1
|
Chen L, Yi Z, Chen Y, Li Y, Jiang H, Wang J, Chen Y, Nie Y, Luo M, Wang Q, Zhang W, Wu Y. Improved humification and Cr(VI) immobilization by CaO 2 and Fe 3O 4 during composting. BIORESOURCE TECHNOLOGY 2024; 413:131479. [PMID: 39265754 DOI: 10.1016/j.biortech.2024.131479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The current research studied how Fe3O4 nanomaterials (NMs) and CaO2 affect humification and Cr(VI) immobilization and reduction during the composting of oil-tea Camellia meal and Cr-contaminated soil. The results showed that Fe3O4 NMs and CaO2 successfully construct a Fenton-like reaction in this system. The excitation-emission matrix-parallel factor (EEM-PARAFAC) demonstrated that this Fenton-like treatment increased the generation of humic acids and accelerated the humification. Meantime, RES-Cr increased by 5.91 % and Cr(VI) decreased by 16.36 % in the treatment group with CaO2 and Fe3O4 NMs after 60 days. Moreover, the microbial results showed that Fe3O4 NMs and CaO2 could promote the enrichment of Cr(VI) reducing bacteria, e.g., Bacillus, Pseudomonas, and Psychrobacter, and promote Cr(VI) reduction. This study gives a novel view and theoretical reference to remediate Cr(VI) pollution through composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhigang Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, PR China.
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Yaoqin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mengwei Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qianruyu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, PR China
| | - Yanting Wu
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, PR China
| |
Collapse
|
2
|
Wu L, Garg S, Waite TD. Progress and challenges in the use of electrochemical oxidation and reduction processes for heavy metals removal and recovery from wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135581. [PMID: 39216250 DOI: 10.1016/j.jhazmat.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Heavy metals-laden industrial wastewater represents both a threat to ecosystems and human health and, in some instances, a potential source of valuable metals however the presence of organic ligands that bind the metals in heavy metal complexes (HMCs) renders metal removal (and, where appropriate, recovery) difficult. Electrochemical-based oxidation and reduction processes represent a potentially promising means of degrading the organic ligands and reducing their ability to retain the metals in solution. In this state-of-the-art review, we provide a comprehensive overview of the current status on use of electrochemical redox technologies for organic ligand degradation and subsequent heavy metal removal and recovery from industrial wastewaters. The principles and degradation mechanism of common organic ligands by various types of electrochemical redox technologies are discussed in this review and consideration given to recent progress in electrode materials synthesis, cell architecture, and operation of electrochemical redox systems. Furthermore, we highlight the current challenges in application of electrochemical redox technologies for treatment of HMC-containing wastewaters including (i) limited understanding of the chemical composition of industrial wastewaters, (ii) constrained mass transfer process affecting the direct/indirect electron transfer, (iii) absence of approaches to convert recovered metal into high-value-added products, and (iv) restricted semi-or full-industrial-scale application of these technologies. Potential strategies for improvement are accordingly provided to guide efforts in addressing these challenges in future research.
Collapse
Affiliation(s)
- Lei Wu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Tan A, Wang H, Zhang H, Zhang L, Yao H, Chen Z. Reduction of Cr(VI) by Bacillus toyonensis LBA36 and its effect on radish seedlings under Cr(VI) stress. PeerJ 2024; 12:e18001. [PMID: 39346031 PMCID: PMC11430171 DOI: 10.7717/peerj.18001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024] Open
Abstract
Chromium, being among the most toxic heavy metals, continues to demand immediate attention in the remediation of Cr-contaminated environments. In this study, a strain of LBA36 (Bacillus toyonensis) was isolated from heavy metal contaminated soil in Luanchuan County, Luoyang City, China. The reduction and adsorption rates of LBA36 in 30 mg·L-1 Cr-containing medium were 97.95% and 8.8%, respectively. The reduction mechanism was confirmed by Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cr(VI) reduction by this strain predominantly occurred outside the cell, with hydroxyl, amide, carboxyl, C-N group, carbonyl, and sulfur carbonyl as the main reaction sites. XPS analysis revealed the presence of Cr2p1/2 and Cr2p3/2. Furthermore, the hydroponic experiment showed that the fresh weight and plant height of radish seedlings increased by 87.87% and 37.07%, respectively, after inoculation with LBA36 strain under 7 mg·L-1 Cr(VI) stress. The levels of chlorophyll, total protein, malondialdehyde, superoxide dismutase and catalase were also affected to different degrees. In conclusion, this study demonstrated the potential of microbial and phytoremediation in the treatment of heavy metal toxicity, and laid the foundation for the development of effective bioremediation methods for Cr(VI) pollution.
Collapse
Affiliation(s)
- Aobo Tan
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hui Wang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hehe Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Longfei Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hanyue Yao
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhi Chen
- Department of Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
4
|
Zuo Q, Yang Y, Xie X, Yang L, Zhang Q, He X. Grinding siderite with ferric sulfate to generate an active ferrous source for Cr(VI) reduction. CHEMOSPHERE 2024; 361:142516. [PMID: 38850691 DOI: 10.1016/j.chemosphere.2024.142516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Activated siderite, endowed with excellent properties, was simply prepared by co-grinding with Fe sulfate to enhance its high reducing ability for Cr(VI). Batch experiments were conducted to investigate the main affecting parameters, such as material ratio, pH, temperature, etc. The removal of Cr(VI) by activated siderite was completed within 4 h of the reaction. The activated siderite maintained a high removal effect of Cr(VI) within a wide pH range (3-9). Various analytical methods, including XRD, SEM/EDS, XPS, etc., were employed to characterize the samples and discover variations before and after the reaction. The Fe (Ⅱ) in activated siderite becomes highly active, and it can even be released from the solid phase in the mildly acidic liquid phase to efficiently reduce Cr(VI) and mitigate its toxicity. These findings introduce an innovative approach for activating various minerals widely distributed in nature to promote the recovery of the ecological system.
Collapse
Affiliation(s)
- Qiang Zuo
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Xie
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiwu Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
5
|
Shen Q, Song X, Fan J, Chen C, Guo Z. Degradation of humic acid by UV/PMS: process comparison, influencing factors, and degradation mechanism. RSC Adv 2024; 14:22988-23003. [PMID: 39040703 PMCID: PMC11261339 DOI: 10.1039/d4ra04328f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
In natural water bodies, humic acid (HA), generated during the chlorination disinfection process at water treatment plants, can produce halogenated disinfection by-products, increasing the risk to drinking water safety and posing a threat to human health. Effectively removing HA from natural waters is a critical focus of environmental research. This study established a synergistic ultraviolet/peroxymonosulfate (UV/PMS) system to remove HA from water. It compared the efficacy of various UV/advanced oxidation processes (AOPs) on HA degradation, and assessed the influence of different water sources, initial pH, oxidant concentration, and anions (HCO3 -, Cl-, NO3 -) on HA degradation. The degradation mechanism of HA by the UV/PMS process was also investigated. Results showed that under the conditions of 3 mmol L-1 PMS concentration, 10 mg L-1 HA concentration, initial solution pH of 7, and a reaction time of 240 minutes, the mineralization rate of HA by UV/PMS reached 94.15%. The pseudo-first-order kinetic constant (k obs) was 0.01034 and the single-electric energy (EE/O) was 0.0157 kW h m-3, indicating superior HA removal efficiency compared to other systems. Common anions (HCO3 -, Cl-, NO3 -) in water were found to inhibit the degradation of HA, and acidic conditions were more conducive to HA removal, with the optimal pH being 3. Free radical quenching experiments showed that both sulfate radical (SO4 -˙) and hydroxyl radical (˙OH) radicals were involved in HA degradation, with SO4 -˙ being the primary oxidant and ˙OH as the auxiliary species. Analyses using 3D-excitation-emission matrix (EEM), parallel factor analysis (PARAFAC), specific fluorescence index, and absorbance demonstrated that UV/PMS technology could effectively degrade HA in water. This study provides theoretical references for further research on the removal of HA and other organic substances using UV/PMS technology.
