1
|
Osada W, Hasegawa M, Shiozawa Y, Mukai K, Yoshimoto S, Tanaka S, Kawamura M, Ozaki T, Yoshinobu J. Chemical process of hydrogen and formic acid on a Pd-deposited Cu(111) surface studied by high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. Phys Chem Chem Phys 2025; 27:1978-1989. [PMID: 39745475 DOI: 10.1039/d4cp03942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Formic acid (HCOOH) is one of the essential molecules for CO2 utilization including methanol synthesis and hydrogen carriers. In this study, we have investigated the chemical processes of hydrogen and HCOOH on a dilute-alloy Pd-Cu(111) surface using high-resolution X-ray photoelectron spectroscopy (HR-XPS) and density functional theory (DFT) calculations. The present Pd-Cu(111) surface was prepared at 500 K, and the observed core-level shifts of Pd 3d5/2 indicate that Pd atoms were located at the surface and subsurface sites: 335.3 eV at the surface and 335.6 eV at subsurface sites, respectively. The coverage of surface Pd atoms was estimated to be 0.05 ML, indicating that the present Pd-Cu(111) surface acted as a single atom alloy catalyst. The observed C 1s and O 1s XPS spectra indicate that the surface chemistry of HCOOH on the present Pd-Cu(111) surface is almost equivalent to a bare Cu(111) surface; HCOOH is dissociated into monodentate formate and atomic hydrogen at 150-160 K, followed by conversion to bidentate formate species at 300 K, and finally it is decomposed and desorbed as CO2 + ½H2 at ∼450 K. The conversion ratio of adsorbed HCOOH to bidentate formate species on Pd-Cu(111) was 12%, almost the same as that on Cu(111). That monodentate formate species and atomic hydrogen aggregate around the Pd atom is supported by the observed core-level shift of Pd 3d5/2 and systematic DFT calculations. The present DFT calculations also show that formate species are preferably adsorbed on the Cu site; thus, the Pd site is unoccupied by formate species at this stage. This implies that the present single atom alloy catalyst Pd-Cu(111) has an advantage during CO2 hydrogenation, where the Pd site can act as the H2 dissociation site without poisoning by formate intermediate species.
Collapse
Affiliation(s)
- Wataru Osada
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| | - Masahiro Hasegawa
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| | - Yuichiro Shiozawa
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| | - Kozo Mukai
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| | - Shinya Yoshimoto
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| | - Shunsuke Tanaka
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| | - Mitsuaki Kawamura
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taisuke Ozaki
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| | - Jun Yoshinobu
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
2
|
Liu C, Ding Y, Zhao Y, Yang H, Song T, Zhang P, Li F, Sun L, Li F. Enhancing Electrochemical CO 2 Reduction via Redox Non-Innocent Spheres in Copper-Coordinated Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409932. [PMID: 39711275 DOI: 10.1002/smll.202409932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Significant efforts have been dedicated to the development of highly efficient electrocatalysts for electrochemical CO2 reduction reactions (eCO2RR). The outer coordination spheres of catalytic centers may play a pivotal role in the reaction pathway and kinetics for eCO2RR. Herein, three single copper sites coordinated Aza-fused conjugated organic frameworks (Aza-COFs-Cu) with different outer coordination spheres around Cu sites are designed. Experiment and density functional theory (DFT) calculation results reveal that the redox non-innocent outer spheres around Cu sites significantly influence the catalytic performance of Aza-COFs-Cu for eCO2RR. When adjacent redox non-innocent groups of uncoordinated aromatic-N and quinone around the Cu centers act as the symmetry-breaking sites, the energy-consuming activation process of CO2 molecules can be accelerated via the H+/e- transfer process to form *COOH intermediates, which will significantly improve the performance for eCO2RR. This study provides a new perspective on the design of more advanced electrocatalysts for eCO2RR through redox non-innocent spheres engineering.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Yilong Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Hao Yang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Tao Song
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
3
|
Rosales S, Zapata K, Cortes FB, Rojano B, Diaz C, Cortes C, Jaramillo D, Vasquez A, Ramirez D, Franco CA. Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:789. [PMID: 38727383 PMCID: PMC11085186 DOI: 10.3390/nano14090789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to develop and implement a nanotechnology-based alternative to traditional tracers used in the oil and gas industry for assessing interwell connectivity. A simple and rapid hydrothermal protocol for synthesizing carbon quantum dots (CQDs) using agroindustry waste was implemented. Three commercial CQDs were employed (CQDblue, CQDgreen, and CQDred); the fourth was synthesized from orange peel (CQDop). The CQDs from waste and other commercials with spherical morphology, nanometric sizes less than 11 nm in diameter, and surface roughness less than 3.1 nm were used. These tracers demonstrated high colloidal stability with a negative zeta potential, containing carbonyl-type chemical groups and unsaturations in aromatic structures that influenced their optical behavior. All materials presented high colloidal stability with negative values of charge z potential between -17.8 and -49.1. Additionally, individual quantification of these tracers is feasible even in scenarios where multiple CQDs are present in the effluent with a maximum percentage of interference of 15.5% for CQDop in the presence of the other three nanotracers. The CQDs were injected into the field once the technology was insured under laboratory conditions. Monitoring the effluents allowed the determination of connectivity for five first-line producer wells. This study enables the application of CQDs in the industry, particularly in fields where the arrangement of injector and producer wells is intricate, requiring the use of multiple tracers for a comprehensive description of the system.
Collapse
Affiliation(s)
- Stephania Rosales
- Grupo de Investigación en Fenómenos de Superficie–Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050034, Colombia; (S.R.); (K.Z.)
| | - Karol Zapata
- Grupo de Investigación en Fenómenos de Superficie–Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050034, Colombia; (S.R.); (K.Z.)
| | - Farid B. Cortes
- Grupo de Investigación en Fenómenos de Superficie–Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050034, Colombia; (S.R.); (K.Z.)
| | - Benjamín Rojano
- Grupo de Investigación Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050035, Colombia;
| | - Carlos Diaz
- GeoPark Colombia SAS, Bogotá 111211, Colombia; (C.D.); (C.C.)
| | - Carlos Cortes
- GeoPark Colombia SAS, Bogotá 111211, Colombia; (C.D.); (C.C.)
| | - David Jaramillo
- Verano Energy Limited Sucursal, Bogotá 110211, Colombia (A.V.)
| | - Adriana Vasquez
- Verano Energy Limited Sucursal, Bogotá 110211, Colombia (A.V.)
| | - Diego Ramirez
- Verano Energy Limited Sucursal, Bogotá 110211, Colombia (A.V.)
