1
|
Meirelles LA, Vayena E, Debache A, Schmidt E, Rossy T, Distler T, Hatzimanikatis V, Persat A. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat Microbiol 2024:10.1038/s41564-024-01842-3. [PMID: 39455898 DOI: 10.1038/s41564-024-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Pseudomonas aeruginosa frequently causes antibiotic-recalcitrant pneumonia, but the mechanisms driving its adaptation during human infections remain unclear. To reveal the selective pressures and adaptation strategies at the mucosal surface, here we investigated P. aeruginosa growth and antibiotic tolerance in tissue-engineered airways by transposon insertion sequencing (Tn-seq). Metabolic modelling based on Tn-seq data revealed the nutritional requirements for P. aeruginosa growth, highlighting reliance on glucose and lactate and varying requirements for amino acid biosynthesis. Tn-seq also revealed selection against biofilm formation during mucosal growth in the absence of antibiotics. Live imaging in engineered organoids showed that biofilm-dwelling cells remained sessile while colonizing the mucosal surface, limiting nutrient foraging and reduced growth. Conversely, biofilm formation increased antibiotic tolerance at the mucosal surface. Moreover, mutants with exacerbated biofilm phenotypes protected less tolerant but more cytotoxic strains, contributing to phenotypic heterogeneity. P. aeruginosa must therefore navigate conflicting physical and biological selective pressures to establish chronic infections.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Auriane Debache
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Schmidt
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamara Rossy
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania Distler
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
2
|
Coluccio A, Lopez Palomera F, Spero MA. Anaerobic bacteria in chronic wounds: Roles in disease, infection and treatment failure. Wound Repair Regen 2024. [PMID: 39129662 DOI: 10.1111/wrr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Infection is among the most common factors that impede wound healing, yet standard treatments routinely fail to resolve chronic wound infections. The chronic wound environment is largely hypoxic/anoxic, and wounds are predominantly colonised by facultative and obligate anaerobic bacteria. Oxygen (O2) limitation is an underappreciated driver of microbiota composition and behaviour in chronic wounds. In this perspective article, we examine how anaerobic bacteria and their distinct physiologies support persistent, antibiotic-recalcitrant infections. We describe the anaerobic energy metabolisms bacteria rely on for long-term survival in the wound environment, and why many antibiotics become less effective under hypoxic conditions. We also discuss obligate anaerobes, which are among the most prevalent taxa to colonise chronic wounds, yet their potential roles in influencing the microbial community and wound healing have been overlooked. All of the most common obligate anaerobes found in chronic wounds are opportunistic pathogens. We consider how these organisms persist in the wound environment and interface with host physiology to hinder wound healing processes or promote chronic inflammation. Finally, we apply our understanding of anaerobic physiologies to evaluate current treatment practices and to propose new strategies for treating chronic wound infections.
Collapse
Affiliation(s)
- Alison Coluccio
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | - Melanie A Spero
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
3
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY Confer Tolerance to an Interspecies Redox-Active Antimicrobial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601769. [PMID: 39040146 PMCID: PMC11261909 DOI: 10.1101/2024.07.02.601769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been characterized, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. The transcriptional response of a pyocyanin tolerant CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. Firstly, the CodY mutant strongly suppressed metabolism, by downregulating pathways associated with core metabolism, especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Secondly, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain. Together, these results suggest that both transcriptional responses likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Atteih SE, Armbruster CR, Hilliam Y, Rapsinski GJ, Bhusal JK, Krainz LL, Gaston JR, DuPont M, Zemke AC, Alcorn JF, Moore JA, Cooper VS, Lee SE, Forno E, Bomberger JM. Effects of highly effective modulator therapy on the dynamics of the respiratory mucosal environment and inflammatory response in cystic fibrosis. Pediatr Pulmonol 2024; 59:1266-1273. [PMID: 38353361 PMCID: PMC11058019 DOI: 10.1002/ppul.26898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/07/2024] [Accepted: 01/27/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND While the widespread initiation of elexacaftor/tezacaftor/ivacaftor (ETI) has led to dramatic clinical improvements among persons with cystic fibrosis (pwCF), little is known about how ETI affects the respiratory mucosal inflammatory and physiochemical environment, or how these changes relate to lung function. METHODS We performed a prospective, longitudinal study of adults with CF and chronic rhinosinusitis (CF-CRS) followed at our CF center (n = 18). Endoscopic upper respiratory tract (paranasal sinus) aspirates from multiple visit dates, both pre- and post-ETI initiation, were collected and tested for cytokines, metals, pH, and lactate levels. Generalized estimating equations were used to identify relationships between ETI and upper respiratory tract (URT) biomarker levels, and between URT biomarkers and lung function or clinical sinus parameters. RESULTS ETI was associated with decreased upper respiratory mucosal cytokines B-cell activating factor (BAFF), IL-12p40, IL-32, IL-8, IL-22 and soluble tumor necrosis factor-1 (sTNFR1), and an increase in a proliferation-inducing ligand (APRIL) and IL-19. ETI was also associated with decreased URT levels of copper, manganese, and zinc. In turn, lower URT levels of BAFF, IL-8, lactate, and potassium were each associated with ~1.5% to 4.3% improved forced expiratory volume in 1 s (FEV1), while higher levels of IFNγ, iron, and selenium were associated with ~2% to 10% higher FEV1. CONCLUSIONS Our observations suggest a dampening of inflammatory signals and restriction in microbial nutrients in the upper respiratory tract with ETI. These findings improve our understanding of how ETI impacts the mucosal environment in the respiratory tract, and may give insight into the improved infectious and inflammatory status and the resulting clinical improvements seen in pwCF.
Collapse
Affiliation(s)
- Samar E. Atteih
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Yasmin Hilliam
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Glenn J. Rapsinski
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Junu Koirala Bhusal
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Leah L. Krainz
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jordan R. Gaston
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Matthew DuPont
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Anna C. Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F. Alcorn
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John A. Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Stella E. Lee
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Erick Forno
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Carreno-Florez GP, Kocak BR, Hendricks MR, Melvin JA, Mar KB, Kosanovich J, Cumberland RL, Delgoffe GM, Shiva S, Empey KM, Schoggins JW, Bomberger JM. Interferon signaling drives epithelial metabolic reprogramming to promote secondary bacterial infection. PLoS Pathog 2023; 19:e1011719. [PMID: 37939149 PMCID: PMC10631704 DOI: 10.1371/journal.ppat.1011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Clinical studies report that viral infections promote acute or chronic bacterial infections at multiple host sites. These viral-bacterial co-infections are widely linked to more severe clinical outcomes. In experimental models in vitro and in vivo, virus-induced interferon responses can augment host susceptibility to secondary bacterial infection. Here, we used a cell-based screen to assess 389 interferon-stimulated genes (ISGs) for their ability to induce chronic Pseudomonas aeruginosa infection. We identified and validated five ISGs that were sufficient to promote bacterial infection. Furthermore, we dissected the mechanism of action of hexokinase 2 (HK2), a gene involved in the induction of aerobic glycolysis, commonly known as the Warburg effect. We report that HK2 upregulation mediates the induction of Warburg effect and secretion of L-lactate, which enhances chronic P. aeruginosa infection. These findings elucidate how the antiviral immune response renders the host susceptible to secondary bacterial infection, revealing potential strategies for viral-bacterial co-infection treatment.
