1
|
Saiman L, Waters V, LiPuma JJ, Hoffman LR, Alby K, Zhang SX, Yau YC, Downey DG, Sermet-Gaudelus I, Bouchara JP, Kidd TJ, Bell SC, Brown AW. Practical Guidance for Clinical Microbiology Laboratories: Updated guidance for processing respiratory tract samples from people with cystic fibrosis. Clin Microbiol Rev 2024; 37:e0021521. [PMID: 39158301 PMCID: PMC11391703 DOI: 10.1128/cmr.00215-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYThis guidance presents recommendations for clinical microbiology laboratories for processing respiratory samples from people with cystic fibrosis (pwCF). Appropriate processing of respiratory samples is crucial to detect bacterial and fungal pathogens, guide treatment, monitor the epidemiology of cystic fibrosis (CF) pathogens, and assess therapeutic interventions. Thanks to CF transmembrane conductance regulator modulator therapy, the health of pwCF has improved, but as a result, fewer pwCF spontaneously expectorate sputum. Thus, the collection of sputum samples has decreased, while the collection of other types of respiratory samples such as oropharyngeal and bronchoalveolar lavage samples has increased. To optimize the detection of microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia complex; other less common non-lactose fermenting Gram-negative bacilli, e.g., Stenotrophomonas maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species; and yeasts and filamentous fungi, non-selective and selective culture media are recommended for all types of respiratory samples, including samples obtained from pwCF after lung transplantation. There are no consensus recommendations for laboratory practices to detect, characterize, and report small colony variants (SCVs) of S. aureus, although studies are ongoing to address the potential clinical impact of SCVs. Accurate identification of less common Gram-negative bacilli, e.g., S. maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species, as well as yeasts and filamentous fungi, is recommended to understand their epidemiology and clinical importance in pwCF. However, conventional biochemical tests and automated platforms may not accurately identify CF pathogens. MALDI-TOF MS provides excellent genus-level identification, but databases may lack representation of CF pathogens to the species-level. Thus, DNA sequence analysis should be routinely available to laboratories for selected clinical circumstances. Antimicrobial susceptibility testing (AST) is not recommended for every routine surveillance culture obtained from pwCF, although selective AST may be helpful, e.g., for unusual pathogens or exacerbations unresponsive to initial therapy. While this guidance reflects current care paradigms for pwCF, recommendations will continue to evolve as CF research expands the evidence base for laboratory practices.
Collapse
Affiliation(s)
- Lisa Saiman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Valerie Waters
- Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kevin Alby
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yvonne C Yau
- Division of Microbiology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Ireland
| | | | - Jean-Philippe Bouchara
- University of Angers-University of Brest, Infections Respiratoires Fongiques, Angers, France
| | - Timothy J Kidd
- Microbiology Division, Pathology Queensland Central Laboratory, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott C Bell
- The Prince Charles Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- The Translational Research Institute, Brisbane, Australia
| | - A Whitney Brown
- Cystic Fibrosis Foundation, Bethesda, Maryland, USA
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
2
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans-Staphylococcus aureus intra-abdominal co-infection. Nat Commun 2024; 15:5746. [PMID: 38982056 PMCID: PMC11233573 DOI: 10.1038/s41467-024-50058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) demonstrates that synergistic lethality is driven by Candida-induced upregulation of functional S. aureus α-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken revealing that zcf13Δ/Δ fails to drive augmented α-toxin or lethal synergism during co-infection. A combination of transcriptional and phenotypic profiling approaches shows that ZCF13 regulates genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments reveal that ribose inhibits the staphylococcal agr quorum sensing system and concomitantly represses toxicity. Unlike wild-type C. albicans, zcf13Δ/Δ did not effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13Δ/Δ mutant fully restores pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olivia A Todd
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Tkaczyk
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Bret R Sellman
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Mairi C Noverr
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul L Fidel
- Department of Oral and Craniofacial Biology, Louisiana State University Health - School of Dentistry, New Orleans, LA, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Gourari-Bouzouina K, Boucherit-Otmani Z, Seghir A, Baba Ahmed-Kazi Tani ZZ, Bendoukha I, Benahmed A, Aissaoui M, Boucherit K. Evaluation of mixed biofilm production by Candida spp. and Staphylococcus aureus strains co-isolated from cystic fibrosis patients in northwest Algeria. Diagn Microbiol Infect Dis 2024; 109:116321. [PMID: 38677054 DOI: 10.1016/j.diagmicrobio.2024.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Cystic fibrosis patients' lungs are chronically colonized by multiple microbial species capable of forming biofilms. This study aimed to characterize the polymicrobial biofilm formed by Candida spp. and S. aureus, co-isolated from sputum samples of cystic fibrosis patients regarding microbial density, metabolic activity, and structure. 67 samples from 28 patients were collected with a 96% alteration rate. 34% showed alterations by both Candida spp. and Gram-positive bacteria, predominantly Candida spp. and S. aureus in 77% of cases, accounting for 6 associations. Biofilm biomass was quantified using the crystal violet assay, and metabolic activity was assessed using the MTT reduction assay. Scanning electron microscopy analyzed the C. tropicalis/S. aureus24 biofilm architecture. Candida spp. isolates demonstrated the ability to form mixed biofilms with S. aureus. The C. tropicalis/S. aureus24 association exhibited the highest production of biofilm and metabolic activity, along with the C. albicans17/C. rugosa/S. aureus7 in both single and mixed biofilms.
Collapse
Affiliation(s)
- Karima Gourari-Bouzouina
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, University of Tlemcen, BP 119, Tlemcen 13000, Algeria.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| | - Abdelfettah Seghir
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| | - Zahira Zakia Baba Ahmed-Kazi Tani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| | - Imene Bendoukha
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| | - Abdeselem Benahmed
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| | - Mohammed Aissaoui
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, University of Tlemcen, BP 119, Tlemcen 13000, Algeria; Department of Biology, Faculty of Sciences and Technology, University of Tamanghasset, Tamanghasset 11000, Algeria
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| |
Collapse
|
4
|
Gourari-Bouzouina K, Boucherit-Otmani Z, Halla N, Seghir A, Baba Ahmed-Kazi Tani ZZ, Boucherit K. Exploring the dynamics of mixed-species biofilms involving Candida spp. and bacteria in cystic fibrosis. Arch Microbiol 2024; 206:255. [PMID: 38734793 DOI: 10.1007/s00203-024-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Cystic fibrosis (CF) is an inherited disease that results from mutations in the gene responsible for the cystic fibrosis transmembrane conductance regulator (CFTR). The airways become clogged with thick, viscous mucus that traps microbes in respiratory tracts, facilitating colonization, inflammation and infection. CF is recognized as a biofilm-associated disease, it is commonly polymicrobial and can develop in biofilms. This review discusses Candida spp. and both Gram-positive and Gram-negative bacterial biofilms that affect the airways and cause pulmonary infections in the CF context, with a particular focus on mixed-species biofilms. In addition, the review explores the intricate interactions between fungal and bacterial species within these biofilms and elucidates the underlying molecular mechanisms that govern their dynamics. Moreover, the review addresses the multifaceted issue of antimicrobial resistance in the context of CF-associated biofilms. By synthesizing current knowledge and research findings, this review aims to provide insights into the pathogenesis of CF-related infections and identify potential therapeutic approaches to manage and combat these complex biofilm-mediated infections.
Collapse
Affiliation(s)
- Karima Gourari-Bouzouina
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Noureddine Halla
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000, Saida, Algeria
| | - Abdelfettah Seghir
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Zahira Zakia Baba Ahmed-Kazi Tani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| |
Collapse
|
5
|
Bostanghadiri N, Sholeh M, Navidifar T, Dadgar-Zankbar L, Elahi Z, van Belkum A, Darban-Sarokhalil D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2024; 23:26. [PMID: 38504262 PMCID: PMC10953290 DOI: 10.1186/s12941-024-00685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Infections caused by Stenotrophomonas maltophilia are clinically important due to its intrinsic resistance to a broad range of antibiotics. Therefore, selecting the most appropriate antibiotic to treat S. maltophilia infection is a major challenge. AIM The current meta-analysis aimed to investigate the global prevalence of antibiotic resistance among S. maltophilia isolates to the develop more effective therapeutic strategies. METHOD A systematic literature search was performed using the appropriate search syntax after searching Pubmed, Embase, Web of Science and Scopus databases (May 2023). Statistical analysis was performed using Pooled and the random effects model in R and the metafor package. A total of 11,438 articles were retrieved. After a thorough evaluation, 289 studies were finally eligible for inclusion in this systematic review and meta-analysis. RESULT Present analysis indicated that the highest incidences of resistance were associated with doripenem (97%), cefoxitin (96%), imipenem and cefuroxime (95%), ampicillin (94%), ceftriaxone (92%), aztreonam (91%) and meropenem (90%) which resistance to Carbapenems is intrinsic. The lowest resistance rates were documented for minocycline (3%), cefiderocol (4%). The global resistance rate to TMP-SMX remained constant in two periods before and after 2010 (14.4% vs. 14.6%). A significant increase in resistance to tigecycline and ceftolozane/tazobactam was observed before and after 2010. CONCLUSIONS Minocycline and cefiderocol can be considered the preferred treatment options due to low resistance rates, although regional differences in resistance rates to other antibiotics should be considered. The low global prevalence of resistance to TMP-SMX as a first-line treatment for S. maltophilia suggests that it remains an effective treatment option.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, BaseClear, Leiden, Netherlands
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Xu X, Zhang X, Zhang G, Abbasi Tadi D. Prevalence of antibiotic resistance of Staphylococcus aureus in cystic fibrosis infection: a systematic review and meta-analysis. J Glob Antimicrob Resist 2024; 36:419-425. [PMID: 37211214 DOI: 10.1016/j.jgar.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVES Cystic fibrosis (CF) is a hereditary recessive disease that affects the mucous clearance of the lungs and allows bacteria such as Staphylococcus aureus to settle in the lung and cause infection. This study examined the prevalence of antibiotic resistance of S. aureus in cystic fibrosis infection using a systematic review and meta-analysis. METHODS A comprehensive and systematic search of related articles was conducted through the PubMed, Scopus, and Web of Science databases until March 2022. The weighted pooled resistance rate of antibiotics was analysed with Freeman-Tukey double arcsine transformation in the Stata software version 17.1 using the Metaprop command. RESULTS In this meta-analysis, 25 studies were used based on criteria to evaluate the pattern of S. aureus resistance in CF. Vancomycin and teicoplanin were the most effective options for treatment of CF patients; the highest level of antibiotic resistance observed was to erythromycin and clindamycin. CONCLUSION High levels of resistance to most of the antibiotics studied was observed. The high levels of antibiotic resistance observed are worrisome and indicate the need to monitor antibiotic use.