Collapse
Affiliation(s)
- Qingchao Shen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Xiaosan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Jishuo Fan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Cheng Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Zili Guo
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| |
Collapse
|
6
|
Liang Z, Jiang C, Li Y, Liu Y, Yu J, Zhang T, Alvarez PJJ, Chen W. Single-Atom Iron Can Steer Atomic Hydrogen toward Selective Reductive Dechlorination: Implications for Remediation of Chlorinated Solvents-Impacted Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11833-11842. [PMID: 38910294 DOI: 10.1021/acs.est.4c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Atomic hydrogen (H*) is a powerful and versatile reductant and has tremendous potential in the degradation of oxidized pollutants (e.g., chlorinated solvents). However, its application for groundwater remediation is hindered by the scavenging side reaction of H2 evolution. Herein, we report that a composite material (Fe0@Fe-N4-C), consisting of zerovalent iron (Fe0) nanoparticles and nitrogen-coordinated single-atom Fe (Fe-N4), can effectively steer H* toward reductive dechlorination of trichloroethylene (TCE), a common groundwater contaminant and primary risk driver at many hazardous waste sites. The Fe-N4 structure strengthens the bond between surface Fe atoms and H*, inhibiting H2 evolution. Nonetheless, H* is available for dechlorination, as the adsorption of TCE weakens this bond. Interestingly, H* also enhances electron delocalization and transfer between adsorbed TCE and surface Fe atoms, increasing the reactivity of adsorbed TCE with H*. Consequently, Fe0@Fe-N4-C exhibits high electron selectivity (up to 86%) toward dechlorination, as well as a high TCE degradation kinetic constant. This material is resilient against water matrix interferences, achieving long-lasting performance for effective TCE removal. These findings shed light on the utilization of H* for the in situ remediation of groundwater contaminated with chlorinated solvents, by rational design of earth-abundant metal-based single-atom catalysts.
Collapse
Affiliation(s)
- Zongsheng Liang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Yueyue Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| |
Collapse
|
7
|
Ge Z, Wang X, Lei X, Chen W, Guo Q, Lei C, Hu Y, Zhou YG, Feng C, Huang B. Carbon Nanotubes as Controllable Electric-Field-Induced Bipolar Electrodes for Efficient Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11843-11854. [PMID: 38952299 DOI: 10.1021/acs.est.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Advanced oxidation processes (AOPs) are the most efficient water cleaning technologies, but their applications face critical challenges in terms of mass/electron transfer limitations and catalyst loss/deactivation. Bipolar electrochemistry (BPE) is a wireless technique that is promising for energy and environmental applications. However, the synergy between AOPs and BPE has not been explored. In this study, by combining BPE with AOPs, we develop a general approach of using carbon nanotubes (CNTs) as electric-field-induced bipolar electrodes to control electron transfer for efficient water purification. This approach can be used for permanganate and peroxide activation, with superior performances in the degradation of refractory organic pollutants and excellent durability in recycling and scale-up experiments. Theoretical calculations, in situ measurements, and physical experiments showed that an electric field could substantially reduce the energy barrier of electron transfer over CNTs and induce them to produce bipolar electrodes via electrochemical polarization or to form monopolar electrodes through a single particle collision effect with feeding electrodes. This approach can continuously provide activated electrons from one pole of bipolar electrodes and simultaneously achieve "self-cleaning" of catalysts through CNT-mediated direct oxidation from another pole of bipolar electrodes. This study provides a fundamental scientific understanding of BPE, expands its scope in the environmental field, and offers a general methodology for water purification.
Collapse
Affiliation(s)
- Zhenting Ge
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xuxu Wang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaojia Lei
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, Science Drive 4, Singapore 117560, Singapore
| | - Qian Guo
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Chao Lei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yongyou Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Binbin Huang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Lei C, Yang X, Lei X, Xie J, Chen W, Huang B. Photochemical-promoted ZVI reduction for highly efficient removal of 4-chlorophenol and Cr(VI): Catalytic activity, performance and electron transfer mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170540. [PMID: 38301795 DOI: 10.1016/j.scitotenv.2024.170540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Zero-valent iron (ZVI) reduction represents a promising methodology for water remediation, but its broad application is limited by two critical challenges (i.e., aggregation and passivation). Here, we report a hybrid strategy of photochemical-promoted ZVI reduction with high efficiency and reduction capacity for removing coexisting refractory pollutants in water. A composite material with Pd/Fe bimetallic nanoparticles supported onto semiconducting metal oxide (Pd/Fe@WO3-GO) was prepared and subsequently used as the model catalyst. By using the developed strategy with visible light as light source, this catalyst showed a remarkable catalytic performance for simultaneously eliminating 4-chlorophenol (4-CP) and Cr(VI), with dehalogenation rate as high as 0.43 min-1, outperforming the reported ZVI-based catalysts. A synergistic interaction of photocatalysis and ZVI reduction occurred in this strategy, where the interfacial electron transfer on particles surface were greatly strengthened with light irradiation. The activation was attributed to the dual functions of semiconducting material as support to disperse Pd/Fe nanoparticles and as (photoexcited) electron donor to directly trigger reduction reactions and/or indirectly inhibit the formation of oxides passivation layer. Both direct electron transfer and H*-mediated indirect electron transfer mechanisms were confirmed to participate in the reduction of pollutants, while the later was quantitatively demonstrated as the predominant reaction route. Importantly, this strategy showed a wide pH applicability, long-term durability and excellent catalytic performance in different real-water systems. This work provides new insights into ZVI reduction and advances its applications for the removal of combined organic and inorganic pollutants. The developed photochemical-promoted ZVI reduction strategy holds a great potential for practical applications.
Collapse
Affiliation(s)
- Chao Lei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiwen Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaojia Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jituo Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, Science Drive 4, Singapore 117560, Singapore
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Bi J, Xing S, Shan G, Zhao Y, Ji Z, Zhu D, Hao H. Electro-intensified simultaneous decontamination of coexisting pollutants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166949. [PMID: 37696408 DOI: 10.1016/j.scitotenv.2023.166949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The treatment of wastewater has become increasingly challenging as a result of its growing complexity. To achieve synergistic removal of coexisting pollutants in wastewater, one promising approach involves the integration of electric fields. We conducted a comprehensive literature review to explore the potential of integrating electric fields and developing efficient electro-intensified simultaneous decontamination systems for wastewater containing coexisting pollutants. The review focused on comprehending the applications and mechanisms of these systems, with a particular emphasis on the deliberate utilization of positive and negative charges. After analyzing the advantages, disadvantages, and application efficacy of these systems, we observed electro-intensified systems exhibit flexible potential through their rational combination, allowing for an expanded range of applications in addressing simultaneous decontamination challenges. Unlike the reviews focusing on single elimination, this work aims to provide guidance in addressing the environmental problems resulting from the coexistence of hazardous contaminants.
