferdinand Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
32
|
Expression of F-actin and β-tubulin genes in free mycelia and robust biofilms of the filamentous fungus Aspergillus niger. Braz J Microbiol 2021; 52:2357-2362. [PMID: 34549373 DOI: 10.1007/s42770-021-00611-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
The morphology and growth of the filamentous fungi are influenced by different factors as the culture conditions and the type of fermentative process. The production and secretion of metabolites by these organisms present a direct relationship with their morphology. The organization of the microtubules and actin in the cytoskeleton is determinant for both the fungal growth and morphology. In this context, this study aimed to analyze the expression of the β-tubulin, F-actin, and glucan synthase in the A. niger mycelia obtained from submerged fermentation and biofilm fermentation through qPCR, as well as the analysis of the nucleus distribution in the hypha. Herein, we showed that β-tubulin and the F-actin gene were more expressed in the biofilm condition, while the glucan synthase was in the submerged condition. No significant difference was observed in the nucleus distribution between the mycelia obtained from both the fermentative processes. In conclusion, the different morphologies observed for the mycelia from submerged fermentation and biofilm fermentation might be influenced by the differential modulation of genes that codify cytoskeleton proteins, which seems to be potentially regulated by mechanosensing during fungal contact with solid supports.
Collapse
|
33
|
Zhang X, Zhu X, Hu Y, Zhou Z, Olsen JW, Guan Y. Ancient Starch Remains Reveal the Vegetal Diet of the Neolithic Late Dawenkou Culture in Jiangsu, East China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.722103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Liangwangcheng site, located in Pizhou County, Xuzhou City, northern Jiangsu Province, is one of the most important Neolithic Dawenkou Culture archeological sites in the Haidai area of China’s eastern seaboard. In recent years, archaeobotanical studies in the Haidai area, mainly focusing on Shandong Province, have yielded fruitful results, while relatively few such studies have been undertaken in northern Jiangsu Province. Here, we report the results of dental residue analysis conducted on 31 individual human skulls unearthed from the Late Dawenkou Culture Liangwangcheng site. The starch granules extracted from these residue samples indicate that foxtail and broomcorn millet, rice, roots and tubers, and legumes comprised the vegetal diet of Liangwangcheng’s occupants. Evidence suggests that mixed rice–millet agriculture played a definite role, with the coexistence of gathering as an economic element. According to archaeobotanical evidence from surrounding cotemporaneous sites, the Late Neolithic human groups that lived in the lower Huang-Huai River drainage shared similar subsistence patterns. Our results provide new evidence for a more comprehensive understanding of plant resource utilization and agricultural development in northern Jiangsu during the Dawenkou period.
Collapse
|
34
|
Buffo MM, Ferreira ALZ, Almeida RMRG, Farinas CS, Badino AC, Ximenes EA, Ladisch MR. Cellulolytic enzymes production guided by morphology engineering. Enzyme Microb Technol 2021; 149:109833. [PMID: 34311878 DOI: 10.1016/j.enzmictec.2021.109833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
Endoglucanase and xylanase are critical enzymes for liquefaction and enzyme hydrolysis of high solids lignocellulosic biomass to facilitate its transport and production of desired derived products. Here is reported how combinations of different spore concentrations and pH influence microbial morphology, and how this may be used to direct expression and secretion of enzymes by Aspergillus niger. While xylanase production is not affected by A. niger morphology changes, endoglucanase production is enhanced under conditions of lower stress and by morphology that results in pellets. β-glucosidase production is enhanced under dispersed morphology, which results in up to fourfold increase of this enzyme production under the tested experimental conditions. A morphologic scale (Y) is proposed based on a form factor that considers the size and frequency of each morphology class, and that points to conditions that result in high selectivity for either endoglucanase or β-glucosidase production. An equation proposed to relate enzyme activity to morphology provides a useful tool for tuning enzyme production of A. niger, where morphology is a first indication of relative enzyme activities in a fermentation broth.