Collapse
Affiliation(s)
- Xuemei Xu
- Pharmacy department, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
| | - Xiang Zhang
- Laboratory Department, The Fifth Hospital of Rui'an, Rui'an, China
| | - Guoying Zhang
- Rui'an People's Hospital and the Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | | |
Collapse
|
7
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans - Staphylococcus aureus intra-abdominal co-infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580531. [PMID: 38405692 PMCID: PMC10888754 DOI: 10.1101/2024.02.15.580531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) uncovered synergistic lethality that was driven by Candida -induced upregulation of functional S. aureus ⍺-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken and revealed that zcf13 Δ/Δ failed to drive augmented ⍺-toxin or lethal synergism during co-infection. Using a combination of transcriptional and phenotypic profiling approaches, ZCF13 was shown to regulate genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments revealed that ribose inhibited the staphylococcal agr quorum sensing system and concomitantly repressed toxicity. Unlike wild-type C. albicans , zcf13 Δ/Δ was unable to effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13 Δ/Δ mutant fully restored pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
|
8
|
Ungor I, Apidianakis Y. Bacterial synergies and antagonisms affecting Pseudomonas aeruginosa virulence in the human lung, skin and intestine. Future Microbiol 2024; 19:141-155. [PMID: 37843410 DOI: 10.2217/fmb-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pseudomonas aeruginosa requires a significant breach in the host defense to cause an infection. While its virulence factors are well studied, its tropism cannot be explained only by studying its interaction with the host. Why are P. aeruginosa infections so rare in the intestine compared with the lung and skin? There is not enough evidence to claim specificity in virulence factors deployed by P. aeruginosa in each anatomical site, and host physiology differences between the lung and the intestine cannot easily explain the observed differences in virulence. This perspective highlights a relatively overlooked parameter in P. aeruginosa virulence, namely, potential synergies with bacteria found in the human skin and lung, as well as antagonisms with bacteria of the human intestine.
Collapse
Affiliation(s)
- Izel Ungor
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| |
Collapse
|
9
|
Illek B, Fischer H, Machen TE, Hari G, Clemons KV, Sass G, Ferreira JAG, Stevens DA. Protective role of CFTR during fungal infection of cystic fibrosis bronchial epithelial cells with Aspergillus fumigatus. Front Cell Infect Microbiol 2023; 13:1196581. [PMID: 37680748 PMCID: PMC10482090 DOI: 10.3389/fcimb.2023.1196581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 09/09/2023] Open
Abstract
Lung infection with the fungus Aspergillus fumigatus (Af) is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function. We established a fungal epithelial co-culture model to examine the impact of Af infection on CF bronchial epithelial barrier function using Af strains 10AF and AF293-GFP, and the CFBE41o- cell line homozygous for the F508del mutation with (CF+CFTR) and without (CF) normal CFTR expression. Following exposure of the epithelial surface to Af conidia, formation of germlings (early stages of fungal growth) was detected after 9-12 hours and hyphae (mature fungal growth) after 12-24 hours. During fungal morphogenesis, bronchial epithelial cells showed signs of damage including rounding, and partial detachment after 24 hours. Fluorescently labeled conidia were internalized after 6 hours and more internalized conidia were observed in CF compared to CF+CFTR cells. Infection of the apical surface with 10AF conidia, germlings, or hyphae was performed to determine growth stage-specific effects on tight junction protein zona occludens protein 1 (ZO-1) expression and transepithelial electrical resistance (TER). In response to infection with conidia or germlings, epithelial barrier function degraded time-dependently (based on ZO-1 immunofluorescence and TER) with a delayed onset in CF+CFTR cell monolayers and required viable fungi and apical application. Infection with hyphae caused an earlier onset and faster rate of decline in TER compared to conidia and germlings. Gliotoxin, a major Af virulence factor, caused a rapid decline in TER and induced a transient chloride secretory response in CF+CFTR but not CF cells. Our findings suggest growth and internalization of Af result in deleterious effects on bronchial epithelial barrier function that occurred more rapidly in the absence of CFTR. Bronchial epithelial barrier breakdown was time-dependent and morphotype-specific and mimicked by acute administration of gliotoxin. Our study also suggests a protective role for CFTR by turning on CFTR-dependent chloride transport in response to gliotoxin, a mechanism that will support mucociliary clearance, and could delay the loss of epithelial integrity during fungal development in vivo.
Collapse
Affiliation(s)
- Beate Illek
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Horst Fischer
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Gopika Hari
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA, United States
| | - Jose A. G. Ferreira
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| |
Collapse
|
10
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
11
|
Banar M, Sattari-Maraji A, Bayatinejad G, Ebrahimi E, Jabalameli L, Beigverdi R, Emaneini M, Jabalameli F. Global prevalence and antibiotic resistance in clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1163439. [PMID: 37215718 PMCID: PMC10196134 DOI: 10.3389/fmed.2023.1163439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Stenotrophomonas maltophilia is a little-known environmental opportunistic bacterium that can cause broad-spectrum infections. Despite the importance of this bacterium as an emerging drug-resistant opportunistic pathogen, a comprehensive analysis of its prevalence and resistance to antibiotics has not yet been conducted. Methods A systematic search was performed using four electronic databases (MEDLINE via PubMed, Embase, Scopus, and Web of Science) up to October 2019. Out of 6,770 records, 179 were documented in the current meta-analysis according to our inclusion and exclusion criteria, and 95 studies were enrolled in the meta-analysis. Results Present analysis revealed that the global pooled prevalence of S. maltophilia was 5.3 % [95% CI, 4.1-6.7%], with a higher prevalence in the Western Pacific Region [10.5%; 95% CI, 5.7-18.6%] and a lower prevalence in the American regions [4.3%; 95% CI, 3.2-5.7%]. Based on our meta-analysis, the highest antibiotic resistance rate was against cefuroxime [99.1%; 95% CI, 97.3-99.7%], while the lowest resistance was correlated with minocycline [4·8%; 95% CI, 2.6-8.8%]. Discussion The results of this study indicated that the prevalence of S. maltophilia infections has been increasing over time. A comparison of the antibiotic resistance of S. maltophilia before and after 2010 suggested there was an increasing trend in the resistance to some antibiotics, such as tigecycline and ticarcillin-clavulanic acid. However, trimethoprim-sulfamethoxazole is still considered an effective antibiotic for treating S. maltophilia infections.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Sattari-Maraji
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Bayatinejad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Ebrahimi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Leila Jabalameli
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Dunne K, Reece E, McClean S, Doyle S, Rogers TR, Murphy P, Renwick J. Aspergillus fumigatus Supernatants Disrupt Bronchial Epithelial Monolayers: Potential Role for Enhanced Invasion in Cystic Fibrosis. J Fungi (Basel) 2023; 9:jof9040490. [PMID: 37108944 PMCID: PMC10141846 DOI: 10.3390/jof9040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus fumigatus is the most commonly isolated fungus in chronic lung diseases, with a prevalence of up to 60% in cystic fibrosis patients. Despite this, the impact of A. fumigatus colonisation on lung epithelia has not been thoroughly explored. We investigated the influence of A. fumigatus supernatants and the secondary metabolite, gliotoxin, on human bronchial epithelial cells (HBE) and CF bronchial epithelial (CFBE) cells. CFBE (F508del CFBE41o-) and HBE (16HBE14o-) trans-epithelial electrical resistance (TEER) was measured following exposure to A. fumigatus reference and clinical isolates, a gliotoxin-deficient mutant (ΔgliG) and pure gliotoxin. The impact on tight junction (TJ) proteins, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were determined by western blot analysis and confocal microscopy. A. fumigatus conidia and supernatants caused significant disruption to CFBE and HBE TJs within 24 h. Supernatants from later cultures (72 h) caused the greatest disruption while ΔgliG mutant supernatants caused no disruption to TJ integrity. The ZO-1 and JAM-A distribution in epithelial monolayers were altered by A. fumigatus supernatants but not by ΔgliG supernatants, suggesting that gliotoxin is involved in this process. The fact that ΔgliG conidia were still capable of disrupting epithelial monolayers indicates that direct cell-cell contact also plays a role, independently of gliotoxin production. Gliotoxin is capable of disrupting TJ integrity which has the potential to contribute to airway damage, and enhance microbial invasion and sensitisation in CF.
Collapse
Affiliation(s)
- Katie Dunne
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Emma Reece
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, W23 F2K8 Kildare, Ireland
| | - Thomas R Rogers
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Philip Murphy
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Julie Renwick
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
13
|
Rozaliyani A, Antariksa B, Nurwidya F, Zaini J, Setianingrum F, Hasan F, Nugrahapraja H, Yusva H, Wibowo H, Bowolaksono A, Kosmidis C. The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp. Life (Basel) 2023; 13:life13041017. [PMID: 37109545 PMCID: PMC10142979 DOI: 10.3390/life13041017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The heterogeneity of the lung microbiome and its alteration are prevalently seen among chronic lung diseases patients. However, studies to date have primarily focused on the bacterial microbiome in the lung rather than fungal composition, which might play an essential role in the mechanisms of several chronic lung diseases. It is now well established that Aspergillus spp. colonies may induce various unfavorable inflammatory responses. Furthermore, bacterial microbiomes such as Pseudomonas aeruginosa provide several mechanisms that inhibit or stimulate Aspergillus spp. life cycles. In this review, we highlighted fungal and bacterial microbiome interactions in the respiratory tract, with a focus on Aspergillus spp.
