1
|
Angebault C, Vandenborght L, Bassinet L, Wizla N, Ferroni A, Dessein R, Remus N, Thumerelle C, Fauchet N, Epaud R, Delhaes L, Botterel F. Airway Mycobiota-Microbiota During Pulmonary Exacerbation of Cystic Fibrosis Patients: A Culture and Targeted Sequencing Study. Mycoses 2025; 68:e70024. [PMID: 39816006 PMCID: PMC11736540 DOI: 10.1111/myc.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND The airways of patients with cystic fibrosis (pwCF) harbour complex fungal and bacterial microbiota involved in pulmonary exacerbations (PEx) and requiring antimicrobial treatment. Descriptive studies analysing bacterial and fungal microbiota concomitantly are scarce, especially using both culture and high-throughput-sequencing (HTS). OBJECTIVES We analysed bacterial-fungal microbiota and inter-kingdom correlations in two French CF centres according to clinical parameters and antimicrobial choices. METHODS Forty-eight pwCF with PEx from Creteil (n = 24) and Lille (n = 24) CF centres were included over 2 years. Sputa were collected for culture and targeted-HTS (ITS2 and V3-V4 targets). Sequencing and culture data, along with clinical, radiological and treatment data, were analysed. Two-level stratified analysis was performed to study potential confounding factors (age, CF mutation, FEV1 and antibiotics) on the centre factor. Inter-kingdom correlations were analysed. RESULTS Significant differences in the bacterial microbiota profile were found between centres (p-value = 0.03). For mycobiota, the taxonomic distribution and diversity were comparable. HTS provided concordant but more detailed information than culture and increased detection of main CF fungi (> 25% more positive samples for Aspergillus or Scedosporium). FEV1 and systemic antibiotic before PEx influenced bacterial microbiota, but no clinical association was found with the mycobiota. No inter-kingdom correlation between Pseudomonas and fungi was found. CONCLUSIONS Describing concomitant bacterial and fungal communities of pwCF at the beginning of PEx using culture and HTS shows greater diversity in HTS and better detection in case of low microbial load. Interesting inter-kingdom correlations were observed, requiring further research on larger cohorts to understand the potential microbial interactions.
Collapse
Affiliation(s)
- Cécile Angebault
- Unité de Parasitologie‐Mycologie, Département de Prévention, Diagnostic et Traitement Des InfectionsCHU Henri Mondor, Assistance Publique Des Hôpitaux de Paris (APHP)CreteilFrance
- UR Dynamyc 7380, Faculté de Santé, Univ Paris‐Est Creteil (UPEC), Ecole Nationale Vétérinaire d'Alfort (ENVA); USC Anses, Maisons‐Alfort, FranceCreteilFrance
| | | | - Laurence Bassinet
- Service de PneumologieCentre Hospitalier Intercommunal de CreteilCreteilFrance
| | - Nathalie Wizla
- Service de Gastro‐Entérologie, Hépatologie Pédiatrique, CHU LilleLilleFrance
| | - Agnès Ferroni
- Service de Microbiologie CliniqueCHU Necker‐Enfants Malades, Assistance Publique Des Hôpitaux de Paris (APHP)ParisFrance
| | | | - Natacha Remus
- Service de Pédiatrie GénéraleCentre Hospitalier Intercommunal de CreteilCreteilFrance
- Centre Des Maladies Respiratoires RaresCRCM, RespirareCreteilFrance
| | | | - Nathalie Fauchet
- Service de MicrobiologieCentre Hospitalier Intercommunal de CreteilCreteilFrance
| | - Ralph Epaud
- Service de Pédiatrie GénéraleCentre Hospitalier Intercommunal de CreteilCreteilFrance
- Centre Des Maladies Respiratoires RaresCRCM, RespirareCreteilFrance
- INSERM, IMRB, Univ Paris Est CreteilCreteilFrance
| | - Laurence Delhaes
- Service de Parasitologie‐MycologieCHU Bordeaux, Groupe Hospitalier PellegrinBordeauxFrance
- INSERM U1045, Université de BordeauxBordeauxFrance
| | - Françoise Botterel
- Unité de Parasitologie‐Mycologie, Département de Prévention, Diagnostic et Traitement Des InfectionsCHU Henri Mondor, Assistance Publique Des Hôpitaux de Paris (APHP)CreteilFrance
- UR Dynamyc 7380, Faculté de Santé, Univ Paris‐Est Creteil (UPEC), Ecole Nationale Vétérinaire d'Alfort (ENVA); USC Anses, Maisons‐Alfort, FranceCreteilFrance
| |
Collapse
|
2
|
Bonhiver R, Bricmont N, Pirotte M, Wuidart MA, Monseur J, Benchimol L, Poirrier AL, Moermans C, Calmés D, Schleich F, Louis R, Seghaye MC, Kempeneers C. Evidence for secondary ciliary dyskinesia in patients with cystic fibrosis. J Cyst Fibros 2024:S1569-1993(24)01796-X. [PMID: 39428275 DOI: 10.1016/j.jcf.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Mucociliary clearance (MCC) impairment can be due to mucus abnormalities or to a ciliary dysfunction, which can be innate, or secondary to infection and/or inflammation. In cystic fibrosis (CF), it is well documented that MCC is impaired due to mucus abnormalities, but little is known concerning ciliary beating. This study aimed to confirm that ciliary dyskinesia is present in CF, and if this might be innate or secondary to the chronic infection and/or inflammation. METHODS Ciliated epithelial samples were obtained by nasal brushing from 51 CF patients, and from 30 healthy subjects. Ciliary beating was evaluated using digital high-speed videomicroscopy at 37 °C, allowing to evaluate ciliary beat frequency (CBF) and the percentage of abnormal beat pattern (CBP); this was repeated after air-liquid interface (ALI) cell culture. RESULTS Ciliary dyskinesia was higher in CF patients than in healthy subjects, with a lower CBF and a higher percentage of abnormal CBP. Ciliary dyskinesia, already present in childhood, normalized after ALI cell culture. A chronic airway colonization did not worsen ciliary dyskinesia. CONCLUSIONS We showed that, in CF, a ciliary dyskinesia, present from childhood, might contribute to the impaired MCC. Our results also found that the abnormal ciliary beating was not associated with a chronic infection, and resolved after ALI cell culture, suggesting that ciliary dyskinesia in CF is not innate, and might be secondary to chronic inflammation.
Collapse
Affiliation(s)
- Romane Bonhiver
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Division of Respirology, Department of Pediatrics, University Hospital of Liege, Belgium.
| | - Noemie Bricmont
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Division of Respirology, Department of Pediatrics, University Hospital of Liege, Belgium
| | - Maud Pirotte
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium
| | | | - Justine Monseur
- Biostatistics and Research Method Center, Public Health Department, University of Liege, Belgium
| | | | | | - Catherine Moermans
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Department of Pneumology, University Hospital of Liege, Belgium
| | - Doriane Calmés
- Department of Pneumology, University Hospital of Liege, Belgium
| | - Florence Schleich
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Department of Pneumology, University Hospital of Liege, Belgium
| | - Renaud Louis
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Department of Pneumology, University Hospital of Liege, Belgium
| | - Marie-Christine Seghaye
- Division of Cardiology, Department of Pediatrics, University Hospital Liege and University of Liege, Belgium
| | - Céline Kempeneers
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liege, Belgium; Division of Respirology, Department of Pediatrics, University Hospital of Liege, Belgium
| |
Collapse
|
3
|
Si T, Wang A, Yan H, Kong L, Guan L, He C, Ma Y, Zhang H, Ma H. Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa. Molecules 2024; 29:4400. [PMID: 39339396 PMCID: PMC11434294 DOI: 10.3390/molecules29184400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in the prevention and treatment of infectious diseases caused by pathogens such as bacteria, fungi, and viruses. Microbial secondary metabolites have been recognized as important sources for new drug discovery and development, yielding a wide range of structurally novel and functionally diverse antimicrobial drugs for the treatment of a variety of diseases that are considered good producers of novel antimicrobial drugs. Bacteria produce a wide variety of antimicrobial compounds, and thus, antibiotics derived from natural products still dominate over purely synthetic antibiotics among the antimicrobial drugs developed and introduced over the last four decades. Among them, Pseudomonas aeruginosa secondary metabolites constitute a richly diverse source of antimicrobial substances with good antimicrobial activity. Therefore, they are regarded as an outstanding resource for finding novel bioactive compounds. The exploration of antimicrobial compounds among Pseudomonas aeruginosa metabolites plays an important role in drug development and biomedical research. Reports on the secondary metabolites of Pseudomonas aeruginosa, many of which are of pharmacological importance, hold great promise for the development of effective antimicrobial drugs against microbial infections by drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (2000-2024) on antimicrobial secondary metabolites from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Tianbo Si
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Anqi Wang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Haowen Yan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lili Guan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Chengguang He
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Yiyi Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
4
|
Chesshyre E, Warren FC, Shore AC, Davies JC, Armstrong-James D, Warris A. Long-Term Outcomes of Allergic Bronchopulmonary Aspergillosis and Aspergillus Colonization in Children and Adolescents with Cystic Fibrosis. J Fungi (Basel) 2024; 10:599. [PMID: 39330359 PMCID: PMC11433026 DOI: 10.3390/jof10090599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Observational studies indicate that Aspergillus colonization and allergic bronchopulmonary aspergillosis (ABPA) in people with cystic fibrosis (CF) are associated with poorer lung health and increased disease severity. We performed a longitudinal observational cohort study to analyse long-term outcomes of Aspergillus colonization and ABPA in children with CF. Anonymised UK CF Registry data from 2009 to 2019 for patients aged 8-17 years in 2009-2010 were collected. For the baseline cohort analysis, patients were classified based on the presence of Aspergillus colonization and ABPA in 2009 and/or 2010. For the longitudinal analysis, patients were categorised according to annual Aspergillus colonization and ABPA status. Comparisons made were (1) Aspergillus positive vs. negative; (2) excluding those with ABPA: Aspergillus positive vs. negative; and (3) ABPA positive vs. negative. Primary outcome was percentage predicted FEV1 decline and secondary outcomes included BMI decline, mortality, lung transplant, and IV antibiotic use. Of the 1675 children, 263 had Aspergillus colonization in the baseline cohort, 260 were diagnosed with ABPA, and 80 had both. Baseline cohort analysis showed significantly lower lung function (p < 0.0001) and increased antibiotic treatment (p < 0.001) in those with Aspergillus colonization and in those with ABPA. Longitudinal analysis showed ABPA was associated with increased decline in lung function (p < 0.00001) and BMI (p < 0.00001). Aspergillus colonization was associated with increased decline in BMI (p = 0.005) but not lung function (p = 0.30). ABPA was associated with increased decline in long-term lung function and BMI in children and young people with CF. Aspergillus colonization was associated with lower lung function at baseline, but no increased rate of decline was observed long-term.