Collapse
Affiliation(s)
- Mariane M Buffo
- Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | - Cristiane S Farinas
- Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil; Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, SP, 13560-970, Brazil
| | - Alberto C Badino
- Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | | | | |
Collapse
|
35
|
Novy V, Nielsen F, Cullen D, Sabat G, Houtman CJ, Hunt CG. The characteristics of insoluble softwood substrates affect fungal morphology, secretome composition, and hydrolytic efficiency of enzymes produced by Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:105. [PMID: 33902680 PMCID: PMC8074412 DOI: 10.1186/s13068-021-01955-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/11/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND On-site enzyme production using Trichoderma reesei can improve yields and lower the overall cost of lignocellulose saccharification by exploiting the fungal gene regulatory mechanism that enables it to continuously adapt enzyme secretion to the substrate used for cultivation. To harness this, the interrelation between substrate characteristics and fungal response must be understood. However, fungal morphology or gene expression studies often lack structural and chemical substrate characterization. Here, T. reesei QM6a was cultivated on three softwood substrates: northern bleached softwood Kraft pulp (NBSK) and lodgepole pine pretreated either by dilute-acid-catalyzed steam pretreatment (LP-STEX) or mild alkaline oxidation (LP-ALKOX). With different pretreatments of similar starting materials, we presented the fungus with systematically modified substrates. This allowed the elucidation of substrate-induced changes in the fungal response and the testing of the secreted enzymes' hydrolytic strength towards the same substrates. RESULTS Enzyme activity time courses correlated with hemicellulose content and cellulose accessibility. Specifically, increased amounts of side-chain-cleaving hemicellulolytic enzymes in the protein produced on the complex substrates (LP-STEX; LP-ALKOX) was observed by secretome analysis. Confocal laser scanning micrographs showed that fungal micromorphology responded to changes in cellulose accessibility and initial culture viscosity. The latter was caused by surface charge and fiber dimensions, and likely restricted mass transfer, resulting in morphologies of fungi in stress. Supplementing a basic cellulolytic enzyme mixture with concentrated T. reesei supernatant improved saccharification efficiencies of the three substrates, where cellulose, xylan, and mannan conversion was increased by up to 27, 45, and 2800%, respectively. The improvement was most pronounced for proteins produced on LP-STEX and LP-ALKOX on those same substrates, and in the best case, efficiencies reached those of a state-of-the-art commercial enzyme preparation. CONCLUSION Cultivation of T. reesei on LP-STEX and LP-ALKOX produced a protein mixture that increased the hydrolytic strength of a basic cellulase mixture to state-of-the-art performance on softwood substrates. This suggests that the fungal adaptation mechanism can be exploited to achieve enhanced performance in enzymatic hydrolysis without a priori knowledge of specific substrate requirements.
Collapse
Affiliation(s)
- Vera Novy
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA.
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Göteborg, Sweden.
| | - Fredrik Nielsen
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Daniel Cullen
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Grzegorz Sabat
- University of Wisconsin Biotechnology Center, Madison, WI, 53706, USA
| | - Carl J Houtman
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Christopher G Hunt
- US Department of Agriculture, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| |
Collapse
|
36
|
Pereira JCV, Serbent MP, Skoronski E. Application of immobilized mycelium-based pellets for the removal of organochlorine compounds: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1781-1796. [PMID: 33905352 DOI: 10.2166/wst.2021.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organochlorines have diverse structures and applications and are included in the list of persistent organic pollutants (POPs) due to their toxicity and environmental persistence. The reduced capacity of conventional wastewater treatment plants to remove these compounds encourages the development of cost-effective and efficient remediation approaches. Fungal biotechnology can contribute to the development of these technologies through their enzymatic machinery but faces several drawbacks related to the use of dispersed mycelium. In this sense, investigations concerning the degradation of organochlorines using immobilized fungi demonstrated an increase in contaminant removal efficiency compared with degradation by free cells. Despite this interest, the mechanisms of immobilized fungi have not been comprehensively reviewed. In this paper, recent advances of laboratory and field studies in organochlorine compounds removal by fungi are reviewed, focusing on the role of immobilization techniques. Firstly, the mechanisms of organochlorines bioconversion by fungi and the factors affecting enzyme activity are elucidated and discussed in detail. Then, the main targeted compounds, fungi, technics, and materials used for immobilization are discussed, as well as their advantages and limitations. Furthermore, critical points for future studies of fungi immobilization for organochlorine removal are proposed.