Collapse
Affiliation(s)
- Grace P. Carreno-Florez
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Brian R. Kocak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey A. Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jessica Kosanovich
- Department of Pharmacy and Therapeutics and Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
| | - Rachel L. Cumberland
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Greg M. Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics and Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
6
|
Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review. Cells 2023; 12:cells12060833. [PMID: 36980173 PMCID: PMC10047085 DOI: 10.3390/cells12060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), as the third leading cause of death among adults, is a significant public health problem around the world. However, about 75% of smokers do not develop the disease despite the severe smoking burden. COPD is a heterogeneous disease, and several phenotypes, with differences in their clinical picture and response to treatment, have been distinguished. Metabolomic studies provide information on metabolic pathways, and therefore are a promising tool for understanding disease etiopathogenesis and the development of effective causal treatment. The aim of this systematic review was to analyze the metabolome of the respiratory epithelial lining fluid of patients with COPD, compared to healthy volunteers, refractory smokers, and subjects with other lung diseases. We included observational human studies. Sphingolipids, phosphatidylethanolamines, and sphingomyelins distinguished COPD from non-smokers; volatile organic compounds, lipids, and amino acids distinguished COPD from smokers without the disease. Five volatile organic compounds were correlated with eosinophilia and four were associated with a phenotype with frequent exacerbations. Fatty acids and ornithine metabolism were correlated with the severity of COPD. Metabolomics, by searching for biomarkers and distinguishing metabolic pathways, can allow us to understand the pathophysiology of COPD and the development of its phenotypes.
Collapse
|
7
|
Greenwald MA, Wolfgang MC. The changing landscape of the cystic fibrosis lung environment: From the perspective of Pseudomonas aeruginosa. Curr Opin Pharmacol 2022; 65:102262. [DOI: 10.1016/j.coph.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
|
8
|
Sabra W, Wang W, Goepfert C, Zeng AP. Food-web and metabolic interactions of the lung inhabitants Streptococcus pneumoniae and Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4885-4898. [PMID: 35706134 DOI: 10.1111/1462-2920.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Bacteria that successfully adapt to different substrates and environmental niches within the lung and overcome the immune defence can cause serious lung infections. Such infections are generally complex, and recognised as polymicrobial in nature. Both Pseudomonas aeruginosa and Streptococcus pneumoniae can cause chronic lung infections and were both detected in cystic fibrosis (CF) lung at different stages. In this study, single and dual species cultures of Pseudomonas aeruginosa and Streptococcus pneumoniae were studied under well controlled planktonic growth conditions. Under pH-controlled conditions, both species apparently benefited from the presence of the other. In co-culture with P. aeruginosa, S. pneumoniae grew efficiently under aerobic conditions, whereas in pure S. pneumoniae culture, growth inhibition occurred in bioreactors with dissolved oxygen concentrations above the microaerobic range. Lactic acid and acetoin that are produced by S. pneumoniae was efficiently utilised by P. aeruginosa. In pH-uncontrolled co-cultures, the low pH triggered by S. pneumoniae assimilation of glucose and lactic acid production negatively affected the growth of both strains. Nevertheless, ammonia production improved significantly, and P. aeruginosa growth dominated at later growth stages. This study revealed unreported metabolic interactions of two important pathogenic microorganisms and shed new lights into pathophysiology of bacterial lung infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wael Sabra
- Faculty of life science, Rheine-Waal University of applied sciences, Marie-Curie-Straße 1, Kleve.,Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Christiane Goepfert
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
9
|
Jensen PØ, Nielsen BU, Kolpen M, Pressler T, Faurholt-Jepsen D, Mathiesen IHM. Increased sputum lactate during oral glucose tolerance test in cystic fibrosis. APMIS 2022; 130:535-539. [PMID: 35635299 PMCID: PMC9545947 DOI: 10.1111/apm.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Blood glucose levels exceeding 8 mM are shown to increase glucose levels in airway surface in cystic fibrosis (CF). Moreover, high levels of endobronchial glucose are proposed to increase the growth of common CF bacteria and feed the neutrophil‐driven inflammation. In the infected airways, glucose may be metabolized by glycolysis to lactate by both bacteria and neutrophils. Therefore, we aimed to investigate whether increased blood glucose may fuel the glycolytic pathways of the lung inflammation by determining sputum glucose and lactate during an oral glucose tolerance test (OGTT). Sputum from 27 CF patients was collected during an OGTT. Sputum was collected at fasting and one and two hours following the intake of 75 g of glucose. Only participants able to expectorate more than one sputum sample were included. Glucose levels in venous blood and lactate and glucose content in sputum were analyzed using a regular blood gas analyzer. We collected 62 sputum samples: 20 at baseline, 22 after 1 h, and 20 after 2 h. Lactate and glucose were detectable in 30 (48.4%) and 43 (69.4%) sputum samples, respectively. The sputum lactate increased significantly at 2 h in the OGTT (p = 0.024), but sputum glucose was not changed. As expected, plasma glucose level significantly increased during the OGTT (p < 0.001). In CF patients, sputum lactate increased during an OGTT, while the sputum glucose did not reflect the increased plasma glucose. The increase in sputum lactate suggests that glucose spills over from plasma to sputum where glucose may enhance the inflammation by fueling the anaerobic metabolism in neutrophils or bacteria.
Collapse
Affiliation(s)
- Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Bibi Uhre Nielsen
- Cystic Fibrosis Centre Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Tacjana Pressler
- Cystic Fibrosis Centre Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
10
|
Mould DL, Stevanovic M, Ashare A, Schultz D, Hogan DA. Metabolic basis for the evolution of a common pathogenic Pseudomonas aeruginosa variant. eLife 2022; 11:e76555. [PMID: 35502894 PMCID: PMC9224983 DOI: 10.7554/elife.76555] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
Microbes frequently evolve in reproducible ways. Here, we show that differences in specific metabolic regulation rather than inter-strain interactions explain the frequent presence of lasR loss-of-function (LOF) mutations in the bacterial pathogen Pseudomonas aeruginosa. While LasR contributes to virulence through its role in quorum sensing, lasR mutants have been associated with more severe disease. A model based on the intrinsic growth kinetics for a wild type strain and its LasR- derivative, in combination with an experimental evolution based genetic screen and further genetics analyses, indicated that differences in metabolism were sufficient to explain the rise of these common mutant types. The evolution of LasR- lineages in laboratory and clinical isolates depended on activity of the two-component system CbrAB, which modulates substrate prioritization through the catabolite repression control pathway. LasR- lineages frequently arise in cystic fibrosis lung infections and their detection correlates with disease severity. Our analysis of bronchoalveolar lavage fluid metabolomes identified compounds that negatively correlate with lung function, and we show that these compounds support enhanced growth of LasR- cells in a CbrB-controlled manner. We propose that in vivo metabolomes contribute to pathogen evolution, which may influence the progression of disease and its treatment.