Collapse
Affiliation(s)
- Emily Chesshyre
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK;
- Department of Paediatrics, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Fiona C. Warren
- Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QJ, UK; (F.C.W.); (A.C.S.)
| | - Angela C. Shore
- Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QJ, UK; (F.C.W.); (A.C.S.)
- NIHR Exeter Clinical Research Facility, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK;
- Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
| | - Darius Armstrong-James
- Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
- Department of Infectious Diseases, Imperial College, London W12 0BZ, UK
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK;
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital, London WC1N 3JH, UK
| |
Collapse
|
5
|
Mudgil U, Khullar L, Chadha J, Prerna, Harjai K. Beyond antibiotics: Emerging antivirulence strategies to combat Pseudomonas aeruginosa in cystic fibrosis. Microb Pathog 2024; 193:106730. [PMID: 38851361 DOI: 10.1016/j.micpath.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.
Collapse
Affiliation(s)
- Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
6
|
Gourari-Bouzouina K, Boucherit-Otmani Z, Halla N, Seghir A, Baba Ahmed-Kazi Tani ZZ, Boucherit K. Exploring the dynamics of mixed-species biofilms involving Candida spp. and bacteria in cystic fibrosis. Arch Microbiol 2024; 206:255. [PMID: 38734793 DOI: 10.1007/s00203-024-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Cystic fibrosis (CF) is an inherited disease that results from mutations in the gene responsible for the cystic fibrosis transmembrane conductance regulator (CFTR). The airways become clogged with thick, viscous mucus that traps microbes in respiratory tracts, facilitating colonization, inflammation and infection. CF is recognized as a biofilm-associated disease, it is commonly polymicrobial and can develop in biofilms. This review discusses Candida spp. and both Gram-positive and Gram-negative bacterial biofilms that affect the airways and cause pulmonary infections in the CF context, with a particular focus on mixed-species biofilms. In addition, the review explores the intricate interactions between fungal and bacterial species within these biofilms and elucidates the underlying molecular mechanisms that govern their dynamics. Moreover, the review addresses the multifaceted issue of antimicrobial resistance in the context of CF-associated biofilms. By synthesizing current knowledge and research findings, this review aims to provide insights into the pathogenesis of CF-related infections and identify potential therapeutic approaches to manage and combat these complex biofilm-mediated infections.
Collapse
Affiliation(s)
- Karima Gourari-Bouzouina
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Noureddine Halla
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000, Saida, Algeria
| | - Abdelfettah Seghir
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Zahira Zakia Baba Ahmed-Kazi Tani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| |
Collapse
|
7
|
Juříková T, Mácha H, Lupjanová V, Pluháček T, Marešová H, Papoušková B, Luptáková D, Patil RH, Benada O, Grulich M, Palyzová A. The Deciphering of Growth-Dependent Strategies for Quorum-Sensing Networks in Pseudomonas aeruginosa. Microorganisms 2023; 11:2329. [PMID: 37764173 PMCID: PMC10534576 DOI: 10.3390/microorganisms11092329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudomonas aeruginosa is recognized as a significant cause of morbidity and mortality among nosocomial pathogens. In respiratory infections, P. aeruginosa acts not only as a single player but also collaborates with the opportunistic fungal pathogen Aspergillus fumigatus. This study introduced a QS molecule portfolio as a potential new biomarker that affects the secretion of virulence factors and biofilm formation. The quantitative levels of QS molecules, including 3-o-C12-HSL, 3-o-C8-HSL, C4-HSL, C6-HSL, HHQ, PQS, and PYO, measured using mass spectrometry in a monoculture, indicated metabolic changes during the transition from planktonic to sessile cells. In the co-cultures with A. fumigatus, the profile of abundant QS molecules was reduced to 3-o-C12-HSL, C4-HSL, PQS, and PYO. A decrease in C4-HSL by 50% to 170.6 ± 11.8 ng/mL and an increase 3-o-C12-HSL by 30% up to 784.4 ± 0.6 ng/mL were detected at the stage of the coverage of the hyphae with bacteria. Using scanning electron microscopy, we showed the morphological stages of the P. aeruginosa biofilm, such as cell aggregates, maturated biofilm, and cell dispersion. qPCR quantification of the genome equivalents of both microorganisms suggested that they exhibited an interplay strategy rather than antagonism. This is the first study demonstrating the quantitative growth-dependent appearance of QS molecule secretion in a monoculture of P. aeruginosa and a co-culture with A. fumigatus.
Collapse
Affiliation(s)
- Tereza Juříková
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Hynek Mácha
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Vanda Lupjanová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Helena Marešová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Barbora Papoušková
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Rutuja H. Patil
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Michal Grulich
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| |
Collapse
|
8
|
Ryan H, Ballard E, Stockwell RE, Duplancic C, Thomson RM, Smith K, Bell SC. A systematic review of the clinical impact of small colony variants in patients with cystic fibrosis. BMC Pulm Med 2023; 23:323. [PMID: 37658311 PMCID: PMC10474644 DOI: 10.1186/s12890-023-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a life-limiting disorder that is characterised by respiratory tract inflammation that is mediated by a range of microbial pathogens. Small colony variants (SCVs) of common respiratory pathogens are being increasingly recognised in CF. The aim of this systematic review is to investigate the prevalence of SCVs, clinical characteristics and health outcomes for patients with CF, and laboratory diagnostic features of SCVs compared to non-small colony variants (NCVs) for a range of Gram-positive and Gram-negative respiratory pathogens. METHODS A literature search was conducted (PubMed, Web of Science, Embase and Scopus) in April 2020 to identify articles of interest. Data pertaining to demographic characteristics of participants, diagnostic criteria of SCVs, SCV prevalence and impact on lung function were extracted from included studies for analysis. RESULTS Twenty-five of 673 studies were included in the systematic review. Individuals infected with SCVs of Staphylococcus aureus (S. aureus) were more likely to have had prior use of the broad-spectrum antibiotic trimethoprim sulfamethoxazole (p < 0.001), and the prevalence of SCVs in patients infected with S. aureus was estimated to be 19.3% (95% CI: 13.5% to 25.9%). Additionally, patients infected with SCVs of Gram-negative and Gram-positive pathogens were identified to have a lower forced expiratory volume in one second percentage predicted (-16.8, 95% CI: -23.2 to -10.4) than those infected by NCVs. Gram-positive SCVs were commonly described as small and non-haemolytic, grown on Mannitol salt or blood agar for 24 h at 35°C and confirmed using tube coagulase testing. CONCLUSION The findings of this systematic review demonstrate that SCVs of S. aureus have a high prevalence in the CF community, and that the occurrence of SCVs in Gram-positive and Gram-negative pathogens is linked to poorer respiratory function. Further investigation is necessary to determine the effect of infection by SCVs on the CF population.
Collapse
Affiliation(s)
- Harrigan Ryan
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Emma Ballard
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Rebecca E Stockwell
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Christine Duplancic
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Rachel M Thomson
- Respiratory Research Group, Gallipoli Medical Research Foundation, Greenslopes, QLD, Australia
| | - Kimberley Smith
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Scott C Bell
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia.