Collapse
Affiliation(s)
- J C V Pereira
- Department of Sanitary Engineering, State University of Santa Catarina, 2822 Dr Getúlio Vargas Road, Ibirama, Brazil E-mail:
| | - M P Serbent
- Department of Sanitary Engineering, State University of Santa Catarina, 2822 Dr Getúlio Vargas Road, Ibirama, Brazil E-mail:
| | - E Skoronski
- Department of Environmental and Sanitary Engineering, State University of Santa Catarina, 2090 Luís de Camões Avenue, Lages, Brazil
| |
Collapse
|
37
|
Huang J, Guan HW, Huang YY, Lai KS, Chen HY, Xue H, Zhang BB. Evaluating the effects of microparticle addition on mycelial morphology, natural yellow pigments productivity, and key genes regulation in submerged fermentation of Monascus purpureus. Biotechnol Bioeng 2021; 118:2503-2513. [PMID: 33755193 DOI: 10.1002/bit.27762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022]
Abstract
Morphology plays an important role in fungal fermentation and secondary metabolites biosynthesis. One novel technique, microparticle-enhanced cultivation was successfully utilized to control the morphology of Monascus purpureus precisely and enhance the yield of yellow pigments. The production of yellow pigments increased to 554.2 U/ml when 4 g/L 5000 mesh talc added at 24 h. Field emission scanning electron microscope observation indicated that the actual effect depends on the properties of microparticle. Sharp-edged microparticles showed better stimulatory effects than smooth, round-shaped ones. Particle size analysis, scanning electron microscope, and cell integrity evaluation proved obvious morphological changes were induced by talc addition, including smaller mycelial size, rougher hyphae, and decreased cell integrity. Furthermore, the expression levels of MrpigG, MrpigD, MrpigE, and MrpigH were significantly upregulated by the addition of talc. It indicated that the microparticle could not only affect the mycelial morphology, but also influence the expression levels of key genes in biosynthetic pathway of Monascus yellow pigments.
Collapse
Affiliation(s)
- Jing Huang
- Department of Biology, Shantou University, Shantou, Guangdong, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hong-Wei Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue-Ying Huang
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Ke-Sheng Lai
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Hui-Ying Chen
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Han Xue
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Bo-Bo Zhang
- Department of Biology, Shantou University, Shantou, Guangdong, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
38
|
Jansen R, Küsters K, Morschett H, Wiechert W, Oldiges M. A fully automated pipeline for the dynamic at-line morphology analysis of microscale Aspergillus cultivation. Fungal Biol Biotechnol 2021; 8:2. [PMID: 33676585 PMCID: PMC7937226 DOI: 10.1186/s40694-021-00109-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/16/2021] [Indexed: 11/27/2022] Open
Abstract
Background Morphology, being one of the key factors influencing productivity of filamentous fungi, is of great interest during bioprocess development. With increasing demand of high-throughput phenotyping technologies for fungi due to the emergence of novel time-efficient genetic engineering technologies, workflows for automated liquid handling combined with high-throughput morphology analysis have to be developed. Results In this study, a protocol allowing for 48 parallel microbioreactor cultivations of Aspergillus carbonarius with non-invasive online signals of backscatter and dissolved oxygen was established. To handle the increased cultivation throughput, the utilized microbioreactor is integrated into a liquid handling platform. During cultivation of filamentous fungi, cell suspensions result in either viscous broths or form pellets with varying size throughout the process. Therefore, tailor-made liquid handling parameters such as aspiration/dispense height, velocity and mixing steps were optimized and validated. Development and utilization of a novel injection station enabled a workflow, where biomass samples are automatically transferred into a flow through chamber fixed under a light microscope. In combination with an automated image analysis concept, this enabled an automated morphology analysis pipeline. The workflow was tested in a first application study, where the projected biomass area was determined at two different cultivation temperatures and compared to the microbioreactor online signals. Conclusions A novel and robust workflow starting from microbioreactor cultivation, automated sample harvest and processing via liquid handling robots up to automated morphology analysis was developed. This protocol enables the determination of projected biomass areas for filamentous fungi in an automated and high-throughput manner. This measurement of morphology can be applied to describe overall pellet size distribution and heterogeneity.
