1
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2025; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
2
|
Xie X, Huang R, Zhang W, Zhang R. Cofactor-dependence alteration of 7β-hydroxysteroid dehydrogenase: Enhancing one-pot synthesis efficiency of chenodeoxycholic acid to ursodeoxycholic acid through cofactor self-recycling. Int J Biol Macromol 2024; 280:136328. [PMID: 39378924 DOI: 10.1016/j.ijbiomac.2024.136328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
NAD+-dependent 7α-hydroxysteroid dehydrogenase (7α-HSDH) and NADPH-dependent 7β-hydroxysteroid dehydrogenase (7β-HSDH) are involved in the biosynthesis of chenodeoxycholic acid (CDCA) to ursodeoxycholic acid (UDCA). To realize the one-pot synthesis of CDCA to UDCA through NAD+-NADH cycling, we aimed to improve the binding ability of Hyphomicrobium sp. 7β-HSDH to NADH. The 7β-HSDH structure was modeled and some potential residues to improve NADH affinity near conserved cofactor binding regions were screened, including Ala22, Gln23, Asn24, Asp44, Leu45, and Asn46. The dominant mutant A22T/Q23E/L45A/N46E significantly enhanced the binding affinity for NADH, resulting in a 44.9-fold increase in its kcat/Km value. It increased enzymatic activity by 65.2-fold and catalyzed the synthesis of UDCA at a yield of 77.6 % with 5 g/L 7K-LCA and 12.5 mM NADH. Molecular dynamics simulations indicated increased interactions of mutated 7β-HSDH and the ligand NADH by their spatially reduced binding distance and reaction energy. The modified cofactor-dependence of 7β-HSDH realized efficient one-pot synthesis of CDCA to UDCA through strengthening cofactor-recycling and reducing the use of cofactor, achieving 90.1 % UDCA yield and 54.1 g/L/d spatiotemporal yield when coupled with 7α-HSDH with only 0.5 mM NAD+ as coenzyme. This work also supplies a universal cofactor-dependence engineering technique for homologous HSDH enzymes.
Collapse
Affiliation(s)
- Xiubing Xie
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Runyi Huang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rongzhen Zhang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Cheng W, Zhu N, Wang J, Yang R. A role of gut microbiota metabolites in HLA-E and NKG2 blockage immunotherapy against tumors: new insights for clinical application. Front Immunol 2024; 15:1331518. [PMID: 39229258 PMCID: PMC11368731 DOI: 10.3389/fimmu.2024.1331518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
One of major breakthroughs in immunotherapy against tumor is from blocking immune checkpoint molecules on tumor and reactive T cells. The development of CTLA-4 and PD-1 blockage antibodies has triggered to search for additional effective therapeutic strategies. This causes recent findings that blocking the interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in tumors is effective in defensing tumors. Interestingly, gut microbiota also affects this immune checkpoint immunotherapy against tumor. Gut microbiota such as bacteria can contribute to the regulation of host immune response and homeostasis. They not only promote the differentiation and function of immunosuppressive cells but also the inflammatory cells through the metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as short chain fatty acids (SCFAs). These gut microbiota metabolites (GMMs) educated immune cells can affect the differentiation and function of effective CD8 and NK cells. Notably, these metabolites also directly affect the activity of CD8 and NK cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated immune factors. These findings offer new insights for the clinical application of gut microbiota in precise and/or personalized treatments of tumors. In this review, we will discuss the impacts of GMMs and GMM educated immune cells on the activity of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells and/or their ligand HLA-E in tumor cells.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Zhu XX, Zhao CY, Meng XY, Yu XY, Ma LC, Chen TX, Chang C, Chen XY, Zhang Y, Hou B, Cai WW, Du B, Han ZJ, Qiu LY, Sun HJ. Bacteroides uniformis Ameliorates Carbohydrate and Lipid Metabolism Disorders in Diabetic Mice by Regulating Bile Acid Metabolism via the Gut-Liver Axis. Pharmaceuticals (Basel) 2024; 17:1015. [PMID: 39204119 PMCID: PMC11357665 DOI: 10.3390/ph17081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- Department of Physiology, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Chen-Yang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xiao-Yi Yu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Lin-Chun Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Tian-Xiao Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Chang Chang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Yuan Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China;
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
5
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
6
|
Wang J, Zhu N, Su X, Yang R. Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett 2024; 582:216582. [PMID: 38065401 DOI: 10.1016/j.canlet.2023.216582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Tumor cells can evade immune surveillance by expressing immune checkpoint molecule ligands, resulting in effective immune cell inactivation. Immune checkpoint blockades (ICBs) have dramatically improved survival of patients with multiple types of cancers. However, responses to ICB immunotherapy are heterogeneous with lower patient response rates. The advances have established that the gut microbiota can be as a promising target to overcome resistance to ICB immunotherapy. Furthermore, some bacterial species have shown to promote improved responses to ICBs. However, gut microbiota is critical in maintaining gut and systemic immune homeostasis. It not only promotes differentiation and function of immunosuppressive immune cells but also inhibits inflammatory cells via gut microbiota derived products such as short chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, which play an important role in tumor immunity. Since the gut microbiota can either inhibit or enhance immune against tumor, it should be a double-edged sword in ICBs against tumor. In this review, we discuss the effects of gut microbiota on immune cells and also tumor cells, especially enhances of gut microbiota on ICB immunotherapy. These discussions can hopefully promote the development of ICB immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Wang MQ, You ZN, Yang BY, Xia ZW, Chen Q, Pan J, Li CX, Xu JH. Machine-Learning-Guided Engineering of an NADH-Dependent 7β-Hydroxysteroid Dehydrogenase for Economic Synthesis of Ursodeoxycholic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19672-19681. [PMID: 38016669 DOI: 10.1021/acs.jafc.3c06339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Enzymatic synthesis of ursodeoxycholic acid (UDCA) catalyzed by an NADH-dependent 7β-hydroxysteroid dehydrogenase (7β-HSDH) is more economic compared with an NADPH-dependent 7β-HSDH when considering the much higher cost of NADP+/NADPH than that of NAD+/NADH. However, the poor catalytic performance of NADH-dependent 7β-HSDH significantly limits its practical applications. Herein, machine-learning-guided protein engineering was performed on an NADH-dependent Rt7β-HSDHM0 from Ruminococcus torques. We combined random forest, Gaussian Naïve Bayes classifier, and Gaussian process regression with limited experimental data, resulting in the best variant Rt7β-HSDHM3 (R40I/R41K/F94Y/S196A/Y253F) with improvements in specific activity and half-life (40 °C) by 4.1-fold and 8.3-fold, respectively. The preparative biotransformation using a "two stage in one pot" sequential process coupled with Rt7β-HSDHM3 exhibited a space-time yield (STY) of 192 g L-1 d-1, which is so far the highest productivity for the biosynthesis of UDCA from chenodeoxycholic acid (CDCA) with NAD+ as a cofactor. More importantly, the cost of raw materials for the enzymatic production of UDCA employing Rt7β-HSDHM3 decreased by 22% in contrast to that of Rt7β-HSDHM0, indicating the tremendous potential of the variant Rt7β-HSDHM3 for more efficient and economic production of UDCA.