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie–Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050034, Colombia; (S.R.); (K.Z.)
| |
Collapse
|
4
|
Zhang W, Sun J, Wang H, Cui X. Recent Advances in Hydrogenation of CO 2 to CO with Heterogeneous Catalysts Through the RWGS Reaction. Chem Asian J 2024; 19:e202300971. [PMID: 38278764 DOI: 10.1002/asia.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
With the continuous increase in CO2 emissions, primarily from the combustion of coal and oil, the ecosystem faces a significant threat. Therefore, as an effective method to minimize the issue, the Reverse Water Gas Shift (RWGS) reaction which converts CO2 towards CO attracts much attention, is an environmentally-friendly method to mitigate climate change and lessen dependence on fossil fuels. Nevertheless, the inherent thermodynamic stability and kinetic inertness of CO2 is a big challenge under mild conditions. In addition, it remains another fundamental challenge in RWGS reaction owing to CO selectivity issue caused by CO2 further hydrogenation towards CH4 . Up till now, a series of catalysis systems have been developed for CO2 reduction reaction to produce CO. Herein, the research progress of the well-performed heterogeneous catalysts for the RWGS reaction were summarized, including the catalyst design, catalytic performance and reaction mechanism. This review will provide insights into efficient utilization of CO2 and promote the development of RWGS reaction.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Jiashu Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
5
|
Fernández-Villanueva E, Lustemberg PG, Zhao M, Soriano Rodriguez J, Concepción P, Ganduglia-Pirovano MV. Water and Cu + Synergy in Selective CO 2 Hydrogenation to Methanol over Cu-MgO-Al 2O 3 Catalysts. J Am Chem Soc 2024; 146:2024-2032. [PMID: 38206050 DOI: 10.1021/jacs.3c10685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The CO2 hydrogenation reaction to produce methanol holds great significance as it contributes to achieving a CO2-neutral economy. Previous research identified isolated Cu+ species doping the oxide surface of a Cu-MgO-Al2O3-mixed oxide derived from a hydrotalcite precursor as the active site in CO2 hydrogenation, stabilizing monodentate formate species as a crucial intermediate in methanol synthesis. In this work, we present a molecular-level understanding of how surface water and hydroxyl groups play a crucial role in facilitating spontaneous CO2 activation at Cu+ sites and the formation of monodentate formate species. Computational evidence has been experimentally validated by comparing the catalytic performance of the Cu-MgO-Al2O3 catalyst with hydroxyl groups against that of its hydrophobic counterpart, where hydroxyl groups are blocked using an esterification method. Our work highlights the synergistic effect between doped Cu+ ions and adjacent hydroxyl groups, both of which serve as key parameters in regulating methanol production via CO2 hydrogenation. By elucidating the specific roles of these components, we contribute to advancing our understanding of the underlying mechanisms and provide valuable insights for optimizing methanol synthesis processes.
Collapse
Affiliation(s)
- Estefanía Fernández-Villanueva
- Universitat Politècnica de València (UPV), Camè de Vera s/n, Valencia 46022, Spain
- Instituto de Catálisis y Petroleoquímica - Consejo Superior de Investigaciones Científicas (ICP - CSIC), Calle de Marie Curie 2, Madrid 28049, Spain
| | - Pablo G Lustemberg
- Instituto de Catálisis y Petroleoquímica - Consejo Superior de Investigaciones Científicas (ICP - CSIC), Calle de Marie Curie 2, Madrid 28049, Spain
| | - Minjie Zhao
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia, Valencia 46022, Spain
| | - Jose Soriano Rodriguez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia, Valencia 46022, Spain
| | - M Verónica Ganduglia-Pirovano
- Instituto de Catálisis y Petroleoquímica - Consejo Superior de Investigaciones Científicas (ICP - CSIC), Calle de Marie Curie 2, Madrid 28049, Spain
| |
Collapse
|
6
|
Yang X, Duan H, Wang R, Zhao F, Jin F, Jiang W, Han G, Guan Q, Ben H. Tailoring Zeolite L-Supported-Cu Catalysts for CO 2 Hydrogenation: Insights into the Mechanism of CH 3OH and CO Formation. Inorg Chem 2023; 62:13419-13427. [PMID: 37552876 DOI: 10.1021/acs.inorgchem.3c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The utilization of Cu-based catalysts in CO2 conversion into valuable chemicals is of significant interest due to their potential in mitigating greenhouse gas emissions. However, the controllable design of Cu-based catalysts and the regulation of their mechanism remain challenging. In this study, a series of efficient Cu/L catalysts were prepared for this process, and the intrinsic influencing factors on the reaction routes were systematically revealed. Various techniques revealed that Cu particles in L-supported catalysts exhibited higher dispersion and formed Cu-O(OH)-K interfacial sites. However, with increasing Cu loading, the dispersion of Cu particles and the percentage of Cu-O(OH)-K interfaces decreased. Kinetic investigations revealed that the adsorption configuration and electronic structure of Cu species codetermined the reaction pathways and resulting selectivity. Cu/L catalysts possessing Cu-O(OH)-K interfaces and small particles demonstrated the preferential formation of formate species, promoting methanol formation. However, larger Cu particles generated carboxylate intermediates, resulting in higher CO selectivity..