Collapse
Affiliation(s)
- Roman Jansen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Kira Küsters
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Holger Morschett
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
39
|
Böl M, Schrinner K, Tesche S, Krull R. Challenges of influencing cellular morphology by morphology engineering techniques and mechanical induced stress on filamentous pellet systems-A critical review. Eng Life Sci 2021; 21:51-67. [PMID: 33716605 PMCID: PMC7923580 DOI: 10.1002/elsc.202000060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
Filamentous microorganisms are main producers of organic acids, enzymes, and pharmaceutical agents such as antibiotics and other active pharmaceutical ingredients. With their complex cell morphology, ranging from dispersed mycelia to dense pellets, the cultivation is challenging. In recent years, various techniques for tailor-made cell morphologies of filamentous microorganisms have been developed to increase product formation and have been summarised under the term morphology engineering. These techniques, namely microparticle-enhanced cultivation, macroparticle-enhanced cultivation, and alteration of the osmolality of the culture medium by addition of inorganic salts, the salt-enhanced cultivation, are presented and discussed in this review. These techniques have already proven to be useful and now await further proof-of-concept. Furthermore, the mechanical behaviour of individual pellets is of special interest for a general understanding of pellet mechanics and the productivity of biotechnological processes with filamentous microorganisms. Correlating them with substrate uptake and finally with productivity would be a breakthrough not to be underestimated for the comprehensive characterisation of filamentous systems. So far, this research field is under-represented. First results on filamentous pellet mechanics are discussed and important future aspects, which the filamentous expert community should deal with, will be presented and critically discussed.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and AdaptronicsTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
| | - Kathrin Schrinner
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Sebastian Tesche
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
40
|
Chen C, Wang Z, Zhao M, Yuan B, Yao J, Chen J, Hrynshpan D, Savitskaya T. A fungus-bacterium co-culture synergistically promoted nitrogen removal by enhancing enzyme activity and electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142109. [PMID: 32898784 DOI: 10.1016/j.scitotenv.2020.142109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
The fungus Penicillium citrinum WXP-2 and the bacterium Citrobacter freundii WXP-9 were isolated and found to have poor denitrification performance. Surprisingly, co-culture of the two strains which formed fungus-bacterium pellets (FBPs) promoted the removal efficiency of nitrate (NO3--N; 95.78%) and total nitrogen (TN; 81.73%). Nitrogen balance analysis showed that excess degraded NO3--N was primarily converted to N2 (77.53%). Moreover, co-culture increased the dry weight to 0.74 g/L. The diameter of pellets and cell viability also increased by 1.49 and 1.78 times, respectively, indicating that the co-culture exerted a synergistic effect to promote growth. The increase in electron-transmission system activity [99.01 mg iodonitrotetrazolium formazan/(g·L)] and nitrate reductase activity [8.65 mg N/(min·mg protein)] were responsible for denitrification promotion. The FBPs also exhibited the highest degradation rate at 2:1 inoculation ratio and 36 h delayed inoculation of strain WXP-9. Finally, recycling experiments of FBP demonstrated that the high steady TN removal rate could be maintained for five cycles.
Collapse
Affiliation(s)
- Cong Chen
- College of Environmental, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zeyu Wang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Min Zhao
- College of Environmental, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Bohan Yuan
- College of Environmental, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jiachao Yao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| |
Collapse
|
41
|
Esterhuizen M, Behnam Sani S, Wang L, Kim YJ, Pflugmacher S. Mycoremediation of acetaminophen: Culture parameter optimization to improve efficacy. CHEMOSPHERE 2021; 263:128117. [PMID: 33297110 DOI: 10.1016/j.chemosphere.2020.128117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Untreated pharmaceutical pollution and their possibly toxic metabolites, resulting from overloaded wastewater treatment processes, end up in aquatic environments and are hazardous to the ecosystem homeostasis. Biological wastewater remediation could supplement traditional methods and overcome the release of these biologically active compounds in the environment. Mycoremediation is especially promising due to the unspecific nature of fungi to decompose compounds through exoenzymes and the uptake of compounds as nutrients. In the present study, we improved on the previous advances made using the fungus Mucor hiemalis to remediate one of the most commonly occurring pharmaceuticals, acetaminophen (APAP), at higher concentrations. The limitation of nitrogen, adjustment of pH, and comparison to, as well as co-cultivation with the white-rot fungus Phanerochaete chrysosporium, were tested. Nitrogen limitation did not significantly improve the APAP remediation efficiency of M. hiemalis. Maintaining the pH of the media improved the remediation restraint of 24 h previously observed. The APAP remediation efficiency of P. chrysosporium was far superior to that of M. hiemalis, and co-cultivation of the two resulted in a decreased remediation efficiency compared to P. chrysosporium in single.