Collapse
Affiliation(s)
- Jingtao Bi
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Siyang Xing
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Zhao
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiyong Ji
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, TX 77005, United States
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Taqieddin A, Sarrouf S, Ehsan MF, Alshawabkeh AN. New Insights on Designing the Next-Generation Materials for Electrochemical Synthesis of Reactive Oxidative Species Towards Efficient and Scalable Water Treatment: A Review and Perspectives. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:111384. [PMID: 38186676 PMCID: PMC10769459 DOI: 10.1016/j.jece.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrochemical water remediation technologies offer several advantages and flexibility for water treatment and degradation of contaminants. These technologies generate reactive oxidative species (ROS) that degrade pollutants. For the implementation of these technologies at an industrial scale, efficient, scalable, and cost-effective in-situ ROS synthesis is necessary to degrade complex pollutant mixtures, treat large amount of contaminated water, and clean water in a reasonable amount of time and cost. These targets are directly dependent on the materials used to generate the ROS, such as electrodes and catalysts. Here, we review the key design aspects of electrocatalytic materials for efficient in-situ ROS generation. We present a mechanistic understanding of ROS generation, including their reaction pathways, and integrate this with the key design considerations of the materials and the overall electrochemical reactor/cell. This involves tunning the interfacial interactions between the electrolyte and electrode which can enhance the ROS generation rate up to ~ 40% as discussed in this review. We also summarized the current and emerging materials for water remediation cells and created a structured dataset of about 500 electrodes and 130 catalysts used for ROS generation and water treatment. A perspective on accelerating the discovery and designing of the next generation electrocatalytic materials is discussed through the application of integrated experimental and computational workflows. Overall, this article provides a comprehensive review and perspectives on designing and discovering materials for ROS synthesis, which are critical not only for successful implementation of electrochemical water remediation technologies but also for other electrochemical applications.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115
| | - Stephanie Sarrouf
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Muhammad Fahad Ehsan
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Akram N. Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
11
|
Ghanbari S, Fatehizadeh A, Ebrahimi A, Bina B, Taheri E, Iqbal HMN. Hydrothermally improved natural manganese-containing catalytic materials to degrade 4-chlorophenol. ENVIRONMENTAL RESEARCH 2023; 226:115641. [PMID: 36921786 DOI: 10.1016/j.envres.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 06/15/2023]
Abstract
Natural manganese-containing mineral (NMM) was used as a catalyst in heterogeneous catalytic ozonation for 4-chlorophenol (4-CP) degradation. The surface and structural properties of NMM were modified by the hydrothermal aging process and called H-NMM. The catalytic activity of NMM and H-NMM were evaluated for the catalytic ozonation process (COP). The synergistic effect of NMM and H-NMM in ozonation processes for 4-CP degradation under optimal conditions (pH of 7, 1 g/L of NMM and H-NMM, 0.85 mg/min of O3, and 15 min of reaction time) was measured by 3.04 and 4.34, respectively. During the hydrothermal process, Mn4+ and Fe2+ were converted to Mn2+ and Fe3+, which caused better performance of the H-NMM than the NMM. During the catalytic ozonation process, Mn2+ is completely oxidized, which increases the production of Hydroxyl radical (•OH). The reactive oxygen species (ROS) generated in the system were identified using radical scavenging experiments. •OH, superoxide radical (•O2-), and singlet oxygen (1O2) represented the dominant reactive species for 4-CP degradation. The O3/H-NMM process indicated a powerful ability in the mineralization of 4-CP (66.31% of TOC degradation). H-NMM exhibited excellent stability and reusability in consecutive catalytic cycles, and the NMM exhibited desirable performance. This study offers NMM and H-NMM as effective, stable, and competitive catalysts for hastening and enhancing the ozonation process to mitigate environmentally related pollutants of high concern.
Collapse
Affiliation(s)
- Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico.
| |
Collapse
|
12
|
Xie Q, Wang X, Chen W, Lei C, Huang B. Engineering active heterojunction architecture with oxygenated-Co, Mo bimetallic sulfide heteronanosheet and graphene oxide for peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130852. [PMID: 36753909 DOI: 10.1016/j.jhazmat.2023.130852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Bimetallic sulfides have distinctive catalytic property in activating peroxymonosulfate (PMS) for water remediation. Polyoxometalates as potential precursors have rarely been reported for the catalytic degradation of refractory organic pollutants. Herein, a composite catalyst of Co-Mo bimetallic sulfides supported onto graphene oxide (O-CoMoS/GO) with a heterojunction architecture was synthesized through a hydrothermal strategy with polyoxometalates ((NH4)4[CoIIMo6O24H6]·6H2O) as the precursor and applied in the PMS activation. This material showed a superior performance for the catalytic degradation of the model organic pollutant, 4-chlorophenol (rapidly removed within 10 min with an apparent reaction rate constant of 0.5458 min-1). O-CoMoS/GO outperformed most of the reported catalysts in terms of activity and had a strong tolerance towards common organic and inorganic compounds in water, and could perform well in different real water systems. Experimental and theoretical results indicated that the introduction of GO could achieve the enrichment of electrons on the metals and reduce the d band center (εd) of Co close to the Fermi level (εF), thereby facilitating the interfacial electron transfer process. The activation mechanism was due to the as-prepared bimetallic sulfides and the formation of heterojunction structure with GO, where Co(II) as the active center could be regenerated by the adjacent Mo element (as co-catalyst) and by gathering electrons from GO through the Co/Mo-O-C coupling. This work provides insights into the design of bimetallic sulfide catalysts in activating PMS for water remediation.
Collapse
Affiliation(s)
- Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuxu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, S9, 4 Science Drive 2, 117544, Singapore.
| | - Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
13
|
Recent advances in application of heterogeneous electro-Fenton catalysts for degrading organic contaminants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39431-39450. [PMID: 36763272 DOI: 10.1007/s11356-023-25726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Over the last decades, advanced oxidation processes (AOPs) have been widely used in surface and ground water pollution control. The heterogeneous electro-Fenton (EF) process has gained much attention due to its properties of high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. As of October 2022, the cited papers and publications of EF are around 1.3 × 10-5 and 3.4 × 10-3 in web of science. Among the AOP techniques, the contaminant removal efficiencies by EF process are above 90% in most studies. Current reviews mainly focused on the mechanism of EF and few reviews comprehensively summarized heterogeneous catalysts and their applications in wastewater treatment. Thus, this review focuses on the current studies covering the period 2012-2022, and applications of heterogeneous catalysts in EF process. Two kinds of typical heterogeneous EF systems (the addition of solid catalysts and the functionalized cathode catalysts) and their applications for organic contaminants degradation in water are reviewed. In detail, solid catalysts, including iron minerals, iron oxide-based composites, and iron-free catalysts, are systematically described. Different functionalized cathode materials, containing Fe-based cathodes, carbonaceous-based cathodes, and heteroatom-doped cathodes, are also reviewed. Finally, emphasis and outlook are made on the future prospects and challenges of heterogeneous EF catalyst for wastewater treatments.
Collapse
|
14
|
Sharma P, Prakash J, Palai T, Kaushal R. Surface functionalization of bamboo leave mediated synthesized SiO 2 nanoparticles: Study of adsorption mechanism, isotherms and enhanced adsorption capacity for removal of Cr (VI) from aqueous solution. ENVIRONMENTAL RESEARCH 2022; 214:113761. [PMID: 35793724 DOI: 10.1016/j.envres.2022.113761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Green synthesis of nanoparticles (NPs) provides economic and environmental benefits as an alternative to chemical or physical methods. Furthermore, the surface properties of such NPs can be modulated by means of the functionalization with different groups making them suitable for various advanced functional applications including water pollutants removal using adsorption technique. In the present work, an eco-friendly synthesis route for nano-adsorbent SiO2 NPs and subsequent surface modifications for enhanced adsorption capacity in removal of Cr(VI) ions from aqueous solution are reported. The green synthesis of SiO2 NPs was carried out using simple bamboo leaves followed by surface modification with amine (A-SiO2) and carboxylic (C-SiO2) functional groups with aim to study the effect of functionalization on adsorption capacity. These nano-adsorbents were characterized by FTIR, SEM, XPS, BET, and zeta potential. and adsorption of Cr(VI) was studied at varying parameters i.e. NPs mass, contact time, and solution pH. The investigation shows interesting results revealing the importance of interactions between the surface functional groups on SiO2 NPs and Cr(VI) species as well as experimental conditions for the choice of surface modifier to achieve a maximum adsorption capacity. The adsorption mechanism has been studied using Langmuir, Freundlich and Temkin adsorption isotherms. The maximum adsorption capacity has been achieved in the case of A-SiO2 NPs which was found to 174 mg/g and much higher than that of SiO2 and C-SiO2 NPs attributed to the selective adsorption and pH conditions. Additionally, A-SiO2 NPs exhibit excellent recyclability indicating their suitability for promising and long term potential applications. This study provides a novel, simple and cost-effective synthesis/surface engineering technology for producing high performance recyclable nano-adsorbents for adsorptive removal of Cr(VI).