Collapse
Affiliation(s)
- Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Budhi Antariksa
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Fariz Nurwidya
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Jamal Zaini
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Findra Setianingrum
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Firman Hasan
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Husna Nugrahapraja
- Life Science and Biotechnology, Bandung Institute of Technology, Bandung 40312, Indonesia
| | - Humaira Yusva
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
| | - Chris Kosmidis
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
14
|
Bellavita R, Maione A, Braccia S, Sinoca M, Galdiero S, Galdiero E, Falanga A. Myxinidin-Derived Peptide against Biofilms Caused by Cystic Fibrosis Emerging Pathogens. Int J Mol Sci 2023; 24:ijms24043092. [PMID: 36834512 PMCID: PMC9964602 DOI: 10.3390/ijms24043092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic lung infections in cystic fibrosis (CF) patients are triggered by multidrug-resistant bacteria such as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. The CF airways are considered ideal sites for the colonization and growth of bacteria and fungi that favor the formation of mixed biofilms that are difficult to treat. The inefficacy of traditional antibiotics reinforces the need to find novel molecules able to fight these chronic infections. Antimicrobial peptides (AMPs) represent a promising alternative for their antimicrobial, anti-inflammatory, and immunomodulatory activities. We developed a more serum-stable version of the peptide WMR (WMR-4) and investigated its ability to inhibit and eradicate C. albicans, S. maltophilia, and A. xylosoxidans biofilms in both in vitro and in vivo studies. Our results suggest that the peptide is able better to inhibit than to eradicate both mono and dual-species biofilms, which is further confirmed by the downregulation of some genes involved in biofilm formation or in quorum-sensing signaling. Biophysical data help to elucidate its mode of action, showing a strong interaction of WMR-4 with lipopolysaccharide (LPS) and its insertion in liposomes mimicking Gram-negative and Candida membranes. Our results support the promising therapeutic application of AMPs in the treatment of mono- and dual-species biofilms during chronic infections in CF patients.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marica Sinoca
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Via dell’ Università 100, 80055 Portici, Italy
- Correspondence: ; Tel.: +39-081-253-4525
| |
Collapse
|
15
|
Prieto MD, Alam ME, Franciosi AN, Quon BS. Global burden of nontuberculous mycobacteria in the cystic fibrosis population: a systematic review and meta-analysis. ERJ Open Res 2023; 9:00336-2022. [PMID: 36605902 PMCID: PMC9808535 DOI: 10.1183/23120541.00336-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023] Open
Abstract
Background People living with cystic fibrosis have an increased risk of lung infection with nontuberculous mycobacteria (NTM), the prevalence of which is reportedly increasing. We conducted a systematic review of the literature to estimate the burden (prevalence and incidence) of NTM in the cystic fibrosis population. Methods Electronic databases, registries and grey literature sources were searched for cohort and cross-sectional studies reporting epidemiological measures (incidence and prevalence) of NTM infection or NTM pulmonary disease in cystic fibrosis. The last search was conducted in September 2021; we included reports published since database creation and registry reports published since 2010. The methodological quality of studies was appraised with the Joanna Briggs Institute tool. A random effects meta-analysis was conducted to summarise the prevalence of NTM infection, and the remaining results are presented in a narrative synthesis. Results This review included 95 studies. All 95 studies reported on NTM infection, and 14 of these also reported on NTM pulmonary disease. The pooled estimate for the point prevalence of NTM infection was 7.9% (95% CI 5.1-12.0%). In meta-regression, sample size and geographical location of the study modified the estimate. Longitudinal analysis of registry reports showed an increasing trend in NTM infection prevalence between 2010 and 2019. Conclusions The overall prevalence of NTM infection in cystic fibrosis is 7.9% and is increasing over time based on international registry reports. Future studies should report screening frequency, microbial identification methods and incidence rates of progression from NTM infection to pulmonary disease.
Collapse
Affiliation(s)
- Miguel D. Prieto
- Centre for Heart Lung Innovation, Vancouver, BC, Canada,Dept of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mosaab E. Alam
- Dept of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alessandro N. Franciosi
- Centre for Heart Lung Innovation, Vancouver, BC, Canada,Dept of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bradley S. Quon
- Centre for Heart Lung Innovation, Vancouver, BC, Canada,Dept of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Corresponding author: Bradley Quon ()
| |
Collapse
|
16
|
Sarkar PK, Akand N, Tahura S, Kamruzzaman M, Akter J, Zaman KA, Farhana T, Rima SS, Alam MJ, Hassan MK, Fardous J. Antimicrobial sensitivity pattern of children with cystic fibrosis in Bangladesh: a lesson from a specialized Sishu (Children) Hospital. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2022. [DOI: 10.1186/s43054-022-00127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Infection control in cystic fibrosis (CF) patients plays a crucial role in improving the survival of patients with CF. Antimicrobial sensitivity patterns in these patient groups in our country are currently lacking. Therefore, the purpose of the study was to evaluate the microbiological cultures and antimicrobial susceptibility pattern of pediatric CF patients.
Method
A total of 50 respiratory samples were prospectively collected from the period between February 2021 and October 2021. Sputum and oropharyngeal swabs were processed for culture and microbiological testing. Sample collection and evaluation were performed according to the Good Laboratory Practice guidelines (GLP). Informed written consent was ensured before participation. Statistical analysis was performed with SPSS v 26.
Result
The median age of the children was 30 months (6–120) months, with a male predominance (66% vs 34%). Single and two organisms were isolated in 72% (n = 36) and 12% (n = 6) of cases, respectively. During the study period, 36% of the patients harbored Pseudomonas aeruginosa, 18% harbored Klebsiella pneumoniae, and both Staphylococcus aureus and Escherichia coli were detected in 16% of cases. Levofloxacin was found to be the most active antibiotic agent with 100% susceptibility. In contrast, nearly all isolates were resistant to amoxicillin, erythromycin and rifampicin.
Conclusion
Levofloxacin is the most effective agent to treat CF patients. Active surveillance of the resistance pattern should always continue to be promoted.
Collapse
|
17
|
Nikmanesh Y, Foolady Azarnaminy A, Avishan P, Taheri M, Sabeghi P, Najibzadeh E, Khaledi A. A Middle East systematic review and meta-analysis of prevalence and antibiotic susceptibility pattern in MRSA Staphylococcus aureus isolated from patients with cystic fibrosis. JOURNAL OF HEALTH, POPULATION AND NUTRITION 2022; 41:26. [PMID: 35765068 PMCID: PMC9241286 DOI: 10.1186/s41043-022-00305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to determine the prevalence and antibiotic resistance patterns in Staphylococcus aureus isolated from patients with cystic fibrosis in Middle Eastern countries. Methods A systematic search was conducted in the PubMed, Web of Science (ISI), and Scopus databases for studies presenting the prevalence of MRSA strains, antibiotic resistance pattern in S. aureus strains isolated from patients who suffered from cystic fibrosis in Middle Eastern countries from 1999 to 10 June 2020. The following terms were used; prevalence, antibiotic resistance, antimicrobial drug resistance, drug resistance, Staphylococcus aureus, S. aureus, Methicillin-resistant Staphylococcus aureus, MRSA, cystic fibrosis, CF, and the Middle East. The meta-analysis was performed using Comprehensive Meta-analysis software (Version 3.3.070). Results Patients’ age ranged from 1.6 to 18 years. Females were more than males. The prevalence of S. aureus was varied between 5.6 and 77.8%. The prevalence of S. aureus was varied between 5.6 and 77.8% in different countries. The combined prevalence of S. aureus in Middle East countries from 1999 to 2020 was reported by 40.9% (95% CI 29.6–53.1). The pooled prevalence of MRSA was reported at 18.6% (95% CI 1.1–82.6), Z = 0.9, I2 = 98.6, Q = 146.7. The highest combined resistance in S. aureus strains was reported to Penicillin G (94%), followed by Ciprofloxacin (54.9%).
Conclusion Regarding a quite prevalence of S. aureus and an intermediate prevalence of MRSA in CF patients, preventive measures and health policies should be implemented in the Middle East area to prevent the spread of infections caused by MRSA strains in CF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s41043-022-00305-x.
Collapse
|
18
|
Alshraiedeh N, Atawneh F, Bani-Salameh R, Alsharedeh R, Al Tall Y, Alsaggar M. Identification and characterization of bacteria isolated from patients with cystic fibrosis in Jordan. Ann Med 2022; 54:2796-2804. [PMID: 36264155 PMCID: PMC9586617 DOI: 10.1080/07853890.2022.2131282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Notable emergence of multidrug-resistant bacteria has become increasingly problematic worldwide. Most patients with cystic fibrosis (CF) suffer from chronic persistent infections with frequent occurrence of acute exacerbations. Routine screening of bacterial strains, epidemiological characteristics, and resistance patterns are particularly useful for patient management and maintenance of infection control procedures. METHODS In this study, 43 pharyngeal samples were taken from patients with CF. Microbiological bacterial culture and identification, antimicrobial susceptibility testings, biofilm formation, including minimum biofilm eradication concentration (MBEC) and PCR for detecting resistance genes were performed. RESULTS All samples were positive for bacterial growth. The predominant species were Staphylococcus aureus (41.86%; n = 18) and Pseudomonas aeruginosa (39.53%; n = 17). 30% of isolated bacteria were multidrug-resistant, resisting high concentrations of tested antibiotics. Among the 42 biofilm-forming isolates, 23.8% (n = 10) were strong biofilm formers. The occurance of resistance genes varied with blaKPC detected in 71% (n = 17) of all Gram-negative isolates and mecA found in 61% (n = 11) of all S. aureus strains. CONCLUSIONS The majority of isolated bacteria were S. aureus and P. aeruginosa. The high frequency of antimicrobial resistance, the presence of resistance genes, and biofilm formation highlight the challenge in treatment and infection control measures in patients with CF.KEY MESSAGESStaphylococcus aureus and Pseudomonas aeruginosa are the most prevalent pathogens found in patients with CF in Jordan.Detection of antimicrobial resistance genes in patients with CF confirms that antimicrobial resistance patterns must always be monitored.Biofilm formation significantly increases the tolerance of bacteria to antimicrobial agents.
Collapse
Affiliation(s)
- Nid'a Alshraiedeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Farah Atawneh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rasha Bani-Salameh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rawan Alsharedeh
- Department of the Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Yara Al Tall
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alsaggar
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
19
|
Effect of Flagellin Pre-Exposure on the Inflammatory and Antifungal Response of Bronchial Epithelial Cells to Fungal Pathogens. J Fungi (Basel) 2022; 8:jof8121268. [PMID: 36547601 PMCID: PMC9782670 DOI: 10.3390/jof8121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Bronchial epithelial cells (BEC) play a crucial role in innate immunity against inhaled fungi. Indeed, in response to microorganisms, BEC synthesize proinflammatory cytokines involved in the recruitment of neutrophils. We have recently shown that BEC exert antifungal activity against Aspergillus fumigatus by inhibiting filament growth. In the present study, we first analyzed the inflammatory and antifungal responses of BEC infected by several fungal species such as Aspergillus spp., Scedosporium apiospermum and Candida albicans, which are frequently isolated from the sputum of people with chronic pulmonary diseases. The airways of these patients, such as people with cystic fibrosis (pwCF), are mainly colonized by P. aeruginosa and secondary by fungal pathogens. We have previously demonstrated that BEC are capable of innate immune memory, allowing them to increase their inflammatory response against A. fumigatus following a previous contact with Pseudomonas aeruginosa flagellin. To identify the impact of bacteria exposure on BEC responses to other fungal infections, we extended the analysis of BEC innate immune memory to Aspergillus spp., Scedosporium apiospermum and Candida albicans infection. Our results show that BEC are able to recognize and respond to Aspergillus spp., S. apiospermum and C. albicans infection and that the modulation of BEC responses by pre-exposure to flagellin varies according to the fungal species encountered. Deepening our knowledge of the innate immune memory of BEC should open new therapeutic avenues to modulate the inflammatory response against polymicrobial infections observed in chronic pulmonary diseases such as CF.