Collapse
Affiliation(s)
- M Esterhuizen
- University of Helsinki, Ecosystems and Environmental Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140, Lahti, Finland; Korea Institute of Science and Technology Europe (KIST), Joint Laboratory of Applied Ecotoxicology, Campus 7.1, 66123, Saarbrücken, Germany; University of Helsinki, Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014, Helsinki, Finland.
| | - S Behnam Sani
- Technische Universität Berlin, Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - L Wang
- Technische Universität Berlin, Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Y J Kim
- Korea Institute of Science and Technology Europe (KIST), Joint Laboratory of Applied Ecotoxicology, Campus 7.1, 66123, Saarbrücken, Germany
| | - S Pflugmacher
- University of Helsinki, Ecosystems and Environmental Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140, Lahti, Finland; Korea Institute of Science and Technology Europe (KIST), Joint Laboratory of Applied Ecotoxicology, Campus 7.1, 66123, Saarbrücken, Germany; University of Helsinki, Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014, Helsinki, Finland
| |
Collapse
|
42
|
Niyonzima FN. Detergent-compatible fungal cellulases. Folia Microbiol (Praha) 2020; 66:25-40. [PMID: 33184763 DOI: 10.1007/s12223-020-00838-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022]
Abstract
Detergent enzymes are currently added to all powder and liquid detergents that are manufactured. Cellulases, lipases, amylases, and proteases are used in the detergency to replace toxic phosphates and silicates and to reduce high energy consumption. This makes the use of enzymes in detergent formulation cost effective. Fungi are producers of important extracellular enzymes for industrial use. The fungal and bacterial cellulases maintain the shape and color of the washed garments. There is a high demand for cellulases at the market by detergent industries. With this high demand, genetic engineering has been a solution due to its high production of detergent-compatible cellulases. Fungi are the famous source for detergent-compatible cellulases production, but still, there is a lack of the cost-effective process of alkaline fungal cellulase production. Review papers on detergent-compatible bacterial cellulase and amylase and detergent-compatible fungal and bacterial proteases and lipases are available, but there is no review on detergent fungal cellulases. This review aims to highlight the production, properties, stability, and compatibility of fungal cellulases. It will help other academic and industrial researchers to study, produce, and commercialize the fungal cellulases with good aspects.
Collapse
|
43
|
Manglekar RR, Geng A. CRISPR-Cas9-mediated seb1 disruption in Talaromyces pinophilus EMU for its enhanced cellulase production. Enzyme Microb Technol 2020; 140:109646. [DOI: 10.1016/j.enzmictec.2020.109646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022]
|
44
|
Kowalska A, Boruta T, Bizukojć M. Performance of fungal microparticle-enhanced cultivations in stirred tank bioreactors depends on species and number of process stages. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
45
|
Kuhl M, Gläser L, Rebets Y, Rückert C, Sarkar N, Hartsch T, Kalinowski J, Luzhetskyy A, Wittmann C. Microparticles globally reprogram Streptomyces albus toward accelerated morphogenesis, streamlined carbon core metabolism, and enhanced production of the antituberculosis polyketide pamamycin. Biotechnol Bioeng 2020; 117:3858-3875. [PMID: 32808679 DOI: 10.1002/bit.27537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
Streptomyces spp. are a rich source for natural products with recognized industrial value, explaining the high interest to improve and streamline the performance of in these microbes. Here, we studied the production of pamamycins, macrodiolide homologs with a high activity against multiresistant pathogenic microbes, using recombinant Streptomyces albus J1074/R2. Talc particles (hydrous magnesium silicate, 3MgO·4SiO2 ·H2 O) of micrometer size, added to submerged cultures of the recombinant strain, tripled pamamycin production up to 50 mg/L. Furthermore, they strongly affected morphology, reduced the size of cell pellets formed by the filamentous microbe during the process up to sixfold, and shifted the pamamycin spectrum to larger derivatives. Integrated analysis of transcriptome and precursor (CoA thioester) supply of particle-enhanced and control cultures provided detailed insights into the underlying molecular changes. The microparticles affected the expression of 3,341 genes (56% of all genes), revealing a global and fundamental impact on metabolism. Morphology-associated genes, encoding major regulators such as SsgA, RelA, EshA, Factor C, as well as chaplins and rodlins, were found massively upregulated, indicating that the particles caused a substantially accelerated morphogenesis. In line, the pamamycin cluster was strongly upregulated (up to 1,024-fold). Furthermore, the microparticles perturbed genes encoding for CoA-ester metabolism, which were mainly activated. The altered expression resulted in changes in the availability of intracellular CoA-esters, the building blocks of pamamycin. Notably, the ratio between methylmalonyl CoA and malonyl-CoA was increased fourfold. Both metabolites compete for incorporation into pamamycin so that the altered availability explained the pronounced preference for larger derivatives in the microparticle-enhanced process. The novel insights into the behavior of S. albus in response to talc appears of general relevance to further explore and upgrade the concept of microparticle enhanced cultivation, widely used for filamentous microbes.