Collapse
Affiliation(s)
- Xiaoli Yang
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Hongmin Duan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruifeng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengwang Zhao
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Fayi Jin
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Wei Jiang
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Guangting Han
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Qingxin Guan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Haoxi Ben
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Phongprueksathat N, Ting KW, Mine S, Jing Y, Toyoshima R, Kondoh H, Shimizu KI, Toyao T, Urakawa A. Bifunctionality of Re Supported on TiO 2 in Driving Methanol Formation in Low-Temperature CO 2 Hydrogenation. ACS Catal 2023; 13:10734-10750. [PMID: 37614518 PMCID: PMC10442859 DOI: 10.1021/acscatal.3c01599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Low temperature and high pressure are thermodynamically more favorable conditions to achieve high conversion and high methanol selectivity in CO2 hydrogenation. However, low-temperature activity is generally very poor due to the sluggish kinetics, and thus, designing highly selective catalysts active below 200 °C is a great challenge in CO2-to-methanol conversion. Recently, Re/TiO2 has been reported as a promising catalyst. We show that Re/TiO2 is indeed more active in continuous and high-pressure (56 and 331 bar) operations at 125-200 °C compared to an industrial Cu/ZnO/Al2O3 catalyst, which suffers from the formation of methyl formate and its decomposition to carbon monoxide. At lower temperatures, precise understanding and control over the active surface intermediates are crucial to boosting conversion kinetics. This work aims at elucidating the nature of active sites and active species by means of in situ/operando X-ray absorption spectroscopy, Raman spectroscopy, ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Transient operando DRIFTS studies uncover the activation of CO2 to form active formate intermediates leading to methanol formation and also active rhenium carbonyl intermediates leading to methane over cationic Re single atoms characterized by rhenium tricarbonyl complexes. The transient techniques enable us to differentiate the active species from the spectator one on TiO2 support, such as less reactive formate originating from spillover and methoxy from methanol adsorption. The AP-XPS supports the fact that metallic Re species act as H2 activators, leading to H-spillover and importantly to hydrogenation of the active formate intermediate present over cationic Re species. The origin of the unique reactivity of Re/TiO2 was suggested as the coexistence of cationic highly dispersed Re including single atoms, driving the formation of monodentate formate, and metallic Re clusters in the vicinity, activating the hydrogenation of the formate to methanol.
Collapse
Affiliation(s)
- Nat Phongprueksathat
- Catalysis
Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, Netherlands
| | - Kah Wei Ting
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ryo Toyoshima
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroshi Kondoh
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Ken-ichi Shimizu
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Atsushi Urakawa
- Catalysis
Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, Netherlands
| |
Collapse
|
8
|
Kordus D, Jelic J, Lopez Luna M, Divins NJ, Timoshenko J, Chee SW, Rettenmaier C, Kröhnert J, Kühl S, Trunschke A, Schlögl R, Studt F, Roldan Cuenya B. Shape-Dependent CO 2 Hydrogenation to Methanol over Cu 2O Nanocubes Supported on ZnO. J Am Chem Soc 2023; 145:3016-3030. [PMID: 36716273 PMCID: PMC9912329 DOI: 10.1021/jacs.2c11540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.
Collapse
Affiliation(s)
- David Kordus
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany,Department
of Physics, Ruhr University Bochum, 44780Bochum, Germany
| | - Jelena Jelic
- Institute
of Catalysis Research and Technology, Karlsruher
Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Mauricio Lopez Luna
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Núria J. Divins
- Department
of Physics, Ruhr University Bochum, 44780Bochum, Germany
| | - Janis Timoshenko
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Clara Rettenmaier
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Jutta Kröhnert
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Stefanie Kühl
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Annette Trunschke
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Robert Schlögl
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruher
Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany,Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany,
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany,
| |
Collapse
|
9
|
Villagra-Soza F, Godoy S, Karelovic A, Jiménez R. Scrutinizing the mechanism of CO2 hydrogenation over Ni, CO and bimetallic NiCo surfaces: Isotopic measurements, operando-FTIR experiments and kinetics modelling. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Barberis L, Hakimioun AH, Plessow PN, Visser NL, Stewart JA, Vandegehuchte BD, Studt F, de Jongh PE. Competition between reverse water gas shift reaction and methanol synthesis from CO 2: influence of copper particle size. NANOSCALE 2022; 14:13551-13560. [PMID: 36000554 DOI: 10.1039/d2nr02612k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting CO2 into value-added chemicals and fuels, such as methanol, is a promising approach to limit the environmental impact of human activities. Conventional methanol synthesis catalysts have shown limited efficiency and poor stability in a CO2/H2 mixture. To design improved catalysts, crucial for the effective utilization of CO2, an in-depth understanding of the active sites and reaction mechanism is desired. The catalytic performance of a series of carbon-supported Cu catalysts, with Cu particle sizes in the range of 5 to 20 nm, was evaluated under industrially relevant temperature and pressure, i.e. 260 °C and 40 bar(g). The CO2 hydrogenation reaction exhibited clear particle size effects up to 13 nm particles, with small nanoparticles having the lower activity, but higher methanol selectivity. MeOH and CO formation showed a different size-dependence. The TOFCO increased from 1.9 × 10-3 s-1 to 9.4 × 10-3 s-1 with Cu size increasing from 5 nm to 20 nm, while the TOFMeOH was size-independent (8.4 × 10-4 s-1 on average). The apparent activation energies for MeOH and CO formation were size-independent with values of 63 ± 7 kJ mol-1 and 118 ± 6 kJ mol-1, respectively. Hence the size dependence was ascribed to a decrease in the fraction of active sites suitable for CO formation with decreasing particle size. Theoretical models and DFT calculations showed that the origin of the particle size effect is most likely related to the differences in formate coverage for different Cu facets whose abundancy depends on particle size. Hence, the CO2 hydrogenation reaction is intrinsically sensitive to the Cu particle size.