Collapse
|
20
|
Blanchard AC, Waters VJ. Opportunistic Pathogens in Cystic Fibrosis: Epidemiology and Pathogenesis of Lung Infection. J Pediatric Infect Dis Soc 2022; 11:S3-S12. [PMID: 36069904 DOI: 10.1093/jpids/piac052] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-shortening genetic diseases in Caucasians. Due to abnormal accumulation of mucus, respiratory failure caused by chronic infections is the leading cause of mortality in this patient population. The microbiology of these respiratory infections includes a distinct set of opportunistic pathogens, including Pseudomonas aeruginosa, Burkholderia spp., Achromobacter spp., Stenotrophomonas maltophilia, anaerobes, nontuberculous mycobacteria, and fungi. In recent years, culture-independent methods have shown the polymicrobial nature of lung infections, and the dynamics of microbial communities. The unique environment of the CF airway predisposes to infections caused by opportunistic pathogens. In this review, we will highlight how the epidemiology and role in disease of these pathogens in CF differ from that in individuals with other medical conditions. Infectious diseases (ID) physicians should be aware of these differences and the specific characteristics of infections associated with CF.
Collapse
Affiliation(s)
- Ana C Blanchard
- Department of Pediatrics, Division of Infectious Diseases, CHU Sainte-Justine, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada
| | - Valerie J Waters
- Department of Pediatrics, Division of Infectious Diseases, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| |
Collapse
|
21
|
Wrigley-Carr HE, van Dorst JM, Ooi CY. Intestinal dysbiosis and inflammation in cystic fibrosis impacts gut and multi-organ axes. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Fluit AC, Bayjanov JR, Benaissa-Trouw BJ, Rogers MRC, Díez-Aguilar M, Cantón R, Tunney MM, Elborn JS, Ekkelenkamp MB. Whole-genome analysis of Haemophilus influenzae strains isolated from persons with cystic fibrosis. J Med Microbiol 2022; 71. [PMID: 36006824 DOI: 10.1099/jmm.0.001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Haemophilus influenzae is a commensal of the respiratory tract that is frequently present in cystic fibrosis (CF) patients and may cause infection. Antibiotic resistance is well described for CF strains, and virulence factors have been proposed.Hypothesis/Gap. The genetic diversity of H. influenzae strains present in the lungs of persons with CF is largely unknown despite the fact that this organism is considered to be a pathogen in this condition. The aim was to establish the genetic diversity and susceptibility of H. influenzae strains from persons with CF, and to screen the whole genomes of these strains for the presence of antibiotic resistance determinants and proposed virulence factors.Methods. A total of 67 strains, recovered from respiratory samples from persons with CF from the UK (n=1), Poland (n=2), Spain (n=24) and the Netherlands (n=40), were subjected to whole-genome sequencing using Illumina technology and tested for antibiotic susceptibility. Forty-nine of these strains (one per different sequence type) were analysed for encoded virulence factors and resistance determinants.Results. The 67 strains represented 49 different sequence types. Susceptibility testing showed that all strains were susceptible to aztreonam, ciprofloxacin, imipenem and tetracycline. Susceptibility to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanic acid, cefuroxime, cefixime, ceftriaxone, cefepime, meropenem, clarithromycin, co-trimoxazole and levofloxacin ranged from 70.2-98.5%. Only 6/49 strains (12.2%) harboured acquired resistance genes. Mutations associated with a ß-lactamase-negative ampicillin-resistant phenotype were present in four strains (8.2 %). The potential virulence factors, urease, haemoglobin- and haptoglobin-binding protein/carbamate kinase, and OmpP5 (OmpA), were encoded in more than half of the strains. The genes for HMW1, HMW2, H. influenzae adhesin, a IgA-specific serine endopeptidase autotransporter precursor, a TonB-dependent siderophore, an ABC-transporter ATP-binding protein, a methyltransferase, a BolA-family transcriptional regulator, glycosyltransferase Lic2B, a helix-turn-helix protein, an aspartate semialdehyde dehydrogenase and another glycosyltransferase were present in less than half of the strains.Conclusion. The H. influenzae strains showed limited levels of resistance, with the highest being against co-trimoxazole. Sequences encoding a carbamate kinase and a haemoglobin- and haemoglobin-haptoglobin-binding-like protein, a glycosyl transferase and an urease may aid the colonization of the CF lung. The adhesins and other identified putative virulence factors did not seem to be necessary for colonization.
Collapse
Affiliation(s)
- Ad C Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Barry J Benaissa-Trouw
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Michael M Tunney
- Department of Pulmonology, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Department of Pulmonology, Queen's University Belfast, Belfast, UK
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
23
|
Hughes DA, Rosenthal M, Cuthbertson L, Ramadan N, Felton I, Simmonds NJ, Loebinger MR, Price H, Armstrong-James D, Elborn JS, Cookson WO, Moffatt MF, Davies JC. An invisible threat? Aspergillus positive cultures and co-infecting bacteria in airway samples. J Cyst Fibros 2022; 22:320-326. [PMID: 35871975 DOI: 10.1016/j.jcf.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Aspergillus fumigatus (Af) infection is associated with poor lung health in chronic suppurative lung diseases but often goes undetected. We hypothesised that inhibition of Af growth by Pseudomonas aeruginosa (Pa) increases the frequency of false-negative Af culture in co-infected people. Using a substantial group of cystic fibrosis (CF) airway samples, we assessed the relationship between Af and bacterial pathogens, additionally comparing fungal culture with next-generation sequencing. METHODS Frequency of co-culture was assessed for 44,554 sputum/BAL cultures, from 1,367 CF patients between the years 2010-2020. In a subgroup, Internal Transcribed Spacer-2 (ITS2) fungal sequencing was used to determine sequencing-positive, culture-negative (S+/C-) rates. RESULTS Pa+ samples were nearly 40% less likely (P<0.0001) than Pa- samples to culture Af, an effect that was also seen with some other Gram-negative isolates. This impact varied with Pa density and appeared to be moderated by Staphylococcus aureus co-infection. Sequencing identified Af-S+/C- for 40.1% of tested sputa. Samples with Pa had higher rates of Af-S+/C- (49.3%) than those without (35.7%; RR 1.38 [1.02-1.93], P<0.05). Af-S+/C- rate was not changed by other common bacterial infections. Pa did not affect the S+/C- rates of Candida, Exophiala or Scedosporium. CONCLUSIONS Pa/ Af co-positive cultures are less common than expected in CF. Our findings suggest an Af-positive culture is less likely in the presence of Pa. Interpretation of negative cultures should be cautious, particularly in Pa-positive samples, and a companion molecular diagnostic could be useful. Further work investigating mechanisms, alternative detection techniques and other chronic suppurative lung diseases is needed.
Collapse
Affiliation(s)
- Dominic A Hughes
- King's College Hospital NHS Foundation Trust, London, UK; National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK.
| | - Mark Rosenthal
- Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Leah Cuthbertson
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK
| | - Newara Ramadan
- Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Imogen Felton
- Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Nicholas J Simmonds
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK; Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Michael R Loebinger
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK; Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Henry Price
- Department of Physics, Imperial College London, UK
| | - Darius Armstrong-James
- Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK; Department of Infectious Diseases, Imperial College London, UK
| | | | - William O Cookson
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK
| | - Miriam F Moffatt
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK; Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| |
Collapse
|
24
|
Kaya C, Walter I, Alhayek A, Shafiei R, Jézéquel G, Andreas A, Konstantinović J, Schönauer E, Sikandar A, Haupenthal J, Müller R, Brandstetter H, Hartmann RW, Hirsch AK. Structure-Based Design of α-Substituted Mercaptoacetamides as Inhibitors of the Virulence Factor LasB from Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1010-1021. [PMID: 35451824 PMCID: PMC9112332 DOI: 10.1021/acsinfecdis.1c00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Antivirulence therapy
has become a widely applicable method for
fighting infections caused by multidrug-resistant bacteria. Among
the many virulence factors produced by the Gram-negative bacterium Pseudomonas aeruginosa, elastase (LasB) stands out
as an important target as it plays a pivotal role in the invasion
of the host tissue and evasion of the immune response. In this work,
we explored the recently reported LasB inhibitor class of α-benzyl-N-aryl mercaptoacetamides by exploiting the crystal structure
of one of the compounds. Our exploration yielded inhibitors that maintained
inhibitory activity, selectivity, and increased hydrophilicity. These
inhibitors were found to reduce the pathogenicity of the bacteria
and to maintain the integrity of lung and skin cells in the diseased
state. Furthermore, two most promising compounds increased the survival
rate of Galleria mellonella larvae
treated with P. aeruginosa culture
supernatant.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabell Walter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße, 34, 5020 Salzburg, Austria
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E 8.1, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße, 34, 5020 Salzburg, Austria
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E 8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Molecular Insight into Gene Response of Diorcinol- and Rubrolide-Treated Biofilms of the Emerging Pathogen Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0258221. [PMID: 35471093 PMCID: PMC9241881 DOI: 10.1128/spectrum.02582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant human opportunistic pathogen. S. maltophilia contributes to disease progression in cystic fibrosis patients and is found in wounds and infected tissues and on catheter surfaces. Due to its well-known multidrug resistance, it is difficult to treat S. maltophilia infections. Strain-specific susceptibility to antimicrobials has also been reported in several studies. Recently, three fungal diorcinols and 14 rubrolides were shown to reduce S. maltophilia K279a biofilm formation. Based on these initial findings, we were interested to extend this approach by testing a larger number of diorcinols and rubrolides and to understand the molecular mechanisms behind the observed antibiofilm effects. Of 52 tested compounds, 30 were able to significantly reduce the biofilm thickness by up to 85% ± 15% and had strong effects on mature biofilms. All compounds with antibiofilm activity also significantly affected the biofilm architecture. Additional RNA-sequencing data of diorcinol- and rubrolide-treated biofilm cells of two clinical isolates (454 and K279) identified a small set of shared genes that were affected by these potent antibiofilm compounds. Among these, genes for iron transport, general metabolism, and membrane biosynthesis were most strongly and differentially regulated. A further hierarchical clustering and detailed structural inspection of the diorcinols and rubrolides implied that a prenyl group as side chain of one of the phenyl groups of the diorcinols and an increasing degree of bromination of chlorinated rubrolides were possibly the cause of the strong antibiofilm effects. This study gives a deep insight into the effects of rubrolides and diorcinols on biofilms formed by the important global pathogen S. maltophilia. IMPORTANCE Combating Stenotrophomonasmaltophilia biofilms in clinical and industrial settings has proven to be challenging. S. maltophilia is multidrug resistant, and occurrence of resistance to commonly used drugs as well as to antibiotic combinations, such as trimethoprim-sulfamethoxazole, is now frequently reported. It is therefore now necessary to look beyond conventional and already existing antimicrobial drugs when battling S. maltophilia biofilms. Our study contains comprehensive and detailed data sets for diorcinol and rubrolide-treated S. maltophilia biofilms. The study defines genes and pathways affected by treatment with these different compounds. These results, together with the identified structural elements that may be crucial for their antibiofilm activity, build a strong backbone for further research on diorcinols and rubrolides as novel and potent antibiofilm compounds.