Collapse
Affiliation(s)
- Mu-Qiang Wang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhi-Neng You
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Bing-Yi Yang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zi-Wei Xia
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Gao Y, Lin J, Ye C, Guo S, Jiang C. Microbial transformations of bile acids and their receptors in the regulation of metabolic dysfunction-associated steatotic liver disease. LIVER RESEARCH 2023; 7:165-176. [DOI: 10.1016/j.livres.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Xing C, Huang X, Wang D, Yu D, Hou S, Cui H, Song L. Roles of bile acids signaling in neuromodulation under physiological and pathological conditions. Cell Biosci 2023; 13:106. [PMID: 37308953 PMCID: PMC10258966 DOI: 10.1186/s13578-023-01053-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023] Open
Abstract
Bile acids (BA) are important physiological molecules not only mediating nutrients absorption and metabolism in peripheral tissues, but exerting neuromodulation effect in the central nerve system (CNS). The catabolism of cholesterol to BA occurs predominantly in the liver by the classical and alternative pathways, or in the brain initiated by the neuronal-specific enzyme CYP46A1 mediated pathway. Circulating BA could cross the blood brain barrier (BBB) and reach the CNS through passive diffusion or BA transporters. Brain BA might trigger direct signal through activating membrane and nucleus receptors or affecting activation of neurotransmitter receptors. Peripheral BA may also provide the indirect signal to the CNS via farnesoid X receptor (FXR) dependent fibroblast growth factor 15/19 (FGF15/19) pathway or takeda G protein coupled receptor 5 (TGR5) dependent glucagon-like peptide-1 (GLP-1) pathway. Under pathological conditions, alterations in BA metabolites have been discovered as potential pathogenic contributors in multiple neurological disorders. Attractively, hydrophilic ursodeoxycholic acid (UDCA), especially tauroursodeoxycholic acid (TUDCA) can exert neuroprotective roles by attenuating neuroinflammation, apoptosis, oxidative or endoplasmic reticulum stress, which provides promising therapeutic effects for treatment of neurological diseases. This review summarizes recent findings highlighting the metabolism, crosstalk between brain and periphery, and neurological functions of BA to elucidate the important role of BA signaling in the brain under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Chen Xing
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China.
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
| | - Dongxue Wang
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Dengjun Yu
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Shaojun Hou
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- Anhui Medical University, Heifei, 230032, China
| | - Haoran Cui
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
| | - Lung Song
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China.
- Anhui Medical University, Heifei, 230032, China.
| |
Collapse
|
10
|
Su X, Gao Y, Yang R. Gut microbiota derived bile acid metabolites maintain the homeostasis of gut and systemic immunity. Front Immunol 2023; 14:1127743. [PMID: 37256134 PMCID: PMC10225537 DOI: 10.3389/fimmu.2023.1127743] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 06/01/2023] Open
Abstract
Bile acids (BAs) as cholesterol-derived molecules play an essential role in some physiological processes such as nutrient absorption, glucose homeostasis and regulation of energy expenditure. They are synthesized in the liver as primary BAs such as cholic acid (CA), chenodeoxycholic acid (CDCA) and conjugated forms. A variety of secondary BAs such as deoxycholic acid (DCA) and lithocholic acid (LCA) and their derivatives is synthesized in the intestine through the involvement of various microorganisms. In addition to essential physiological functions, BAs and their metabolites are also involved in the differentiation and functions of innate and adaptive immune cells such as macrophages (Macs), dendritic cells (DCs), myeloid derived suppressive cells (MDSCs), regulatory T cells (Treg), Breg cells, T helper (Th)17 cells, CD4 Th1 and Th2 cells, CD8 cells, B cells and NKT cells. Dysregulation of the BAs and their metabolites also affects development of some diseases such as inflammatory bowel diseases. We here summarize recent advances in how BAs and their metabolites maintain gut and systemic homeostasis, including the metabolism of the BAs and their derivatives, the role of BAs and their metabolites in the differentiation and function of immune cells, and the effects of BAs and their metabolites on immune-associated disorders.
Collapse
Affiliation(s)
- Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023; 12:cells12050793. [PMID: 36899929 PMCID: PMC10000530 DOI: 10.3390/cells12050793] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, viruses and phages, inhabits the gastrointestinal tract. This commensal microbiota can contribute to the regulation of host immune response and homeostasis. Alterations of the gut microbiota have been found in many immune-related diseases. The metabolites generated by specific microorganisms in the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, not only affect genetic and epigenetic regulation but also impact metabolism in the immune cells, including immunosuppressive and inflammatory cells. The immunosuppressive cells (such as tolerogenic macrophages (tMacs), tolerogenic dendritic cells (tDCs), myeloid-derived suppressive cells (MDSCs), regulatory T cells (Tregs), regulatory B cells (Breg) and innate lymphocytes (ILCs)) and inflammatory cells (such as inflammatory Macs (iMacs), DCs, CD4 T helper (Th)1, CD4Th2, Th17, natural killer (NK) T cells, NK cells and neutrophils) can express different receptors for SCFAs, Trp and BA metabolites from different microorganisms. Activation of these receptors not only promotes the differentiation and function of immunosuppressive cells but also inhibits inflammatory cells, causing the reprogramming of the local and systemic immune system to maintain the homeostasis of the individuals. We here will summarize the recent advances in understanding the metabolism of SCFAs, Trp and BA in the gut microbiota and the effects of SCFAs, Trp and BA metabolites on gut and systemic immune homeostasis, especially on the differentiation and functions of the immune cells.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ningning Zhu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
12
|
Song P, Zhang X, Feng W, Xu W, Wu C, Xie S, Yu S, Fu R. Biological synthesis of ursodeoxycholic acid. Front Microbiol 2023; 14:1140662. [PMID: 36910199 PMCID: PMC9998936 DOI: 10.3389/fmicb.2023.1140662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a fundamental treatment drug for numerous hepatobiliary diseases that also has adjuvant therapeutic effects on certain cancers and neurological diseases. Chemical UDCA synthesis is environmentally unfriendly with low yields. Biological UDCA synthesis by free-enzyme catalysis or whole-cell synthesis using inexpensive and readily available chenodeoxycholic acid (CDCA), cholic acid (CA), or lithocholic acid (LCA) as substrates is being developed. The free enzyme-catalyzed one-pot, one-step/two-step method uses hydroxysteroid dehydrogenase (HSDH); whole-cell synthesis, mainly uses engineered bacteria (mainly Escherichia coli) expressing the relevant HSDHs. To further develop these methods, HSDHs with specific coenzyme dependence, high enzyme activity, good stability, and high substrate loading concentration, P450 monooxygenase with C-7 hydroxylation activity and engineered strain harboring HSDHs must be exploited.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Feng
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Chaoyun Wu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Shaoqing Xie
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Sisi Yu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| |
Collapse
|
13
|
Huang B, Yang K, Amanze C, Yan Z, Zhou H, Liu X, Qiu G, Zeng W. Sequence and structure-guided discovery of a novel NADH-dependent 7β-hydroxysteroid dehydrogenase for efficient biosynthesis of ursodeoxycholic acid. Bioorg Chem 2023; 131:106340. [PMID: 36586301 DOI: 10.1016/j.bioorg.2022.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
7β-Hydroxysteroid dehydrogenases (7β-HSDHs) have attracted increasing attention due to their crucial roles in the biosynthesis of ursodeoxycholic acid (UDCA). However, most published 7β-HSDHs are strictly NADPH-dependent oxidoreductases with poor activity and low productivity. Compared with NADPH, NADH is more stable and cheaper, making it the more popular cofactor for industrial applications of dehydrogenases. Herein, by using a sequence and structure-guided genome mining approach based on the structural information of conserved cofactor-binding motifs, we uncovered a novel NADH-dependent 7β-HSDH (Cle7β-HSDH). The Cle7β-HSDH was overexpressed, purified, and characterized. It exhibited high specific activity (9.6 U/mg), good pH stability and thermostability, significant methanol tolerance, and showed excellent catalytic efficiencies (kcat/Km) towards 7-oxo-lithocholic acid (7-oxo-LCA) and NADH (70.8 mM-1s-1 and 31.8 mM-1s-1, respectively). Molecular docking and mutational analyses revealed that Asp42 could play a considerable role in NADH binding and recognition. Coupling with a glucose dehydrogenase for NADH regeneration, up to 20 mM 7-oxo-LCA could be completely transformed to UDCA within 90 min by Cle7β-HSDH. This study provides an efficient approach for mining promising enzymes from genomic databases for cost-effective biotechnological applications.