Collapse
Affiliation(s)
- Dallas L Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Mirjana Stevanovic
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Medicine, Dartmouth-Hitchock Medical CenterLebanonUnited States
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|
11
|
Kolpen M, Dalby Sørensen C, Faurholt-Jepsen D, Hertz FB, Jensen PØ, Bestle MH. Endotracheal lactate reflects lower respiratory tract infections and inflammation in intubated patients. APMIS 2022; 130:507-514. [PMID: 35349738 DOI: 10.1111/apm.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to assess L-lactate and D-lactate in endotracheal aspirate from intubated patients hospitalized at the intensive care unit and explore their use as diagnostic biomarkers for inflammation and lower respiratory tract infections (LRTI). Tracheal aspirates from 91 intubated patients were obtained at time of intubation and sent for microbiological analyses, neutrophil count, and colorimetric lactate measurements. We compared the concentration of lactate from patients with microbiological verified LRTI or clinical/radiological suspicion of LRTI with a control group. In addition, associations between inflammation and the lactate isomers were examined by correlating L-lactate and D-lactate with sputum neutrophils and clinical assessments. The concentration of L-lactate was increased in aspirates with verified or suspected LRTI (p < 0.001) relative to the control group at Day 0. Connections between L-lactate and inflammation were indicated by the correlation between neutrophils and L-lactate (p < 0.001). We found no increase in sputum D-lactate from patients with verified or suspected LRTI relative to the control group and D-lactate was not correlated with neutrophils. L-lactate was found to be a potential indicator for inflammation and LRTI at the time of intubation. An association was found between neutrophil count and L-lactate. Interestingly, the increase of L-lactate in the control group after intubation may suggest that intubation challenges the host response by inflicting tissue damage or by introducing infectious microbes.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Christian Dalby Sørensen
- Department of Anesthesiology and Intensive Care, Nordsjaellands Hospital, Copenhagen University Hospital, Hillerød, Denmark
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, Copenhagen, Denmark
| | - Morten Heiberg Bestle
- Department of Anesthesiology and Intensive Care, Nordsjaellands Hospital, Copenhagen University Hospital, Hillerød, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
O’Connor JB, Mottlowitz M, Kruk ME, Mickelson A, Wagner BD, Harris JK, Wendt CH, Laguna TA. Network Analysis to Identify Multi-Omic Correlations in the Lower Airways of Children With Cystic Fibrosis. Front Cell Infect Microbiol 2022; 12:805170. [PMID: 35360097 PMCID: PMC8960254 DOI: 10.3389/fcimb.2022.805170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The leading cause of morbidity and mortality in cystic fibrosis (CF) is progressive lung disease secondary to chronic airway infection and inflammation; however, what drives CF airway infection and inflammation is not well understood. By providing a physiological snapshot of the airway, metabolomics can provide insight into these processes. Linking metabolomic data with microbiome data and phenotypic measures can reveal complex relationships between metabolites, lower airway bacterial communities, and disease outcomes. In this study, we characterize the airway metabolome in bronchoalveolar lavage fluid (BALF) samples from persons with CF (PWCF) and disease control (DC) subjects and use multi-omic network analysis to identify correlations with the airway microbiome. The Biocrates targeted liquid chromatography mass spectrometry (LC-MS) platform was used to measure 409 metabolomic features in BALF obtained during clinically indicated bronchoscopy. Total bacterial load (TBL) was measured using quantitative polymerase chain reaction (qPCR). The Qiagen EZ1 Advanced automated extraction platform was used to extract DNA, and bacterial profiling was performed using 16S sequencing. Differences in metabolomic features across disease groups were assessed univariately using Wilcoxon rank sum tests, and Random forest (RF) was used to identify features that discriminated across the groups. Features were compared to TBL and markers of inflammation, including white blood cell count (WBC) and percent neutrophils. Sparse supervised canonical correlation network analysis (SsCCNet) was used to assess multi-omic correlations. The CF metabolome was characterized by increased amino acids and decreased acylcarnitines. Amino acids and acylcarnitines were also among the features most strongly correlated with inflammation and bacterial burden. RF identified strong metabolomic predictors of CF status, including L-methionine-S-oxide. SsCCNet identified correlations between the metabolome and the microbiome, including correlations between a traditional CF pathogen, Staphylococcus, a group of nontraditional taxa, including Prevotella, and a subnetwork of specific metabolomic markers. In conclusion, our work identified metabolomic characteristics unique to the CF airway and uncovered multi-omic correlations that merit additional study.
Collapse
Affiliation(s)
- John B. O’Connor
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: John B. O’Connor,
| | - Madison Mottlowitz
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Monica E. Kruk
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Alan Mickelson
- Department of Medicine, University of Minnesota, Minneapolis VA Medical Center, Minneapolis, MN, United States
| | - Brandie D. Wagner
- School of Medicine, University of Colorado, Aurora, CO, United States
- Colorado School of Public Health, University of Colorado Denver, Aurora, CO, United States
| | | | - Christine H. Wendt
- Department of Medicine, University of Minnesota, Minneapolis VA Medical Center, Minneapolis, MN, United States
| | - Theresa A. Laguna
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
13
|
Willis JR, Saus E, Iraola-Guzmán S, Cabello-Yeves E, Ksiezopolska E, Cozzuto L, Bejarano LA, Andreu-Somavilla N, Alloza-Trabado M, Blanco A, Puig-Sola A, Broglio E, Carolis C, Ponomarenko J, Hecht J, Gabaldón T. Citizen-science based study of the oral microbiome in Cystic fibrosis and matched controls reveals major differences in diversity and abundance of bacterial and fungal species. J Oral Microbiol 2021; 13:1897328. [PMID: 34104346 PMCID: PMC8143623 DOI: 10.1080/20002297.2021.1897328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cystic fibrosis (CF) is an autosomal genetic disease, associated with the production of excessively thick mucosa and with life-threatening chronic lung infections. The microbiota of the oral cavity can act as a reservoir or as a barrier for infectious microorganisms that can colonize the lungs. However, the specific composition of the oral microbiome in CF is poorly understood.Methods: In collaboration with CF associations in Spain, we collected oral rinse samples from 31 CF persons (age range 7-47) and matched controls, and then performed 16S rRNA metabarcoding and high-throughput sequencing, combined with culture and proteomics-based identification of fungi to survey the bacterial and fungal oral microbiome.Results: We found that CF is associated with less diverse oral microbiomes, which were characterized by higher prevalence of Candida albicans and differential abundances of a number of bacterial taxa that have implications in both the connection to lung infections in CF, as well as potential oral health concerns, particularly periodontitis and dental caries.Conclusion: Overall, our study provides a first global snapshot of the oral microbiome in CF. Future studies are required to establish the relationships between the composition of the oral and lung microbiomes in CF.
Collapse
Affiliation(s)
- Jesse R Willis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Cabello-Yeves
- Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Bejarano
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Andreu-Somavilla
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miriam Alloza-Trabado
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrea Blanco
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Puig-Sola
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elisabetta Broglio
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
14
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Garantziotis S. Myofibroblast-Macrophage Interactions Turn Sour in Fibrotic Lungs. Am J Respir Cell Mol Biol 2021; 64:14-15. [PMID: 33166479 PMCID: PMC7781001 DOI: 10.1165/rcmb.2020-0473ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research National Institute of Environmental Health Sciences Research Triangle, North Carolina
| |
Collapse
|
16
|
Yildiz S, Pereira Bonifacio Lopes JP, Bergé M, González-Ruiz V, Baud D, Kloehn J, Boal-Carvalho I, Schaeren OP, Schotsaert M, Hathaway LJ, Rudaz S, Viollier PH, Hapfelmeier S, Francois P, Schmolke M. Respiratory tissue-associated commensal bacteria offer therapeutic potential against pneumococcal colonization. eLife 2020; 9:53581. [PMID: 33287959 PMCID: PMC7723408 DOI: 10.7554/elife.53581] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Under eubiotic conditions commensal microbes are known to provide a competitive barrier against invading bacterial pathogens in the intestinal tract, on the skin or on the vaginal mucosa. Here, we evaluate the role of lung microbiota in Pneumococcus colonization of the lungs. In eubiosis, the lungs of mice were dominantly colonized by Lactobacillus murinus. Differential analysis of 16S rRNA gene sequencing or L. murinus-specific qPCR of DNA from total organ homogenates vs.broncho alveolar lavages implicated tight association of these bacteria with the host tissue. Pure L. murinus conditioned culture medium inhibited growth and reduced the extension of pneumococcal chains. Growth inhibition in vitro was likely dependent on L. murinus-produced lactic acid, since pH neutralization of the conditioned medium aborted the antibacterial effect. Finally, we demonstrate that L. murinus provides a barrier against pneumococcal colonization in a respiratory dysbiosis model after an influenza A virus infection, when added therapeutically.