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, QLD, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
9
|
Gokdemir Y, Eralp EE, Ergenekon AP, Yilmaz Yegit C, Yanaz M, Mursaloğlu H, Uzunoglu B, Kocamaz D, Tastan G, Kenis Coskun O, Filbrun A, Enochs C, Bouma S, Iwanicki C, Karakoc F, Nasr SZ, Karadag B. Implementation of standardized cystic fibrosis care algorithm to improve the center data-quality improvement project international collaboration. J Cyst Fibros 2023; 22:710-714. [PMID: 37037703 DOI: 10.1016/j.jcf.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/26/2023] [Accepted: 03/26/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND A collaboration between the University of Michigan (U of M) Cystic Fibrosis Center (CFC) and Marmara University (MU) CFC was initiated to improve the health status of people with cystic fibrosis (pwCF) at MU through implementing Quality Improvement (QI) initiatives. The main aim was to improve lung function in children with FEV1pp <80. The secondary aim was to assess the changes in health related quality of life. METHODS Included in the project were pwCF who received cystic fibrosis (CF) care at the MU CFC and were 6-18 years of age with an FEV1pp <80. Flow charts were created and a standardized CF care algorithm was implemented. Weekly case review were done to develop individualized treatment plans. Appropriate intervention was applied and patient data were assessed at baseline, 3, 6, 9 and 12 months. The Cystic Fibrosis Revised Questionnaire (CFQ-R) was completed. RESULTS 55 pwCF were included (mean age:11.8 ± 3.3 years). Mean FEV1pp (SD) at baseline, 6 and 12 month was 63.7 (14.6), 66.9 (16.6), 70.4 (19.2), respectively, with a relative increase of 5.0% in 6 months (p:0.002) and 10.5% in 12 months compared to baseline (p<0.001). Physical functioning, eating problems and respiratory symptoms domains of the CFQ-R questionnaire were improved at the end of the one year for 6-13 (p = 0.024, p = 0.009, p = 0.002) and 13-18 year olds (p = 0.013, p = 0.002, p = 0.038). CONCLUSION There was significant improvement in pwCF with FEV1<80%pp after implementing this QI project. The processes and assessments used can be adopted by other low-middle income countries to improve similar measures.
Collapse
Affiliation(s)
- Yasemin Gokdemir
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey.
| | - Ela Erdem Eralp
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| | - Almala Pinar Ergenekon
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| | - Cansu Yilmaz Yegit
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| | - Muruvvet Yanaz
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| | - Hakan Mursaloğlu
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey; King's College Hospital, Department of Emergency Medicine, London, England, United Kingdom
| | - Burcu Uzunoglu
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| | - Damla Kocamaz
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| | - Gamze Tastan
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| | - Ozge Kenis Coskun
- Marmara University School of Medicine, Department of Physical Therapy and Rehabilitation, Istanbul, Turkey
| | - Amy Filbrun
- Division of Pediatric Pulmonology, University of Michigan, Ann Arbor, Michigan, United States.
| | - Catherine Enochs
- Division of Pediatric Pulmonology, University of Michigan, Ann Arbor, Michigan, United States.
| | - Sandra Bouma
- Division of Pediatric Pulmonology, University of Michigan, Ann Arbor, Michigan, United States.
| | - Courtney Iwanicki
- Division of Pediatric Pulmonology, University of Michigan, Ann Arbor, Michigan, United States.
| | - Fazilet Karakoc
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| | - Samya Z Nasr
- Division of Pediatric Pulmonology, University of Michigan, Ann Arbor, Michigan, United States.
| | - Bulent Karadag
- Marmara University School of Medicine, Division of Pediatric Pulmonology, Mimar Sinan Cad. No:10, Istanbul 34899, Turkey
| |
Collapse
|
10
|
Abstract
In cystic fibrosis, a new era has started with the approval and use of highly effective cystic fibrosis transport regulator (CFTR) modulator therapy. As pulmonary function is increasing and exacerbation rate significantly decreases, the current meaning of fungal pulmonary diseases is questioned. During the past couple of decades, several studies have been conducted regarding fungal colonization and infection of the airways in people with cystic fibrosis. Although Aspergillus fumigatus for filamentous fungi and Candida albicans for yeasts remain by far the most common fungal species in patients with cystic fibrosis, the pattern of fungal species associated with cystic fibrosis has considerably diversified recently. Fungi such as Scedosporium apiospermum or Exophiala dermatitidis are recognized as pathogenic in cystic fibrosis and therefore need attention in clinical settings. In this article, current definitions are stated. Important diagnostic steps are described, and their usefulness discussed. Furthermore, clinical treatment strategies and recommendations are named and evaluated. In cystic fibrosis, fungal entities can be divided into different subgroups. Besides colonization, allergic bronchopulmonary aspergillosis, bronchitis, sensitization, pneumonia, and aspergilloma can occur as a fungal disease entity. For allergic bronchopulmonary aspergillosis, bronchitis, pneumonia, and aspergilloma, clear indications for therapy exist but this is not the case for sensitization or colonization. Different pulmonary fungal disease entities in people with cystic fibrosis will continue to occur also in an era of highly effective CFTR modulator therapy. Whether the percentage will decrease or not will be the task of future evaluations in studies and registry analysis. Using the established definition for different categories of fungal diseases is recommended and should be taken into account if patients are deteriorating without responding to antibiotic treatment. Drug-drug interactions, in particular when using azoles, should be recognized and therapies need to be adjusted accordingly.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Education and Research, Health and Medical University-Health and Medical University Potsdam, Potsdam, Germany.,Division of Cystic Fibrosis, Cystic Fibrosis Center West Brandenburg, Postdam, Germany
| |
Collapse
|
11
|
Thornton CS, Parkins MD. Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future. Semin Respir Crit Care Med 2023; 44:269-286. [PMID: 36623820 DOI: 10.1055/s-0042-1758732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
12
|
Melenotte C, Aimanianda V, Slavin M, Aguado JM, Armstrong-James D, Chen YC, Husain S, Van Delden C, Saliba F, Lefort A, Botterel F, Lortholary O. Invasive aspergillosis in liver transplant recipients. Transpl Infect Dis 2023:e14049. [PMID: 36929539 DOI: 10.1111/tid.14049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver transplantation is increasing worldwide with underlying pathologies dominated by metabolic and alcoholic diseases in developed countries. METHODS We provide a narrative review of invasive aspergillosis (IA) in liver transplant (LT) recipients. We searched PubMed and Google Scholar for references without language and time restrictions. RESULTS The incidence of IA in LT recipients is low (1.8%), while mortality is high (∼50%). It occurs mainly early (<3 months) after LT. Some risk factors have been identified before (corticosteroid, renal, and liver failure), during (massive transfusion and duration of surgical procedure), and after transplantation (intensive care unit stay, re-transplantation, re-operation). Diagnosis can be difficult and therefore requires full radiological and clinicobiological collaboration. Accurate identification of Aspergillus species is recommended due to the cryptic species, and susceptibility testing is crucial given the increasing resistance of Aspergillus fumigatus to azoles. It is recommended to reduce the dose of tacrolimus (50%) and to closely monitor the trough level when introducing voriconazole, isavuconazole, and posaconazole. Surgery should be discussed on a case-by-case basis. Antifungal prophylaxis is recommended in high-risk patients. Environmental preventative measures should be implemented to prevent outbreaks of nosocomial aspergillosis in LT recipient units. CONCLUSION IA remains a very serious disease in LT patients and should be promptly sought and, if possible, prevented by clinicians when risk factors are identified.
Collapse
Affiliation(s)
- Cléa Melenotte
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France
| | - Monica Slavin
- Department of Infectious Diseases, National Center for Infections in Cancer, Sir Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Center, University of Melbourne, Melbourne, Australia
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shahid Husain
- Department of Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Francoise Botterel
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, DHU VIC, CHU Henri Mondor, Créteil, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France.,Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France.,Paris University, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
| |
Collapse
|
13
|
Xu X, Ding F, Hu X, Yang F, Zhang T, Dong J, Xue Y, Liu T, Wang J, Jin Q. Upper respiratory tract mycobiome alterations in different kinds of pulmonary disease. Front Microbiol 2023; 14:1117779. [PMID: 37032908 PMCID: PMC10076636 DOI: 10.3389/fmicb.2023.1117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The human respiratory tract is considered to be a polymicrobial niche, and an imbalance in the microorganism composition is normally associated with several respiratory diseases. In addition to the well-studied bacteriome, the existence of fungal species in the respiratory tract has drawn increasing attention and has been suggested to have a significant clinical impact. However, the understanding of the respiratory fungal microbiota (mycobiome) in pulmonary diseases is still insufficient. Methods In this study, we investigated the fungal community composition of oropharynx swab (OS) samples from patients with five kinds of pulmonary disease, including interstitial lung disease (ILD), bacterial pneumonia (BP), fungal pneumonia (FP), asthma (AS) and lung cancer (LC), and compared them with healthy controls (HCs), based on high-throughput sequencing of the amplified fungal internal transcribed spacer (ITS) region. Results The results showed significant differences in fungal composition and abundance between disease groups and HCs. Malassezia was the most significant genus, which was much more abundant in pulmonary diseases than in the control. In addition, many common taxa were shared among different disease groups, but differences in taxa abundance and specific species in distinct disease groups were also observed. Based on linear discriminant analysis effect size (LefSe), each group had its characteristic species. Furthermore, some species showed a significant correlation with the patient clinical characteristics. Discussion Our study deepened our understanding of the respiratory tract mycobiome in some diseases that are less studied and identified the commonalities and differences among different kinds of pulmonary disease. These results would provide the solid basis for further investigation of the association between the mycobiome and pathogenicity of pulmonary diseases.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangping Ding
- Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiangqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xue
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Tao Liu,
| | - Jing Wang
- Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Jing Wang,
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Qi Jin,
| |
Collapse
|
14
|
Hong G. Progress and challenges in fungal lung disease in cystic fibrosis. Curr Opin Pulm Med 2022; 28:584-590. [PMID: 36101907 PMCID: PMC9547960 DOI: 10.1097/mcp.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review is an overview of the recent progress made for the diagnosis and understanding of fungal lung disease in people with cystic fibrosis (CF), with a focus on Aspergillus fumigatus , the most common filamentous fungus in the CF airway. Currently, the longstanding question of the clinical significance of Aspergillus fumigatus and other fungi in CF respiratory cultures, in the absence of allergy, remains. Clinical criteria and biomarkers are needed to classify fungal lung disease and determine who may warrant therapy. RECENT FINDINGS Several retrospective and prospective studies have described the prevalence of A. fumigatus and other fungi in the CF lung and factors contributing to the changes in fungal epidemiology. Selective fungus culture testing for the detection of fungi in CF sputa has been well studied, yet a standardized fungus culture protocol has yet to be defined. Culture-independent molecular studies and other fungal diagnostic testing have been conducted in the CF population, leading to efforts to better understand the clinical role of these tests. Recent works have aimed to determine whether chronic A. fumigatus colonization is associated with lung disease progression measured by FEV 1 percentage predicted, structural lung disease, lung clearance index and respiratory quality-of-life. However, the existing knowledge gaps remain: definition of a fungal respiratory infection, the association between fungal infection and clinical outcomes, and indications for antifungal therapy. SUMMARY Significant progress has been made for the detection and diagnosis of fungal lung disease. Yet, the role and impact of A. fumigatus and other fungal infections on respiratory health in people with CF remains to be determined.