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, H.P.-177005, India
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, H.P.-177005, India.
| | - Tapas Palai
- Department of Chemical Engineering, National Institute of Technology Hamirpur, H.P.-177005, India
| | - Raj Kaushal
- Department of Chemistry, National Institute of Technology Hamirpur, H.P.-177005, India.
| |
Collapse
|
15
|
Nayak R, Ashraf Ali F, G R Achary P, Nanda B. Effective Degradation of Ciprofloxacin and Cr (VI) by Surface Plasmon Resonance induced photocatalyst Ag (0)/BiVO4@SiO2: Performance and Mechanism. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Yao J, Jiang T, Ji Y, An BA, Koerdt A, Cai Z, Dong C, Ge Y, Qi Z. Water-fueled autocatalytic bactericidal pathway based on e-Fenton-like reactions triggered by galvanic corrosion and extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129730. [PMID: 36027749 DOI: 10.1016/j.jhazmat.2022.129730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Water is generally considered to be an undesirable substance in fuel system, which may lead to microbial contamination. The antibacterial strategies that can turn water into things of value with high disinfection efficacy have been urgently needed for fuel system. Here, we reveal a water-fueled autocatalytic bactericidal pathway comprised by bi-metal micro-electrode system, which can spontaneously produce reactive oxygen species (mainly H2O2 and O2•-) by the electron Fenton-like reaction in water medium without external energy., The respiratory chain component of bacteria and the galvanic corrosion on the coated metals were two electron sources in the system. The specific model of Ag-Ru water-fueled autocatalytic (WFA) microelectrode particles presents extremely high disinfection efficiency (>99.9999%) in less than one hour for three aerobic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis) in LB media and high disinfection efficiency for the anaerobic bacteria (Desulfovibrio alaskensis) in Postgate E media without natural light irradiation. Overall, the novel WFA Ag-Ru antibacterial material explored in this study has a high potential for sterilizing applications in fuel system and this work provides the potential for the development of non-chemical and water-based antibacterial materials, such as WFA Ag-Ru antibacterial coating on stainless steel.
Collapse
Affiliation(s)
- Jizheng Yao
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Tao Jiang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Yucheng Ji
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Biwen Annie An
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Andrea Koerdt
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Zhongqi Cai
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Chaofang Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| |
Collapse
|
17
|
Murthy MK, Khandayataray P, Samal D. Chromium toxicity and its remediation by using endophytic bacteria and nanomaterials: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115620. [PMID: 35772275 DOI: 10.1016/j.jenvman.2022.115620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) is a crucial element for all life forms. Various anthropogenic activities have been responsible for environmental contamination with Cr (VI) in recent years. For this review, articles were collected using electronic databases such as Web of Science, Pubmed, ProQuest, and Google Scholar as per the guidelines of PRISMA-2015, applying the Boolean search methods. Chromium can cause severe health complications in humans and animals and threatens the surrounding environment, with negative impacts on crop yield, development, and quality. Hence, monitoring Cr contamination is essential, and various remediation technologies have emerged in the past 50 years to reduce the amount of Cr in the environment. This review focuses on chromium exposure and the associated environmental health risks. We also reviewed sustainable remediation processes, with emphasis on nanoparticle and endophytic remediation processes.
Collapse
Affiliation(s)
| | | | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, VidyaVihar, IID Center, Khordha, Odisha, India
| |
Collapse
|
18
|
Yao Y, Lai L, Yu Z, Pan Y, Yu Y, Lo V, Roy A, Chivers B, Zhong X, Wei L, Chen Y. Carbon/iron by-product from catalytic methane decomposition as recyclable Fenton catalyst for pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129328. [PMID: 35716562 DOI: 10.1016/j.jhazmat.2022.129328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Direct catalytic decomposition of methane (CDM) has been studied as a possible emission-free hydrogen production route for over 100 years. However, the high cost of catalyst regeneration limits its practical applications. Here, we demonstrate that the solid by-product from CDM using Fe ore catalysts comprising carbon nano onions encapsulated with magnetic Fe cores (Fe@C) can serve as efficient and recyclable Fenton catalysts for pollutant degradation. Fe@C/H2O2 has better performance than FeSO4/H2O2 at similar Fe concentrations and can be used to decompose various pollutants. Mechanistic studies reveal that graphitic carbon layers and encapsulated Fe0 contribute to their high catalytic activity. Further, Fe@C can be easily recovered from an aqueous solution and reused due to the encapsulated magnetic Fe particles. Over three reused cycles, Fe@C/H2O2 only yields 1/8 of Fe sludges compared to FeSO4/H2O2, significantly reducing Fe sludge treatment costs. Overall, Fe@C demonstrates excellent application potentials in water and wastewater treatment, making H2 production via CDM economically more viable.
Collapse
Affiliation(s)
- Yuanyuan Yao
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Leo Lai
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Zixun Yu
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Yuqi Pan
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Yanxi Yu
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Victor Lo
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Anup Roy
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Benjamin Chivers
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Xia Zhong
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Li Wei
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia
| | - Yuan Chen
- The University of Sydney, School of Chemical and Biomolecular Engineering, Darlington, NSW 2006, Australia.
| |
Collapse
|
19
|
Lei C, Zhou Z, Chen W, Xie J, Huang B. Polypyrrole supported Pd/Fe bimetallic nanoparticles with enhanced catalytic activity for simultaneous removal of 4-chlorophenol and Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154754. [PMID: 35339545 DOI: 10.1016/j.scitotenv.2022.154754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoscale zerovalent iron (nZVI) represents a promising reduction technology for water remediation, but its broad application is largely hampered by the tendency of nZVI to aggregate and the low electron transferability due to the interfacial charge resistance. Herein, by combining the advantages of polypyrrole (PPY) and nZVI, we prepared a composite material (i.e., PPY supported palladium‑iron bimetallic nanoparticles (Pd/Fe@PPY)) and applied it for the simultaneous removal of 4-chlorophenol (4-CP) and Cr(VI). Our results showed that this material had superior catalytic performances with a complete removal of 4-CP (50 mg·L-1) and Cr(VI) (10 mg·L-1) within 60 and 1 min, respectively. As opposed to the bare Pd/Fe nanoparticles, the reactivity of Pd/Fe@PPY with 4-CP was significantly enhanced by nearly 8 times. The enhanced catalytic activity of Pd/Fe@PPY was attributed to the distinctive properties of PPY as i) a good support that resulted in the formation of Pd/Fe nanoparticles with high dispersibility; ii) an adsorbent that increased the accessibility of 4-CP and Cr(VI) with electrons or active species (e.g., H*) on the particles surface; iii) an electron transfer carrier that facilitated the reactivity of Pd/Fe@PPY with contaminants by reducing the interfacial charge resistance. Moreover, by conducting cyclic voltammetry and quenching investigations, we showed that two mechanisms (i.e., direct and H*-mediated indirect electron transfer) were involved in the reductive dehalogenation of 4-CP, while catalytic hydrodechlorination played a dominant role. This work offers an alternative material for the efficient removal of 4-CP and Cr(VI) and provides better understanding of the relationship between structure and catalytic activity of nZVI.
Collapse
Affiliation(s)
- Chao Lei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zidie Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, S9, 4 Science Drive 2, Singapore 117544, Singapore
| | - Jituo Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
20
|
Abstract
Humic acid (HA) has complex molecular structure and is capable of adsorption, ion exchange, and chelation with organic and inorganic pollutants in water bodies, worsening water quality and jeopardizing human health and ecological environment. How to effectively remove HA from water is one of the research focuses of this paper. In this study, the UV-activated sodium perborate (SPB) synergistic system (UV/SPB) was established to eliminate HA in water. The effects of initial HA concentration, SPB dose, and initial pH value on the HA elimination were determined, and the main mechanisms of the synergy and HA degradation were explored. The outcomes show that the HA elimination ratio by the sole UV and only SPB system were only 0.5% and 1.5%, respectively. The HA removal of UV/SPB reached 88.8%, which can remove HA more effectively than other systems. Free radical masking experiment proved that hydroxyl radical produced by SPB activation is the main active substance for HA removal. The results of UV-vis absorption spectrum, absorbance ratio, specific UV absorbance, and excitation–emission matrix spectroscopy verified that the UV/SPB system can effectively decompose and mineralize HA.