Collapse
Affiliation(s)
- Soner Yildiz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Víctor González-Ruiz
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Damian Baud
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Inês Boal-Carvalho
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier P Schaeren
- Institute for Infectious Disease (IFIK), University of Bern, Bern, Switzerland.,Graduate School GCB, University of Bern, Bern, Switzerland
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Lucy J Hathaway
- Institute for Infectious Disease (IFIK), University of Bern, Bern, Switzerland
| | - Serge Rudaz
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Patrice Francois
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Nielsen BU, Kolpen M, Jensen PØ, Katzenstein T, Pressler T, Ritz C, Mathiesen IHM, Faurholt-Jepsen D. Neutrophil count in sputum is associated with increased sputum glucose and sputum L-lactate in cystic fibrosis. PLoS One 2020; 15:e0238524. [PMID: 32915806 PMCID: PMC7485830 DOI: 10.1371/journal.pone.0238524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Markers of lung inflammation measured directly in expectorated sputum have the potential of improving the timing of antibiotic treatment in cystic fibrosis (CF). L-Lactate might be a marker of inflammation, as it is produced from glucose by polymorphonuclear neutrophils (PMNs) in CF lungs. We aimed to investigate changes in and associations between PMNs, glucose and L-lactate in sputum during antibiotic treatment. In addition, the effect of hemoglobin A1c and plasma glucose on these biomarkers were investigated. METHODS We sampled non-induced sputum at day 0, 7, 14 and 42 in 27 chronically infected CF patients electively treated with 14 days of intravenous antibiotic. To analyze sputum samples, we used flowcytometry to count PMNs and colorimetric assays to estimate lactate and glucose. RESULTS No changes in levels of PMNs, glucose and lactate were detected in sputum during the antibiotic treatment. Sputum PMNs were positively associated with both glucose (log coefficient = 0.20, p = 0.01) and L-lactate (log coefficient = 0.34, p<0.001). In multivariate analyses, hemoglobin A1c was negatively associated with sputum PMNs (log coefficient = -1.68, p<0.001) and plasma glucose was negatively associated with sputum glucose (log coefficient = -0.09, p = 0.02). CONCLUSIONS In CF sputum PMNs, glucose and lactate were unchanged during elective antibiotic treatment. However, sputum PMNs were associated with both sputum glucose and sputum lactate. Surprisingly, hyperglycemia seemed to be associated with less PMNs infiltration and less glucose in CF sputum.
Collapse
Affiliation(s)
- Bibi Uhre Nielsen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Terese Katzenstein
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Tacjana Pressler
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Inger Hee Mabuza Mathiesen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
18
|
McElvaney OJ, Zaslona Z, Becker-Flegler K, Palsson-McDermott EM, Boland F, Gunaratnam C, Gulbins E, O'Neill LA, Reeves EP, McElvaney NG. Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis. Am J Respir Crit Care Med 2020; 200:1381-1391. [PMID: 31454256 DOI: 10.1164/rccm.201905-1013oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge.Objectives: To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy in vivo.Methods: Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects (n = 12), PWCF (n = 16), and PWCF after double-lung transplantation (n = 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed in vivo.Measurements and Main Results: CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition in vivo with MCC950 inhibited IL-1β in the lungs of CF mice (P < 0.0001), resulting in significantly reduced airway inflammation and improved Pseudomonas clearance (P < 0.0001).Conclusions: CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, and.,Cystic Fibrosis Unit, Beaumont Hospital, Dublin, Ireland
| | - Zbigniew Zaslona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| | | | - Eva M Palsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| | - Fiona Boland
- Division of Biostatistics and Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Erich Gulbins
- Department of Molecular Biology, University Duisburg-Essen, Essen, Germany
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, and
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, and.,Cystic Fibrosis Unit, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
19
|
Shi X, Gao Z, Lin Q, Zhao L, Ma Q, Kang Y, Yu J. Meta-analysis Reveals Potential Influence of Oxidative Stress on the Airway Microbiomes of Cystic Fibrosis Patients. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 17:590-602. [PMID: 32171662 PMCID: PMC7212475 DOI: 10.1016/j.gpb.2018.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
The lethal chronic airway infection of the cystic fibrosis (CF) patients is predisposed by colonization of specific CF-philic pathogens or the CF microbiomes, but key processes and reasons of the microbiome settlement in the patients are yet to be fully understood, especially their survival and metabolic dynamics from normal to diseased status under treatment. Here, we report our meta-analysis results on CF airway microbiomes based on metabolic networks reconstructed from genome information at species level. The microbiomes of CF patients appear to engage much more redox-related activities than those of controls, and by constructing a large dataset of anti-oxidative stress (anti-OS) genes, our quantitative evaluation of the anti-OS capacity of each bacterial species in the CF microbiomes confirms strong conservation of the anti-OS responses within genera and also shows that the CF pathogens have significantly higher anti-OS capacity than commensals and other typical respiratory pathogens. In addition, the anti-OS capacity of a relevant species correlates with its relative fitness for the airways of CF patients over that for the airways of controls. Moreover, the total anti-OS capacity of the respiratory microbiome of CF patients is collectively higher than that of controls, which increases with disease progression, especially after episodes of acute exacerbation and antibiotic treatment. According to these results, we propose that the increased OS in the airways of CF patients may play an important role in reshaping airway microbiomes to a more resistant status that favors the pre-infection colonization of the CF pathogens for a higher anti-OS capacity.
Collapse
Affiliation(s)
- Xing Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science and Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007, USA
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
La Rosa R, Johansen HK, Molin S. Adapting to the Airways: Metabolic Requirements of Pseudomonas aeruginosa during the Infection of Cystic Fibrosis Patients. Metabolites 2019; 9:E234. [PMID: 31623245 PMCID: PMC6835255 DOI: 10.3390/metabo9100234] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is one of the major causes of morbidity and mortality of cystic fibrosis patients. During the infection, the bacteria colonize the nutritional rich lung mucus, which is present in the airway secretions in the patients, and they adapt their phenotype accordingly to the lung environment. In the airways, P. aeruginosa undergoes a broad metabolic rewiring as a consequence of the nutritional and stressful complexity of the lungs. However, the role of such metabolic rewiring on the infection outcome is poorly understood. Here, we review the metabolic evolution of clinical strains of P. aeruginosa during a cystic fibrosis lung infection and the metabolic functions operating in vivo under patho-physiological conditions. Finally, we discuss the perspective of modeling the cystic fibrosis environment using genome scale metabolic models of P. aeruginosa. Understanding the physiological changes occurring during the infection may pave the way to a more effective treatment for P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Coureuil M, Jamet A, Bille E, Lécuyer H, Bourdoulous S, Nassif X. Molecular interactions between Neisseria meningitidis and its human host. Cell Microbiol 2019; 21:e13063. [PMID: 31167044 PMCID: PMC6899865 DOI: 10.1111/cmi.13063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a Gram‐negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, N. meningitidis grow on the top of mucus‐producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of N. meningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between N. meningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.