Collapse
Affiliation(s)
- Gina Hong
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Fluit AC, Bayjanov JR, Benaissa-Trouw BJ, Rogers MRC, Díez-Aguilar M, Cantón R, Tunney MM, Elborn JS, Ekkelenkamp MB. Whole-genome analysis of Haemophilus influenzae strains isolated from persons with cystic fibrosis. J Med Microbiol 2022; 71. [PMID: 36006824 DOI: 10.1099/jmm.0.001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Haemophilus influenzae is a commensal of the respiratory tract that is frequently present in cystic fibrosis (CF) patients and may cause infection. Antibiotic resistance is well described for CF strains, and virulence factors have been proposed.Hypothesis/Gap. The genetic diversity of H. influenzae strains present in the lungs of persons with CF is largely unknown despite the fact that this organism is considered to be a pathogen in this condition. The aim was to establish the genetic diversity and susceptibility of H. influenzae strains from persons with CF, and to screen the whole genomes of these strains for the presence of antibiotic resistance determinants and proposed virulence factors.Methods. A total of 67 strains, recovered from respiratory samples from persons with CF from the UK (n=1), Poland (n=2), Spain (n=24) and the Netherlands (n=40), were subjected to whole-genome sequencing using Illumina technology and tested for antibiotic susceptibility. Forty-nine of these strains (one per different sequence type) were analysed for encoded virulence factors and resistance determinants.Results. The 67 strains represented 49 different sequence types. Susceptibility testing showed that all strains were susceptible to aztreonam, ciprofloxacin, imipenem and tetracycline. Susceptibility to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanic acid, cefuroxime, cefixime, ceftriaxone, cefepime, meropenem, clarithromycin, co-trimoxazole and levofloxacin ranged from 70.2-98.5%. Only 6/49 strains (12.2%) harboured acquired resistance genes. Mutations associated with a ß-lactamase-negative ampicillin-resistant phenotype were present in four strains (8.2 %). The potential virulence factors, urease, haemoglobin- and haptoglobin-binding protein/carbamate kinase, and OmpP5 (OmpA), were encoded in more than half of the strains. The genes for HMW1, HMW2, H. influenzae adhesin, a IgA-specific serine endopeptidase autotransporter precursor, a TonB-dependent siderophore, an ABC-transporter ATP-binding protein, a methyltransferase, a BolA-family transcriptional regulator, glycosyltransferase Lic2B, a helix-turn-helix protein, an aspartate semialdehyde dehydrogenase and another glycosyltransferase were present in less than half of the strains.Conclusion. The H. influenzae strains showed limited levels of resistance, with the highest being against co-trimoxazole. Sequences encoding a carbamate kinase and a haemoglobin- and haemoglobin-haptoglobin-binding-like protein, a glycosyl transferase and an urease may aid the colonization of the CF lung. The adhesins and other identified putative virulence factors did not seem to be necessary for colonization.
Collapse
Affiliation(s)
- Ad C Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Barry J Benaissa-Trouw
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Michael M Tunney
- Department of Pulmonology, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Department of Pulmonology, Queen's University Belfast, Belfast, UK
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
van Aerde KJ, Leegstraten A, van den Kieboom C, Merkus PJFM, Sintnicolaas C, Simons SO, van der Flier M, de Groot R, de Jonge M. Non-invasive diagnostics of pathogenic bacteria using a breath sampler in children with cystic fibrosis. J Breath Res 2022; 16. [PMID: 35868248 DOI: 10.1088/1752-7163/ac8369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022]
Abstract
Cystic fibrosis is a common autosomal recessive disease causing thick, viscous secretions leading to pulmonary infections with pathogenic bacteria. As part of routine patient care, colonization and infection with these bacteria is monitored with cough swab or sputum cultures and sometimes bronchoalveolar lavage. In this cross-sectional proof-of-concept study in a cohort of CF patients we collected swabs or sputa and exhaled breath samples with the Modular Breath Sampler (MBS), a newly developed two-way non-rebreathing sampling device. Pathogen specific polymerase chain reactions (PCRs) were performed on the MBS samples and compared with the results obtained with conventional diagnostics (i.e. culturing of swabs and sputa). A control group of stable asthma patients was used as negative control for the MBS measurements. The pathogens detected using MBS and conventional culturing differed: Staphylococcus aureus was found more often in swab or sputum samples whereas Pseudomonas aeruginosa and Streptococcus pneumoniae were found more often in MBS samples. We hypothesize that this is due to sampling of different compartments, MBS samples are derived from the lower respiratory tract while cultures from cough swabs and sputa are dominated by pathogens residing in the upper respiratory tract. Another important difference is the readout, i.e. culture versus PCR. The majority of CF patients in whom Pseudomonas aeruginosa was found did not have recent positive cultures suggesting higher sensitivity of MBS-based than conventional diagnostics. The majority of parents / patients found the MBS easy to use and less of a burden than respiratory sampling.
Collapse
Affiliation(s)
- Koen Jan van Aerde
- Pediatric Infectious Disease and Immunology, Amalia Children's Hospital, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, NETHERLANDS
| | - Aniek Leegstraten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, Gelderland, 6525 GA, NETHERLANDS
| | | | - Peter J F M Merkus
- Pediatric Pulmonology, Amalia Children's Hospital, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, Gelderland, 6525 GA, NETHERLANDS
| | - Coosje Sintnicolaas
- Pediatric Pulmonology, Amalia Children's Hospital, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, Gelderland, 6525 GA, NETHERLANDS
| | - Sami O Simons
- Respiratory Medicine, Maastricht University Medical Centre+, P. Debeyelaan 25, Maastricht, Limburg, 6229 HX, NETHERLANDS
| | - Michiel van der Flier
- Pediatric Infectious Disease and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, Utrecht, Utrecht, 3584 EA, NETHERLANDS
| | - Ronald de Groot
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, Gelderland, 6525 GA, NETHERLANDS
| | - Marien de Jonge
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, Gelderland, 6525 GA, NETHERLANDS
| |
Collapse
|
17
|
Secondary Metabolites Produced during Aspergillus fumigatus and Pseudomonas aeruginosa Biofilm Formation. mBio 2022; 13:e0185022. [PMID: 35856657 PMCID: PMC9426470 DOI: 10.1128/mbio.01850-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cystic fibrosis (CF), mucus plaques are formed in the patient's lungs, creating a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms. There is clinical evidence showing that Aspergillus fumigatus can cocolonize CF patients with Pseudomonas aeruginosa, which has been associated with lung function decline. P. aeruginosa produces several compounds with inhibitory and antibiofilm effects against A. fumigatus in vitro; however, little is known about the fungal compounds produced in counterattack. Here, we annotated fungal and bacterial secondary metabolites (SM) produced in mixed biofilms under normoxia and hypoxia conditions. We detected nine SM produced by P. aeruginosa. Phenazines and different analogs of pyoverdin were the main compounds produced by P. aeruginosa, and their secretion levels were increased by the fungal presence. The roles of the two operons responsible for phenazine production (phzA1 and phzA2) were also investigated, and mutants lacking one of those operons were able to produce partial sets of phenazines. We detected a total of 20 SM secreted by A. fumigatus either in monoculture or in coculture with P. aeruginosa. All these compounds were secreted during biofilm formation in either normoxia or hypoxia. However, only eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, triacetylfusigen, gliotoxin, gliotoxin E, and pyripyropene A) were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa under normoxia and hypoxia conditions. Overall, we showed how diverse SM secretion is during A. fumigatus and P. aeruginosa mixed culture and how this can affect biofilm formation in normoxia and hypoxia. IMPORTANCE The interaction between Pseudomonas aeruginosa and Aspergillus fumigatus has been well characterized in vitro. In this scenario, the bacterium exerts a strong inhibitory effect against the fungus. However, little is known about the metabolites produced by the fungus to counterattack the bacteria. Our work aimed to annotate secondary metabolites (SM) secreted during coculture between P. aeruginosa and A. fumigatus during biofilm formation in both normoxia and hypoxia. The bacterium produces several different types of phenazines and pyoverdins in response to presence of the fungus. In contrast, we were able to annotate 29 metabolites produced during A. fumigatus biofilm formation, but only 8 compounds were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa upon either normoxia or hypoxia. In conclusion, we detected many SM secreted during A. fumigatus and P. aeruginosa biofilm formation. This analysis provides several opportunities to understand the interactions between these two species.