Collapse
Affiliation(s)
- Martin Kuhl
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Yuriy Rebets
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | | | | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
46
|
Saberi A, Jalili H, Nikfarjam A, Koohsorkhi J, Jarmoshti J, Bizukojc M. Monitoring of Aspergillus terreus morphology for the lovastatin production in submerge culture by impedimetry. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Miyazawa K, Yoshimi A, Abe K. The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species. Fungal Biol Biotechnol 2020; 7:10. [PMID: 32626592 PMCID: PMC7329490 DOI: 10.1186/s40694-020-00101-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are widely used for production of enzymes and chemicals, and are industrially cultivated both in liquid and solid cultures. Submerged culture is often used as liquid culture for filamentous fungi. In submerged culture, filamentous fungi show diverse macromorphology such as hyphal pellets and dispersed hyphae depending on culture conditions and genetic backgrounds of fungal strains. Although the macromorphology greatly affects the productivity of submerged cultures, the specific cellular components needed for hyphal aggregation after conidial germination have not been characterized. Recently we reported that the primary cell wall polysaccharide α-1,3-glucan and the extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae, and that a strain deficient in both α-1,3-glucan and GAG shows dispersed hyphae in liquid culture. In this review, we summarize our current understanding of the contribution of chemical properties of α-1,3-glucan and GAG to hyphal aggregation. Various ascomycetes and basidiomycetes have α-1,3-glucan synthase gene(s). In addition, some Pezizomycotina fungi, including species used in the fermentation industry, also have GAG biosynthetic genes. We also review here the known mechanisms of biosynthesis of α-1,3-glucan and GAG. Regulation of the biosynthesis of the two polysaccharides could be a potential way of controlling formation of hyphal pellets.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan.,ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579 Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan.,ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579 Japan.,Laboratory of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan
| |
Collapse
|
48
|
Niu K, Wu XP, Hu XL, Zou SP, Hu ZC, Liu ZQ, Zheng YG. Effects of methyl oleate and microparticle-enhanced cultivation on echinocandin B fermentation titer. Bioprocess Biosyst Eng 2020; 43:2009-2015. [PMID: 32557175 DOI: 10.1007/s00449-020-02389-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/10/2020] [Indexed: 02/01/2023]
Abstract
Echinocandin B (ECB) is a key precursor of antifungal agent Anidulafungin, which has demonstrated clinical efficacy in patients with invasive candidiasis. In this study, the effects of microparticle-enhanced cultivation and methyl oleate on echinocandin B fermentation titer were investigated. The results showed that the titer was significantly influenced by the morphological type of mycelium, and mycelium pellet was beneficial to improve the titer of this secondary metabolism. First, different carbon sources were chosen for the fermentation, and methyl oleate achieved the highest echinocandin B titer of 2133 ± 50 mg/L, which was two times higher than that of the mannitol. The study further investigated the metabolic process of the fermentation, and the results showed that L-threonine concentration inside the cell could reach 275 mg/L at 168 h with methyl oleate, about 2.5 times higher than that of the mannitol. Therefore, L-threonine may be a key precursor of echinocandin B. In the end, a new method of adding microparticles for improving the mycelial morphology was used, and the addition of talcum powder (20 g/L, diameter of 45 µm) could make the maximum titer of echinocandin B reach 3148 ± 100 mg/L.