Collapse
|
21
|
Velempini T, Prabakaran E, Pillay K. Photocatalytic reductive applications of C-doped ZrO2/PANI composite towards Cr(VI). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Xie Q, Lei C, Chen W, Huang B. Mesoporous ferrihydrite-supported Pd nanoparticles for enhanced catalytic dehalogenation of chlorinated environmental pollutant. J Colloid Interface Sci 2022; 608:2907-2920. [PMID: 34839921 DOI: 10.1016/j.jcis.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/21/2021] [Accepted: 11/06/2021] [Indexed: 01/11/2023]
Abstract
Organic chlorides are a group of ubiquitous environmental pollutants that have attracted wide attention because of their carcinogenetic effect on human. Catalytic hydrodechlorination represents one of the most promising methods for the removal of these contaminants, but it suffers from drawbacks such as catalytic inefficiency and/or instability, and the danger of using H2 as hydrogen source. The relationship between the catalyst structure and its dehalogenation activity has not been completely understood. By combining the advantages of Pd nanocatalyst and mesoporous ferrihydrite (Fh) with its distinctive structure, here we present a new composite material with Pd nanoparticles (NPs) supported onto the Fh (Pd/Fh), which has excellent catalytic dehalogenation performance with a rapid, complete dechlorination of chlorophenol (turnover frequency 25.2 min-1) and the ability to perform well over a wide range of pH and temperature. The superior catalytic property of Pd/Fh can be attributed to the three unique functions of Fh, including: 1) having abundant hydroxyl groups that provide interaction sites with metals for incorporating highly dispersed small Pd NPs; 2) facilitating the fast adsorption of chlorophenol onto the catalyst surface via hydrogen bonding and importantly, 3) working as an electron mediator to greatly enhance the electron transfer from iron or chemicals (e.g., NaBH4) to the catalyst, thereby achieving a synergistic effect between Pd catalyst and support, and an enhanced dechlorination activity. In essence, this work presents a promising catalyst for the efficient dehalogenation of chlorinated environmental pollutants and provides an insight into the relationship between catalyst structure and dehalogenation activity.
Collapse
Affiliation(s)
- Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chao Lei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, S9, 4 Science Drive 2, Singapore 117544, Singapore
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
23
|
Xie J, Lei C, Chen W, Huang B. Conductive-polymer-supported palladium-iron bimetallic nanocatalyst for simultaneous 4-chlorophenol and Cr(VI) removal: Enhanced interfacial electron transfer and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127748. [PMID: 34802829 DOI: 10.1016/j.jhazmat.2021.127748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nanoscale zerovalent iron (nZVI) reduction offers a wide range of applications in source-zone remediation, but the reactivity of nZVI is largely hampered due to its low electron-transfer ability and tendency to aggregate. Based on the dual function of conductive polymers (CPs) as support and electron transfer carrier, we combined CPs with nZVI and prepared a series of Pd/Fe bimetallic materials that successfully address the challenges of nZVI reduction. These Pd/Fe@CPs particles showed strong catalytic ability for the simultaneous removal of 4-chlorophenol (4-CP) and Cr(VI). The removal rate of 4-CP was significantly enhanced by 1.5-6.2 times after supporting Pd/Fe nanoparticles (NPs) with CPs. The enhanced reactivity of supported Pd/Fe NPs was attributed to their highly stabilized and dispersed state and the promoted electron transfer due to the synergistic effect between CPs and nZVI bimetallic particles. The various catalytic activity over Pd/Fe@CPs was attributed to the distinctive properties of CPs and their different interfacial electron transfer ability. Importantly, this study provides insights into distinguishing both mechanisms of direct electron transfer and atomic-hydrogen-mediated indirect electron transfer, and their quantitative relationship to the dehalogenation performance over Pd/Fe@CPs materials. This work provides better understanding of the remediation process and mechanisms of nZVI reduction.
Collapse
Affiliation(s)
- Jituo Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chao Lei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, S9, 4 Science Drive 2, 117544, Singapore
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
24
|
Recent advances in adsorptive removal and catalytic reduction of hexavalent chromium by metal–organic frameworks composites. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Fu Y, Yin Z, Qin L, Huang D, Yi H, Liu X, Liu S, Zhang M, Li B, Li L, Wang W, Zhou X, Li Y, Zeng G, Lai C. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126950. [PMID: 34449327 DOI: 10.1016/j.jhazmat.2021.126950] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 05/23/2023]
Abstract
With the increasing serious water pollutions, an increasing interest has given for the nanocomposites as environmental catalysts. To date, noble metals-based nanocomposites have been extensively studied by researchers in environmental catalysis. In detail, serving as key functional parts, noble metals are usually combined with other nanomaterials for rationally designing nanocomposites, which exhibit enhanced catalytic properties in pollutants removal. Noble metals in the nanocomposites possess tailored properties, thus playing different important roles in catalytic oxidation reactions for pollutants removal. To motivate the research and elaborate the progress of noble metals, this review (i) summarizes advanced characterization techniques and rising technology of theoretical calculation for evaluating noble metal, and (ii) classifies the roles according to their disparate mechanism in different catalytic oxidation reactions. Meanwhile, the enhanced mechanism and influence factors are discussed. (iii) The conclusions, facing challenges and perspectives are proposed for further development of noble metals-based nanocomposites as environmental catalysts.
Collapse
Affiliation(s)
- Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuo Yin
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Lei Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bisheng Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
26
|
Sun Q, Han B, Li K, Yu L, Dong L. The synergetic degradation of organic pollutants and removal of Cr(VI) in a multifunctional dual-chamber photocatalytic fuel cell with Ag@Fe2O3 cathode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Zeng Y, Zhang S, Yin L, Dai Y. Electrocatalytic degradation of pesticide micropollutants in water by high energy pulse magnetron sputtered Pt/Ti anode. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Zhao B, Hammond GB, Xu B. Aromatic Ketone-Catalyzed Photochemical Synthesis of Imidazo-isoquinolinone Derivatives. J Org Chem 2021; 86:12851-12861. [PMID: 34436893 DOI: 10.1021/acs.joc.1c01486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed an efficient photocatalytic decarboxylative radical addition/cyclization strategy to synthesize imidazo-isoquinolinone derivatives using inexpensive aromatic ketone photocatalysts. This method not only tolerates a wide range of functional groups but also works well for both alkyl and aryl radicals.
Collapse
Affiliation(s)
- Bin Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
29
|
Wang L, Dionysiou DD, Lin J, Huang Y, Xie X. Removal of humic acid and Cr(Ⅵ) from water using ZnO-30N-zeolite. CHEMOSPHERE 2021; 279:130491. [PMID: 33878697 DOI: 10.1016/j.chemosphere.2021.130491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/20/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The mutual influence of humic acid and Cr(Ⅵ) on water purification using ZnO-30N-zeolite was investigated in the laboratory. The removal of humic acid by ZnO-30N-zeolite with both pollutants present reached 90% in 5 min. With humic acid alone, more than one day was required to reach the same level of removal. Synergy between humic acid and chromium was thus demonstrated in their removal process by ZnO-30N-zeolite. However, the presence of humic acid showed no obvious effect on the removal capacity of Cr(Ⅵ) by ZnO-30N-zeolite. X-ray photoelectron spectra showed that Cr(VI) was reduced to Cr(Ⅲ) in the process by both humic acid and ZnO-30N-zeolite. The kinetic mechanism of synergistic removal of humic acid and Cr(Ⅵ) by ZnO-30N-zeolite in binary pollutant system was also proposed.
Collapse
Affiliation(s)
- Lingling Wang
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Jianming Lin
- Fujian Provincial Key Laboratory of Photoelectric Functional Materials, Huaqiao University, Xiamen, 361021, China
| | - Yuxian Huang
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China
| |
Collapse
|
30
|
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
31
|
Prasad S, Yadav KK, Kumar S, Gupta N, Cabral-Pinto MMS, Rezania S, Radwan N, Alam J. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112174. [PMID: 33607566 DOI: 10.1016/j.jenvman.2021.112174] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Chromium (Cr) is a trace element critical to human health and well-being. In the last few decades, its contamination, especially hexavalent chromium [Cr(VI)] form in both terrestrial and aquatic ecosystems, has amplified as a result of various anthropogenic activities. Chromium pollution is a significant environmental threat, severely impacting our environment and natural resources, especially water and soil. Excessive exposure could lead to higher levels of accumulation in human and animal tissues, leading to toxic and detrimental health effects. Several studies have shown that chromium is a toxic element that negatively affects plant metabolic activities, hampering crop growth and yield and reducing vegetable and grain quality. Thus, it must be monitored in water, soil, and crop production system. Various useful and practical remediation technologies have been emerging in regulating chromium in water, soil, and other resources. A sustainable remediation approach must be adopted to balance the environment and nature.