Collapse
Affiliation(s)
- Laura Barberis
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Amir H Hakimioun
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Philipp N Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | | | | | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
11
|
Sun Y, Wu J, Wang Y, Li J, Wang N, Harding J, Mo S, Chen L, Chen P, Fu M, Ye D, Huang J, Tu X. Plasma-Catalytic CO 2 Hydrogenation over a Pd/ZnO Catalyst: In Situ Probing of Gas-Phase and Surface Reactions. JACS AU 2022; 2:1800-1810. [PMID: 36032530 PMCID: PMC9400056 DOI: 10.1021/jacsau.2c00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plasma-catalytic CO2 hydrogenation is a complex chemical process combining plasma-assisted gas-phase and surface reactions. Herein, we investigated CO2 hydrogenation over Pd/ZnO and ZnO in a tubular dielectric barrier discharge (DBD) reactor at ambient pressure. Compared to the CO2 hydrogenation using Plasma Only or Plasma + ZnO, placing Pd/ZnO in the DBD almost doubled the conversion of CO2 (36.7%) and CO yield (35.5%). The reaction pathways in the plasma-enhanced catalytic hydrogenation of CO2 were investigated by in situ Fourier transform infrared (FTIR) spectroscopy using a novel integrated in situ DBD/FTIR gas cell reactor, combined with online mass spectrometry (MS) analysis, kinetic analysis, and emission spectroscopic measurements. In plasma CO2 hydrogenation over Pd/ZnO, the hydrogenation of adsorbed surface CO2 on Pd/ZnO is the dominant reaction route for the enhanced CO2 conversion, which can be ascribed to the generation of a ZnO x overlay as a result of the strong metal-support interactions (SMSI) at the Pd-ZnO interface and the presence of abundant H species at the surface of Pd/ZnO; however, this important surface reaction can be limited in the Plasma + ZnO system due to a lack of active H species present on the ZnO surface and the absence of the SMSI. Instead, CO2 splitting to CO, both in the plasma gas phase and on the surface of ZnO, is believed to make an important contribution to the conversion of CO2 in the Plasma + ZnO system.
Collapse
Affiliation(s)
- Yuhai Sun
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- School
of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
- International
Science and Technology Cooperation Platform for Low-Carbon Recycling
of Waste and Green Development, Zhejiang
Gongshang University, Hangzhou 310012, China
| | - Junliang Wu
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Yaolin Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Jingjing Li
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ni Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Jonathan Harding
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Shengpeng Mo
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Limin Chen
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Jun Huang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, The University of
Sydney, Sydney, NSW 2006, Australia
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| |
Collapse
|
12
|
Novel layered triple hydroxide sphere CO2 adsorbent supported copper nanocluster catalyst for efficient methanol synthesis via CO2 hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Cored J, Mazarío J, Cerdá-Moreno C, Lustemberg PG, Ganduglia-Pirovano MV, Domine ME, Concepción P. Enhanced Methanol Production over Non-promoted Cu–MgO–Al 2O 3 Materials with Ex-solved 2 nm Cu Particles: Insights from an Operando Spectroscopic Study. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jorge Cored
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Jaime Mazarío
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Cristina Cerdá-Moreno
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Pablo G. Lustemberg
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
- Instituto de Fisica Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, 2000EZP Rosario, Santa Fe, Argentina
| | | | - Marcelo E. Domine
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
14
|
Prašnikar A, D. B. C. Dasireddy V, Likozar B. Scalable combustion synthesis of copper-based perovskite catalysts for CO2 reduction to methanol: Reaction structure-activity relationships, kinetics, and stability. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Cu-Ga3+-doped wurtzite ZnO interface as driving force for enhanced methanol production in co-precipitated Cu/ZnO/Ga2O3 catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Gómez D, Candia C, Jiménez R, Karelovic A. Isotopic transient kinetic analysis of CO2 hydrogenation to methanol on Cu/SiO2 promoted by Ga and Zn. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Zhang G, Liu M, Fan G, Zheng L, Li F. Efficient Role of Nanosheet-Like Pr 2O 3 Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2768-2781. [PMID: 34994552 DOI: 10.1021/acsami.1c20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In a complex heterogeneous metal-catalyzed reaction process, unique cooperative effects between metal sites and surface-interface active sites, as well as favorable synergy between surface-interface active sites, can play crucial roles in improving their catalytic performances. In this work, a ZnO-modified Cu-based catalyst over defect-rich Pr2O3 nanosheets for high-efficiency CO2 hydrogenation to produce methanol was successfully constructed. It was demonstrated that an as-fabricated nanosheet-like Cu-based catalyst presented several structural advantages including the formation of highly dispersive Cu0 sites and the coexistence of abundant defective Pr3+-Vo-Pr3+ structures (Vo: oxygen vacancy) and interfacial Cu-O-Pr sites. Combining structural characterization and catalytic reaction results with density functional theory calculations, it was clearly unveiled that the synergy between surface defective structures and Cu-Pr2O3 interfaces over the catalyst remarkably promoted the adsorption of CO2 and CO intermediate, thus boosting the CO2 hydrogenation simultaneously via both the formate intermediate pathway and the intense reverse water-gas shift reaction-derived CO hydrogenation pathway, along with a high space-time yield of methanol of 0.395 gMeOH·gcat-1·h-1 under mild reaction conditions (260 °C and 3.0 MPa). The study provides a new strategy to construct high-performance Cu-based catalysts for high-efficiency CO2 hydrogenation to produce methanol and a deep understanding of the promotional roles of synergy between surface-interface active sites in the CO2 hydrogenation.
Collapse
Affiliation(s)
- Guangcheng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengran Liu
- Beijing Institute of Aerospace Testing Technology, Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing 100074, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Prašnikar A, Likozar B. Sulphur poisoning, water vapour and nitrogen dilution effects on copper-based catalyst dynamics, stability and deactivation during CO2 reduction reactions to methanol. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00486g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A model of methanol synthesis catalyst deactivation dependent on pressure, temperature and composition was developed to enable flexible process optimization in the era of the variable renewable supplies.