Collapse
|
26
|
Hattab S, Dagher AM, Wheeler RT. Pseudomonas Synergizes with Fluconazole against Candida during Treatment of Polymicrobial Infection. Infect Immun 2022; 90:e0062621. [PMID: 35289633 PMCID: PMC9022521 DOI: 10.1128/iai.00626-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Polymicrobial infections are challenging to treat because we don't fully understand how pathogens interact during infection and how these interactions affect drug efficacy. Candida albicans and Pseudomonas aeruginosa are opportunistic pathogens that can be found in similar sites of infection such as in burn wounds and most importantly in the lungs of CF and mechanically ventilated patients. C. albicans is particularly difficult to treat because of the paucity of antifungal agents, some of which lack fungicidal activity. In this study, we investigated the efficacy of anti-fungal treatment during C. albicans-P. aeruginosa coculture in vitro and co-infection in the mucosal zebrafish infection model analogous to the lung. We find that P. aeruginosa enhances the activity of fluconazole (FLC), an anti-fungal drug that is fungistatic in vitro, to promote both clearance of C. albicans during co-infection in vivo and fungal killing in vitro. This synergy between FLC treatment and bacterial antagonism is partly due to iron piracy, as it is reduced upon iron supplementation and knockout of bacterial siderophores. Our work demonstrates that FLC has enhanced activity in clinically relevant contexts and highlights the need to understand antimicrobial effectiveness in the complex environment of the host with its associated microbial communities.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Anna-Maria Dagher
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
27
|
Co-Operative Biofilm Interactions between Aspergillus fumigatus and Pseudomonas aeruginosa through Secreted Galactosaminogalactan Exopolysaccharide. J Fungi (Basel) 2022; 8:jof8040336. [PMID: 35448567 PMCID: PMC9030451 DOI: 10.3390/jof8040336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
The mold Aspergillus fumigatus and bacterium Pseudomonas aeruginosa form biofilms in the airways of individuals with cystic fibrosis. Biofilm formation by A. fumigatus depends on the self-produced cationic exopolysaccharide galactosaminogalactan (GAG), while P. aeruginosa biofilms can contain the cationic exopolysaccharide Pel. GAG and Pel are rendered cationic by deacetylation mediated by either the secreted deacetylase Agd3 (A. fumigatus) or the periplasmic deacetylase PelA (P. aeruginosa). Given the similarities between these polymers, the potential for biofilm interactions between these organisms were investigated. P. aeruginosa were observed to adhere to A. fumigatus hyphae in a GAG-dependent manner and to GAG-coated coverslips of A. fumigatus biofilms. In biofilm adherence assays, incubation of P. aeruginosa with A. fumigatus culture supernatants containing de-N-acetylated GAG augmented the formation of adherent P. aeruginosa biofilms, increasing protection against killing by the antibiotic colistin. Fluorescence microscopy demonstrated incorporation of GAG within P. aeruginosa biofilms, suggesting that GAG can serve as an alternate biofilm exopolysaccharide for this bacterium. In contrast, Pel-containing bacterial culture supernatants only augmented the formation of adherent A. fumigatus biofilms when antifungal inhibitory molecules were removed. This study demonstrates biofilm interaction via exopolysaccharides as a potential mechanism of co-operation between these organisms in chronic lung disease.
Collapse
|
28
|
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany AM, Haupenthal J, Köhnke J, Hartmann RW, Hirsch AKH. Substrate-Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202112295. [PMID: 34762767 PMCID: PMC9299988 DOI: 10.1002/anie.202112295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/11/2022]
Abstract
Extracellular virulence factors have emerged as attractive targets in the current antimicrobial resistance crisis. The Gram-negative pathogen Pseudomonas aeruginosa secretes the virulence factor elastase B (LasB), which plays an important role in the infection process. Here, we report a sub-micromolar, non-peptidic, fragment-like inhibitor of LasB discovered by careful visual inspection of structural data. Inspired by the natural LasB substrate, the original fragment was successfully merged and grown. The optimized inhibitor is accessible via simple chemistry and retained selectivity with a substantial improvement in activity, which can be rationalized by the crystal structure of LasB in complex with the inhibitor. We also demonstrate an improved in vivo efficacy of the optimized hit in Galleria mellonella larvae, highlighting the significance of this class of compounds as promising drug candidates.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Isabell Walter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Samir Yahiaoui
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Andreas M. Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Jesko Köhnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| |
Collapse
|
29
|
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany AM, Haupenthal J, Köhnke J, Hartmann RW, Hirsch AKH. Substratinspirierte Fragment‐Fusion und ‐Erweiterung führt zu wirksamen LasB‐Inhibitoren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cansu Kaya
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Isabell Walter
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Samir Yahiaoui
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Asfandyar Sikandar
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Alaa Alhayek
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Jelena Konstantinović
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Andreas M. Kany
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Jörg Haupenthal
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Jesko Köhnke
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Rolf W. Hartmann
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Anna K. H. Hirsch
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| |
Collapse
|
30
|
Uddin MB, Sajib EH, Hoque SF, Hassan MM, Ahmed SSU. Macrophages in respiratory system. RECENT ADVANCEMENTS IN MICROBIAL DIVERSITY 2022:299-333. [DOI: 10.1016/b978-0-12-822368-0.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
31
|
Short B, Delaney C, McKloud E, Brown JL, Kean R, Litherland GJ, Williams C, Martin SL, MacKay WG, Ramage G. Investigating the Transcriptome of Candida albicans in a Dual-Species Staphylococcus aureus Biofilm Model. Front Cell Infect Microbiol 2021; 11:791523. [PMID: 34888261 PMCID: PMC8650683 DOI: 10.3389/fcimb.2021.791523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Candida albicans is an opportunistic pathogen found throughout multiple body sites and is frequently co-isolated from infections of the respiratory tract and oral cavity with Staphylococcus aureus. Herein we present the first report of the effects that S. aureus elicits on the C. albicans transcriptome. Dual-species biofilms containing S. aureus and C. albicans mutants defective in ALS3 or ECE1 were optimised and characterised, followed by transcriptional profiling of C. albicans by RNA-sequencing (RNA-seq). Altered phenotypes in C. albicans mutants revealed specific interaction profiles between fungus and bacteria. The major adhesion and virulence proteins Als3 and Ece1, respectively, were found to have substantial effects on the Candida transcriptome in early and mature biofilms. Despite this, deletion of ECE1 did not adversely affect biofilm formation or the ability of S. aureus to interact with C. albicans hyphae. Upregulated genes in dual-species biofilms corresponded to multiple gene ontology terms, including those attributed to virulence, biofilm formation and protein binding such as ACE2 and multiple heat-shock protein genes. This shows that S. aureus pushes C. albicans towards a more virulent genotype, helping us to understand the driving forces behind the increased severity of C. albicans-S. aureus infections.
Collapse
Affiliation(s)
- Bryn Short
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom.,School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Christopher Delaney
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Emily McKloud
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Jason L Brown
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Ryan Kean
- Glasgow Biofilms Research Network, Glasgow, United Kingdom.,Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Gary J Litherland
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Craig Williams
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - S Lorraine Martin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Ireland
| | - William G MacKay
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biofilms Research Network, Glasgow, United Kingdom
| |
Collapse
|
32
|
O'Brien S, Baumgartner M, Hall AR. Species interactions drive the spread of ampicillin resistance in human-associated gut microbiota. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:256-266. [PMID: 34447576 PMCID: PMC8385247 DOI: 10.1093/emph/eoab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Background and objectives Slowing the spread of antimicrobial resistance is urgent if we are to continue treating infectious diseases successfully. There is increasing evidence microbial interactions between and within species are significant drivers of resistance. On one hand, cross-protection by resistant genotypes can shelter susceptible microbes from the adverse effects of antibiotics, reducing the advantage of resistance. On the other hand, antibiotic-mediated killing of susceptible genotypes can alleviate competition and allow resistant strains to thrive (competitive release). Here, by observing interactions both within and between species in microbial communities sampled from humans, we investigate the potential role for cross-protection and competitive release in driving the spread of ampicillin resistance in the ubiquitous gut commensal and opportunistic pathogen Escherichia coli. Methodology Using anaerobic gut microcosms comprising E.coli embedded within gut microbiota sampled from humans, we tested for cross-protection and competitive release both within and between species in response to the clinically important beta-lactam antibiotic ampicillin. Results While cross-protection gave an advantage to antibiotic-susceptible E.coli in standard laboratory conditions (well-mixed LB medium), competitive release instead drove the spread of antibiotic-resistant E.coli in gut microcosms (ampicillin boosted growth of resistant bacteria in the presence of susceptible strains). Conclusions and implications Competition between resistant strains and other members of the gut microbiota can restrict the spread of ampicillin resistance. If antibiotic therapy alleviates competition with resident microbes by killing susceptible strains, as here, microbiota-based interventions that restore competition could be a key for slowing the spread of resistance. Lay Summary Slowing the spread of global antibiotic resistance is an urgent task. In this paper, we ask how interactions between microbial species drive the spread of resistance. We show that antibiotic killing of susceptible microbes can free up resources for resistant microbes and allow them to thrive. Therefore, we should consider microbes in light of their social interactions to understand the spread of resistance.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK.,Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Michael Baumgartner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Alex R Hall
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
33
|
Abstract
In the past three decades, fungal respiratory colonization and fungal respiratory infections increasingly raised concern in cystic fibrosis (CF). Reasons for this are a better knowledge of the pathogenicity of fungi, whereby detection is sought in more and more CF centers, but also improvement of detection methods. However, differences in fungal detection rates within and between geographical regions exist and indicate the need for standardization of mycological examination of respiratory secretions. The still existing lack of standardization also complicates the assessment of fungal pathogenicity, relevance of fungal detection and risk factors for fungal infections. Nevertheless, numerous studies have now been conducted on differences in detection methods, epidemiology, risk factors, pathogenicity and therapy of fungal diseases in CF. Meanwhile, some research groups now have classified fungal disease entities in CF and developed diagnostic criteria as well as therapeutic guidelines.The following review presents an overview on fungal species relevant in CF. Cultural detection methods with their respective success rates as well as susceptibility testing will be presented, and the problem of increasing azole resistance in Aspergillus fumigatus will be highlighted. Next, current data and conflicting evidence on the epidemiology and risk factors for fungal diseases in patients with CF will be discussed. Finally, an overview of fungal disease entities in CF with their current definitions, diagnostic criteria and therapeutic options will be presented.
Collapse
|
34
|
Reece E, Bettio PHDA, Renwick J. Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10070827. [PMID: 34356747 PMCID: PMC8300716 DOI: 10.3390/antibiotics10070827] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most dominant pathogens in cystic fibrosis (CF) airway disease and contributes to significant inflammation, airway damage, and poorer disease outcomes. The CF airway is now known to be host to a complex community of microorganisms, and polymicrobial interactions have been shown to play an important role in shaping P. aeruginosa pathogenicity and resistance. P. aeruginosa can cause chronic infections that once established are almost impossible to eradicate with antibiotics. CF patients that develop chronic P. aeruginosa infection have poorer lung function, higher morbidity, and a reduced life expectancy. P. aeruginosa adapts to the CF airway and quickly develops resistance to several antibiotics. A perplexing phenomenon is the disparity between in vitro antimicrobial sensitivity testing and clinical response. Considering the CF airway is host to a diverse community of microorganisms or 'microbiome' and that these microorganisms are known to interact, the antimicrobial resistance and progression of P. aeruginosa infection is likely influenced by these microbial relationships. This review combines the literature to date on interactions between P. aeruginosa and other airway microorganisms and the influence of these interactions on P. aeruginosa tolerance to antimicrobials.