Collapse
Affiliation(s)
- Shiv Prasad
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India.
| | - Sandeep Kumar
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Neyara Radwan
- Faculty of Economics & Administration, King Abdulaziz University, Jeddah, Saudi Arabia; Mechanical Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt
| | - Javed Alam
- Kind Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
32
|
Wang Z, Song B, Li J, Teng X. Degradation of norfloxacin wastewater using kaolin/steel slag particle electrodes: Performance, mechanism and pathway. CHEMOSPHERE 2021; 270:128652. [PMID: 33268094 DOI: 10.1016/j.chemosphere.2020.128652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
In this work, kaolin/steel slag particle electrodes (KSPEs) were synthesized using a calcination method, and they were used to degrade norfloxacin (NOR) wastewater in three-dimensional (3D) reactor. Characterization methods used by KSPEs included SEM, XRF, XRD and BET. The effects of cell voltage, initial pH, KSPEs dosage and initial NOR concentration on NOR degradation were studied in the optimization experiment of operating parameters. The NOR degradation rate and COD removal rate can reach 96.02% and 93.45% under the optimal parameters within 30 min, and energy consumption is 0.99 kWh m-3. As a result, KSPEs shows excellent catalytic performance and cycling, and still has high electrocatalytic activity after 10 cycles. Finally, the degradation mechanism and degradation pathways of KSPEs to treat NOR are proposed.
Collapse
Affiliation(s)
- Zhaoyang Wang
- College of Earth and Environmental Sciences, Key Lab of Environmental Pollution Predict & Control, Lanzhou University, Lanzhou, 730000, PR China.
| | - Bo Song
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, PR China
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, PR China
| | - Xiaolei Teng
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, PR China
| |
Collapse
|
33
|
Zhang J, Lei C, Chen W, Xie Q, Guo Q, Huang B. Electrochemical-driven nanoparticulate catalysis for highly efficient dechlorination of chlorinated environmental pollutant. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Liu Y, Zhao Y, Wang J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124191. [PMID: 33069993 DOI: 10.1016/j.jhazmat.2020.124191] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 05/17/2023]
Abstract
Fenton processes based on the reaction between Fe2+ and H2O2 to produce hydroxyl radicals, have been widely studied and applied for the degradation of toxic organic contaminants in wastewater due to its high efficiency, mild condition and simple operation. However, H2O2 is usually added by bulk feeding, which suffers from the potential risks during the storage and transportation of H2O2 as well as its low utilization efficiency. Therefore, Fenton/Fenton-like processes with in-situ production of H2O2 have received increasing attention, in which H2O2 was in-situ produced through O2 activation, then decomposed into hydroxyl radicals by Fenton catalysts. In this review, the in situ production of H2O2 for Fenton oxidation was introduced, the strategies for activation of O2 to generate H2O2 were summarized, including chemical reduction, electro-catalysis and photo-catalysis, the influencing factors and the mechanisms of the in situ production and utilization of H2O2 in various Fenton/Fenton-like processes were analyzed and discussed, and the applications of these processes for the degradation of toxic organic contaminants were summarized. This review will deepen the understanding of the tacit cooperation between the in situ production and utilization of H2O2 in Fenton process, and provide the further insight into this promising process for degradation of emerging contaminants in industrial wastewater.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yang Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Xie J, Lei C, Chen W, Xie Q, Guo Q, Huang B. Catalytic properties of transition metals modified nanoscale zero-valent iron for simultaneous removal of 4-chlorophenol and Cr(VI): Efficacy, descriptor and reductive mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123827. [PMID: 33264918 DOI: 10.1016/j.jhazmat.2020.123827] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/12/2023]
Abstract
Since chlorophenols (CPs) and Cr(VI) are two types of common pollutants in the environment, developing an effective approach to remove these contaminants has important benefits for public health. However, few efforts have been made so far. In this study, we prepared nanoscale zero-valent iron (nZVI) and a series of bimetallic nanoparticles (transition-metal modified nZVI) to investigate their catalytic properties for the simultaneous removal of 4-chlorophenol (4-CP) and Cr(VI). While nZVI enabled a fast removal of Cr(VI), it had a poor dechlorination ability. However, effective simultaneous removal of 4-CP and Cr(VI) was achieved with the transition metal modified nZVI, especially in the Pd/Fe bimetallic system. The enhanced catalytic activity of transition metal modified nZVI was primarily attributed to the formations of numerous nano-galvanic cells and atomic hydrogen species that facilitated electron transfer in the reaction system and played a key role in triggering the C-Cl bond cleavage, respectively. According to the dechlorination ability, the transition-metal catalysts examined in this study can be divided into three groups in descending order: the first being Pd and Ni, the second including Cu and Pt, while the last consisting of Au and Ag. The catalytic hydrodechlorination activity of bimetals can be well described by the volcano curve and rationally explained by the hydrogen adsorption energies on the metals, and was severely impaired by increasing Cr(VI) concentrations. Characterization results validated the formations of Fe(III)-Cr(III) hydroxide/oxyhydroxide on the bimetals surface after reacting with 4-CP and Cr(VI). This work provides the first insight into the catalytic properties of transition-metal modified nZVI for the effective removal of combined pollutants.
Collapse
Affiliation(s)
- Jituo Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Wenqian Chen
- Department of Chemical Engineering and Technology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qian Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
36
|
Wang Y, Xue Y, Zhang C. Copper embedded in nitrogen-doped carbon matrix derived from metal-organic frameworks for boosting peroxide production and electro-Fenton catalysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137643] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Senthilnathan J, Younis SA, Kwon EE, Surenjan A, Kim KH, Yoshimura M. An efficient system for electro-Fenton oxidation of pesticide by a reduced graphene oxide-aminopyrazine@3DNi foam gas diffusion electrode. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123323. [PMID: 32947720 DOI: 10.1016/j.jhazmat.2020.123323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
A stable rGO-AmPyraz@3DNiF gas diffusion electrode was prepared via modification of 3D nickel foam (3D-NiF) with aminopyrazine functionalized reduced graphene oxide (rGO-AmPyraz) for the electro Fenton (EF) process. The generation capacity of H2O2 and OH radicals by this electrode was assessed relative to 3DNiF and rGO-AmPyraz@indium tin oxide (ITO) electrodes and with/without a coated Fe3O4 plate. The rGO-AmPyraz@3DNiF electrode showed the maximum production of these radicals at 2.2 mmol h-1 and 410 μmol h-1, respectively (pH 3) with the least leaching of Ni2+ such as < 0.5 mg L-1 even after 5 cycles (e.g., relative to 3DNiF (24 mg L-1). Such control on Ni ion leaching was effective all across the tested pH from 3 to 8.5. Its H2O2 generation capacity was far higher than that of the nanocarbon supported on commercially available ITO conductive glass. The mineralization of dichlorvos (at initial concentration: 50 mg L-1) was confirmed with its complete degradation as the concentrations of the end products (e.g., free Cl-1 (5.36 mg L-1) and phosphate (12.89 mg L-1)) were in good agreement with their stoichiometric concentration in dichlorvos. As such, the proposed system can be recommended as an effective electrode to replace nanocarbon-based product commonly employed for EF processes.
Collapse
Affiliation(s)
- Jaganathan Senthilnathan
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05005, Republic of Korea
| | - Anupama Surenjan
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Masahiro Yoshimura
- Department of Material Science and Engineering, National Cheng Kung University, Taiwan
| |
Collapse
|
38
|
Electrocatalytic activities of engineered carbonaceous cathodes for generation of hydrogen peroxide and oxidation of recalcitrant reactive dye. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Tang Y, Hou S, Yang Y, Cheng D, Gao B, Wan Y, Li YC, Yao Y, Zhang S, Xie J. Activation of Humic Acid in Lignite Using Molybdate-Phosphorus Hierarchical Hollow Nanosphere Catalyst Oxidation: Molecular Characterization and Rice Seed Germination-Promoting Performances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13620-13631. [PMID: 33140972 DOI: 10.1021/acs.jafc.0c04729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although solid-phase activation of lignite using a nanocatalyst has great potential in producing low-cost and sustainable humic acid, the large-scale application of this technology still faces challenges because of the high price and toxicity of the nanocatalyst. Additionally, the specific molecular components of humic acid in activated lignite remain unknown. In this work, a multifunctional molybdate-phosphorus hierarchical hollow nanosphere (Mo-P-HH) catalyst was successfully manufactured by a simple way followed by phosphorization. In comparison with a commercial Pd/C catalyst, the multifunctional Mo-P-HH catalyst was more effective in producing water-soluble humic acid with small molecular functional groups from lignite via solid-phase activation. Moreover, Fourier transform ion cyclotron resonance mass spectrometry revealed the molecular compositions of humic acid in activated lignite. Compared with that from raw lignite, the humic acid after Mo-P-HH activation had less aromatic structure but higher content of lipids, proteins, amino sugar, and carbohydrates. In addition, the activated humic acid simulated seed germination and seedling growth. Therefore, this study provided a high-performance hierarchical hollow nanocatalyst for activation of humic acid and also offered the theoretical basis for the application of humic acid in agriculture.