Collapse
Affiliation(s)
- Anže Prašnikar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
19
|
Kinetically Relevant Variation Triggered by Hydrogen Pressure: A Mechanistic Case Study of CO2 Hydrogenation to Methanol over Cu/ZnO. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Interactive mechanism of plasma-assisted CO2 capture for calcium looping cycle via in-situ DRIFTS. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO 2 conversion to C 1 products. Catal Sci Technol 2021; 11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
Abstract
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
Collapse
Affiliation(s)
- Md Imteyaz Alam
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Luca Nardi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
22
|
Kuwahara Y, Mihogi T, Hamahara K, Kusu K, Kobayashi H, Yamashita H. A quasi-stable molybdenum sub-oxide with abundant oxygen vacancies that promotes CO 2 hydrogenation to methanol. Chem Sci 2021; 12:9902-9915. [PMID: 34349963 PMCID: PMC8317622 DOI: 10.1039/d1sc02550c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022] Open
Abstract
Production of methanol from anthropogenic carbon dioxide (CO2) is a promising chemical process that can alleviate both the environmental burden and the dependence on fossil fuels. In catalytic CO2 hydrogenation to methanol, reduction of CO2 to intermediate species is generally considered to be a crucial step. It is of great significance to design and develop advanced heterogeneous catalysts and to engineer the surface structures to promote CO2-to-methanol conversion. We herein report an oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles (Pt/HxMoO3−y) which affords high methanol yield with a methanol formation rate of 1.53 mmol g-cat−1 h−1 in liquid-phase CO2 hydrogenation under relatively mild reaction conditions (total 4.0 MPa, 200 °C), outperforming other oxide-supported Pt catalysts in terms of both the yield and selectivity for methanol. Experiments and comprehensive analyses including in situ X-ray absorption fine structure (XAFS), in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and density functional theory (DFT) calculations reveal that both abundant surface oxygen vacancies (VO) and the redox ability of Mo species in quasi-stable HxMoO3−y confer the catalyst with enhanced adsorption and activation capability to subsequently transform CO2 to methanol. Moreover, the Pt NPs act as H2 dissociation sites to regenerate oxygen vacancies and as hydrogenation sites for the CO intermediate to finally afford methanol. Based on the experimental and computational studies, an oxygen-vacancy-mediated “reverse Mars–van Krevelen (M–vK)” mechanism is proposed. This study affords a new strategy for the design and development of an efficient heterogeneous catalyst for CO2 conversion. Oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles affords high methanol yield in liquid-phase CO2 hydrogenation via reverse Mars–van Krevelen mechanism.![]()
Collapse
Affiliation(s)
- Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan.,JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Takashi Mihogi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Koji Hamahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Kazuki Kusu
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Hisayoshi Kobayashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan .,Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
23
|
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH
3
OH Selectivity and Formation Rates on Cu‐Based CO
2
Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gina Noh
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Daniel T. Bregante
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jordan Meyet
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Petr Šot
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
24
|
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH 3 OH Selectivity and Formation Rates on Cu-Based CO 2 Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021; 60:9650-9659. [PMID: 33559910 DOI: 10.1002/anie.202100672] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Indexed: 01/03/2023]
Abstract
CH3 OH formation rates in CO2 hydrogenation on Cu-based catalysts sensitively depend on the nature of the support and the presence of promoters. In this context, Cu nanoparticles supported on tailored supports (highly dispersed M on SiO2 ; M=Ti, Zr, Hf, Nb, Ta) were prepared via surface organometallic chemistry, and their catalytic performance was systematically investigated for CO2 hydrogenation to CH3 OH. The presence of Lewis acid sites enhances CH3 OH formation rate, likely originating from stabilization of formate and methoxy surface intermediates at the periphery of Cu nanoparticles, as evidenced by metrics of Lewis acid strength and detection of surface intermediates. The stabilization of surface intermediates depends on the strength of Lewis acid M sites, described by pyridine adsorption enthalpies and 13 C chemical shifts of -OCH3 coordinated to M; these chemical shifts are demonstrated here to be a molecular descriptor for Lewis acid strength and reactivity in CO2 hydrogenation.
Collapse
Affiliation(s)
- Gina Noh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jordan Meyet
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Petr Šot
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| |
Collapse
|
25
|
Zhu J, Ciolca D, Liu L, Parastaev A, Kosinov N, Hensen EJM. Flame Synthesis of Cu/ZnO-CeO 2 Catalysts: Synergistic Metal-Support Interactions Promote CH 3OH Selectivity in CO 2 Hydrogenation. ACS Catal 2021; 11:4880-4892. [PMID: 33898079 PMCID: PMC8057230 DOI: 10.1021/acscatal.1c00131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Indexed: 11/28/2022]
Abstract
![]()
The hydrogenation
of CO2 to CH3OH is an important
reaction for future renewable energy scenarios. Herein, we compare
Cu/ZnO, Cu/CeO2, and Cu/ZnO–CeO2 catalysts
prepared by flame spray pyrolysis. The Cu loading and support composition
were varied to understand the role of Cu–ZnO and Cu–CeO2 interactions. CeO2 addition improves Cu dispersion
with respect to ZnO, owing to stronger Cu–CeO2 interactions.
The ternary Cu/ZnO–CeO2 catalysts displayed a substantially
higher CH3OH selectivity than binary Cu/CeO2 and Cu/ZnO catalysts. The high CH3OH selectivity in comparison
with a commercial Cu–ZnO catalyst is also confirmed for Cu/ZnO–CeO2 catalyst prepared with high Cu loading (∼40 wt %).
In situ IR spectroscopy was used to probe metal–support interactions
in the reduced catalysts and to gain insight into CO2 hydrogenation
over the Cu–Zn–Ce oxide catalysts. The higher CH3OH selectivity can be explained by synergistic Cu–CeO2 and Cu–ZnO interactions. Cu–ZnO interactions
promote CO2 hydrogenation to CH3OH by Zn-decorated
Cu active sites. Cu–CeO2 interactions inhibit the
reverse water–gas shift reaction due to a high formate coverage
of Cu and a high rate of hydrogenation of the CO intermediate to CH3OH. These insights emphasize the potential of fine-tuning
metal–support interactions to develop improved Cu-based catalysts
for CO2 hydrogenation to CH3OH.