Collapse
|
18
|
Margalit A, Sheehan D, Carolan JC, Kavanagh K. Exposure to the Pseudomonas aeruginosa secretome alters the proteome and secondary metabolite production of Aspergillus fumigatus. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001164. [PMID: 35333152 PMCID: PMC9558348 DOI: 10.1099/mic.0.001164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 01/09/2023]
Abstract
The fungal pathogen Aspergillus fumigatus is frequently cultured from the sputum of cystic fibrosis (CF) patients along with the bacterium Pseudomonas aeruginosa. A. fumigatus secretes a range of secondary metabolites, and one of these, gliotoxin, has inhibitory effects on the host immune response. The effect of P. aeruginosa culture filtrate (CuF) on fungal growth and gliotoxin production was investigated. Exposure of A. fumigatus hyphae to P. aeruginosa cells induced increased production of gliotoxin and a decrease in fungal growth. In contrast, exposure of A. fumigatus hyphae to P. aeruginosa CuF led to increased growth and decreased gliotoxin production. Quantitative proteomic analysis was used to characterize the proteomic response of A. fumigatus upon exposure to P. aeruginosa CuF. Changes in the profile of proteins involved in secondary metabolite biosynthesis (e.g. gliotoxin, fumagillin, pseurotin A), and changes to the abundance of proteins involved in oxidative stress (e.g. formate dehydrogenase) and detoxification (e.g. thioredoxin reductase) were observed, indicating that the bacterial secretome had a profound effect on the fungal proteome. Alterations in the abundance of proteins involved in detoxification and oxidative stress highlight the ability of A. fumigatus to differentially regulate protein synthesis in response to environmental stresses imposed by competitors such as P. aeruginosa. Such responses may ultimately have serious detrimental effects on the host.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
19
|
Linnane B, O'Connell N, Obande E, Dunne S, Clancy C, Kiernan M, McGrath D, O'Sullivan K, O'Sullivan L, Dunne C. Assessment of the microbial load of airway clearance devices used by a cohort of children with cystic fibrosis. Infect Prev Pract 2021; 3:100153. [PMID: 34647008 PMCID: PMC8498708 DOI: 10.1016/j.infpip.2021.100153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Background Positive expiratory pressure (PEP) devices are an important element of the management of cystic fibrosis, and of other respiratory diseases. Whereas there have been reports in the literature of contamination of airway clearance devices and their surfaces by microbial pathogens, there is little evidence available regarding such contamination and its contribution to respiratory infection. Aim To establish whether pathogenic bacteria can contaminate PEP devices in the context of normal cleaning and maintenance practices. Methods Patients' home-use clearance devices were brought to a routine clinic appointment and collected for microbiology sampling and analysis. The patients were provided with replacement devices. Nineteen such devices were collected from 17 patients, reflecting use of multiple devices by some patients. Swabs were taken and cultured from each patient's used device, the patient's airway, as well as from new unopened and unused devices that acted as controls. Results Seven of 19 devices (37%) tested positive for presence of pathogenic bacteria. Device-cleaning methods varied among patients and non-sterilization methods were found to be ineffective at removing pathogens. Microbial species found on the devices did not correlate with those identified from airway swabs. Conclusion This study demonstrates the presence of pathogens on positive expiratory pressure devices. The potential for transmission of these pathogens to the patient's airway and the risk of infection remains unclear and requires further study.
Collapse
Affiliation(s)
- B. Linnane
- Paediatric Cystic Fibrosis Department, University Hospital Limerick, Limerick, Ireland
- National Children's Research Centre, Crumlin, Dublin, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - N.H. O'Connell
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
- Department of Clinical Microbiology, University Limerick Hospital Group, Limerick, Ireland
| | - E. Obande
- Paediatric Cystic Fibrosis Department, University Hospital Limerick, Limerick, Ireland
- National Children's Research Centre, Crumlin, Dublin, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - S.S. Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - C. Clancy
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - M.G. Kiernan
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - D. McGrath
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - K.J. O'Sullivan
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
- Rapid Innovation Unit – Confirm Centre for Smart Manufacturing, School of Design & Health Research Institute, University of Limerick, Limerick, Ireland
| | - L. O'Sullivan
- Rapid Innovation Unit – Confirm Centre for Smart Manufacturing, School of Design & Health Research Institute, University of Limerick, Limerick, Ireland
| | - C.P. Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
- Corresponding author. Address: School of Medicine, University of Limerick, Castletroy, Limerick, Ireland. Tel.: +353-(0)86-0430739.
| |
Collapse
|
20
|
Viñado C, Girón RM, Ibáñez E, García-Ortega A, Pérez I, Polanco D, Pemán J, Solé A. Filamentous fungi in the airway of patients with cystic fibrosis: Just spectators? Rev Iberoam Micol 2021; 38:168-174. [PMID: 34535388 DOI: 10.1016/j.riam.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/17/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND There are important advances in the management of bacterial infection in patients with cystic fibrosis (CF), but there are many gaps in the field of fungal infections. AIMS The aim of this study was to analyse whether chronic respiratory filamentous fungal colonization had clinical impact and whether antifungal treatment can change the disease. METHODS The prospective, bicentric and descriptive study was carried out within a 3-year follow-up period, with four-month periodicity medical controls. Adult patients from two CF units of tertiary hospitals were included. Clinical, microbiological, analytical and spirometric variables were collected. Quality of life was evaluated in a subgroup, using the Spanish version of the Revised Cystic Fibrosis Quality of Life Questionnaire (CFQ-R). To statistically analyze the evolution of forced expiratory along time (volume of air blown out in 1 second -FEV1-) and the forced vital capacity (FVC), mixed linear models were carried out. RESULTS From the ninety-eight patients under study, 40 suffered chronic filamentous fungal colonization. The presence of filamentous fungi in airway was associated to an annual fall of FEV1 and FVC of 0.029 and 0.017 litres, respectively (p<0.001). In addition, worse quality of life based on CFQ-R, significant when concerning physical condition and emotional state, was also linked with the fungal colonization. Protocolized antifungal therapy, nebulized or oral, improved FEV1 in 0.023 and 0.024 litres per year, respectively (p<0.001). CONCLUSIONS Chronic filamentous fungal colonization in patients with CF is associated with a significant annual decline of lung function that persists over time. Chronic antifungal therapy slows down this progression, mainly in the patient with more advanced disease.
Collapse
Affiliation(s)
- Clara Viñado
- Servicio de Neumología del Hospital de Barbastro, Spain.
| | - Rosa María Girón
- Unidad de Fibrosis Quística del Hospital Universitario de la Princesa de Madrid, Spain
| | - Elisa Ibáñez
- Servicio de Microbiología del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| | - Alberto García-Ortega
- Unidad de Fibrosis Quística y Trasplante Pulmonar del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| | - Inés Pérez
- Unidad de Fibrosis Quística y Trasplante Pulmonar del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| | - Dinora Polanco
- Servicio de Neumología del Hospital Universitario Arnau de Vilanova de Lleida, Spain
| | - Javier Pemán
- Servicio de Microbiología del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| | - Amparo Solé
- Unidad de Fibrosis Quística y Trasplante Pulmonar del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| |
Collapse
|
21
|
Abstract
In the past three decades, fungal respiratory colonization and fungal respiratory infections increasingly raised concern in cystic fibrosis (CF). Reasons for this are a better knowledge of the pathogenicity of fungi, whereby detection is sought in more and more CF centers, but also improvement of detection methods. However, differences in fungal detection rates within and between geographical regions exist and indicate the need for standardization of mycological examination of respiratory secretions. The still existing lack of standardization also complicates the assessment of fungal pathogenicity, relevance of fungal detection and risk factors for fungal infections. Nevertheless, numerous studies have now been conducted on differences in detection methods, epidemiology, risk factors, pathogenicity and therapy of fungal diseases in CF. Meanwhile, some research groups now have classified fungal disease entities in CF and developed diagnostic criteria as well as therapeutic guidelines.The following review presents an overview on fungal species relevant in CF. Cultural detection methods with their respective success rates as well as susceptibility testing will be presented, and the problem of increasing azole resistance in Aspergillus fumigatus will be highlighted. Next, current data and conflicting evidence on the epidemiology and risk factors for fungal diseases in patients with CF will be discussed. Finally, an overview of fungal disease entities in CF with their current definitions, diagnostic criteria and therapeutic options will be presented.