Collapse
Affiliation(s)
- Mathieu Coureuil
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Anne Jamet
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Emmanuelle Bille
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Hervé Lécuyer
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, UMR_S 1151, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | - Xavier Nassif
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
22
|
Valdivieso ÁG, Clauzure M, Massip-Copiz MM, Cancio CE, Asensio CJA, Mori C, Santa-Coloma TA. Impairment of CFTR activity in cultured epithelial cells upregulates the expression and activity of LDH resulting in lactic acid hypersecretion. Cell Mol Life Sci 2019; 76:1579-1593. [PMID: 30599064 PMCID: PMC11105536 DOI: 10.1007/s00018-018-3001-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Mutations in the gene encoding the CFTR chloride channel produce cystic fibrosis (CF). CF patients are more susceptible to bacterial infections in lungs. The most accepted hypothesis sustains that a reduction in the airway surface liquid (ASL) volume favor infections. Alternatively, it was postulated that a reduced HCO3- transport through CFTR leads to a decreased ASL pH, favoring bacterial colonization. The issue is controversial, since recent data from cultured primary cells and CF children showed normal pH values in the ASL. We have reported previously a decreased mitochondrial Complex I (mCx-I) activity in cultured cells with impaired CFTR activity. Thus, we hypothesized that the reduced mCx-I activity could lead to increased lactic acid production (Warburg-like effect) and reduced extracellular pH (pHe). In agreement with this idea, we report here that cells with impaired CFTR function (intestinal Caco-2/pRS26, transfected with an shRNA-CFTR, and lung IB3-1 CF cells) have a decreased pHe. These cells showed increased lactate dehydrogenase (LDH) activity, LDH-A expression, and lactate secretion. Similar effects were reproduced in control cells stimulated with recombinant IL-1β. The c-Src and JNK inhibitors PP2 and SP600125 were able to increase the pHe, although the differences between control and CFTR-impaired cells were not fully compensated. Noteworthy, the LDH inhibitor oxamate completely restored the pHe of the intestinal Caco-2/pRS26 cells and have a significant effect in lung IB3-1 cells; therefore, an increased lactic acid secretion seems to be the key factor that determine a reduced pHe in these epithelial cells.
Collapse
Affiliation(s)
- Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - María M Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Carla E Cancio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Cystic Fibrosis-Associated Stenotrophomonas maltophilia Strain-Specific Adaptations and Responses to pH. J Bacteriol 2019; 201:JB.00478-18. [PMID: 30642989 PMCID: PMC6416904 DOI: 10.1128/jb.00478-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium’s contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity. The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are more acidic than those of healthy individuals. pH is a critical factor that is often overlooked in studies seeking to recapitulate the infection microenvironment. We sought to determine the impact of pH on the physiology of a ubiqituous yet understudied microbe, Stenotrophomonas maltophilia. Phylogenomics was first used to reconstruct evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from similar isolation sources grouped into the same subclades. We grew two human and six CF S. maltophilia isolates from different subclades at a range of pH values and observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both antibiotic resistance and DNA repair genes in acidic conditions. Although the gene expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found that the same genes associated with low pH were also expressed during infection, and the higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing stress response genes and colonizing less acidic microenvironments. As a whole, our study underlines the impact of microenvironments on bacterial colonization and adaptation in CF infections. IMPORTANCE Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium’s contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity.
Collapse
|
24
|
Fredman G, Kolpen M, Hertz FB, Petersen PT, Jensen AV, Baunbaek-Egelund G, Ravn P, Jensen PØ, Faurholt-Jepsen D. The inflamed sputum in lower respiratory tract infection: l-lactate levels are correlated to neutrophil accumulation. APMIS 2019; 127:72-79. [PMID: 30614067 PMCID: PMC7159756 DOI: 10.1111/apm.12913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
Abstract
Lower respiratory tract infections (LRTI) are common, but little is known about the response of biomarkers of inflammation in the lungs. Therefore, our primary aim was to compare the concentration of l-lactate to the concentration of neutrophils in sputum and systemic markers of infection. Because it is difficult to differentiate viral and bacterial infection on the basis of clinical presentation in LRTI, our secondary aim was to evaluate if l- and d-lactate may serve as markers of local inflammation as representatives of neutrophils and bacteria, respectively. METHODS Patients with acute LRTI were prospectively recruited. Sputum samples were collected and analysed for neutrophil count, l-lactate and d-lactate. We had data on pathogens from sputum cultures and polymerase chain reaction (PCR) (atypical bacteria, virus) and C-reactive protein (CRP) from blood. RESULTS In 44 sputum samples from 32 patients, the median (interquartile range (IQR)) sputum neutrophil granulocyte count was 0.615 × 107 cells/mL (0.236-1.575). The sputum neutrophil granulocyte count was associated with sputum l-lactate (p = 0.011) and CRP (p = 0.018), but not with d-lactate (p = 0.177). There was a strong association between sputum d-lactate and l-lactate (p < 0.0001). CONCLUSION As l-lactate in sputum is closely correlated to sequestration of neutrophils in the lungs, l-lactate is a marker for local inflammation in LRTI and a potential biomarker in clinical management of LRTI. On expectorated sputum, d-lactate had no clinical relevance.
Collapse
Affiliation(s)
- Gabriella Fredman
- Department of Pulmonary and Infectious Diseases, Nordsjaellands Hospital, Hillerød, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Pelle Trier Petersen
- Department of Pulmonary and Infectious Diseases, Nordsjaellands Hospital, Hillerød, Denmark
| | | | | | - Pernille Ravn
- Department of Internal Medicine, Herlev-Gentofte Hospital, Hellerup
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Department of Pulmonary and Infectious Diseases, Nordsjaellands Hospital, Hillerød, Denmark
| |
Collapse
|
25
|
Wang Y, Xiao D, Liu Q, Zhang Y, Hu C, Sun J, Yang C, Xu P, Ma C, Gao C. Two NAD-independent l-lactate dehydrogenases drive l-lactate utilization in Pseudomonas aeruginosa PAO1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:569-575. [PMID: 30066495 DOI: 10.1111/1758-2229.12666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Pseudomonas aeruginosa often establishes a chronic infection in the airways of patients with cystic fibrosis (CF). l-Lactate is the most abundant carbon source in the CF sputum, and l-lactate utilization may be important for P. aeruginosa to survive in the lungs of CF patients. In this study, the key enzymes involved in l-lactate utilization by P. aeruginosa PAO1 were characterized using the synthetic CF sputum medium (SCFM). A highly conserved membrane-bound NAD-independent l-lactate dehydrogenase (l-iLDH) encoded by lldD (PA4771) and a novel flavin-containing membrane-bound l-iLDH encoded by lldA (PA2382) were both found to contribute to l-lactate utilization by P. aeruginosa PAO1. In addition, an lldD and lldA double mutant was incapable of growing in a medium containing l-lactate as the sole carbon source. This study clarifies the mechanism and importance of l-lactate catabolism, and demonstrates the first Pseudomonas spp. expressing two l-lactate-oxidizing enzymes.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Qiuyuan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Yipeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunxia Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Jinkai Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
26
|
The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of d- and l-Lactate and Metabolic Cross-Feeding. mBio 2018; 9:mBio.00961-18. [PMID: 30206167 PMCID: PMC6134097 DOI: 10.1128/mbio.00961-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lactate is thought to serve as a carbon and energy source during chronic infections. Sites of bacterial colonization can contain two enantiomers of lactate: the l-form, generally produced by the host, and the d-form, which is usually produced by bacteria, including the pulmonary pathogen Pseudomonas aeruginosa. Here, we characterize P. aeruginosa’s set of four enzymes that it can use to interconvert pyruvate and lactate, the functions of which depend on the availability of oxygen and specific enantiomers of lactate. We also show that anaerobic pyruvate fermentation triggers production of the aerobic d-lactate dehydrogenase in both liquid cultures and biofilms, thereby enabling metabolic cross-feeding of lactate over time and space between subpopulations of cells. These metabolic pathways might contribute to P. aeruginosa growth and survival in the lung. Pseudomonas aeruginosa is the most common cause of chronic, biofilm-based lung infections in patients with cystic fibrosis (CF). Sputum from patients with CF has been shown to contain oxic and hypoxic subzones as well as millimolar concentrations of lactate. Here, we describe the physiological roles and expression patterns of P. aeruginosa lactate dehydrogenases in the contexts of different growth regimes. P. aeruginosa produces four enzymes annotated as lactate dehydrogenases, three of which are known to contribute to anaerobic or aerobic metabolism in liquid cultures. These three are LdhA, which reduces pyruvate to d-lactate during anaerobic survival, and LldE and LldD, which oxidize d-lactate and l-lactate, respectively, during aerobic growth. We demonstrate that the fourth enzyme, LldA, performs redundant l-lactate oxidation during growth in aerobic cultures in both a defined MOPS (morpholinepropanesulfonic acid)-based medium and synthetic CF sputum media. However, LldA differs from LldD in that its expression is induced specifically by the l-enantiomer of lactate. We also show that the P. aeruginosa lactate dehydrogenases perform functions in colony biofilms that are similar to their functions in liquid cultures. Finally, we provide evidence that the enzymes LdhA and LldE have the potential to support metabolic cross-feeding in biofilms, where LdhA can catalyze the production of d-lactate in the anaerobic zone, which is then used as a substrate in the aerobic zone. Together, these observations further our understanding of the metabolic pathways that can contribute to P. aeruginosa growth and survival during CF lung infection.