Collapse
Affiliation(s)
- Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xu-Ping Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Long Hu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shu-Ping Zou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhong-Ce Hu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
49
|
Schrinner K, Veiter L, Schmideder S, Doppler P, Schrader M, Münch N, Althof K, Kwade A, Briesen H, Herwig C, Krull R. Morphological and physiological characterization of filamentous Lentzea aerocolonigenes: Comparison of biopellets by microscopy and flow cytometry. PLoS One 2020; 15:e0234125. [PMID: 32492063 PMCID: PMC7269266 DOI: 10.1371/journal.pone.0234125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022] Open
Abstract
Cell morphology of filamentous microorganisms is highly interesting during cultivations as it is often linked to productivity and can be influenced by process conditions. Hence, the characterization of cell morphology is of major importance to improve the understanding of industrial processes with filamentous microorganisms. For this purpose, reliable and robust methods are necessary. In this study, pellet morphology and physiology of the rebeccamycin producing filamentous actinomycete Lentzea aerocolonigenes were investigated by microscopy and flow cytometry. Both methods were compared regarding their applicability. To achieve different morphologies, a cultivation with glass bead addition (Ø = 969 μm, 100 g L-1) was compared to an unsupplemented cultivation. This led to two different macro-morphologies. Furthermore, glass bead addition increased rebeccamycin titers after 10 days of cultivation (95 mg L-1 with glass beads, 38 mg L-1 without glass beads). Macro-morphology and viability were investigated through microscopy and flow cytometry. For viability assessment fluorescent staining was used additionally. Smaller, more regular pellets were found for glass bead addition. Pellet diameters resulting from microscopy followed by image analysis were 172 μm without and 106 μm with glass beads, diameters from flow cytometry were 170 and 100 μm, respectively. These results show excellent agreement of both methods, each considering several thousand pellets. Furthermore, the pellet viability obtained from both methods suggested an enhanced metabolic activity in glass bead treated pellets during the exponential production phase. However, total viability values differ for flow cytometry (0.32 without and 0.41 with glass beads) and confocal laser scanning microscopy of single stained pellet slices (life ratio in production phase of 0.10 without and 0.22 with glass beads), which is probably caused by the different numbers of investigated pellets. In confocal laser scanning microscopy only one pellet per sample could be investigated while flow cytometry considered at least 50 pellets per sample, resulting in an increased statistical reliability.
Collapse
Affiliation(s)
- Kathrin Schrinner
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
| | - Lukas Veiter
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
- Competence Center CHASE GmbH, Linz, Austria
| | - Stefan Schmideder
- School of Life Sciences, Chair of Process Systems Engineering, Technische Universität München, Freising, Germany
| | - Philipp Doppler
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| | - Marcel Schrader
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nadine Münch
- School of Life Sciences, Chair of Process Systems Engineering, Technische Universität München, Freising, Germany
| | - Kristin Althof
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Heiko Briesen
- School of Life Sciences, Chair of Process Systems Engineering, Technische Universität München, Freising, Germany
| | - Christoph Herwig
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
| |
Collapse
|
50
|
Huey CJ, Gopinath SCB, Uda MNA, Zulhaimi HI, Jaafar MN, Kasim FH, Yaakub ARW. Mycorrhiza: a natural resource assists plant growth under varied soil conditions. 3 Biotech 2020; 10:204. [PMID: 32337150 PMCID: PMC7165205 DOI: 10.1007/s13205-020-02188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 10/24/2022] Open
Abstract
In this overview, the authors have discussed the potential advantages of the association between mycorrhizae and plants, their mutual accelerated growth under favorable conditions and their role in nutrient supply. In addition, methods for isolating mycorrhizae are described and spore morphologies and their adaptation to various conditions are outlined. Further, the significant participation of controlled greenhouses and other supported physiological environments in propagating mycorrhizae is detailed. The reviewed information supports the lack of host- and niche-specificity by arbuscular mycorrhizae, indicating that these fungi are suitable for use in a wide range of ecological conditions and with propagules for direct reintroduction. Regarding their prospective uses, the extensive growth of endomycorrhizal fungi suggests it is suited for poor-quality and low-fertility soils.
Collapse
Affiliation(s)
- Chew Jia Huey
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Subash C. B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| | - M. N. A. Uda
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Hanna Ilyani Zulhaimi
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Mahmad Nor Jaafar
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Farizul Hafiz Kasim
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Centre of Excellence for Biomass Utilization, School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Ahmad Radi Wan Yaakub
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| |
Collapse
|