Collapse
|
35
|
Martiniano SL, Wagner BD, Brennan L, Wempe MF, Anderson PL, Daley CL, Anthony M, Nick JA, Sagel SD. Pharmacokinetics of oral antimycobacterials and dosing guidance for Mycobacterium avium complex treatment in cystic fibrosis. J Cyst Fibros 2021; 20:772-778. [PMID: 34030986 DOI: 10.1016/j.jcf.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Treatment failure of Mycobacterium avium complex (MAC) pulmonary disease occurs in about 30% of people with cystic fibrosis (CF) and may be a result of abnormal drug concentrations. METHODS Prospective, cross-over, single-dose PK study of 20 pancreatic insufficient individuals with CF and 10 healthy controls (HC). CF subjects received simultaneous doses of oral azithromycin, ethambutol, and rifampin in the fasting state and with food and pancreatic enzymes, separated by two weeks. HC received fasting doses only. A non-compartmental model was used to estimate PK parameters of drugs and metabolites. RESULTS Azithromycin maximum concentration (Cmax ) was higher and rifampin Cmax was lower in fasting CF subjects compared to HC, while other PK measures, including those for ethambutol, were similar. Addition of food and enzymes did not improve the Cmax of the antimycobacterial drugs. Nineteen of 20 CF subjects had one or more abnormal Cmax z-scores in either the fasting or fed state (or both), when compared to HC. CONCLUSION PK profiles of azithromycin and ethambutol were similar between CF and HC, except azithromycin Cmax was slightly higher in people with CF after a single dose. Rifampin PK parameters were altered in persons with CF. Addition of food and enzymes in CF subjects did not improve PK parameters. Standard dosing guidelines should be used as a starting point for people with CF initiating MAC therapy and therapeutic drug monitoring should be routinely performed to prevent the possibility of treatment failure due to abnormal drug concentrations. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02372383 Prior abstract publication: 1. Martiniano S, Wagner B, Brennan L, Wempe M, Anderson P, Nick J, Sagel S. Pharmacokinetics of oral MAC antibiotics in cystic fibrosis. Am J Resp Crit Care Med A4842-A4842, 2017. 2. Martiniano SL, Wagner BD, Brennan L, Wempe MF, Anderson PL, Nick JA, Sagel SD. Pharmacokinetics of oral MAC antibiotics in cystic fibrosis. J Cyst Fibros 16: S52-53, 2017.
Collapse
Affiliation(s)
- Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E. 16th Ave. B-395 Aurora, CO 80045, United States.
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO 80045, United States
| | - Laney Brennan
- Department of Pharmacy, Children's Hospital Colorado, Aurora, CO 80045, United States
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, United States
| | - Peter L Anderson
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, United States
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO and University of Colorado School of Medicine, Aurora, CO 80206, United States
| | - Meg Anthony
- Department of Pharmacy, Children's Hospital Colorado, Aurora, CO 80045, United States
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO and University of Colorado School of Medicine, Aurora, CO 80206, United States
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E. 16th Ave. B-395 Aurora, CO 80045, United States
| |
Collapse
|
36
|
Willis JR, Saus E, Iraola-Guzmán S, Cabello-Yeves E, Ksiezopolska E, Cozzuto L, Bejarano LA, Andreu-Somavilla N, Alloza-Trabado M, Blanco A, Puig-Sola A, Broglio E, Carolis C, Ponomarenko J, Hecht J, Gabaldón T. Citizen-science based study of the oral microbiome in Cystic fibrosis and matched controls reveals major differences in diversity and abundance of bacterial and fungal species. J Oral Microbiol 2021; 13:1897328. [PMID: 34104346 PMCID: PMC8143623 DOI: 10.1080/20002297.2021.1897328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cystic fibrosis (CF) is an autosomal genetic disease, associated with the production of excessively thick mucosa and with life-threatening chronic lung infections. The microbiota of the oral cavity can act as a reservoir or as a barrier for infectious microorganisms that can colonize the lungs. However, the specific composition of the oral microbiome in CF is poorly understood.Methods: In collaboration with CF associations in Spain, we collected oral rinse samples from 31 CF persons (age range 7-47) and matched controls, and then performed 16S rRNA metabarcoding and high-throughput sequencing, combined with culture and proteomics-based identification of fungi to survey the bacterial and fungal oral microbiome.Results: We found that CF is associated with less diverse oral microbiomes, which were characterized by higher prevalence of Candida albicans and differential abundances of a number of bacterial taxa that have implications in both the connection to lung infections in CF, as well as potential oral health concerns, particularly periodontitis and dental caries.Conclusion: Overall, our study provides a first global snapshot of the oral microbiome in CF. Future studies are required to establish the relationships between the composition of the oral and lung microbiomes in CF.
Collapse
Affiliation(s)
- Jesse R Willis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Cabello-Yeves
- Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Bejarano
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Andreu-Somavilla
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miriam Alloza-Trabado
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrea Blanco
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Puig-Sola
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elisabetta Broglio
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
37
|
Hughes DA, Archangelidi O, Coates M, Armstrong-James D, Elborn SJ, Carr SB, Davies JC. Clinical characteristics of Pseudomonas and Aspergillus co-infected cystic fibrosis patients: A UK registry study. J Cyst Fibros 2021; 21:129-135. [PMID: 33958279 DOI: 10.1016/j.jcf.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa (Pa) and Aspergillus species (Asp) are the most common bacterial and fungal organisms respectively in CF airways. Our aim was to examine impacts of Asp infection and Pa/Asp co-infection. METHODS Patients on the UK CF Registry in 2016 were grouped into: absent (Pa-), intermittent (Pai) or chronic Pa (Pac), each with Asp positive (Asp+) or negative (Asp-). Primary outcome was best percentage predicted FEV1 (ppFEV1) that year. Secondary outcomes were intravenous (IV) antibiotic courses, growth (height, weight, BMI) and additional disease complications. Associations between outcomes and infection-status were assessed using regression models adjusting for significant confounders (age, sex, Phe508del homozygosity and CF-related diabetes (CFRD)). RESULTS 9,270 patients were included (median age 19 [IQR 9-30] years, 54% male, 50% Phe508del/F508del). 4,142 patients (45%) isolated Pa, 1,460 (16%) Asp. Pa-/Asp+ subjects had an adjusted ppFEV1 that was 5.9% lower than Pa-/Asp- (p < 0.0001). In patients with Pai or Pac, there was no additional impact of Asp on ppFEV1. However, there was a higher probability that Pac/Asp+ patients had required IV antibiotics than Pac/Asp- group (OR 1.23 [1.03-1.48]). Low BMI, ABPA, CF-liver disease and CFRD were all more frequent with Asp alone than Pa-/Asp-, though not more common in Pac/Asp+ than Pac/Asp-. CONCLUSIONS Co-infection with Pa and Asp was not associated with reduced lung function compared with Pa alone, but was associated with additional use of IV antibiotics. Asp infection itself is associated with several important indicators of disease severity. Longitudinal analyses should explore the impact of co-infection on disease progression.
Collapse
Affiliation(s)
- Dominic A Hughes
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK.
| | | | - Matthew Coates
- National Heart & Lung Institute, Imperial College London, UK
| | - Darius Armstrong-James
- Royal Brompton and Harefield Hospitals, London, UK; Department of Infectious Diseases, Imperial College London, UK
| | | | - Siobhán B Carr
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK
| |
Collapse
|
38
|
Menetrey Q, Sorlin P, Jumas-Bilak E, Chiron R, Dupont C, Marchandin H. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: Emerging Pathogens Well-Armed for Life in the Cystic Fibrosis Patients' Lung. Genes (Basel) 2021; 12:610. [PMID: 33919046 PMCID: PMC8142972 DOI: 10.3390/genes12050610] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with cystic fibrosis (CF), the lung is a remarkable ecological niche in which the microbiome is subjected to important selective pressures. An inexorable colonization by bacteria of both endogenous and environmental origin is observed in most patients, leading to a vicious cycle of infection-inflammation. In this context, long-term colonization together with competitive interactions among bacteria can lead to over-inflammation. While Pseudomonas aeruginosa and Staphylococcus aureus, the two pathogens most frequently identified in CF, have been largely studied for adaptation to the CF lung, in the last few years, there has been a growing interest in emerging pathogens of environmental origin, namely Achromobacter xylosoxidans and Stenotrophomonas maltophilia. The aim of this review is to gather all the current knowledge on the major pathophysiological traits, their supporting mechanisms, regulation and evolutionary modifications involved in colonization, virulence, and competitive interactions with other members of the lung microbiota for these emerging pathogens, with all these mechanisms being major drivers of persistence in the CF lung. Currently available research on A. xylosoxidans complex and S. maltophilia shows that these emerging pathogens share important pathophysiological features with well-known CF pathogens, making them important members of the complex bacterial community living in the CF lung.
Collapse
Affiliation(s)
- Quentin Menetrey
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, 34093 Montpellier, France; (Q.M.); (P.S.)
| | - Pauline Sorlin
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, 34093 Montpellier, France; (Q.M.); (P.S.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Department d’Hygiène Hospitalière, CHU Montpellier, 34093 Montpellier, France; (E.J.-B.); (C.D.)
| | - Raphaël Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, 34093 Montpellier, France;
| | - Chloé Dupont
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Department d’Hygiène Hospitalière, CHU Montpellier, 34093 Montpellier, France; (E.J.-B.); (C.D.)
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Nîmes, France
- UMR 5151 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
| |
Collapse
|
39
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
40
|
Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, Stevanović MM. Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. Front Bioeng Biotechnol 2021; 8:624621. [PMID: 33569376 PMCID: PMC7869925 DOI: 10.3389/fbioe.2020.624621] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023] Open
Abstract
Although selenium nanoparticles (SeNPs) have gained attention in the scientific community mostly through investigation of their anticancer activity, a great potential of this nanomaterial was recognized recently regarding its antimicrobial activity. The particle form, size, and surface chemistry have been recognized as crucial parameters determining the interaction of nanomaterials with biological entities. Furthermore, considering a narrow boundary between beneficial and toxic effects for selenium per se, it is clear that investigations of biomedical applications of SeNPs are very demanding and must be done with great precautions. The goal of this work is to evaluate the effects of SeNPs surface chemistry and structure on antimicrobial activity against several common bacterial strains, including Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 6633), and Kocuria rhizophila (ATCC 9341), as well as Escherichia coli (ATCC 8739), Salmonella Abony (NCTC 6017), Klebsiella pneumoniae (NCIMB 9111) and Pseudomonas aeruginosa (ATCC 9027), and the standard yeast strain Candida albicans (ATCC 10231). Three types of SeNPs were synthesized by chemical reduction approach using different stabilizers and reducing agents: (i) bovine serum albumin (BSA) + ascorbic acid, (ii) chitosan + ascorbic acid, and (iii) with glucose. A thorough physicochemical characterization of the obtained SeNPs was performed to determine the effects of varying synthesis parameters on their morphology, size, structure, and surface chemistry. All SeNPs were amorphous, with spherical morphology and size in the range 70–300 nm. However, the SeNPs obtained under different synthesis conditions, i.e. by using different stabilizers as well as reducing agents, exhibited different antimicrobial activity as well as cytotoxicity which are crucial for their applications. In this paper, the antimicrobial screening of the selected systems is presented, which was determined by the broth microdilution method, and inhibitory influence on the production of monomicrobial and dual-species biofilm was evaluated. The potential mechanism of action of different systems is proposed. Additionally, the cytotoxicity of SeNPs was examined on the MRC-5 cell line, in the same concentration interval as for antimicrobial testing. It was shown that formulation SeNPs-BSA expressed a significantly lower cytotoxic effect than the other two formulations.