Collapse
Affiliation(s)
- Bin Huang
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Zhen Yan
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China.
| |
Collapse
|
14
|
Clean enzymatic production of ursodeoxycholic acid enabled by a newly identified NADH-dependent 7β-hydroxysteroid dehydrogenase. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Improving the Sustainability and Safety of Ursodeoxycholic Acid Synthesis in Continuous Flow Process with Water. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Favale N, Costa S, Scapoli C, Carrieri A, Sabbioni S, Tamburini E, Benazzo A, Bernacchia G. Reconstruction of Acinetobacter johnsonii ICE_NC genome using hybrid de novo genome assemblies and identification of the 12α-hydroxysteroid dehydrogenase gene. J Appl Microbiol 2022; 133:1506-1519. [PMID: 35686660 PMCID: PMC9540589 DOI: 10.1111/jam.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
AIMS The role of a Acinetobacter johnsonii strain, isolated from a soil sample, in the biotransformation of bile acids (BAs) was already described but the enzymes responsible for these transformations were only partially purified and molecularly characterized. METHODS AND RESULTS This study describes the use of hybrid de novo assemblies, that combine long-read Oxford Nanopore and short-read Illumina sequencing strategies, to reconstruct the entire genome of A. johnsonii ICE_NC strain and to identify the coding region for a 12α-hydroxysteroid dehydrogenase (12α-HSDH), involved in BAs metabolism. The de novo assembly of the A. johnsonii ICE_NC genome was generated using Canu and Unicycler, both strategies yielded a circular chromosome of about 3.6 Mb and one 117 kb long plasmid. Gene annotation was performed on the final assemblies and the gene for 12α-HSDH was detected on the plasmid. CONCLUSIONS Our findings illustrate the added value of long read sequencing in addressing the challenges of whole genome characterization and plasmid reconstruction in bacteria. These approaches also allowed the identification of the A. johnsonii ICE_NC gene for the 12α-HSDH enzyme, whose activity was confirmed at the biochemical level. SIGNIFICANCE AND IMPACT OR THE STUDY At present, this is the first report on the characterization of a 12α-HSDH gene in an A. johnsonii strain able to biotransform cholic acid into ursodeoxycholic acid, a promising therapeutic agent for several diseases.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Zhao YQ, Liu YJ, Ji WT, Liu K, Gao B, Tao XY, Zhao M, Wang FQ, Wei DZ. One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered mycolicibacterium neoaurum. Microb Cell Fact 2022; 21:59. [PMID: 35397581 PMCID: PMC8994266 DOI: 10.1186/s12934-022-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background 7β-hydroxylated steroids (7β-OHSt) possess significant activities in anti-inflammatory and neuroprotection, and some of them have been widely used in clinics. However, the production of 7β-OHSt is still a challenge due to the lack of cheap 7β-hydroxy precursor and the difficulty in regio- and stereo-selectively hydroxylation at the inert C7 site of steroids in industry. The conversion of phytosterols by Mycolicibacterium species to the commercial precursor, androst-4-ene-3,17-dione (AD), is one of the basic ways to produce different steroids. This study presents a way to produce a basic 7β-hydroxy precursor, 7β-hydroxyandrost-4-ene-3,17-dione (7β-OH-AD) in Mycolicibacterium, for 7β-OHSt synthesis. Results A mutant of P450-BM3, mP450-BM3, was mutated and engineered into an AD producing strain for the efficient production of 7β-OH-AD. The enzyme activity of mP450-BM3 was then increased by 1.38 times through protein engineering and the yield of 7β-OH-AD was increased from 34.24 mg L− 1 to 66.25 mg L− 1. To further enhance the performance of 7β-OH-AD producing strain, the regeneration of nicotinamide adenine dinucleotide phosphate (NADPH) for the activity of mP450-BM3-0 was optimized by introducing an NAD kinase (NADK) and a glucose-6-phosphate dehydrogenase (G6PDH). Finally, the engineered strain could produce 164.52 mg L− 1 7β-OH-AD in the cofactor recycling and regeneration system. Conclusions This was the first report on the one-pot biosynthesis of 7β-OH-AD from the conversion of cheap phytosterols by an engineered microorganism, and the yield was significantly increased through the mutation of mP450-BM3 combined with overexpression of NADK and G6PDH. The present strategy may be developed as a basic industrial pathway for the commercial production of high value products from cheap raw materials. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01786-5.
Collapse
|
18
|
Jin L, Yang L, Zhao S, Wang Z. A green strategy to produce potential substitute resource for bear bile using engineered Saccharomyces cerevisiae. BIORESOUR BIOPROCESS 2022; 9:32. [PMID: 38647767 PMCID: PMC10992935 DOI: 10.1186/s40643-022-00517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bear bile powder is a precious natural material characterized by high content of tauroursodeoxycholic acid (TUDCA) at a ratio of 1.00-1.50 to taurochenodeoxycholic acid (TCDCA). RESULTS In this study, we use the crude enzymes from engineered Saccharomyces cerevisiae to directionally convert TCDCA from chicken bile powder to TUDCA at the committed ratio in vitro. This S. cerevisiae strain was modified with heterologous 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 7β-hydroxysteroid dehydrogenase (7β-HSDH) genes. S. cerevisiae host and HSDH gene combinatorial optimization and response surface methodology was applied to get the best engineered strain and the optimal biotransformation condition, respectively, under which 10.99 ± 0.16 g/L of powder products containing 36.73 ± 6.68% of TUDCA and 28.22 ± 6.05% of TCDCA were obtained using 12.00 g/L of chicken bile powder as substrate. CONCLUSION This study provides a healthy and environmentally friendly way to produce potential alternative resource for bear bile powder from cheap and readily available chicken bile powder, and also gives a reference for the green manufacturing of other rare and endangered animal-derived valuable resource.