Collapse
Affiliation(s)
- Jiadong Zhu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Diana Ciolca
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Liang Liu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
26
|
Schumann M, Nielsen MR, Smitshuysen TEL, Hansen TW, Damsgaard CD, Yang ACA, Cargnello M, Grunwaldt JD, Jensen AD, Christensen JM. Rationalizing an Unexpected Structure Sensitivity in Heterogeneous Catalysis—CO Hydrogenation over Rh as a Case Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Max Schumann
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Monia R. Nielsen
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, Lyngby 2800, Denmark
| | | | - Thomas W. Hansen
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, Lyngby 2800, Denmark
| | - Christian D. Damsgaard
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, Lyngby 2800, Denmark
- Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark
| | - An-Chih A. Yang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Anker D. Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Jakob M. Christensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| |
Collapse
|
27
|
Nezam I, Zhou W, Gusmão GS, Realff MJ, Wang Y, Medford AJ, Jones CW. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101405] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Stolar T, Prašnikar A, Martinez V, Karadeniz B, Bjelić A, Mali G, Friščić T, Likozar B, Užarević K. Scalable Mechanochemical Amorphization of Bimetallic Cu-Zn MOF-74 Catalyst for Selective CO 2 Reduction Reaction to Methanol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3070-3077. [PMID: 33406367 DOI: 10.1021/acsami.0c21265] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selective catalytic reduction of CO2 to methanol has tremendous importance in the chemical industry. It mitigates two critical issues in the modern society, the overwhelming climate change and the dependence on fossil fuels. The most used catalysts are currently based on mixed copper and zinc phases, where the high surface of active copper species is a critical factor for the catalyst performance. Motivated by the recent breakthrough in the controllable synthesis of bimetallic MOF-74 materials by ball milling, we targeted to study the potential of ZnCu-MOF-74 for catalytic CO2 reduction. Here, we tested whether the nanosized channels decorated with readily accessible and homogeneously distributed Zn and Cu metal sites would be advantageous for the catalytic CO2 reduction. Unlike the inactive monometallic Cu-MOF-74, ZnCu-MOF-74 shows moderate catalytic activity and selectivity for the methanol synthesis. Interestingly, the postsynthetic mechanochemical treatment of desolvated ZnCu-MOF-74 resulted in amorphization and a significant increase in both the activity and selectivity of the catalyst despite the destruction of the well-ordered and porous MOF-74 architecture. The results emphasize the importance of defects for the MOF catalytic activity and the potential of amorphous MOFs to be considered as heterogeneous catalysts. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and 13C magic angle-spinning nuclear magnetic resonance (MAS NMR) were applied to establish quantitative structure-reactivity relationships. The apparent activation energy of rate reaction kinetics has indicated different pathway mechanisms, primarily through reverse water-gas shift (RWGS). Prolonged time on stream productivity, stability and deactivation were assessed, analysing the robustness or degradation of metal-organic framework nanomaterials. Scalable MOF production processes are making the latter more appealing within emerging industrial decarbonisation, in particular for carbon capture and utilisation (CCU) or hydrogen carrier storage. Acknowledging scale, the costs of fabrication are paramount.
Collapse
Affiliation(s)
- Tomislav Stolar
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Anže Prašnikar
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | | | - Bahar Karadeniz
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Bjelić
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Tomislav Friščić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
- McGill University, 801 Sherbrooke Street, H3A 0B8 West Montréal, Québec, Canada
| | - Blaž Likozar
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | | |
Collapse
|
29
|
Paris C, Karelovic A, Manrique R, Le Bras S, Devred F, Vykoukal V, Styskalik A, Eloy P, Debecker DP. CO 2 Hydrogenation to Methanol with Ga- and Zn-Doped Mesoporous Cu/SiO 2 Catalysts Prepared by the Aerosol-Assisted Sol-Gel Process*. CHEMSUSCHEM 2020; 13:6409-6417. [PMID: 32996706 DOI: 10.1002/cssc.202001951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The preparation of copper-based heterogeneous catalysts dedicated to the hydrogenation of CO2 to methanol typically relies on multi-step procedures carried out in batch. These steps are precisely tailored to introduce the active phase (Cu) and the promoters (e. g., zinc, gallium) onto a preformed support to maximize catalyst performance. However, each process step can be associated with the formation of waste and with the consumption of energy, thereby negatively impacting the environmental performance of the overall catalyst preparation procedure. Here, a direct and continuous production process is proposed for the synthesis of efficient catalysts for the CO2 -to-methanol reaction. Gallium- and zinc-promoted mesoporous Cu-SiO2 catalysts were prepared in one step by the aerosol-assisted sol-gel process. The catalysts consisted of spherical microparticles and featured high specific surface area and pore volume, with interconnected pores of about 6 nm. A strong promoting effect of Ga and Zn was highlighted, boosting the selectivity for methanol at the expense of CO. Upon calcination, it was shown that Cu species (initially trapped in the silica matrix) underwent a migration towards the catalyst surface and a progressive sintering. After optimization, the catalysts obtained via such direct, continuous, simple, and scalable route could compete with the best catalysts reported in the literature and obtained via multi-step approaches.