Collapse
Affiliation(s)
- Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dušan Ušjak
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Marina T Milenković
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Kai Zheng
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Magdalena M Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
41
|
Ceresa C, Rinaldi M, Tessarolo F, Maniglio D, Fedeli E, Tambone E, Caciagli P, Banat IM, Diaz De Rienzo MA, Fracchia L. Inhibitory Effects of Lipopeptides and Glycolipids on C. albicans-Staphylococcus spp. Dual-Species Biofilms. Front Microbiol 2021; 11:545654. [PMID: 33519721 PMCID: PMC7838448 DOI: 10.3389/fmicb.2020.545654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms strongly resist host immune responses and antimicrobial treatments and are frequently responsible for chronic infections in peri-implant tissues. Biosurfactants (BSs) have recently gained prominence as a new generation of anti-adhesive and antimicrobial agents with great biocompatibility and were recently suggested for coating implantable materials in order to improve their anti-biofilm properties. In this study, the anti-biofilm activity of lipopeptide AC7BS, rhamnolipid R89BS, and sophorolipid SL18 was evaluated against clinically relevant fungal/bacterial dual-species biofilms (Candida albicans, Staphylococcus aureus, Staphylococcus epidermidis) through quantitative and qualitative in vitro tests. C. albicans-S. aureus and C. albicans-S. epidermidis cultures were able to produce a dense biofilm on the surface of the polystyrene plates and on medical-grade silicone discs. All tested BSs demonstrated an effective inhibitory activity against dual-species biofilms formation in terms of total biomass, cell metabolic activity, microstructural architecture, and cell viability, up to 72 h on both these surfaces. In co-incubation conditions, in which BSs were tested in soluble form, rhamnolipid R89BS (0.05 mg/ml) was the most effective among the tested BSs against the formation of both dual-species biofilms, reducing on average 94 and 95% of biofilm biomass and metabolic activity at 72 h of incubation, respectively. Similarly, rhamnolipid R89BS silicone surface coating proved to be the most effective in inhibiting the formation of both dual-species biofilms, with average reductions of 93 and 90%, respectively. Scanning electron microscopy observations showed areas of treated surfaces that were free of microbial cells or in which thinner and less structured biofilms were present, compared to controls. The obtained results endorse the idea that coating of implant surfaces with BSs may be a promising strategy for the prevention of C. albicans-Staphylococcus spp. colonization on medical devices, and can potentially contribute to the reduction of the high economic efforts undertaken by healthcare systems for the treatment of these complex fungal-bacterial infections.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Maurizio Rinaldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Francesco Tessarolo
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Devid Maniglio
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Erica Tambone
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy
| | - Patrizio Caciagli
- Section of Electron Microscopy, Department of Medicine Laboratory, Azienda Provinciale per i Servizi Sanitari di Trento, Trento, Italy
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, United Kingdom
| | - Mayri Alessandra Diaz De Rienzo
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
42
|
Mohagheghzadeh N, Hashemizadeh Z, Khashei R, Kholdi S, Mohebi S, Motamedifar M. High occurrence of antibiotic resistance and biofilm-formation among Stenotrophomonas maltophilia isolated from a tertiary hospital in Southwest of Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Alcaraz E, Centrón D, Camicia G, Quiroga MP, Di Conza J, Passerini de Rossi B. Stenotrophomonas maltophilia phenotypic and genotypic features through 4-year cystic fibrosis lung colonization. J Med Microbiol 2020; 70. [PMID: 33258754 DOI: 10.1099/jmm.0.001281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Introduction. Stenotrophomonas maltophilia has emerged as one of the most common multi-drug-resistant pathogens isolated from people with cystic fibrosis (CF). However, its adaptation over time to CF lungs has not been fully established.Hypothesis. Sequential isolates of S. maltophilia from a Brazilian adult patient are clonally related and show a pattern of adaptation by loss of virulence factors.Aim. To investigate antimicrobial susceptibility, clonal relatedness, mutation frequency, quorum sensing (QS) and selected virulence factors in sequential S. maltophilia isolates from a Brazilian adult patient attending a CF referral centre in Buenos Aires, Argentina, between May 2014 and May 2018.Methodology. The antibiotic resistance of 11 S. maltophilia isolates recovered from expectorations of an adult female with CF was determined. Clonal relatedness, mutation frequency, QS variants (RpfC-RpfF), QS autoinducer (DSF) and virulence factors were investigated in eight viable isolates.Results. Seven S. maltophilia isolates were resistant to trimethoprim-sulfamethoxazole and five to levofloxacin. All isolates were susceptible to minocycline. Strong, weak and normomutators were detected, with a tendency to decreased mutation rate over time. XbaI PFGE revealed that seven isolates belong to two related clones. All isolates were RpfC-RpfF1 variants and DSF producers. Only two isolates produced weak biofilms, but none displayed swimming or twitching motility. Four isolates showed proteolytic activity and amplified stmPr1 and stmPr2 genes. Only the first three isolates were siderophore producers. Four isolates showed high resistance to oxidative stress, while the last four showed moderate resistance.Conclusion. The present study shows the long-time persistence of two related S. maltophilia clones in an adult female with CF. During the adaptation of the prevalent clones to the CF lungs over time, we identified a gradual loss of virulence factors that could be associated with the high amounts of DSF produced by the evolved isolates. Further, a decreased mutation rate was observed in the late isolates. The role of all these adaptations over time remains to be elucidated from a clinical perspective, probably focusing on the damage they can cause to CF lungs.
Collapse
Affiliation(s)
- Eliana Alcaraz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| | - Daniela Centrón
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Gabriela Camicia
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Paula Quiroga
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - José Di Conza
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Beatriz Passerini de Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| |
Collapse
|
44
|
Garipov MR, Sabirova AE, Pavelyev RS, Shtyrlin NV, Lisovskaya SA, Bondar OV, Laikov AV, Romanova JG, Bogachev MI, Kayumov AR, Shtyrlin YG. Targeting pathogenic fungi, bacteria and fungal-bacterial biofilms by newly synthesized quaternary ammonium derivative of pyridoxine and terbinafine with dual action profile. Bioorg Chem 2020; 104:104306. [PMID: 33011535 DOI: 10.1016/j.bioorg.2020.104306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/29/2023]
Abstract
Many pathogenic bacteria and microscopic fungi form rigid polymicrobial biofilms this way enhancing their resistant to treatment. A series of novel pyridoxine-based quaternary ammonium derivatives of terbinafine characterized by both antifungal and antibacterial activities was designed. The leading compound named KFU-127 exhibits promising antifungal and antibacterial activities against various bacteria and micromycetes in both planktonic and biofilm-embedded forms demonstrating MIC values comparable with those of conventional antifungals and antimicrobials. Similar to other antiseptics like benzalkonium chloride and miramistin, KFU-127 is considerably toxic for eukaryotic cells that limits is application to topical treatment options. On the other hand, KFU-127 reduces the number of viable biofilm-embedded bacteria and C. albicans by 3 orders of magnitude at concentrations 2-4 times lower than those of reference drugs and successfully eradicates S. aureus-C. albicans mixed biofilms. The mechanism of antimicrobial action of KFU-127 is bimodal including both membrane integrity damage and pyridoxal-dependent enzymes targeting. We expect that this bilateral mechanism would result in lower rates of resistance development in both fungal and bacterial pathogens. Taken together, our data suggest KFU-127 as a new promising broad spectrum topical antimicrobial capable of one-shot targeting of bacterial and fungal-bacterial biofilms.
Collapse
Affiliation(s)
- Marsel R Garipov
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Alina E Sabirova
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Roman S Pavelyev
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Nikita V Shtyrlin
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Svetlana A Lisovskaya
- Kazan Scientific Research Institute of Epidemiology and Microbiology, 67 Bolshaya Krasnaya str, 420015 Kazan, Russian Federation; Kazan State Medical University
| | - Oksana V Bondar
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Aleksandr V Laikov
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Julia G Romanova
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Mikhail I Bogachev
- St Petersburg Electrotechnical University, 5 Professor Popov str., 197376 St. Petersburg, Russian Federation
| | - Airat R Kayumov
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation.
| | - Yurii G Shtyrlin
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation.
| |
Collapse
|
45
|
Arvind B, Medigeshi GR, Kapil A, Xess I, Singh U, Lodha R, Kabra SK. Aetiological agents for pulmonary exacerbations in children with cystic fibrosis: An observational study from a tertiary care centre in northern India. Indian J Med Res 2020; 151:65-70. [PMID: 32134016 PMCID: PMC7055172 DOI: 10.4103/ijmr.ijmr_1275_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives: Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF). The infection occurs with a unique spectrum of bacterial pathogens that are usually acquired in an age-dependent fashion. The objective of this study was to find out the aetiological agents in respiratory specimens from children with CF during pulmonary exacerbation and relate with demographic variables. Methods: In this observational study, airway secretions from children (n=104) with CF presenting with pulmonary exacerbations were collected and tested for bacteria, fungi, mycobacteria and viral pathogens using appropriate laboratory techniques. The frequencies of isolation of various organisms were calculated and associated with various demographic profiles. Results: Bacteria were isolated in 37 (35.5%) and viral RNA in 27 (29.3%) children. Pseudomonas was the most common bacteria grown in 31 (29.8%) followed by Burkholderia cepacia complex (Bcc) in three (2.8%) patients. Among viruses, Rhinovirus was the most common, identified in 16 (17.4%) samples followed by coronavirus in four (4.3%). Fungi and mycobacteria were isolated from 23 (22.1%) and four (3.8%) children, respectively. Aspergillus flavus was the most common fungus isolated in 13 (12.5%) children. Interpretation & conclusions: Pseudomonas was the most common organism isolated during exacerbation. Non-tuberculous mycobacteria were not isolated, whereas infection with Bcc and Mycobacterium tuberculosis was observed, which could probably have a role in CF morbidity. Polymicrobial infections were associated with severe exacerbations.