Collapse
Affiliation(s)
- Lina Jin
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li Yang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
19
|
From dried bear bile to molecular investigation: A systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Brain Behav Immun 2022; 99:132-146. [PMID: 34601012 DOI: 10.1016/j.bbi.2021.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids, mainly ursodeoxycholic acid (UDCA) and its conjugated species glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) have long been known to have anti-apoptotic, anti-oxidant and anti-inflammatory properties. Due to their beneficial actions, recent studies have started to investigate the effect of UDCA, GUDCA, TUDCA on the same mechanisms in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders, where increased cell apoptosis, oxidative stress and inflammation in the brain are often observed. A total of thirty-five pre-clinical studies were identified through PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the UDCA, GUDCA and TUDCA in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Findings show that UDCA reduces apoptosis, reactive oxygen species (ROS) and tumour necrosis factor (TNF)-α production in neurodegenerative models, and reduces nitric oxide (NO) and interleukin (IL)-1β production in neuropsychiatric models; GUDCA decreases lactate dehydrogenase, TNF-α and IL-1β production in neurological models, and also reduces cytochrome c peroxidase production in neurodegenerative models; TUDCA decreases apoptosis in neurological models, reduces ROS and IL-1β production in neurodegenerative models, and decreases apoptosis and TNF-α production, and increases glutathione production in neuropsychiatric models. In addition, findings suggest that all the three bile acids would be equally beneficial in models of Huntington's disease, whereas UDCA and TUDCA would be more beneficial in models of Parkinson's disease and Alzheimer's disease, while GUDCA in models of bilirubin encephalopathy and TUDCA in models of depression. Overall, this review confirms the therapeutic potential of UDCA, GUDCA and TUDCA in neurological, neurodegenerative and neuropsychiatric disorders, proposing bile acids as potential alternative therapeutic approaches for patients suffering from these disorders.
Collapse
|
20
|
Huang F. Ursodeoxycholic acid as a potential alternative therapeutic approach for neurodegenerative disorders: Effects on cell apoptosis, oxidative stress and inflammation in the brain. Brain Behav Immun Health 2021; 18:100348. [PMID: 34632427 PMCID: PMC7611783 DOI: 10.1016/j.bbih.2021.100348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is a bile acid component with anti-apoptotic, anti-oxidant and anti-inflammatory properties. It has been used in clinical medicine for liver diseases for centuries. In neurodegenerative diseases, increased cell apoptosis, oxidative stress and inflammation are frequently observed as well. Due to those beneficial effects of UDCA, recent studies have started to investigate the effects of UDCA in pre-clinical models of neurodegeneration. On this account, I review the data reported so far to investigate the role of UDCA in regulating apoptosis, oxidative stress and inflammation in pre-clinical models of neurodegeneration, as well as in homeostatic state. Evidence have shown that UDCA can reduce apoptosis, inhibit reactive oxygen species and tumor necrosis factor - α production in neurodegenerative models. In addition, UDCA is able to induce apoptosis of brain blastoma cells in homeostatic conditions. Overall, this review suggests the therapeutic potential of UDCA in neurodegenerative disorders, proposing UDCA as a potential alternative therapeutic approach for patients suffering from these diseases.
Collapse
Affiliation(s)
- Fei Huang
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, PR China
| |
Collapse
|
21
|
Chen W, Hu D, Feng Z, Liu Z. An effective synthesis of ursodeoxycholic acid from dehydroepiandrosterone. Steroids 2021; 172:108870. [PMID: 34038744 DOI: 10.1016/j.steroids.2021.108870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 05/16/2021] [Indexed: 01/07/2023]
Abstract
A novel synthetic route of producing ursodeoxycholic acid (UDCA) was developed through multiple reactions from plant-source dehydroepiandrosterone (DHEA), with a Mistunobu reaction and regioselective allyl oxidationat as the key steps. The reaction conditions of the key allyl oxidation reaction were also investigated and optimized, including solvent, oxidant and reaction temperature. In this novel route for the preparation of UDCA, most of the reaction steps have high conversions and overall yield up to 35% for 8 steps. Since all starting materials are cost-effective, commercially available and effectively avoided the risk of animal derived raw materials, this promising synthetic route offers economical and efficient strategies for potential production of UDCA.
Collapse
Affiliation(s)
- Wang Chen
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Daihua Hu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Zili Feng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Zhaopeng Liu
- Key Lab. of Chemical Biology(Ministry of Education), Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
22
|
Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. MICROBIOME 2021; 9:140. [PMID: 34127070 PMCID: PMC8204491 DOI: 10.1186/s40168-021-01101-1] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Bile acids play key roles in gut metabolism, cell signaling, and microbiome composition. While the liver is responsible for the production of primary bile acids, microbes in the gut modify these compounds into myriad forms that greatly increase their diversity and biological function. Since the early 1960s, microbes have been known to transform human bile acids in four distinct ways: deconjugation of the amino acids glycine or taurine, and dehydroxylation, dehydrogenation, and epimerization of the cholesterol core. Alterations in the chemistry of these secondary bile acids have been linked to several diseases, such as cirrhosis, inflammatory bowel disease, and cancer. In addition to the previously known transformations, a recent study has shown that members of our gut microbiota are also able to conjugate amino acids to bile acids, representing a new set of "microbially conjugated bile acids." This new finding greatly influences the diversity of bile acids in the mammalian gut, but the effects on host physiology and microbial dynamics are mostly unknown. This review focuses on recent discoveries investigating microbial mechanisms of human bile acids and explores the chemical diversity that may exist in bile acid structures in light of the new discovery of microbial conjugations. Video Abstract.
Collapse
Affiliation(s)
- Douglas V. Guzior
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Robert A. Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
23
|
Liu Z, Zhang R, Zhang W, Xu Y. Ile258Met mutation of Brucella melitensis 7α-hydroxysteroid dehydrogenase significantly enhances catalytic efficiency, cofactor affinity, and thermostability. Appl Microbiol Biotechnol 2021; 105:3573-3586. [PMID: 33937927 DOI: 10.1007/s00253-021-11299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
NAD(H)-dependent 7α-hydroxysteroid dehydrogenase catalyzes the oxidation of chenodeoxycholic acid to 7-oxolithocholic acid. Here, we designed mutations of Ile258 adjacent to the catalytic pocket of Brucella melitensis 7α-hydroxysteroid dehydrogenase. The I258M variant gave a 4.7-fold higher kcat, but 4.5-fold lower KM, compared with the wild type, resulting in a 21.8-fold higher kcat/KM value for chenodeoxycholic acid oxidation. It presented a 2.0-fold lower KM value with NAD+, suggesting stronger binding to the cofactor. I258M produced 7-oxolithocholic acid in the highest yield of 92.3% in 2 h, whereas the wild-type gave 88.4% in 12 h. The I258M mutation increased the half-life from 20.8 to 31.1 h at 30 °C. Molecular dynamics simulations indicated increased interactions and a modified tunnel improved the catalytic efficiency, and enhanced rigidity at three regions around the ligand-binding pocket increased the enzyme thermostability. This is the first report about significantly improved catalytic efficiency, cofactor affinity, and enzyme thermostability through single site-mutation of Brucella melitensis 7α-hydroxysteroid dehydrogenase. KEY POINTS: • Sequence and structure analysis guided the site mutation design. • Thermostability, catalytic efficiency and 7-oxo-LCA production were determined. • MD simulation was performed to indicate the improvement by I258M mutation.