Collapse
|
22
|
Yilmaz Yegit C, Ergenekon AP, Mursaloglu HH, Cenk M, Uzunoglu BS, Tastan G, Gokdemir Y, Erdem Eralp E, Karakoc F, Nasr SZ, Karadag B. The effects of nebulizer hygiene training on the practices of cystic fibrosis patients and caregivers. Pediatr Pulmonol 2021; 56:1527-1533. [PMID: 33538406 DOI: 10.1002/ppul.25307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nebulizers can be contaminated with microorganisms and may be a source of infection in the lower airways in patients with cystic fibrosis (CF). OBJECTIVE Primary aim of this study was to determine the level of knowledge regarding nebulizer hygiene and adherence to CF foundation infection prevention and control (IPC) measures of CF patients in our center. We also evaluated the effect of a standardized training program on nebulizer cleaning and disinfection practises with pre and posttest. METHODS Caregivers of 173 CF patients followed at Marmara University CF Center filled a questionnaire (pretest) regarding nebulizer hygiene and received didactic education including pictures and videos based on the cystic fibrosis foundation (CFF) IPC guidelines, patients were also provided educational materials. Posttest was performed 1-3 months after the education session. RESULTS Following standardized training, usage of appropriate methods according to CFF IPC guidelines improved significantly. Frequency of nebulizer cleaning after each use increased from 58.4% to 78% (p < .01) and disinfection frequency after each/daily usage increased from 33.6% to 75.7% (p < .01). Additionally, methods of cleaning and storage of the nebulizer, also improved significantly (p < .01, p < .01). CONCLUSION Education was highly effective to increase the rate of proper practices for nebulizer hygiene. The necessity of cleaning, disinfection, careful drying, correct storage of the nebulizer parts, and changing the nebulizer equipment within recommended time should be emphasized to CF families regularly.
Collapse
Affiliation(s)
- Cansu Yilmaz Yegit
- Department of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| | - Almala Pinar Ergenekon
- Department of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| | - Huseyin Hakan Mursaloglu
- Department of Pediatic Pulmonology; Selim Coremen Cystic Fibrosis Center, Marmara University School of Medicine, Istanbul, Turkey
| | - Muruvvet Cenk
- Department of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| | - Burcu Suzer Uzunoglu
- Department of Pediatic Pulmonology; Selim Coremen Cystic Fibrosis Center, Marmara University School of Medicine, Istanbul, Turkey
| | - Gamze Tastan
- Department of Pediatic Pulmonology; Selim Coremen Cystic Fibrosis Center, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Gokdemir
- Department of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ela Erdem Eralp
- Department of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| | - Fazilet Karakoc
- Department of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| | - Samya Z Nasr
- Department of Pediatric Pulmonology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Bulent Karadag
- Department of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
23
|
Hughes DA, Archangelidi O, Coates M, Armstrong-James D, Elborn SJ, Carr SB, Davies JC. Clinical characteristics of Pseudomonas and Aspergillus co-infected cystic fibrosis patients: A UK registry study. J Cyst Fibros 2021; 21:129-135. [PMID: 33958279 DOI: 10.1016/j.jcf.2021.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa (Pa) and Aspergillus species (Asp) are the most common bacterial and fungal organisms respectively in CF airways. Our aim was to examine impacts of Asp infection and Pa/Asp co-infection. METHODS Patients on the UK CF Registry in 2016 were grouped into: absent (Pa-), intermittent (Pai) or chronic Pa (Pac), each with Asp positive (Asp+) or negative (Asp-). Primary outcome was best percentage predicted FEV1 (ppFEV1) that year. Secondary outcomes were intravenous (IV) antibiotic courses, growth (height, weight, BMI) and additional disease complications. Associations between outcomes and infection-status were assessed using regression models adjusting for significant confounders (age, sex, Phe508del homozygosity and CF-related diabetes (CFRD)). RESULTS 9,270 patients were included (median age 19 [IQR 9-30] years, 54% male, 50% Phe508del/F508del). 4,142 patients (45%) isolated Pa, 1,460 (16%) Asp. Pa-/Asp+ subjects had an adjusted ppFEV1 that was 5.9% lower than Pa-/Asp- (p < 0.0001). In patients with Pai or Pac, there was no additional impact of Asp on ppFEV1. However, there was a higher probability that Pac/Asp+ patients had required IV antibiotics than Pac/Asp- group (OR 1.23 [1.03-1.48]). Low BMI, ABPA, CF-liver disease and CFRD were all more frequent with Asp alone than Pa-/Asp-, though not more common in Pac/Asp+ than Pac/Asp-. CONCLUSIONS Co-infection with Pa and Asp was not associated with reduced lung function compared with Pa alone, but was associated with additional use of IV antibiotics. Asp infection itself is associated with several important indicators of disease severity. Longitudinal analyses should explore the impact of co-infection on disease progression.
Collapse
Affiliation(s)
- Dominic A Hughes
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK.
| | | | - Matthew Coates
- National Heart & Lung Institute, Imperial College London, UK
| | - Darius Armstrong-James
- Royal Brompton and Harefield Hospitals, London, UK; Department of Infectious Diseases, Imperial College London, UK
| | | | - Siobhán B Carr
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK
| |
Collapse
|
24
|
Bayfield KJ, Douglas TA, Rosenow T, Davies JC, Elborn SJ, Mall M, Paproki A, Ratjen F, Sly PD, Smyth AR, Stick S, Wainwright CE, Robinson PD. Time to get serious about the detection and monitoring of early lung disease in cystic fibrosis. Thorax 2021; 76:1255-1265. [PMID: 33927017 DOI: 10.1136/thoraxjnl-2020-216085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Structural and functional defects within the lungs of children with cystic fibrosis (CF) are detectable soon after birth and progress throughout preschool years often without overt clinical signs or symptoms. By school age, most children have structural changes such as bronchiectasis or gas trapping/hypoperfusion and lung function abnormalities that persist into later life. Despite improved survival, gains in forced expiratory volume in one second (FEV1) achieved across successive birth cohorts during childhood have plateaued, and rates of FEV1 decline in adolescence and adulthood have not slowed. This suggests that interventions aimed at preventing lung disease should be targeted to mild disease and commence in early life. Spirometry-based classifications of 'normal' (FEV1≥90% predicted) and 'mild lung disease' (FEV1 70%-89% predicted) are inappropriate, given the failure of spirometry to detect significant structural or functional abnormalities shown by more sensitive imaging and lung function techniques. The state and readiness of two imaging (CT and MRI) and two functional (multiple breath washout and oscillometry) tools for the detection and monitoring of early lung disease in children and adults with CF are discussed in this article.Prospective research programmes and technological advances in these techniques mean that well-designed interventional trials in early lung disease, particularly in young children and infants, are possible. Age appropriate, randomised controlled trials are critical to determine the safety, efficacy and best use of new therapies in young children. Regulatory bodies continue to approve medications in young children based on safety data alone and extrapolation of efficacy results from older age groups. Harnessing the complementary information from structural and functional tools, with measures of inflammation and infection, will significantly advance our understanding of early CF lung disease pathophysiology and responses to therapy. Defining clinical utility for these novel techniques will require effective collaboration across multiple disciplines to address important remaining research questions. Future impact on existing management burden for patients with CF and their family must be considered, assessed and minimised.To address the possible role of these techniques in early lung disease, a meeting of international leaders and experts in the field was convened in August 2019 at the Australiasian Cystic Fibrosis Conference. The meeting entitiled 'Shaping imaging and functional testing for early disease detection of lung disease in Cystic Fibrosis', was attended by representatives across the range of disciplines involved in modern CF care. This document summarises the proceedings, key priorities and important research questions highlighted.
Collapse
Affiliation(s)
- Katie J Bayfield
- Department of Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Tonia A Douglas
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Tim Rosenow
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Stuart J Elborn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus Mall
- Department of Pediatric Pulmonology, Immunology, and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Translational Pulmonology, German Center for Lung Research, Berlin, Germany
| | - Anthony Paproki
- The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Felix Ratjen
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queenland, Herston, Queensland, Australia
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology. School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, UK
| | - Stephen Stick
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia .,Airway Physiology and Imaging Group, Woolcock Institute of Medical Research, Glebe, New South Wales, Australia.,The Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Saliu F, Rizzo G, Bragonzi A, Cariani L, Cirillo DM, Colombo C, Daccò V, Girelli D, Rizzetto S, Sipione B, Cigana C, Lorè NI. Chronic infection by nontypeable Haemophilus influenzae fuels airway inflammation. ERJ Open Res 2021; 7:00614-2020. [PMID: 33778054 PMCID: PMC7983230 DOI: 10.1183/23120541.00614-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is commonly isolated from airways of patients suffering from chronic respiratory diseases, such as COPD or cystic fibrosis (CF). However, to what extent NTHi long-term infection contributes to the lung inflammatory burden during chronic airway disease is still controversial. Here, we exploited human respiratory samples from a small cohort of CF patients and found that patients chronically infected with NTHi had significantly higher levels of interleukin (IL)-8 and CXCL1 than those who were not infected. To better define the impact of chronic NTHi infection in fuelling inflammatory response in chronic lung diseases, we developed a new mouse model using both laboratory and clinical strains. Chronic NTHi infection was associated with chronic inflammation of the lung, characterised by recruitment of neutrophils and cytokine release keratinocyte-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2), granulocyte colony-stimulating factor (G-CFS), IL-6, IL-17A and IL-17F) at 2 and 14 days post-infection. An increased burden of T-cell-mediated response (CD4+ and γδ cells) and higher levels of pro-matrix metalloproteinase 9 (pro-MMP9), known to be associated with tissue remodelling, were observed at 14 days post-infection. Of note we found that both CD4+IL-17+ cells and levels of IL-17 cytokines were enriched in mice at advanced stages of NTHi chronic infection. Moreover, by immunohistochemistry we found CD3+, B220+ and CXCL-13+ cells localised in bronchus-associated lymphoid tissue-like structures at day 14. Our results demonstrate that chronic NTHi infection exerts a pro-inflammatory activity in the human and murine lung and could therefore contribute to the exaggerated burden of lung inflammation in patients at risk. The pathological impact of long-term infection by nontypeable Haemophilus influenzae (NTHi) is still debated. Chronic NTHi infection fuels lung inflammation in human samples and in a new mouse model of bacterial long-term persistence.https://bit.ly/3lvyvge
Collapse
Affiliation(s)
- Fabio Saliu
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Emerging bacterial pathogens Unit, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Giulia Rizzo
- Università Vita-Salute San Raffaele, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Alessandra Bragonzi
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Lisa Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Daniela M Cirillo
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Emerging bacterial pathogens Unit, Milan, Italy
| | - Carla Colombo
- Cystic Fibrosis Regional Reference Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Valeria Daccò
- Cystic Fibrosis Regional Reference Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Daniela Girelli
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Sara Rizzetto
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Barbara Sipione
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Cristina Cigana
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Nicola I Lorè
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Emerging bacterial pathogens Unit, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| |
Collapse
|
26
|
Magee LC, Louis M, Khan V, Micalo L, Chaudary N. Managing Fungal Infections in Cystic Fibrosis Patients: Challenges in Clinical Practice. Infect Drug Resist 2021; 14:1141-1153. [PMID: 33790585 PMCID: PMC7998013 DOI: 10.2147/idr.s267219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease characterized by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Impairment of the CFTR protein in the respiratory tract results in the formation of thick mucus, development of inflammation, destruction of bronchial tissue, and development of bacterial or fungal infections over time. CF patients are commonly colonized and/or infected with fungal organisms, Candida albicans or Aspergillus fumigatus, with prevalence rates ranging from 5% to 78% in the literature. Risk factors for acquiring fungal organisms include older age, coinfection with Pseudomonas aeruginosa, prolonged use of oral and inhaled antibiotics, and lower forced expiratory volume (FEV1). There are limited data available to differentiate between contamination, colonization, and active infection. Furthermore, the pathogenicity of colonization is variable in the literature as some studies report a decline in lung function associated with fungal colonization whereas others showed no difference. Limited data are available for the eradication of fungal colonization and the treatment of active invasive aspergillosis in adult CF patients. In this review article, we discuss the challenges in clinical practice and current literature available for laboratory findings, clinical diagnosis, and treatment options for fungal infections in adult CF patients.