Collapse
|
27
|
Forrest OA, Ingersoll SA, Preininger MK, Laval J, Limoli DH, Brown MR, Lee FE, Bedi B, Sadikot RT, Goldberg JB, Tangpricha V, Gaggar A, Tirouvanziam R. Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis. J Leukoc Biol 2018; 104:665-675. [PMID: 29741792 DOI: 10.1002/jlb.5hi1117-454rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Recruitment of neutrophils to the airways, and their pathological conditioning therein, drive tissue damage and coincide with the loss of lung function in patients with cystic fibrosis (CF). So far, these key processes have not been adequately recapitulated in models, hampering drug development. Here, we hypothesized that the migration of naïve blood neutrophils into CF airway fluid in vitro would induce similar functional adaptation to that observed in vivo, and provide a model to identify new therapies. We used multiple platforms (flow cytometry, bacteria-killing, and metabolic assays) to characterize functional properties of blood neutrophils recruited in a transepithelial migration model using airway milieu from CF subjects as an apical chemoattractant. Similarly to neutrophils recruited to CF airways in vivo, neutrophils migrated into CF airway milieu in vitro display depressed phagocytic receptor expression and bacterial killing, but enhanced granule release, immunoregulatory function (arginase-1 activation), and metabolic activities, including high Glut1 expression, glycolysis, and oxidant production. We also identify enhanced pinocytic activity as a novel feature of these cells. In vitro treatment with the leukotriene pathway inhibitor acebilustat reduces the number of transmigrating neutrophils, while the metabolic modulator metformin decreases metabolism and oxidant production, but fails to restore bacterial killing. Interestingly, we describe similar pathological conditioning of neutrophils in other inflammatory airway diseases. We successfully tested the hypothesis that recruitment of neutrophils into airway milieu from patients with CF in vitro induces similar pathological conditioning to that observed in vivo, opening new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Osric A Forrest
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sarah A Ingersoll
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marcela K Preininger
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Dominique H Limoli
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Milton R Brown
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Frances E Lee
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Ruxana T Sadikot
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vin Tangpricha
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Phan J, Gallagher T, Oliver A, England WE, Whiteson K. Fermentation products in the cystic fibrosis airways induce aggregation and dormancy-associated expression profiles in a CF clinical isolate of Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 365:4956521. [PMID: 29617986 PMCID: PMC5928460 DOI: 10.1093/femsle/fny082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a well-known dominant opportunistic pathogen in cystic fibrosis (CF) with a wide range of metabolic capacities. However, P. aeruginosa does not colonize the airways alone, and benefits from the metabolic products of neighboring cells-especially volatile molecules that can travel between different parts of the airways easily. Here, we present a study that investigates the metabolic, gene expression profiles and phenotypic responses of a P. aeruginosa clinical isolate to fermentation products lactic acid and 2,3-butanediol, metabolites that are produced by facultative anaerobic members of the CF polymicrobial community and potential biomarkers of disease progression. Although previous studies have successfully investigated the metabolic and transcriptional profiles of P. aeruginosa, most have used common lab reference strains that may differ in important ways from clinical isolates. Using transcriptomics and metabolomics with gas chromatography time of flight mass spectrometry, we observe that fermentation products induce pyocyanin production along with the expression of genes involved in P. aeruginosa amino acid utilization, dormancy and aggregative or biofilm modes of growth. These findings have important implications for how interactions within the diverse CF microbial community influence microbial physiology, with potential clinical consequences.
Collapse
Affiliation(s)
- Joann Phan
- Department of Molecular Biology and Biochemistry, University of California at Irvine, 3315 McGaugh Hall, UCI, Irvine, CA 92697, USA
| | - Tara Gallagher
- Department of Molecular Biology and Biochemistry, University of California at Irvine, 3315 McGaugh Hall, UCI, Irvine, CA 92697, USA
| | - Andrew Oliver
- Department of Molecular Biology and Biochemistry, University of California at Irvine, 3315 McGaugh Hall, UCI, Irvine, CA 92697, USA
| | - Whitney E England
- Department of Molecular Biology and Biochemistry, University of California at Irvine, 3315 McGaugh Hall, UCI, Irvine, CA 92697, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California at Irvine, 3315 McGaugh Hall, UCI, Irvine, CA 92697, USA
| |
Collapse
|
29
|
Tracking Polymicrobial Metabolism in Cystic Fibrosis Airways: Pseudomonas aeruginosa Metabolism and Physiology Are Influenced by Rothia mucilaginosa-Derived Metabolites. mSphere 2018; 3:3/2/e00151-18. [PMID: 29695623 PMCID: PMC5917424 DOI: 10.1128/msphere.00151-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant and persistent cystic fibrosis pathogen. Although P. aeruginosa is accompanied by other microbes in the airways of cystic fibrosis patients, few cystic fibrosis studies show how P. aeruginosa is affected by the metabolism of other bacteria. Here, we demonstrate that P. aeruginosa generates primary metabolites using substrates produced by another microbe that is prevalent in the airways of cystic fibrosis patients, Rothia mucilaginosa. These results indicate that P. aeruginosa may get a metabolic boost from its microbial neighbor, which might contribute to its pathogenesis in the airways of cystic fibrosis patients. Due to a lack of effective immune clearance, the airways of cystic fibrosis patients are colonized by polymicrobial communities. One of the most widespread and destructive opportunistic pathogens is Pseudomonas aeruginosa; however, P. aeruginosa does not colonize the airways alone. Microbes that are common in the oral cavity, such as Rothia mucilaginosa, are also present in cystic fibrosis patient sputum and have metabolic capacities different from those of P. aeruginosa. Here we examine the metabolic interactions of P. aeruginosa and R. mucilaginosa using stable-isotope-assisted metabolomics. Glucose-derived 13C was incorporated into glycolysis metabolites, namely, lactate and acetate, and some amino acids in R. mucilaginosa grown aerobically and anaerobically. The amino acid glutamate was unlabeled in the R. mucilaginosa supernatant but incorporated the 13C label after P. aeruginosa was cross-fed the R. mucilaginosa supernatant in minimal medium and artificial-sputum medium. We provide evidence that P. aeruginosa utilizes R. mucilaginosa-produced metabolites as precursors for generation of primary metabolites, including glutamate. IMPORTANCEPseudomonas aeruginosa is a dominant and persistent cystic fibrosis pathogen. Although P. aeruginosa is accompanied by other microbes in the airways of cystic fibrosis patients, few cystic fibrosis studies show how P. aeruginosa is affected by the metabolism of other bacteria. Here, we demonstrate that P. aeruginosa generates primary metabolites using substrates produced by another microbe that is prevalent in the airways of cystic fibrosis patients, Rothia mucilaginosa. These results indicate that P. aeruginosa may get a metabolic boost from its microbial neighbor, which might contribute to its pathogenesis in the airways of cystic fibrosis patients.