Collapse
Affiliation(s)
- Zhiyong Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| |
Collapse
|
24
|
Xiong JJ, Hu HW, Xu CZ, Yin JW, Liu M, Zhang LZ, Duan Y, Huang YK. Developmental Patterns of Fecal Bile Acids in Healthy Neonates and Children. Med Sci Monit 2021; 27:e928214. [PMID: 33767128 PMCID: PMC8008968 DOI: 10.12659/msm.928214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Normal profiles of FBAs in healthy neonates and children in Kunming city and surrounding areas in China have not been previously determined. The objective of this study was to determine a developmental pattern of fecal bile acids (FBAs) in healthy neonates and children. Material/Methods A cross-sectional study was performed on 238 healthy neonates and children recruited in the First Affiliated Hospital of Kunming Medical University, China from October 2015 to September 2016. Secreted primary and secondary FBAs in fresh feces were quantitated by liquid chromatography mass spectrometry (LC-MS). Amounts of FBAs in feces were compared among various age groups. Results Trace amounts of cholic acid and chenodiol acid of primary FBAs were detectable at day 3 after birth, with a significant increase from day 3 to day 7. The primary FBAs gradually decreased from day 25 to the age of 6 years old. In contrast, a significant amount of glycochenodeoxycholic acid was detected on day 3 but decreased to a trace amount by day 7 and onwards. Primary FBAs appeared to maintain a high level, accounting for 98% of total FBAs, with no significant changes from day 7 to day 25 after birth. They gradually decreased from 90% to 10% from age 6 months to 6 years old. While the secondary FBAs were barely detected in neonates, only accounting for 2% of total FBAs, they were gradually elevated to 90% of total FBAs from age 6 months to 6 years old. Conclusions The liver can effectively synthesize primary bile acids 7 days after birth, and fecal primary bile acids tend to be stable after the neonate stage. Secondary bile acids continuously increase along with the maturation of intestinal flora, which reaches a relatively stable level at around 3 years old.
Collapse
Affiliation(s)
- Jing-Jing Xiong
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Hong-Wei Hu
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Chuan-Zhi Xu
- Department of Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jian-Wen Yin
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, China (mainland)
| | - Mei Liu
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Li-Zhi Zhang
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yong Duan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yong-Kun Huang
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
25
|
Abstract
Historically, the focus of type II diabetes mellitus (T2DM) research has been on host metabolism and hormone action. However, emerging evidence suggests that the gut microbiome, commensal microbes that colonize the gastrointestinal tract, also play a significant role in T2DM pathogenesis. Specifically, gut microbes metabolize what is available to them through the host diet to produce small molecule metabolites that can have endocrine-like effects on human cells. In fact, the meta-organismal crosstalk between gut microbe-generated metabolites and host receptor systems may represent an untapped therapeutic target for those at risk for or suffering from T2DM. Recent evidence suggests that gut microbe-derived metabolites can impact host adiposity, insulin resistance, and hormone secretion to collectively impact T2DM progression. Here we review the current evidence that structurally diverse gut microbe-derived metabolites, including short chain fatty acids, secondary bile acids, aromatic metabolites, trimethylamine-N-oxide, polyamines, and N-acyl amides, that can engage with host receptors in an endocrine-like manner to promote host metabolic disturbance associated with T2DM. Although these microbe-host signaling circuits are not as well understood as host hormonal signaling, they hold untapped potential as new druggable targets to improve T2DM complications. Whether drugs that selectively target meta-organismal endocrinology will be safe and efficacious in treating T2DM is a key new question in the field of endocrinology. Here we discuss the opportunities and challenges in targeting the gut microbial endocrine organ for the treatment of diabetes and potentially many other diseases where diet-microbe-host interactions play a contributory role.
Collapse
Affiliation(s)
- William Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Correspondence: J. Mark Brown, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
26
|
Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT. Modifikation der Regioselektivität einer P450‐Monooxygenase ermöglicht die Synthese von Ursodeoxycholsäure durch die 7β‐Hydroxylierung von Lithocholsäure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sascha Grobe
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Christoffel P. S. Badenhorst
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Thomas Bayer
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Emil Hamnevik
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Shuke Wu
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Christoph W. Grathwol
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Deutschland
| | - Andreas Link
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Deutschland
| | - Sven Koban
- Enzymicals AG Walther-Rathenau-Str. 49 17487 Greifswald Deutschland
| | - Henrike Brundiek
- Enzymicals AG Walther-Rathenau-Str. 49 17487 Greifswald Deutschland
| | - Beatrice Großjohann
- HERBRAND PharmaChemicals GmbH, Betriebsstätte Anklam An der Redoute 1 17390 Murchin Deutschland
| | - Uwe T. Bornscheuer
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| |
Collapse
|
27
|
Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT. Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β-Hydroxylation of Lithocholic Acid. Angew Chem Int Ed Engl 2021; 60:753-757. [PMID: 33085147 PMCID: PMC7839452 DOI: 10.1002/anie.202012675] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/11/2022]
Abstract
We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo- and regioselective 7β-hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β-position but LCA is exclusively hydroxylated at the 6β-position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity-determining residues. Alanine scanning identified S240A as a UDCA-producing variant. A synthetic "small but smart" library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio- and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10-fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA.
Collapse
Affiliation(s)
- Sascha Grobe
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Emil Hamnevik
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Christoph W. Grathwol
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Str. 1717487GreifswaldGermany
| | - Andreas Link
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Str. 1717487GreifswaldGermany
| | - Sven Koban
- Enzymicals AGWalther-Rathenau-Str. 4917487GreifswaldGermany
| | | | - Beatrice Großjohann
- HERBRAND PharmaChemicals GmbH, Betriebsstätte AnklamAn der Redoute 117390MurchinGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
28
|
Abstract
Circadian rhythms are biological systems that synchronize cellular circadian oscillators with the organism's daily feeding-fasting or rest-activity cycles in mammals. Circadian rhythms regulate nutrient absorption and utilization at the cellular level and are closely related to obesity and metabolic disorders. Bile acids are important modulators that facilitate nutrient absorption and regulate energy metabolism. Here, we provide an overview of the current connections and future perspectives between the circadian clock and bile acid metabolism as well as related metabolic diseases. Feeding and fasting cycles influence bile acid pool size and composition, and bile acid signaling can respond to acute lipid and glucose utilization and mediate energy balance. Disruption of circadian rhythms such as shift work, irregular diet, and gene mutations can contribute to altered bile acid metabolism and heighten obesity risk. High-fat diets, alcohol, and gene mutations related to bile acid signaling result in desynchronized circadian rhythms. Gut microbiome also plays a role in connecting circadian rhythms with bile acid metabolism. The underlying mechanism of how circadian rhythms interact with bile acid metabolism has not been fully explored. Sustaining bile acid homeostasis based on circadian rhythms may be a potential therapy to alleviate metabolic disturbance.