Collapse
Affiliation(s)
- Lauren C Magee
- Department of Pharmacy, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Mariam Louis
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, FL, USA
| | - Vaneeza Khan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lavender Micalo
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nauman Chaudary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Margalit A, Carolan JC, Kavanagh K. Bacterial Interactions with Aspergillus fumigatus in the Immunocompromised Lung. Microorganisms 2021; 9:microorganisms9020435. [PMID: 33669831 PMCID: PMC7923216 DOI: 10.3390/microorganisms9020435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The immunocompromised airways are susceptible to infections caused by a range of pathogens which increases the opportunity for polymicrobial interactions to occur. Pseudomonas aeruginosa and Staphylococcus aureus are the predominant causes of pulmonary infection for individuals with respiratory disorders such as cystic fibrosis (CF). The spore-forming fungus Aspergillus fumigatus, is most frequently isolated with P. aeruginosa, and co-infection results in poor outcomes for patients. It is therefore clinically important to understand how these pathogens interact with each other and how such interactions may contribute to disease progression so that appropriate therapeutic strategies may be developed. Despite its persistence in the airways throughout the life of a patient, A. fumigatus rarely becomes the dominant pathogen. In vitro interaction studies have revealed remarkable insights into the molecular mechanisms that drive agonistic and antagonistic interactions that occur between A. fumigatus and pulmonary bacterial pathogens such as P. aeruginosa. Crucially, these studies demonstrate that although bacteria may predominate in a competitive environment, A. fumigatus has the capacity to persist and contribute to disease.
Collapse
Affiliation(s)
| | | | - Kevin Kavanagh
- Correspondence: ; Tel.: +353-1-708-3859; Fax: +353-1-708-3845
| |
Collapse
|
28
|
de Almeida OGG, Capizzani CPDC, Tonani L, Grizante Barião PH, da Cunha AF, De Martinis ECP, Torres LAGMM, von Zeska Kress MR. The Lung Microbiome of Three Young Brazilian Patients With Cystic Fibrosis Colonized by Fungi. Front Cell Infect Microbiol 2020; 10:598938. [PMID: 33262957 PMCID: PMC7686462 DOI: 10.3389/fcimb.2020.598938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022] Open
Abstract
Microbial communities infiltrate the respiratory tract of cystic fibrosis patients, where chronic colonization and infection lead to clinical decline. This report aims to provide an overview of the diversity of bacterial and fungal species from the airway secretion of three young CF patients with severe pulmonary disease. The bacterial and fungal microbiomes were investigated by culture isolation, metataxonomics, and metagenomics shotgun. Virulence factors and antibiotic resistance genes were also explored. A. fumigatus was isolated from cultures and identified in high incidence from patient sputum samples. Candida albicans, Penicillium sp., Hanseniaspora sp., Torulaspora delbrueckii, and Talaromyces amestolkiae were isolated sporadically. Metataxonomics and metagenomics detected fungal reads (Saccharomyces cerevisiae, A. fumigatus, and Schizophyllum sp.) in one sputum sample. The main pathogenic bacteria identified were Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, and Achromobacter xylosoxidans. The canonical core CF microbiome is composed of species from the genera Streptococcus, Neisseria, Rothia, Prevotella, and Haemophilus. Thus, the airways of the three young CF patients presented dominant bacterial genera and interindividual variability in microbial community composition and diversity. Additionally, a wide diversity of virulence factors and antibiotic resistance genes were identified in the CF lung microbiomes, which may be linked to the clinical condition of the CF patients. Understanding the microbial community is crucial to improve therapy because it may have the opposite effect, restructuring the pathogenic microbiota. Future studies focusing on the influence of fungi on bacterial diversity and microbial interactions in CF microbiomes will be welcome to fulfill this huge gap of fungal influence on CF physiopathology.
Collapse
Affiliation(s)
- Otávio Guilherme Gonçalves de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carolina Paulino da Costa Capizzani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Helena Grizante Barião
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Elaine Cristina Pereira De Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Marcia Regina von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Risk factors for respiratory Aspergillus fumigatus in German Cystic Fibrosis patients and impact on lung function. Sci Rep 2020; 10:18999. [PMID: 33149181 PMCID: PMC7643137 DOI: 10.1038/s41598-020-75886-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
Airway inflammation and chronic lung infections in cystic fibrosis (CF) patients are mostly caused by bacteria, e.g. Pseudomonas aeruginosa (PA). The role of fungi in the CF lung is still not well elucidated, but evidence for a harmful and complex role is getting stronger. The most common filamentous fungus in CF is Aspergillus fumigatus (AF). Age and continuous antibiotic treatment have been discussed as risk factors for AF colonisation but did not differentiate between transient and persistent AF colonisation. Also, the impact of co-colonisation of PA and AF on lung function is still under investigation. Data from patients with CF registered in the German Cystic Fibrosis Registry database in 2016 and 2017 were retrospectively analysed, involving descriptive and multivariate analysis to assess risk factors for transient or persistent AF colonisation. Age represented an independent risk factor for persistent AF colonisation. Prevalence was low in children less than ten years, highest in the middle age and getting lower in higher age (≥ 50 years). Continuous antibiotic lung treatment was significantly associated with AF prevalence in all age groups. CF patients with chronic PA infection had a lower lung function (FEV1%predicted), which was not influenced by an additional AF colonisation. AF colonisation without chronic PA infection, however, was significantly associated with a lower function, too. Older age up to 49 years and continuous antibiotic use were found to be the main risk factors for AF permanent colonisation. AF might be associated with decrease of lung function if not disguised by chronic PA infection.
Collapse
|
30
|
Beswick E, Amich J, Gago S. Factoring in the Complexity of the Cystic Fibrosis Lung to Understand Aspergillus fumigatus and Pseudomonas aeruginosa Interactions. Pathogens 2020; 9:pathogens9080639. [PMID: 32781694 PMCID: PMC7460534 DOI: 10.3390/pathogens9080639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa has long been established as the most prevalent respiratory pathogen in Cystic Fibrosis (CF) patients, with opportunistic infection causing profound morbidity and mortality. Recently, Aspergillus fumigatus has also been recognised as a key contributor to CF lung deterioration, being consistently associated with decreased lung function and worsened prognosis in these patients. As clinical evidence for the common occurrence of combined infection with these two pathogens increases, research into the mechanism and consequences of their interaction is becoming more relevant. Clinical evidence suggests a synergistic effect of combined infection, which translates into a poorer prognosis for the patients. In vitro results from the laboratory have identified a variety of possible synergistic and antagonistic interactions between A. fumigatus and P. aeruginosa. Here, we present a comprehensive overview of the complex environment of the CF lung and discuss how it needs to be considered to determine the exact molecular interactions that A. fumigatus and P. aeruginosa undergo during combined infection and their effects on the host.
Collapse
Affiliation(s)
- Emily Beswick
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Academic Unit of Medical Education, Medical School, University of Sheffield, Beech Hill Road, Broomhall, Sheffield S10 2TG, UK;
| | - Jorge Amich
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Correspondence: (J.A.); (S.G.)