Collapse
Affiliation(s)
- Balaji Arvind
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Immaculata Xess
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Urvashi Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Lattanzi C, Messina G, Fainardi V, Tripodi MC, Pisi G, Esposito S. Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis: An Update on the Newest Diagnostic Tools and Therapeutic Approaches. Pathogens 2020; 9:E716. [PMID: 32878014 PMCID: PMC7559707 DOI: 10.3390/pathogens9090716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis (CF), the most common autosomal-recessive genetic disease in the Caucasian population, is characterized by frequent respiratory infections and progressive lung disease. Fungal species are commonly found in patients with CF, and among them, Aspergillus fumigatus is the most frequently isolated. While bacteria, particularly Pseudomonas aeruginosa, have a well-established negative effect on CF lung disease, the impact of fungal infections remains unclear. In patients with CF, inhalation of Aspergillus conidia can cause allergic bronchopulmonary aspergillosis (ABPA), a Th2-mediated lung disease that can contribute to disease progression. Clinical features, diagnostic criteria and treatment of ABPA are still a matter of debate. Given the consequences of a late ABPA diagnosis or the risk of ABPA overdiagnosis, it is imperative that the diagnostic criteria guidelines are reviewed and standardized. Along with traditional criteria, radiological features are emerging as tools for further classification as well as novel immunological tests. Corticosteroids, itraconazole and voriconazole continue to be the bedrock of ABPA therapy, but other molecules, such as posaconazole, vitamin D, recombinant INF-γ and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulators, have been showing positive results. However, few studies have been conducted recruiting CF patients, and more research is needed to improve the prevention and the classification of clinical manifestations as well as to personalize treatment. Early recognition and early treatment of fungal infections may be fundamental to prevent progression of CF disease. The aim of this narrative review is to give an update on ABPA in children with CF.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.L.); (G.M.); (V.F.); (M.C.T.); (G.P.)
| |
Collapse
|
47
|
Bacteria Modify Candida albicans Hypha Formation, Microcolony Properties, and Survival within Macrophages. mSphere 2020; 5:5/4/e00689-20. [PMID: 32759336 PMCID: PMC7407070 DOI: 10.1128/msphere.00689-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections. Phagocytic cells are crucial components of the innate immune system preventing Candida albicans mucosal infections. Streptococcus gordonii and Pseudomonas aeruginosa often colonize mucosal sites, along with C. albicans, and yet interkingdom interactions that might alter the survival and escape of fungi from macrophages are not understood. Murine macrophages were coinfected with S. gordonii or P. aeruginosa, along with C. albicans to evaluate changes in fungal survival. S. gordonii increased C. albicans survival and filamentation within macrophage phagosomes, while P. aeruginosa reduced fungal survival and filamentation. Coinfection with S. gordonii resulted in greater escape of C. albicans from macrophages and increased size of fungal microcolonies formed on macrophage monolayers, while coinfection with P. aeruginosa reduced macrophage escape and produced smaller microcolonies. Microcolonies formed in the presence of P. aeruginosa cells outside macrophages also had significantly reduced size that was not found with P. aeruginosa phenazine deletion mutants. S. gordonii cells, as well as S. gordonii heat-fixed culture supernatants, increased C. albicans microcolony biomass but also resulted in microcolony detachment. A heat-resistant, trypsin-sensitive pheromone processed by S. gordonii Eep was needed for these effects. The majority of fungal microcolonies formed on human epithelial monolayers with S. gordonii supernatants developed as large floating structures with no detectable invasion of epithelium, along with reduced gene expression of C. albicansHYR1, EAP1, and HWP2 adhesins. However, a subset of C. albicans microcolonies was smaller and had greater epithelial invasiveness compared to microcolonies grown without S. gordonii. Thus, bacteria can alter the killing and escape of C. albicans from macrophages and contribute to changes in C. albicans pathogenicity. IMPORTANCECandida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections.
Collapse
|
48
|
Warncke P, Fink S, Wiegand C, Hipler UC, Fischer D. A shell-less hen's egg test as infection model to determine the biocompatibility and antimicrobial efficacy of drugs and drug formulations against Pseudomonas aeruginosa. Int J Pharm 2020; 585:119557. [PMID: 32565284 DOI: 10.1016/j.ijpharm.2020.119557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
Abstract
A shell-less hen's egg based infection test with Pseudomonas aeruginosa was established to investigate the antimicrobial efficacy of drugs and drug formulations close to the in vivo situation. The test system using preincubated fertilized chicken eggs transferred in petri dishes was optimized with respect to the controlled local application of liquid materials and bacteria as well as the bacterial cultivation conditions. The applicability of the ex ovo infection model was confirmed with antimicrobial susceptibility tests using tobramycin, ciprofloxacin and meropenem. The validity of the ex ovo data was demonstrated by correlation with in vitro data of the CellTiter®-Blue and the microplate laser nephelometry assay. Real-time imaging of the progress of infection and the efficacy of the treatment could be realized by the MolecuLight i:X™ technique. Furthermore, in a proof-of-concept efficacy, biocompatibility and even the presence of irritants were determined side-by-side using commercial ophthalmics. In conclusion, this egg based infection model could bridge the gap between in vitro and in vivo models for the evaluation of antimicrobial susceptibility to reduce animal tests according to the 3R concept.
Collapse
Affiliation(s)
- Paul Warncke
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Sarah Fink
- Department of Dermatology, University Medical Center Jena, Erfurter Str 35, 07740 Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Medical Center Jena, Erfurter Str 35, 07740 Jena, Germany
| | - Uta-Christina Hipler
- Department of Dermatology, University Medical Center Jena, Erfurter Str 35, 07740 Jena, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| |
Collapse
|
49
|
Breuer O, Schultz A, Turkovic L, de Klerk N, Keil AD, Brennan S, Harrison J, Robertson C, Robinson PJ, Sly PD, Ranganathan S, Stick SM, Caudri D. Changing Prevalence of Lower Airway Infections in Young Children with Cystic Fibrosis. Am J Respir Crit Care Med 2020; 200:590-599. [PMID: 30811949 DOI: 10.1164/rccm.201810-1919oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: Historical studies suggest that airway infection in cystic fibrosis initiates with Staphylococcus aureus and Haemophilus influenzae, with later emergence of Pseudomonas aeruginosa. Aspergillus species are regarded as relatively infrequent, late-occurring infections.Objectives: To assess the prevalence and change in prevalence of early lower airway infections in a modern cohort of children with cystic fibrosis.Methods: All infants diagnosed with cystic fibrosis after newborn screening participating in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) cohort study between 2000 and 2018 were included. Participants prospectively underwent BAL at 3-6 months, 1 year, and annually up to 6 years of age. Lower airway infection prevalence was described. Changes in prevalence patterns were assessed longitudinally using generalized estimating equations controlling for age and repeated visits.Measurements and Main Results: A total of 380 infants underwent 1,759 BALs. The overall prevalence and median age of first acquisition of the most common infections were as follows: S. aureus, 11%, 2.5 years; P. aeruginosa, 8%, 2.4 years; Aspergillus species, 11%, 3.2 years; and H. influenzae, 9%, 3.1 years. During the study, a significant decrease in prevalence of P. aeruginosa (P < 0.001) and S. aureus (P < 0.001) was observed with a significant change toward more aggressive treatment. Prevalence of Aspergillus infections did not significantly change (P = 0.669).Conclusions: Aspergillus species and P. aeruginosa are commonly present in the lower airways from infancy. The decrease in prevalence of P. aeruginosa and S. aureus since 2000, coinciding with a more aggressive therapeutic approach, has resulted in Aspergillus becoming the most commonly isolated pathogen in young children. Further research is warranted to understand the implication of these findings.
Collapse
Affiliation(s)
- Oded Breuer
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and.,Perth Children's Hospital, Perth, Australia
| | - Andre Schultz
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and.,Division of Paediatric and Child Health, Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Perth Children's Hospital, Perth, Australia
| | - Lidija Turkovic
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and
| | - Nicholas de Klerk
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and
| | - Anthony D Keil
- Perth Children's Hospital, Perth, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - Siobhain Brennan
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and
| | - Joanne Harrison
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Colin Robertson
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Philip J Robinson
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia; and
| | - Sarath Ranganathan
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Stephen M Stick
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and.,Division of Paediatric and Child Health, Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Perth Children's Hospital, Perth, Australia
| | - Daan Caudri
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and.,Perth Children's Hospital, Perth, Australia.,Department of Pediatrics/Respiratory Medicine, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
50
|
Mukherjee K, Khatua B, Mandal C. Sialic Acid-Siglec-E Interactions During Pseudomonas aeruginosa Infection of Macrophages Interferes With Phagosome Maturation by Altering Intracellular Calcium Concentrations. Front Immunol 2020; 11:332. [PMID: 32184783 PMCID: PMC7059019 DOI: 10.3389/fimmu.2020.00332] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/10/2020] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is commonly associated with nosocomial and chronic infections of lungs. We have earlier demonstrated that an acidic sugar, sialic acid, is present in PA which is recognized and bound by sialic acid binding immunoglobulin type lectins (siglecs) expressed on neutrophils. Here, we have tried to gain a detailed insight into the immunosuppressive role of sialic acid-siglec interactions in macrophage-mediated clearance of sialylated PA (PA+Sia). We have demonstrated that PA+Sia shows enhanced binding (~1.5-fold) to macrophages due to additional interactions between sialic acids and siglec-E and exhibited more phagocytosis. However, internalization of PA+Sia is associated with a reduction in respiratory burst and increase in anti-inflammatory cytokines secretion which is reversed upon desialylation of the bacteria. Phagocytosis of PA+Sia is also associated with reduced intracellular calcium ion concentrations and altered calcium-dependent signaling which negatively affects phagosome maturation. Consequently, although more PA+Sia was localized in early phagosomes (Rab5 compartment), only fewer bacteria reach into the late phagosomal compartment (Rab7). Possibly, this leads to reduced phagosome lysosome fusion where reduced numbers of PA+Sia are trafficked into lysosomes, compared to PA−Sia. Thus, internalized PA+Sia remain viable and replicates intracellularly in macrophages. We have also demonstrated that such siglec-E-sialic acid interaction recruited SHP-1/SHP-2 phosphatases which modulate MAPK and NF-κB signaling pathways. Disrupting sialic acid-siglec-E interaction by silencing siglec-E in macrophages results in improved bactericidal response against PA+Sia characterized by robust respiratory burst, enhanced intracellular calcium levels and nuclear translocation of p65 component of NF-κB complex leading to increased pro-inflammatory cytokine secretion. Taken together, we have identified that sialic acid-siglec-E interactions is another pathway utilized by PA in order to suppress macrophage antimicrobial responses and inhibit phagosome maturation, thereby persisting as an intracellular pathogen in macrophages.
Collapse
Affiliation(s)
- Kaustuv Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Biswajit Khatua
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|