Collapse
Affiliation(s)
- Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
29
|
Horackova S, Vesela K, Klojdova I, Bercikova M, Plockova M. Bile salt hydrolase activity, growth characteristics and surface properties in Lactobacillus acidophilus. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03518-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Bertuletti S, Ferrandi EE, Marzorati S, Vanoni M, Riva S, Monti D. Insights into the Substrate Promiscuity of Novel Hydroxysteroid Dehydrogenases. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Susanna Bertuletti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
- Università degli Studi di Milano Via Giuseppe Colombo 60 20133 Milano Italy
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Stefano Marzorati
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Marta Vanoni
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
31
|
Ferrandi EE, Bertuletti S, Monti D, Riva S. Hydroxysteroid Dehydrogenases: An Ongoing Story. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC); Consiglio Nazionale delle Ricerche (CNR); Via Mario Bianco 9 20131 Milano Italy
| | - Susanna Bertuletti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC); Consiglio Nazionale delle Ricerche (CNR); Via Mario Bianco 9 20131 Milano Italy
- Università degli Studi di Milano; Via Giuseppe Colombo 60 20133 Milano Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC); Consiglio Nazionale delle Ricerche (CNR); Via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC); Consiglio Nazionale delle Ricerche (CNR); Via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
32
|
Grobe S, Wszołek A, Brundiek H, Fekete M, Bornscheuer UT. Highly selective bile acid hydroxylation by the multifunctional bacterial P450 monooxygenase CYP107D1 (OleP). Biotechnol Lett 2020; 42:819-824. [PMID: 31974648 PMCID: PMC7101289 DOI: 10.1007/s10529-020-02813-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Regio- and stereoselective hydroxylation of lithocholic acid (LCA) using CYP107D1 (OleP), a cytochrome P450 monooxygenase from the oleandomycin synthesis pathway of Streptomyces antibioticus. RESULTS Co-expression of CYP107D1 from S. antibioticus and the reductase/ferredoxin system PdR/PdX from Pseudomonas putida was performed in Escherichia coli whole cells. In vivo hydroxylation of LCA exclusively yielded the 6β-OH product murideoxycholic acid (MDCA). In resting cells, 19.5% of LCA was converted to MDCA within 24 h, resulting in a space time yield of 0.04 mmol L-1 h-1. NMR spectroscopy confirmed the identity of MDCA as the sole product. CONCLUSIONS The multifunctional P450 monooxygenase CYP107D1 (OleP) can hydroxylate LCA, forming MDCA as the only product.
Collapse
Affiliation(s)
- Sascha Grobe
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | | | | | | | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
33
|
Marx L, Ríos-Lombardía N, Süss P, Höhne M, Morís F, González-Sabín J, Berglund P. Chemoenzymatic Synthesis of Sertraline. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lisa Marx
- Department of Industrial Biotechnology; KTH Royal Institute of Technology; 106 91 Stockholm Sweden
- EntreChem S.L.; 33011 Oviedo Spain
- Enzymicals AG; 17489 Greifswald Germany
| | | | | | - Matthias Höhne
- Institute of Biochemistry; University of Greifswald; 17487 Greifswald Germany
| | | | | | - Per Berglund
- Department of Industrial Biotechnology; KTH Royal Institute of Technology; 106 91 Stockholm Sweden
| |
Collapse
|
34
|
Elfahmi, Chahyadi A. The diversity of ursodeoxycholic acid precursors from bile waste of commercially available fishes, poultry and livestock in Indonesia. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-979020200001181094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Elfahmi
- Institut Teknologi Bandung, Indonesia; Institut Teknologi Bandung, Indonesia
| | | |
Collapse
|
35
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
36
|
Shi S, You Z, Zhou K, Chen Q, Pan J, Qian X, Xu J, Li C. Efficient Synthesis of 12‐Oxochenodeoxycholic Acid Using a 12α‐Hydroxysteroid Dehydrogenase fromRhodococcus ruber. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shou‐Cheng Shi
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Zhi‐Neng You
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Ke Zhou
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Xiao‐Long Qian
- Suzhou Bioforany EnzyTech Co. Ltd. No. 8 Yanjiuyuan Road, Economic Development Zone, Changshu Jiangsu 215512 People's Republic of China
| | - Jian‐He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Chun‐Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
37
|
Signatures of Relaxed Selection in the CYP8B1 Gene of Birds and Mammals. J Mol Evol 2019; 87:209-220. [DOI: 10.1007/s00239-019-09903-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
|
38
|
Tonin F, Otten LG, Arends IWCE. NAD + -Dependent Enzymatic Route for the Epimerization of Hydroxysteroids. CHEMSUSCHEM 2019; 12:3192-3203. [PMID: 30265441 PMCID: PMC6681466 DOI: 10.1002/cssc.201801862] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Indexed: 05/12/2023]
Abstract
Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α- and 7β-HSDHs) can carry out this transformation fully selectively by specific oxidation of the 7α-OH group of the substrate and subsequent reduction of the keto intermediate to the final product (7β-OH). With a view to developing robust and active biocatalysts, novel NADH-active 7β-HSDH species are necessary to enable a solely NAD+ -dependent redox-neutral cascade for UDCA production. A wild-type NADH-dependent 7β-HSDH from Lactobacillus spicheri (Ls7β-HSDH) was identified, recombinantly expressed, purified, and biochemically characterized. Using this novel NAD+ -dependent 7β-HSDH enzyme in combination with 7α-HSDH from Stenotrophomonas maltophilia permitted the biotransformations of CA and CDCA in the presence of catalytic amounts of NAD+ , resulting in high yields (>90 %) of UCA and UDCA.
Collapse
Affiliation(s)
- Fabio Tonin
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Linda G. Otten
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Isabel W. C. E. Arends
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
- Present address: Faculty of ScienceUtrecht UniversityBudapestlaan 63584 CDUtrechtThe Netherlands
| |
Collapse
|
39
|
Zhang X, Fan D, Hua X, Zhang T. Large-scale production of ursodeoxycholic acid from chenodeoxycholic acid by engineering 7α- and 7β-hydroxysteroid dehydrogenase. Bioprocess Biosyst Eng 2019; 42:1537-1545. [DOI: 10.1007/s00449-019-02151-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
|
40
|
Chen X, Cui Y, Feng J, Wang Y, Liu X, Wu Q, Zhu D, Ma Y. Flavin Oxidoreductase‐Mediated Regeneration of Nicotinamide Adenine Dinucleotide with Dioxygen and Catalytic Amount of Flavin Mononucleotide for One‐Pot Multi‐Enzymatic Preparation of Ursodeoxycholic Acid. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yu Wang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Xiangtao Liu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| |
Collapse
|
41
|
Abstract
Bile acids have important roles in the regulation of lipid, glucose and energy metabolism. Metabolic diseases linked to obesity, including type 2 diabetes mellitus and non-alcoholic fatty liver disease, are associated with dysregulation of bile acid homeostasis. Here, the basic chemistry and regulation of bile acids as well as their metabolic effects will be reviewed. Changes in circulating bile acids associated with obesity and related diseases will be reviewed. Finally, pharmaceutical manipulation of bile acid homeostasis as therapy for metabolic diseases will be outlined.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
42
|
Enhanced activity and substrate tolerance of 7α-hydroxysteroid dehydrogenase by directed evolution for 7-ketolithocholic acid production. Appl Microbiol Biotechnol 2019; 103:2665-2674. [PMID: 30734123 DOI: 10.1007/s00253-019-09668-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/20/2018] [Accepted: 01/27/2019] [Indexed: 01/14/2023]
Abstract
7-Ketolithocholic acid (7-KLCA) is an important intermediate for the synthesis of ursodeoxycholic acid (UDCA). UDCA is the main effective component of bear bile powder that is used in traditional Chinese medicine for the treatment of human cholesterol gallstones. 7α-Hydroxysteroid dehydrogenase (7α-HSDH) is the key enzyme used in the industrial production of 7-KLCA. Unfortunately, the natural 7α-HSDHs reported have difficulty meeting the requirements of industrial application, due to their poor activities and strong substrate inhibition. In this study, a directed evolution strategy combined with high-throughput screening was applied to improve the catalytic efficiency and tolerance of high substrate concentrations of NADP+-dependent 7α-HSDH from Clostridium absonum. Compared with the wild type, the best mutant (7α-3) showed 5.5-fold higher specific activity and exhibited 10-fold higher and 14-fold higher catalytic efficiency toward chenodeoxycholic acid (CDCA) and NADP+, respectively. Moreover, 7α-3 also displayed significantly enhanced tolerance in the presence of high concentrations of substrate compared to the wild type. Owing to its improved catalytic efficiency and enhanced substrate tolerance, 7α-3 could efficiently biosynthesize 7-KLCA with a substrate loading of 100 mM, resulting in 99% yield of 7-KLCA at 2 h, in contrast to only 85% yield of 7-KLCA achieved for the wild type at 16 h.