Collapse
Affiliation(s)
- Charlie Paris
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
- Current address: Cardiff Catalysis Institute (CCI), School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Alejandro Karelovic
- Carbon and Catalysis (CarboCat), Department of Chemical Engineering Faculty of Engineering, University of Concepcion Barrio Universitario s/n, Concepcion, Chile
| | - Raydel Manrique
- Carbon and Catalysis (CarboCat), Department of Chemical Engineering Faculty of Engineering, University of Concepcion Barrio Universitario s/n, Concepcion, Chile
| | - Solène Le Bras
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - François Devred
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - Vit Vykoukal
- Masaryk University, Department of Chemistry, Kotlarska 2, 61137, Brno, Czech Republic
- Masaryk University, CEITEC MU, Kamenice 5, 62500, Brno, Czech Republic
| | - Ales Styskalik
- Masaryk University, Department of Chemistry, Kotlarska 2, 61137, Brno, Czech Republic
| | - Pierre Eloy
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
30
|
Wang S, Zhang L, Zhang W, Wang P, Qin Z, Yan W, Dong M, Li J, Wang J, He L, Olsbye U, Fan W. Selective Conversion of CO2 into Propene and Butene. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
De S, Dokania A, Ramirez A, Gascon J. Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04273] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sudipta De
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abhay Dokania
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
32
|
Zain MM, Mohammadi M, Kamiuchi N, Mohamed AR. Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0573-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Zhu J, Su Y, Chai J, Muravev V, Kosinov N, Hensen EJM. Mechanism and Nature of Active Sites for Methanol Synthesis from CO/CO2 on Cu/CeO2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02909] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiadong Zhu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Yaqiong Su
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Jiachun Chai
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Valery Muravev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| |
Collapse
|
34
|
Wang W, Qu Z, Song L, Fu Q. Effect of the nature of copper species on methanol synthesis from CO2 hydrogenation reaction over CuO/Ce0.4Zr0.6O2 catalyst. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Chen S, Zhang J, Song F, Zhang Q, Yang G, Zhang M, Wang X, Xie H, Tan Y. Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Chen X, Chen Y, Song C, Ji P, Wang N, Wang W, Cui L. Recent Advances in Supported Metal Catalysts and Oxide Catalysts for the Reverse Water-Gas Shift Reaction. Front Chem 2020; 8:709. [PMID: 33110907 PMCID: PMC7489098 DOI: 10.3389/fchem.2020.00709] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
The reverse water-gas shift reaction (RWGSR), a crucial stage in the conversion of abundant CO2 into chemicals or hydrocarbon fuels, has attracted extensive attention as a renewable system to synthesize fuels by non-traditional routes. There have been persistent efforts to synthesize catalysts for industrial applications, with attention given to the catalytic activity, CO selectivity, and thermal stability. In this review, we describe the thermodynamics, kinetics, and atomic-level mechanisms of the RWGSR in relation to efficient RWGSR catalysts consisting of supported catalysts and oxide catalysts. In addition, we rationally classify, summarize, and analyze the effects of physicochemical properties, such as the morphologies, compositions, promoting abilities, and presence of strong metal-support interactions (SMSI), on the catalytic performance and CO selectivity in the RWGSR over supported catalysts. Regarding oxide catalysts (i.e., pure oxides, spinel, solid solution, and perovskite-type oxides), we emphasize the relationships among their surface structure, oxygen storage capacity (OSC), and catalytic performance in the RWGSR. Furthermore, the abilities of perovskite-type oxides to enhance the RWGSR with chemical looping cycles (RWGSR-CL) are systematically illustrated. These systematic introductions shed light on development of catalysts with high performance in RWGSR.
Collapse
Affiliation(s)
- Xiaodong Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- Center for Clean Energy Technology, Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW, Australia
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Ya Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chunyu Song
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- Center for Clean Energy Technology, Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peiyi Ji
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Nannan Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Lifeng Cui
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
37
|
Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem Rev 2020; 121:649-735. [DOI: 10.1021/acs.chemrev.0c00454] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Quynh N. Nguyen
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030, United States
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
38
|
Kim J, Pfänder N, Prieto G. Recycling of CO 2 by Hydrogenation of Carbonate Derivatives to Methanol: Tuning Copper-Oxide Promotion Effects in Supported Catalysts. CHEMSUSCHEM 2020; 13:2043-2052. [PMID: 32061179 PMCID: PMC7216934 DOI: 10.1002/cssc.202000166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 06/10/2023]
Abstract
The selective hydrogenation of organic carbonates to methanol is a relevant transformation to realize flexible processes for the recycling of waste CO2 with renewable H2 mediated by condensed carbon dioxide surrogates. Oxide-supported copper nanoparticles are promising solid catalysts for this selective hydrogenation. However, essential for their optimization is to rationalize the prominent impact of the oxide support on performance. Herein, the role of Lewis acid centers, exposed on the oxide support at the periphery of the Cu nanoparticles, was systematically assessed. For the hydrogenation of propylene carbonate, as a model cyclic carbonate, the conversion rate, the apparent activation energy, and the selectivity to methanol correlate with the Lewis acidity of the coordinatively unsaturated cationic sites exposed on the oxide support. Lewis sites of markedly low and high electron-withdrawing character promote unselective decarbonylation and decarboxylation reaction pathways, respectively. Supports exposing Lewis sites of intermediate acidity maximize the selectivity to methanol while inhibiting acid-catalyzed secondary reactions of the propanediol product, and thus enable its recovery in cyclic processes of CO2 hydrogenation mediated by condensed carbonate derivatives. These findings help rationalize metal-support promotion effects that determine the performance of supported metal nanoparticles in this and other selective hydrogenation reactions of significance in the context of sustainable chemistry.
Collapse
Affiliation(s)
- Jonglack Kim
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Norbert Pfänder
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Gonzalo Prieto
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
39
|
Kopač D, Likozar B, Huš M. How Size Matters: Electronic, Cooperative, and Geometric Effect in Perovskite-Supported Copper Catalysts for CO 2 Reduction. ACS Catal 2020; 10:4092-4102. [PMID: 32953235 PMCID: PMC7493227 DOI: 10.1021/acscatal.9b05303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Indexed: 11/28/2022]
Abstract
In heterogeneous catalysis, bifunctional catalysts often outperform one-component catalysts. The activity is also strongly influenced by the morphology, size, and distribution of catalytic particles. For CO2 hydrogenation, the size of the active copper area on top of the SrTiO3 perovskite catalyst support can affect the activity, selectivity, and stability. Here, a detailed theoretical study of the effect of bifunctionality on an important chemical CO2 transformation reaction, the reverse water gas shift (RWGS) reaction, is presented. Using density functional theory computation results for the RWGS pathway on three surfaces, namely, Cu(111), SrTiO3, and the Cu/SrTiO3 interface between both solid phases, we construct the energy landscape of the reaction. The adsorbate-adsorbate lateral interactions are taken into account for catalytic surfaces, which show a sufficient intermediate coverage. The mechanism, combining all three surfaces, is used in mesoscale kinetic Monte Carlo simulations to study the turnover and yield for CO production as a function of particle size. It is shown that the reaction proceeds faster at the interface. However, including copper and the support sites in addition to the interface accelerates the conversion even further, showing that the bifunctionality of the catalyst manifests in a more complex interplay between the phases than just the interface effect, such as the hydrogen spillover. We identify three distinct effects, the electronic, cooperative, and geometric effects, and show that the surrounded smaller Cu features on the set of supporting SrTiO3 show a higher CO formation rate, resulting in a decreasing RWGS model trend with the increasing Cu island size. The findings are in parallel with experiments, showing that they explain the previously observed phenomena and confirming the size sensitivity for the catalytic RWGS reaction.