Collapse
|
30
|
Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, Thomsen K, Høiby N, Jensen PØ. Biofilms and host response - helpful or harmful. APMIS 2017; 125:320-338. [PMID: 28407429 DOI: 10.1111/apm.12674] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/09/2023]
Abstract
Biofilm infections are one of the modern medical world's greatest challenges. Probably, all non-obligate intracellular bacteria and fungi can establish biofilms. In addition, there are numerous biofilm-related infections, both foreign body-related and non-foreign body-related. Although biofilm infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response for the course of biofilm infections, with special focus on cystic fibrosis, chronic wounds and infective endocarditis.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hannah Trøstrup Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Line
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Jensen PØ, Kolpen M, Kragh KN, Kühl M. Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response. APMIS 2017; 125:276-288. [PMID: 28407427 DOI: 10.1111/apm.12668] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/14/2023]
Abstract
In vitro studies of Pseudomonas aeruginosa and other pathogenic bacteria in biofilm aggregates have yielded detailed insight into their potential growth modes and metabolic flexibility under exposure to gradients of substrate and electron acceptor. However, the growth pattern of P. aeruginosa in chronic lung infections of cystic fibrosis (CF) patients is very different from what is observed in vitro, for example, in biofilms grown in flow chambers. Dense in vitro biofilms of P. aeruginosa exhibit rapid O2 depletion within <50-100 μm due to their own aerobic metabolism. In contrast, in vivo investigations show that P. aeruginosa persists in the chronically infected CF lung as relatively small cell aggregates that are surrounded by numerous PMNs, where the activity of PMNs is the major cause of O2 depletion rendering the P. aeruginosa aggregates anoxic. High levels of nitrate and nitrite enable P. aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm aggregates. This configuration creates a potentially long-term stable ecological niche for P. aeruginosa in the CF lung, which is largely governed by slow growth and anaerobic metabolism and enables persistence and resilience of this pathogen even under the recurring aggressive antimicrobial treatments of CF patients. As similar slow growth of other CF pathogens has recently been observed in endobronchial secretions, there is now a clear need for better in vitro models that simulate such in vivo growth patterns and anoxic microenvironments in order to help unravel the efficiency of existing or new antimicrobials targeting anaerobic metabolism in P. aeruginosa and other CF pathogens. We also advocate that host immune responses such as PMN-driven O2 depletion play a central role in the formation of anoxic microniches governing bacterial persistence in other chronic infections such as chronic wounds.
Collapse
Affiliation(s)
- Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.,Climate Change Cluster, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
32
|
Garnett JP, Kalsi KK, Sobotta M, Bearham J, Carr G, Powell J, Brodlie M, Ward C, Tarran R, Baines DL. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H + secretion. Sci Rep 2016; 6:37955. [PMID: 27897253 PMCID: PMC5126573 DOI: 10.1038/srep37955] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/02/2016] [Indexed: 01/26/2023] Open
Abstract
The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3- transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3- removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3-, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD.
Collapse
Affiliation(s)
- James Peter Garnett
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kameljit K. Kalsi
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, UK
| | - Mirko Sobotta
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jade Bearham
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, UK
| | - Georgina Carr
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jason Powell
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Malcolm Brodlie
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christopher Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Robert Tarran
- Cystic Fibrosis Centre/Marisco Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Deborah L. Baines
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, UK
| |
Collapse
|
33
|
Quinn RA, Phelan VV, Whiteson KL, Garg N, Bailey BA, Lim YW, Conrad DJ, Dorrestein PC, Rohwer FL. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. THE ISME JOURNAL 2016; 10:1483-98. [PMID: 26623545 PMCID: PMC5029181 DOI: 10.1038/ismej.2015.207] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/19/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) lungs are filled with thick mucus that obstructs airways and facilitates chronic infections. Pseudomonas aeruginosa is a significant pathogen of this disease that produces a variety of toxic small molecules. We used molecular networking-based metabolomics to investigate the chemistry of CF sputa and assess how the microbial molecules detected reflect the microbiome and clinical culture history of the patients. Metabolites detected included xenobiotics, P. aeruginosa specialized metabolites and host sphingolipids. The clinical culture and microbiome profiles did not correspond to the detection of P. aeruginosa metabolites in the same samples. The P. aeruginosa molecules that were detected in sputum did not match those from laboratory cultures. The pseudomonas quinolone signal (PQS) was readily detectable from cultured strains, but absent from sputum, even when its precursor molecules were present. The lack of PQS production in vivo is potentially due to the chemical nature of the CF lung environment, indicating that culture-based studies of this pathogen may not explain its behavior in the lung. The most differentially abundant molecules between CF and non-CF sputum were sphingolipids, including sphingomyelins, ceramides and lactosylceramide. As these highly abundant molecules contain the inflammatory mediator ceramide, they may have a significant role in CF hyperinflammation. This study demonstrates that the chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules. Detection of a bacterium by clinical culturing and 16S rRNA gene profiling do not necessarily reflect the active production of metabolites from that bacterium in a sputum sample.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State
University, San Diego, CA, USA
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Katrine L Whiteson
- Department of Molecular Biology and
Biochemistry, University of California Irvine, Irvine,
CA, USA
| | - Neha Garg
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Barbara A Bailey
- Department of Mathematics and Statistics,
San Diego State University, San Diego, CA,
USA
| | - Yan Wei Lim
- Department of Biology, San Diego State
University, San Diego, CA, USA
| | - Douglas J Conrad
- Department of Medicine, University of
California at San Diego, La Jolla, CA,
USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State
University, San Diego, CA, USA
| |
Collapse
|
34
|
Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiol Spectr 2016; 3. [PMID: 26350318 DOI: 10.1128/microbiolspec.mbp-0003-2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with the genetic disease cystic fibrosis (CF) accumulate mucus or sputum in their lungs. This sputum is a potent growth substrate for a range of potential pathogens, and the opportunistic bacterium Pseudomonas aeruginosa is generally most difficult of these to eradicate. As a result, P. aeruginosa infections are frequently maintained in the CF lung throughout life, and are the leading cause of death for these individuals. While great effort has been expended to better understand and treat these devastating infections, only recently have researchers begun to rigorously examine the roles played by specific nutrients in CF sputum to cue P. aeruginosa pathogenicity. This chapter summarizes the current state of knowledge regarding how P. aeruginosa metabolism in CF sputum affects initiation and maintenance of these infections. It contains an overview of CF lung disease and the mechanisms of P. aeruginosa pathogenicity. Several model systems used to study these infections are described with emphasis on the challenge of replicating the chronic infections observed in humans with CF. Nutrients present in CF sputum are surveyed, and the impacts of these nutrients on the infection are discussed. The chapter concludes by addressing the future of this line of research including the use of next-generation technologies and the potential for metabolism-based therapeutics.