Collapse
Affiliation(s)
- Yafu Tang
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Shanmin Hou
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
- Economic and Technological Development Zone, Baoyuan Bio-Agri Technology Ltd., Chengdu Street No. 8, Yantai, Shandong 264006, China
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS, University of Florida, Homestead, Florida 33031, United States
| | - Dongdong Cheng
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Bin Gao
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, Florida 32611, United States
| | - Yongshan Wan
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS, University of Florida, Homestead, Florida 33031, United States
| | - Yuncong C Li
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS, University of Florida, Homestead, Florida 33031, United States
| | - Yuanyuan Yao
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Shugang Zhang
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Jiazhuo Xie
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| |
Collapse
|
40
|
Setayesh SR, Nazari P, Maghbool R. Engineered FeVO 4/CeO 2 nanocomposite as a two-way superior electro-Fenton catalyst for model and real wastewater treatment. J Environ Sci (China) 2020; 97:110-119. [PMID: 32933726 DOI: 10.1016/j.jes.2020.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
FeVO4/CeO2 was applied in the electro-Fenton (EF) degradation of Methyl Orange (MO) as a model of wastewater pollution. The results of the characterization techniques indicate that FeVO4 with triclinic structure and face-centered cubic fluorite CeO2 maintained their structures during the nanocomposite synthesis. The effect of applied current intensity, initial pollutant concentration, initial pH, and catalyst weight was investigated. The MO removal reached 96.31% and chemical oxygen demand (COD) removal 70% for 60 min of the reaction. The presence of CeO2 in the nanocomposite plays a key role in H2O2 electro-generation as a significant factor in the electro-Fenton (EF) system. The metal leaching from FeVO4/CeO2 was negligible (cerium 4.1%, iron 4.3%, and vanadium 1.7%), which indicates that the active species in the nanocomposite are strongly interacting with each other and are stable. The performance of the nanocatalyst in real wastewaters, salty, and binary systems was acceptable and the pollutions were removed efficiently. The synergistic effect between V, Fe, and Ce could be account as the reason for the respectable function of FeVO4/CeO2. The electron transfer proceeds via Haber-Weiss mechanism. A degradation pathway was proposed through by-products analysis using gas chromatography-mass spectrometry (GC-MS) technique. The pseudo-first-order kinetic model described the obtained experimental results (R2 = 0.9906). The electro-Fenton system efficiency was improved by adding persulfate. The nanocomposite preserved almost its efficiency after six cycles. The obtained results demonstrate that the synergistic catalyst (FeVO4/CeO2) has the capability to introduce as a promising replacement of conventional catalysts in the electro-Fenton processes with brilliant proficiency.
Collapse
Affiliation(s)
| | - Pegah Nazari
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Roghaye Maghbool
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| |
Collapse
|
41
|
Lei C, Wang C, Chen W, He M, Huang B. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139316. [PMID: 32447080 DOI: 10.1016/j.scitotenv.2020.139316] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 05/27/2023]
Abstract
Devising new versatile nano-adsorbents for efficient capturing of heavy metals in water represents one important direction for environmental remediation. Here, the application of a novel polyaniline@magnetic chitosan (PANI@MCTS) composite consisting of numerous nitrogen-containing functional groups and magnetic Fe3O4 nanoparticles was reported for the efficient treatment of chromium-containing wastewater. This material exhibited a fast adsorption kinetics (80% removal efficiency within 15 min) and strong adsorption capacity (186.6 mg(Cr(VI))•g-1(PANI@MCTS)) for removing Cr(VI) in water as well as an excellent magnetic separation ability. The adsorption of Cr(VI) was found to follow the Langmuir isotherm model and comply with the pseudo-second-order kinetics. More importantly, the PANI@MCTS could facilitate the in-situ chemical reduction of Cr(VI) to Cr(III) that enabled the detoxification treatment of Cr(VI) in water. XPS analysis revealed the simultaneous adsorption and in-situ chemical reduction of Cr(VI) on the PANI@MCTS, where the coordination and electrostatic interaction between Cr(VI) and the positively charged nitrogen containing functional groups contributed to the adsorption, and the = N-/-NH- groups served as active redox pair triggered the in-situ chemical reduction reaction. The recycle experiment showed an excellent stability of this material with >90% removal efficiency after five repeats of treatment. This work provides a promising alternative material for the effective treatment of chromium-containing wastewater.
Collapse
Affiliation(s)
- Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Chunwei Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenqian Chen
- Department of Chemical Engineering and Technology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Miaohua He
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
42
|
Xiao Y, Hong J, Wang X, Chen T, Hyeon T, Xu W. Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level. J Am Chem Soc 2020; 142:13201-13209. [PMID: 32628842 DOI: 10.1021/jacs.0c06020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By combining single-molecule fluorescence microscopy with traditional electrochemical methods, herein we report on the investigation of the electrocatalytic kinetics of two-electron (2e) pathway of oxygen reduction reaction (ORR) on a single Fe3O4 nanoparticle. The kinetic parameters for two-electron ORR process are successfully derived at the single-particle level, and a potential dependence of dynamic heterogeneity among individual nanoparticles is revealed. Furthermore, the performance stability of individual Fe3O4 nanoparticles for 2e ORR process is studied. This study deepens our understanding to the electrocatalytic ORR process, especially the 2e pathway at single-molecule and single-particle levels.
Collapse
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, Anhui 230026, China
| | - Jaeyoung Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiao Wang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Tao Chen
- Institute of Physics-Biophysics, Georg-August- Universität, 37077 Göttingen, Germany
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
43
|
Wei X, Zhu N, Huang X, Kang N, Wu P, Dang Z. Efficient degradation of sodium diclofenac via heterogeneous Fenton reaction boosted by Pd/Fe@Fe 3O 4 nanoparticles derived from bio-recovered palladium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110072. [PMID: 32090815 DOI: 10.1016/j.jenvman.2020.110072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Dehalogenation of emerging pollutants has attracted worldwide attention. In this study, novel bio-Pd/Fe@Fe3O4 nanoparticles (NPs) were proposed to boost the heterogeneous Fenton reaction for degradation of sodium diclofenac (DCF). Specifically, Enterococcus faecalis (E. faecalis) was employed to achieve bio-recovered palladium (bio-Pd). Results showed that expected preparation of bio-Pd/Fe@Fe3O4 NPs was confirmed by various characterization techniques. The prepared bio-Pd/Fe@Fe3O4 NPs were spherical morphology with average size of 9 nm. Under the optimum conditions, the removal efficiency of 10 mg/L DCF in 20 min and 40 min reached as high as 94.69% and 99.65%, respectively. The dechlorination and mineralization efficiencies of DCF were 85.16% and 59.21% in 120 min, respectively. The main degradation pathway of DCF was complete mineralization with the final products CO2, chloride ions and H2O. The improvement of dechlorination efficiency was ascribed to the accelerated corrosion of nano zero valent iron (nZVI) by Pd/Fe galvanic effect and the rise of active hydrogen. Meanwhile, more ferrous ions were released into this solution, resulting in the higher heterogeneous Fenton reaction rate driven by bio-Pd/Fe@Fe3O4 NPs. Therefore, the findings suggested that bio-Pd/Fe@Fe3O4 NPs were effective catalysts for DCF dechlorination and mineralization. The work provided a novel strategy for degradation of halogen-containing environmental pollutants.