Collapse
Affiliation(s)
- Drejc Kopač
- Department of Catalysis and Chemical
Reaction Engineering, National Institute
of Chemistry, Hajdrihova
19, SI-1001 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical
Reaction Engineering, National Institute
of Chemistry, Hajdrihova
19, SI-1001 Ljubljana, Slovenia
| | - Matej Huš
- Department of Catalysis and Chemical
Reaction Engineering, National Institute
of Chemistry, Hajdrihova
19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
40
|
Jiang X, Nie X, Guo X, Song C, Chen JG. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem Rev 2020; 120:7984-8034. [DOI: 10.1021/acs.chemrev.9b00723] [Citation(s) in RCA: 456] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao Jiang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, 209 Academic Projects Building, University Park, Pennsylvania 16802, United States
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
41
|
Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Manrique R, Rodríguez-Pereira J, Rincón-Ortiz SA, Bravo-Suárez JJ, Baldovino-Medrano VG, Jiménez R, Karelovic A. The nature of the active sites of Pd–Ga catalysts in the hydrogenation of CO2 to methanol. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00956c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Pd/Ga ratio influences the phases formed during catalysis. The best catalyst necessitates the formation of Pd–Ga intermetallic compounds and also a low content of Ga2O3, whose excess tend to block surface sites.
Collapse
Affiliation(s)
- Raydel Manrique
- Carbon and Catalysis Laboratory (CarboCat)
- Department of Chemical Engineering
- Universidad de Concepción
- Chile
| | - Jhonatan Rodríguez-Pereira
- Centro de Investigaciones en Catálisis
- Escuela de Ingeniería Química
- Universidad Industrial de Santander
- Colombia
| | - Sergio A. Rincón-Ortiz
- Laboratorio Central de Ciencia de Superficies
- Universidad Industrial de Santander
- Colombia
| | - Juan J. Bravo-Suárez
- Chemical & Petroleum Engineering Department
- The University of Kansas
- Lawrence
- USA
- Center for Environmentally Beneficial Catalysis
| | - Víctor G. Baldovino-Medrano
- Centro de Investigaciones en Catálisis
- Escuela de Ingeniería Química
- Universidad Industrial de Santander
- Colombia
- Laboratorio Central de Ciencia de Superficies
| | - Romel Jiménez
- Carbon and Catalysis Laboratory (CarboCat)
- Department of Chemical Engineering
- Universidad de Concepción
- Chile
- Unidad de Desarrollo Tecnológico (UDT)
| | - Alejandro Karelovic
- Carbon and Catalysis Laboratory (CarboCat)
- Department of Chemical Engineering
- Universidad de Concepción
- Chile
- Unidad de Desarrollo Tecnológico (UDT)
| |
Collapse
|
43
|
Gaikwad R, Reymond H, Phongprueksathat N, Rudolf von Rohr P, Urakawa A. From CO or CO2?: space-resolved insights into high-pressure CO2 hydrogenation to methanol over Cu/ZnO/Al2O3. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00050g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature and pressure dependent reaction pathways of high-pressure CO2 hydrogenation over a Cu/ZnO/Al2O3 catalyst were studied through the gradients of reactants/products concentrations and catalyst temperature within the reactor.
Collapse
Affiliation(s)
- Rohit Gaikwad
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona
- Spain
| | - Helena Reymond
- Department of Mechanical Engineering
- Institute of Process Engineering
- ETH Zurich
- 8092 Zürich
- Switzerland
| | - Nat Phongprueksathat
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona
- Spain
- Catalysis Engineering
- Department of Chemical Engineering
| | - Philipp Rudolf von Rohr
- Department of Mechanical Engineering
- Institute of Process Engineering
- ETH Zurich
- 8092 Zürich
- Switzerland
| | - Atsushi Urakawa
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona
- Spain
- Catalysis Engineering
- Department of Chemical Engineering
| |
Collapse
|
44
|
Zheng H, Narkhede N, Han L, Zhang H, Li Z. Methanol synthesis from CO2: a DFT investigation on Zn-promoted Cu catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04061-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
|
46
|
Tarasov AV, Seitz F, Schlögl R, Frei E. In Situ Quantification of Reaction Adsorbates in Low-Temperature Methanol Synthesis on a High-Performance Cu/ZnO:Al Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrey V. Tarasov
- Department of Inorganic Chemistry, Fritz-Haber Institut der Max-Plack Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Friedrich Seitz
- Department of Inorganic Chemistry, Fritz-Haber Institut der Max-Plack Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber Institut der Max-Plack Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mühlheim an der Ruhr, Germany
| | - Elias Frei
- Department of Inorganic Chemistry, Fritz-Haber Institut der Max-Plack Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
47
|
|
48
|
Wu P, Yang B. Intermetallic PdIn catalyst for CO2 hydrogenation to methanol: mechanistic studies with a combined DFT and microkinetic modeling method. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01242g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reaction pathways of methanol and carbon monoxide formation from CO2 hydrogenation over PdIn(110) and (211) with a combined density functional theory and microkinetic modeling approach.
Collapse
Affiliation(s)
- Panpan Wu
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences
| | - Bo Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- CAS Key Laboratory of Low-Carbon Conversion Science & Engineering
| |
Collapse
|