Collapse
|
43
|
You ZN, Chen Q, Shi SC, Zheng MM, Pan J, Qian XL, Li CX, Xu JH. Switching Cofactor Dependence of 7β-Hydroxysteroid Dehydrogenase for Cost-Effective Production of Ursodeoxycholic Acid. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03561] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhi-Neng You
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shou-Cheng Shi
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ming-Min Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Long Qian
- Suzhou Bioforany EnzyTech Co. Ltd., No. 8 Yanjiuyuan Road, Economic Development Zone, Changshu, Jiangsu 215512, China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
44
|
Harris SC, Devendran S, Méndez- García C, Mythen SM, Wright CL, Fields CJ, Hernandez AG, Cann I, Hylemon PB, Ridlon JM. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243 T. Gut Microbes 2018; 9:523-539. [PMID: 29617190 PMCID: PMC6287680 DOI: 10.1080/19490976.2018.1458180] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Strains of Eggerthella lenta are capable of oxidation-reduction reactions capable of oxidizing and epimerizing bile acid hydroxyl groups. Several genes encoding these enzymes, known as hydroxysteroid dehydrogenases (HSDH) have yet to be identified. It is also uncertain whether the products of E. lenta bile acid metabolism are further metabolized by other members of the gut microbiota. We characterized a novel human fecal isolate identified as E. lenta strain C592. The complete genome of E. lenta strain C592 was sequenced and comparative genomics with the type strain (DSM 2243) revealed high conservation, but some notable differences. E. lenta strain C592 falls into group III, possessing 3α, 3β, 7α, and 12α-hydroxysteroid dehydrogenase (HSDH) activity, as determined by mass spectrometry of thin layer chromatography (TLC) separated metabolites of primary and secondary bile acids. Incubation of E. lenta oxo-bile acid and iso-bile acid metabolites with whole-cells of the high-activity bile acid 7α-dehydroxylating bacterium, Clostridium scindens VPI 12708, resulted in minimal conversion of oxo-derivatives to lithocholic acid (LCA). Further, Iso-chenodeoxycholic acid (iso-CDCA; 3β,7α-dihydroxy-5β-cholan-24-oic acid) was not metabolized by C. scindens. We then located a gene encoding a novel 12α-HSDH in E. lenta DSM 2243, also encoded by strain C592, and the recombinant purified enzyme was characterized and substrate-specificity determined. Genomic analysis revealed genes encoding an Rnf complex (rnfABCDEG), an energy conserving hydrogenase (echABCDEF) complex, as well as what appears to be a complete Wood-Ljungdahl pathway. Our prediction that by changing the gas atmosphere from nitrogen to hydrogen, bile acid oxidation would be inhibited, was confirmed. These results suggest that E. lenta is an important bile acid metabolizing gut microbe and that the gas atmosphere may be an important and overlooked regulator of bile acid metabolism in the gut.
Collapse
Affiliation(s)
- Spencer C. Harris
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs, Richmond, VA, USA
| | - Saravanan Devendran
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Sean M. Mythen
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chris L. Wright
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J. Fields
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alvaro G. Hernandez
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs, Richmond, VA, USA
| | - Jason M. Ridlon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA,CONTACT Jason M. Ridlon Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
45
|
Tonin F, Arends IWCE. Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein J Org Chem 2018; 14:470-483. [PMID: 29520309 PMCID: PMC5827811 DOI: 10.3762/bjoc.14.33] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is a pharmaceutical ingredient widely used in clinics. As bile acid it solubilizes cholesterol gallstones and improves the liver function in case of cholestatic diseases. UDCA can be obtained from cholic acid (CA), which is the most abundant and least expensive bile acid available. The now available chemical routes for the obtainment of UDCA yield about 30% of final product. For these syntheses several protection and deprotection steps requiring toxic and dangerous reagents have to be performed, leading to the production of a series of waste products. In many cases the cholic acid itself first needs to be prepared from its taurinated and glycilated derivatives in the bile, thus adding to the complexity and multitude of steps involved of the synthetic process. For these reasons, several studies have been performed towards the development of microbial transformations or chemoenzymatic procedures for the synthesis of UDCA starting from CA or chenodeoxycholic acid (CDCA). This promising approach led several research groups to focus their attention on the development of biotransformations with non-pathogenic, easy-to-manage microorganisms, and their enzymes. In particular, the enzymatic reactions involved are selective hydrolysis, epimerization of the hydroxy functions (by oxidation and subsequent reduction) and the specific hydroxylation and dehydroxylation of suitable positions in the steroid rings. In this minireview, we critically analyze the state of the art of the production of UDCA by several chemical, chemoenzymatic and enzymatic routes reported, highlighting the bottlenecks of each production step. Particular attention is placed on the precursors availability as well as the substrate loading in the process. Potential new routes and recent developments are discussed, in particular on the employment of flow-reactors. The latter technology allows to develop processes with shorter reaction times and lower costs for the chemical and enzymatic reactions involved.
Collapse
Affiliation(s)
- Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Isabel W C E Arends
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
46
|
Horáčková Š, Plocková M, Demnerová K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 2017; 36:682-690. [PMID: 29248683 DOI: 10.1016/j.biotechadv.2017.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
An important feature of the intestinal microbiota, particularly in the case of administered probiotic microorganisms, is their resistance to conditions in the gastrointestinal tract, particularly tolerance to and growth in the presence of bile salts. Bacteria can use several defence mechanisms against bile, including special transport mechanisms, the synthesis of various types of surface proteins and fatty acids or the production of exopolysaccharides. The ability to enzymatically hydrolyse bile salts occurs in a variety of bacteria. Choloylglycine hydrolase (EC 3.5.1.24), a bile salt hydrolase, is a constitutive intracellular enzyme responsible for the hydrolysis of an amide bond between glycine or taurine and the steroid nucleus of bile acids. Its presence was demonstrated in specific microorganisms from several bacterial genera (Lactobacillus spp., Bifidobacterium spp., Clostridium spp., Bacteroides spp.). Occurrence and gene arrangement encoding this enzyme are highly variable in probiotic microorganisms. Bile salt hydrolase activity may provide the possibility to use the released amino acids by bacteria as sources of carbon and nitrogen, to facilitate detoxification of bile or to support the incorporation of cholesterol into the cell wall. Deconjugation of bile salts may be directly related to a lowering of serum cholesterol levels, from which conjugated bile salts are synthesized de novo. Furthermore, the ability of microorganisms to assimilate or to bind ingested cholesterol to the cell wall or to eliminate it by co-precipitation with released cholic acid was also documented. Some intestinal microflora produce cholesterol reductase that catalyses the conversion of cholesterol to insoluble coprostanol, which is subsequently excreted in faeces, thereby also reducing the amount of exogenous cholesterol.