Collapse
Affiliation(s)
- Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Xixian Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Naixin Kang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| |
Collapse
|
44
|
Rapid Removal of Azophloxine via Catalytic Degradation by a Novel Heterogeneous Catalyst under Visible Light. Catalysts 2020. [DOI: 10.3390/catal10010138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Azo dyes are the most widely used synthetic dyes in the printing and dyeing process. However, the discharge of untreated azo dyes poses a potential threat to aqueous ecosystems and human health. Herein, we fabricated a novel heterogeneous catalyst: activated-carbon-fiber-supported ferric alginate (FeAlg-ACF). Together with peroxymonosulfate (PMS) and visible light, this photocatalytic oxidation system was used to remove an azo dye—azophloxine. The results indicated that the proposed catalytic oxidation system can remove 100% of azophloxine within 24 min, while under the same system, the removal rates were only 92% and 84% when ferric alginate was replaced with ferric citrate and ferric oxalate, respectively, which showed the superiority of FeAlg-ACF. The degradation of azophloxine is achieved by the active radicals (SO4•− and •OH) released from PMS and persistent free radicals from activated carbon fiber. Moreover, due to ferric alginate’s highly intrinsic photosensitivity, visible radiation can further enhance the ligand-to-metal charge transfer (LMCT) processes. After 24 min of treatment, the total organic carbon of the azophloxine solution (50 μmol/L) decreased from 1.82 mg/L to 79.3 μg/L and the concentration of nitrate ions increased from 0.3 mg/L to 8.6 mg/L. That is, up to 93.5% of azophloxine molecules were completely degraded into inorganic compounds. Consequently, potential secondary contamination by intermediate organic products during catalytic degradation was prohibited. The azophloxine removal ratio was kept almost constant after seven cycles, indicating the recyclability and longevity of this system. Furthermore, the azophloxine removal was still promising at high concentrations of Cl−, HCO3−, and CO32−. Therefore, our proposed system is potentially effective at removing dye pollutants from seawater. It provides a feasible method for the development of efficient and environmentally friendly PMS activation technology combined with FeAlg-ACF, which has significant academic and application value.
Collapse
|
45
|
Cen S, Lv X, Jiang Y, Fakhri A, Gupta VK. Synthesis and structure of iron–copper/hollow magnetic/metal–organic framework/coordination sites in a heterogeneous catalyst for a Fenton-based reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01027h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preparation of novel hybrid catalysts with highly stable properties was conducted for wastewater remediation.
Collapse
Affiliation(s)
- Shihong Cen
- Henan Engineering Research Center of Water Environment and Health
- Zhengzhou University of Industrial Technology
- Zhengzhou
- China
| | - Xiaogai Lv
- Henan Engineering Research Center of Water Environment and Health
- Zhengzhou University of Industrial Technology
- Zhengzhou
- China
| | - Yaling Jiang
- Henan Engineering Research Center of Water Environment and Health
- Zhengzhou University of Industrial Technology
- Zhengzhou
- China
| | - Ali Fakhri
- Department of Chemistry
- Nano Smart Science Institute
- Tehran
- Iran
- Young Researchers and Elites Club
| | - Vinod Kumar Gupta
- Department of Biological Sciences
- Faculty of Science
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| |
Collapse
|
46
|
Zhao K, Quan X, Chen S, Yu H, Zhao J. Preparation of fluorinated activated carbon for electro-Fenton treatment of organic pollutants in coking wastewater: The influences of oxygen-containing groups. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
|
48
|
Nazari P, Tootoonchian P, Setayesh SR. Efficient degradation of AO7 by ceria-delafossite nanocomposite with non-inert support as a synergistic catalyst in electro-fenton process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:749-757. [PMID: 31195175 DOI: 10.1016/j.envpol.2019.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
CuFeO2/CeO2 as a novel catalyst was synthesized and its catalytic performance was evaluated for electro-Fenton degradation of acid orange 7 (AO7). It was demonstrated from the characterization results that the rhombohedral structure of CuFeO2 and face-centered cubic fluorite structure of CeO2 remained stable after nanocomposite construction. The impact of such operating parameters as pH, current intensity and, catalyst amount was investigated and the optimum conditions (100 mgL-1 AO7, pH 3, 150 mgL-1 CuFeO2/CeO2, I: 150 mA) determination led to 99.3% AO7 removal and 79.1% COD removal in 60 min. The introduction of CeO2 as non-inert support had a significant impact on H2O2 electro-generation as an important step in AO7 removal. CuFeO2/CeO2 presented negligible metal leaching (iron 4.13%, copper 2.4%, and cerium 0.33%) which could be due to the strong interaction between active species and support. The nanocomposite performed efficiently in salty systems and two samples of real wastewaters due to Brønsted acidity character of ceria, which makes it a potential choice in industrial applications. The good performance of nanocomposite could be the result of the synergistic effect between Fe, Cu, and Ce. Regarding scavenging measurements results, the electro-Fenton process followed the Haber-Weiss mechanism. The by-products detection was performed using GC-MS analysis to propose an acceptable pathway for EF degradation of AO7. The BMG kinetics model (1/b = 0.969 (min) and 1/m = 0.269 (min-1)) was matched with the experimental data and described the kinetics of reaction very well. The catalytic activity of CuFeO2/CeO2 almost remained after six cycles. Based on the obtained results, CuFeO2/CeO2 using the benefit of the synergistic effect of Ce3+ with Fe2+ and Cu+can be introduced as a promising novel catalyst for the electro-Fenton reaction in wastewater treatment.
Collapse
Affiliation(s)
- Pegah Nazari
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, PO Box, 11155-3516, Iran.
| | - Pedram Tootoonchian
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, PO Box, 11155-3516, Iran.
| | - Shahrbanoo Rahman Setayesh
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, PO Box, 11155-3516, Iran.
| |
Collapse
|
49
|
Nazari P, Rahman Setayesh S. Efficient Fe/CuFeO
2
/rGO nanocomposite catalyst for electro‐Fenton degradation of organic pollutant: Preparation, characterization and optimization. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pegah Nazari
- Department of ChemistrySharif University of Technology Azadi Avenue Tehran PO Box 11155‐9516 Iran
| | | |
Collapse
|
50
|
Zhang MH, Dong H, Zhao L, Wang DX, Meng D. A review on Fenton process for organic wastewater treatment based on optimization perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:110-121. [PMID: 30903886 DOI: 10.1016/j.scitotenv.2019.03.180] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 05/18/2023]
Abstract
Water pollution caused by organic wastewater has become a serious concern worldwide. Fenton oxidation process is one of the most effective and suitable methods for the abatement of organic pollutants. However, the process has three obvious shortcomings: the narrow working pH range, the high costs and risks associated with handling, transportation and storage of reagents (H2O2 and catalyst), the significant iron sludge related second pollution. In order to overcome these shortcomings, various optimized Fenton processes have been widely studied. Therefore, a summary of the study status of Fenton optimization processes is necessary to develop a novel and high efficiency organic wastewater treatment method. Based on the optimization perspective, taking shortcomings of Fenton process as a breakthrough, the fundamentals, advantages and disadvantages of single Fenton optimization processes (heterogeneous Fenton, photo-Fenton and electro-Fenton) for organic wastewater treatment were reviewed and the corresponding reaction mechanism diagrams were drawn in this paper. Then, the feasibility and application of the coupled Fenton optimization processes (photoelectro-Fenton, heterogeneous electro-Fenton, heterogeneous photoelectro-Fenton, three-dimensional electro-Fenton) for organic wastewater treatment were discussed in depth. Additionally, the effect of some important operation parameters (pH and catalyst, H2O2, organic pollutants concentration) on the degradation efficiency of organic pollutants was studied to provide guidance for the optimization of operation parameters. Finally, the possible future research directions for optimized Fenton processes were given. The review aims to assist researchers and engineers to gain fundamental understandings and critical view of Fenton process and its optimization processes, and hopefully with the knowledge it could bring new opportunities for the optimization and future development of Fenton process.
Collapse
Affiliation(s)
- Meng-Hui Zhang
- SEP Key Laboratory of Eco-industry, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Hui Dong
- SEP Key Laboratory of Eco-industry, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Liang Zhao
- SEP Key Laboratory of Eco-industry, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - De-Xi Wang
- School of Chemical Equipment, Shenyang University of Technology, Shenyang, Liaoning 110819, China
| | - Di Meng
- SEP Key Laboratory of Eco-industry, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|