Collapse
|
35
|
Jha MK, Rahman MH, Park DH, Kook H, Lee IK, Lee WH, Suk K. Pyruvate dehydrogenase kinase 2 and 4 gene deficiency attenuates nociceptive behaviors in a mouse model of acute inflammatory pain. J Neurosci Res 2016; 94:837-49. [PMID: 26931482 DOI: 10.1002/jnr.23727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Abstract
Pyruvate dehydrogenase (PDH) kinases (PDKs) 1-4, expressed in peripheral and central tissues, regulate the activity of the PDH complex (PDC). The PDC is an important mitochondrial gatekeeping enzyme that controls cellular metabolism. The role of PDKs in diverse neurological disorders, including neurometabolic aberrations and neurodegeneration, has been described. Implications for a role of PDKs in inflammation and neurometabolic coupling led us to investigate the effect of genetic ablation of PDK2/4 on nociception in a mouse model of acute inflammatory pain. Deficiency in Pdk2 and/or Pdk4 in mice led to attenuation of formalin-induced nociceptive behaviors (flinching, licking, biting, or lifting of the injected paw). Likewise, the pharmacological inhibition of PDKs substantially diminished the nociceptive responses in the second phase of the formalin test. Furthermore, formalin-provoked paw edema formation and mechanical and thermal hypersensitivities were significantly reduced in Pdk2/4-deficient mice. Formalin-driven neutrophil recruitment at the site of inflammation, spinal glial activation, and neuronal sensitization were substantially lessened in the second or late phase of the formalin test in Pdk2/4-deficient animals. Overall, our results suggest that PDK2/4 can be a potential target for the development of pharmacotherapy for the treatment of acute inflammatory pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Dong Ho Park
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
36
|
Høiby N, Bjarnsholt T, Moser C, Bassi G, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann A, Williams C. ESCMID∗ guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 2015; 21 Suppl 1:S1-25. [DOI: 10.1016/j.cmi.2014.10.024] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/22/2023]
|
37
|
Lottes RG, Newton DA, Spyropoulos DD, Baatz JE. Lactate as substrate for mitochondrial respiration in alveolar epithelial type II cells. Am J Physiol Lung Cell Mol Physiol 2015; 308:L953-61. [PMID: 25747963 DOI: 10.1152/ajplung.00335.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/03/2015] [Indexed: 12/29/2022] Open
Abstract
Because of the many energy-demanding functions they perform and their physical location in the lung, alveolar epithelial type II (ATII) cells have a rapid cellular metabolism and the potential to influence substrate availability and bioenergetics both locally in the lung and throughout the body. A thorough understanding of ATII cell metabolic function in the healthy lung is necessary for determining how metabolic changes may contribute to pulmonary disease pathogenesis; however, lung metabolism is poorly understood at the cellular level. Here, we examine lactate utilization by primary ATII cells and the ATII model cell line, MLE-15, and link lactate consumption directly to mitochondrial ATP generation. ATII cells cultured in lactate undergo mitochondrial respiration at near-maximal levels, two times the rates of those grown in glucose, and oxygen consumption under these conditions is directly linked to mitochondrial ATP generation. When both lactate and glucose are available as metabolic substrate, the presence of lactate alters glucose metabolism in ATII to favor reduced glycolytic function in a dose-dependent manner, suggesting that lactate is used in addition to glucose when both substrates are available. Lactate use by ATII mitochondria is dependent on monocarboxylate transporter (MCT)-mediated import, and ATII cells express MCT1, the isoform that mediates lactate import by cells in other lactate-consuming tissues. The balance of lactate production and consumption may play an important role in the maintenance of healthy lung homeostasis, whereas disruption of lactate consumption by factors that impair mitochondrial metabolism, such as hypoxia, may contribute to lactic acid build-up in disease.
Collapse
Affiliation(s)
- Robyn G Lottes
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; and
| | - Danforth A Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; and
| | - Demetri D Spyropoulos
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - John E Baatz
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; and
| |
Collapse
|
38
|
Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa. ISME JOURNAL 2014; 8:1210-20. [PMID: 24401856 DOI: 10.1038/ismej.2013.232] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/12/2013] [Accepted: 11/25/2013] [Indexed: 12/25/2022]
Abstract
The respiratory tract of cystic fibrosis (CF) patients harbor persistent microbial communities (CF airway microbiome) with Pseudomonas aeruginosa emerging as a dominant pathogen. Within a polymicrobial infection, interactions between co-habitant microbes can be important for pathogenesis, but even when considered, these interactions are not well understood. Here, we show with in vitro experiments that, compared with glucose, common fermentation products from co-habitant bacteria significantly increase virulence factor production, antimicrobial activity and biofilm formation of P. aeruginosa. The maximum stimulating effect was produced with the fermentation product 2,3-butanediol, which is a substrate for P. aeruginosa, resulting in a metabolic relationship between fermenters and this pathogen. The global transcription regulator LasI LasR, which controls quorum sensing, was upregulated threefold with 2,3-butanediol, resulting in higher phenazine and exotoxin concentrations and improved biofilm formation. This indicates that the success of P. aeruginosa in CF airway microbiomes could be governed by the location within the food web with fermenting bacteria. Our findings suggest that interbacterial metabolite transfer in polymicrobial infections stimulates virulence of P. aeruginosa and could have a considerable impact on disease progression.
Collapse
|
39
|
Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sørensen SR, Moser C, Kühl M, Jensen PØ, Høiby N. The in vivo biofilm. Trends Microbiol 2013; 21:466-74. [PMID: 23827084 DOI: 10.1016/j.tim.2013.06.002] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/26/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
Abstract
Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms, and we suggest new strategies for improving this discrepancy.
Collapse
Affiliation(s)
- Thomas Bjarnsholt
- Department of International Health, Immunology, and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology 9301, Juliane Mariesvej 22, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Worlitzsch D, Meyer KC, Döring G. Lactate Levels in Airways of Patients with Cystic Fibrosis and Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2013; 188:111. [DOI: 10.1164/rccm.201211-2042le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
41
|
Lim YW, Schmieder R, Haynes M, Furlan M, Matthews TD, Whiteson K, Poole SJ, Hayes CS, Low DA, Maughan H, Edwards R, Conrad D, Rohwer F. Mechanistic model of Rothia mucilaginosa adaptation toward persistence in the CF lung, based on a genome reconstructed from metagenomic data. PLoS One 2013; 8:e64285. [PMID: 23737977 PMCID: PMC3667864 DOI: 10.1371/journal.pone.0064285] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/13/2013] [Indexed: 01/21/2023] Open
Abstract
The impaired mucociliary clearance in individuals with Cystic Fibrosis (CF) enables opportunistic pathogens to colonize CF lungs. Here we show that Rothia mucilaginosa is a common CF opportunist that was present in 83% of our patient cohort, almost as prevalent as Pseudomonas aeruginosa (89%). Sequencing of lung microbial metagenomes identified unique R. mucilaginosa strains in each patient, presumably due to evolution within the lung. The de novo assembly of a near-complete R. mucilaginosa (CF1E) genome illuminated a number of potential physiological adaptations to the CF lung, including antibiotic resistance, utilization of extracellular lactate, and modification of the type I restriction-modification system. Metabolic characteristics predicted from the metagenomes suggested R. mucilaginosa have adapted to live within the microaerophilic surface of the mucus layer in CF lungs. The results also highlight the remarkable evolutionary and ecological similarities of many CF pathogens; further examination of these similarities has the potential to guide patient care and treatment.
Collapse
Affiliation(s)
- Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|