Collapse
Affiliation(s)
- Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
47
|
Wang R, Wu J, Jin DK, Chen Y, Lv Z, Chen Q, Miao Q, Huo X, Wang F. Structure of NADP +-bound 7β-hydroxysteroid dehydrogenase reveals two cofactor-binding modes. Acta Crystallogr F Struct Biol Commun 2017; 73:246-252. [PMID: 28471355 PMCID: PMC5417313 DOI: 10.1107/s2053230x17004460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/21/2017] [Indexed: 03/27/2024] Open
Abstract
In mammals, bile acids/salts and their glycine and taurine conjugates are effectively recycled through enterohepatic circulation. 7β-Hydroxysteroid dehydrogenases (7β-HSDHs; EC 1.1.1.201), including that from the intestinal microbe Collinsella aerofaciens, catalyse the NADPH-dependent reversible oxidation of secondary bile-acid products to avoid potential toxicity. Here, the first structure of NADP+ bound to dimeric 7β-HSDH is presented. In one active site, NADP+ adopts a conventional binding mode similar to that displayed in related enzyme structures. However, in the other active site a unique binding mode is observed in which the orientation of the nicotinamide is different. Since 7β-HSDH has become an attractive target owing to the wide and important pharmaceutical use of its product ursodeoxycholic acid, this work provides a more detailed template to support rational protein engineering to improve the enzymatic activities of this useful biocatalyst, further improving the yield of ursodeoxycholic acid and its other applications.
Collapse
Affiliation(s)
- Rui Wang
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Jiaquan Wu
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - David Kin Jin
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Yali Chen
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Zhijia Lv
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Qian Chen
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Qiwei Miao
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Xiaoyu Huo
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Feng Wang
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| |
Collapse
|
48
|
Bakonyi D, Hummel W. Cloning, expression, and biochemical characterization of a novel NADP +-dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids. Enzyme Microb Technol 2016; 99:16-24. [PMID: 28193327 DOI: 10.1016/j.enzmictec.2016.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 01/25/2023]
Abstract
A gene encoding a novel 7α-specific NADP+-dependent hydroxysteroid dehydrogenase from Clostridium difficile was cloned and heterologously expressed in Escherichia coli. The enzyme was purified using an N-terminal hexa-his-tag and biochemically characterized. The optimum temperature is at 60°C, but the enzyme is inactivated at this temperature with a half-life time of 5min. Contrary to other known 7α-HSDHs, for example from Clostridium sardiniense or E. coli, the enzyme from C. difficile does not display a substrate inhibition. In order to demonstrate the applicability of this enzyme, a small-scale biotransformation of the bile acid chenodeoxycholic acid (CDCA) into 7-ketolithocholic acid (7-KLCA) was carried out with simultaneous regeneration of NADP+ using an NADPH oxidase that resulted in a complete conversion (<99%). Furthermore, by a structure-based site-directed mutagenesis, cofactor specificity of the 7α-HSDH from Clostridium difficile was altered to accept NAD(H). This mutant was biochemically characterized and compared to the wild-type.
Collapse
Affiliation(s)
- Daniel Bakonyi
- Institute of Molecular Enzyme Technology, Heinrich Heine University of Düsseldorf, Research Centre Jülich, Wilhelm-Johnen-Straße, 52426 Jülich, Germany
| | - Werner Hummel
- Institute of Molecular Enzyme Technology, Heinrich Heine University of Düsseldorf, Research Centre Jülich, Wilhelm-Johnen-Straße, 52426 Jülich, Germany.
| |
Collapse
|
49
|
Deshcherevskaya N, Lobastova T, Kollerov V, Kazantsev A, Donova M. Search and discovery of actinobacteria capable of transforming deoxycholic and cholic acids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Costa S, Maldonado Rodriguez ME, Rugiero I, De Bastiani M, Medici A, Tamburini E, Pedrini P. Biotransformations of Bile Acids with Bacteria from Cayambe Slaughterhouse (Ecuador): Synthesis of Bendigoles. Chem Biodivers 2016; 13:969-75. [PMID: 27358241 DOI: 10.1002/cbdv.201500300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/25/2016] [Indexed: 11/07/2022]
Abstract
The biotransformations of cholic acid (1a), deoxycholic acid (1b), and hyodeoxycholic acid (1c) to bendigoles and other metabolites with bacteria isolated from the rural slaughterhouse of Cayambe (Pichincha Province, Ecuador) were reported. The more active strains were characterized, and belong to the genera Pseudomonas and Rhodococcus. Various biotransformation products were obtained depending on bacteria and substrates. Cholic acid (1a) afforded the 3-oxo and 3-oxo-4-ene derivatives 2a and 3a (45% and 45%, resp.) with P. mendocina ECS10, 3,12-dioxo-4-ene derivative 4a (60%) with Rh. erythropolis ECS25, and 9,10-secosteroid 6 (15%) with Rh. erythropolis ECS12. Bendigole F (5a) was obtained in 20% with P. fragi ECS22. Deoxycholic acid (1b) gave 3-oxo derivative 2b with P. prosekii ECS1 and Rh. erythropolis ECS25 (20% and 61%, resp.), while 3-oxo-4-ene derivative 3b was obtained with P. prosekii ECS1 and P. mendocina ECS10 (22% and 95%, resp.). Moreover, P. fragi ECS9 afforded bendigole A (8b; 80%). Finally, P. mendocina ECS10 biotransformed hyodeoxycholic acid (1c) to 3-oxo derivative 2c (50%) and Rh. erythropolis ECS12 to 6α-hydroxy-3-oxo-23,24-dinor-5β-cholan-22-oic acid (9c, 66%). Bendigole G (5c; 13%) with P. prosekii ECS1 and bendigole H (8c) with P. prosekii ECS1 and Rh. erythropolis ECS12 (20% and 16%, resp.) were obtained.
Collapse
Affiliation(s)
- Stefania Costa
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Via L. Borsari 46, IT-44121 Ferrara
| | | | - Irene Rugiero
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17-27, IT-44121 Ferrara
| | - Morena De Bastiani
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Via L. Borsari 46, IT-44121 Ferrara
| | - Alessandro Medici
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17-27, IT-44121 Ferrara
| | - Elena Tamburini
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Via L. Borsari 46, IT-44121 Ferrara
| | - Paola Pedrini
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Via L. Borsari 46, IT-44121 Ferrara
| |
Collapse
|