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Correspondence: (J.A.); (S.G.)
| |
Collapse
|
31
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
32
|
Soret P, Vandenborght LE, Francis F, Coron N, Enaud R, Avalos M, Schaeverbeke T, Berger P, Fayon M, Thiebaut R, Delhaes L. Respiratory mycobiome and suggestion of inter-kingdom network during acute pulmonary exacerbation in cystic fibrosis. Sci Rep 2020; 10:3589. [PMID: 32108159 PMCID: PMC7046743 DOI: 10.1038/s41598-020-60015-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Lung infections play a critical role in cystic fibrosis (CF) pathogenesis. CF respiratory tract is now considered to be a polymicrobial niche and advances in high-throughput sequencing allowed to analyze its microbiota and mycobiota. However, no NGS studies until now have characterized both communities during CF pulmonary exacerbation (CFPE). Thirty-three sputa isolated from patients with and without CFPE were used for metagenomic high-throughput sequencing targeting 16S and ITS2 regions of bacterial and fungal rRNA. We built inter-kingdom network and adapted Phy-Lasso method to highlight correlations in compositional data. The decline in respiratory function was associated with a decrease in bacterial diversity. The inter-kingdom network revealed three main clusters organized around Aspergillus, Candida, and Scedosporium genera. Using Phy-Lasso method, we identified Aspergillus and Malassezia as relevantly associated with CFPE, and Scedosporium plus Pseudomonas with a decline in lung function. We corroborated in vitro the cross-domain interactions between Aspergillus and Streptococcus predicted by the correlation network. For the first time, we included documented mycobiome data into a version of the ecological Climax/Attack model that opens new lines of thoughts about the physiopathology of CF lung disease and future perspectives to improve its therapeutic management.
Collapse
Affiliation(s)
- Perrine Soret
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
- INRIA SISTM Team, F-33405, Talence, France
| | - Louise-Eva Vandenborght
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
- Genoscreen Society, 59000, Lille, France
| | - Florence Francis
- CHU Bordeaux, Department of Public Health, F-33000, Bordeaux, France
| | - Noémie Coron
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Raphael Enaud
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000, Bordeaux, France
- CHU de Bordeaux, CRCM Pédiatrique, CIC, 1401, Bordeaux, France
| | - Marta Avalos
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
- INRIA SISTM Team, F-33405, Talence, France
| | | | - Patrick Berger
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000, Bordeaux, France
| | - Michael Fayon
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000, Bordeaux, France
- CHU de Bordeaux, CRCM Pédiatrique, CIC, 1401, Bordeaux, France
| | - Rodolphe Thiebaut
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
- INRIA SISTM Team, F-33405, Talence, France
- CHU Bordeaux, Department of Public Health, F-33000, Bordeaux, France
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000, Bordeaux, France.
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, Univ. Bordeaux, F-33000, Bordeaux, France.
- CHU de Bordeaux, CRCM Pédiatrique, CIC, 1401, Bordeaux, France.
- University and CHU of Lille, F-59000, Lille, France.
| |
Collapse
|
33
|
Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int J Mol Sci 2020; 21:ijms21020452. [PMID: 31936842 PMCID: PMC7013518 DOI: 10.3390/ijms21020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.
Collapse
|
34
|
Margalit A, Kavanagh K, Carolan JC. Characterization of the Proteomic Response of A549 Cells Following Sequential Exposure to Aspergillus fumigatus and Pseudomonas aeruginosa. J Proteome Res 2020; 19:279-291. [PMID: 31693381 DOI: 10.1021/acs.jproteome.9b00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa are the most prevalent fungal and bacterial pathogens associated with cystic-fibrosis-related infections, respectively. P. aeruginosa eventually predominates as the primary pathogen, though it is unknown why this is the case. Label-free quantitative proteomics was employed to investigate the cellular response of the alveolar epithelial cell line, A549, to coexposure of A. fumigatus and P. aeruginosa. These studies revealed a significant increase in the rate of P. aeruginosa proliferation where A. fumigatus was present. Shotgun proteomics performed on A549 cells exposed to either A. fumigatus or P. aeruginosa or to A. fumigatus and P. aeruginosa sequentially revealed distinct changes to the host cell proteome in response to either or both pathogens. While key signatures of infection were retained among all pathogen-exposed groups, including changes in mitochondrial activity and energy output, the relative abundance of proteins associated with endocytosis, phagosomes, and lysosomes was decreased in sequentially exposed cells compared to cells exposed to either pathogen. Our findings indicate that A. fumigatus renders A549 cells unable to internalize bacteria, thus providing an environment in which P. aeruginosa can proliferate. This research provides novel insights into the whole-cell proteomic response of A549 cells to A. fumigatus and P. aeruginosa and highlights distinct differences in the proteome following sequential exposure to both pathogens, which may explain why P. aeruginosa can predominate.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - Kevin Kavanagh
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - James C Carolan
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| |
Collapse
|
35
|
Scott J, Sueiro-Olivares M, Ahmed W, Heddergott C, Zhao C, Thomas R, Bromley M, Latgé JP, Krappmann S, Fowler S, Bignell E, Amich J. Pseudomonas aeruginosa-Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection. Front Microbiol 2019; 10:2311. [PMID: 31649650 PMCID: PMC6794476 DOI: 10.3389/fmicb.2019.02311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Pathogen-pathogen interactions in polymicrobial infections are known to directly impact, often to worsen, disease outcomes. For example, co-infection with Pseudomonas aeruginosa and Aspergillus fumigatus, respectively the most common bacterial and fungal pathogens isolated from cystic fibrosis (CF) airways, leads to a worsened prognosis. Recent studies of in vitro microbial cross-talk demonstrated that P. aeruginosa-derived volatile sulfur compounds (VSCs) can promote A. fumigatus growth in vitro. However, the mechanistic basis of such cross-talk and its physiological relevance during co-infection remains unknown. In this study we combine genetic approaches and GC-MS-mediated volatile analysis to show that A. fumigatus assimilates VSCs via cysteine (CysB)- or homocysteine (CysD)-synthase. This process is essential for utilization of VSCs as sulfur sources, since P. aeruginosa-derived VSCs trigger growth of A. fumigatus wild-type, but not of a ΔcysBΔcysD mutant, on sulfur-limiting media. P. aeruginosa produces VSCs when infecting Galleria mellonella and co-infection with A. fumigatus in this model results in a synergistic increase in mortality and of fungal and bacterial burdens. Interestingly, the increment in mortality is much greater with the A. fumigatus wild-type than with the ΔcysBΔcysD mutant. Therefore, A. fumigatus' ability to assimilate P. aeruginosa derived VSCs significantly triggers a synergistic association that increases the pathobiology of infection. Finally, we show that P. aeruginosa can promote fungal growth when growing on substrates that resemble the lung environment, which suggests that this volatile based synergism is likely to occur during co-infection of the human respiratory airways.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Monica Sueiro-Olivares
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Waqar Ahmed
- Respiratory and Allergy Research Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | | | - Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Riba Thomas
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Sven Krappmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephen Fowler
- Respiratory and Allergy Research Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,NIHR Manchester Biomedical Research Centre - Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
36
|
Clark ST, Guttman DS, Hwang DM. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol Lett 2019; 365:4834010. [PMID: 29401362 DOI: 10.1093/femsle/fny026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The evolution and diversification of bacterial pathogens within human hosts represent potential barriers to the diagnosis and treatment of life-threatening infections. Tremendous genetic and phenotypic diversity is characteristic of host adaptation in strains of Pseudomonas aeruginosa that infect the airways of individuals with chronic lung diseases and prove to be extremely difficult to eradicate. In this MiniReview, we examine recent advances in understanding within-host diversity and antimicrobial resistance in P. aeruginosa populations from the lower airways of individuals with the fatal genetic disease cystic fibrosis and the potential impacts that this diversity may have on detecting and interpreting antimicrobial susceptibility within these populations.
Collapse
Affiliation(s)
- Shawn T Clark
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.,Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - David M Hwang
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
37
|
Coexistence of Candida species and bacteria in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2019; 38:1071-1077. [PMID: 30739228 PMCID: PMC6520323 DOI: 10.1007/s10096-019-03493-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) patients become colonized by pathogenic bacteria as well as by Candida species. The interplay between different microorganisms may play a key role in the prognosis of CF. The aim of the study was to analyze the coexistence patterns of bacteria and Candida spp. in sputum samples of patients with CF and to compare these patterns with the results of patients with other respiratory disorders (ORD). Sputum samples from 130 patients with CF and 186 patients with ORD were cultured on six different agar plates promoting the growth of bacteria and yeasts. Bacterial and Candida species were identified with MALDI-TOF MS. Pathogenic bacteria were found in 69.2% of the sputum samples of the CF patients, and in 44.1% the patients with ORD. CF patients tended to have growth of Pseudomonas aeruginosa and Staphylococcus aureus in sputum more often than patients with ORD. Overall, there was no difference in the coexistence of pathogenic bacteria and Candida spp. in these patient groups. However, when analyzed at the species level, P. aeruginosa and S. aureus coexisted with Candida spp. more frequently in sputum samples of CF patients compared with patients with ORD. Also, when analyzed according to age, it was shown that the adult (≥ 18 years) CF patients had a higher rate of coexistence of any pathogenic bacteria and Candida spp. than the children with CF and the adult patients with ORD. The rate for colonization with Candida together with pathogenic bacteria is increased in adult patients with CF.
Collapse
|
38
|
Vongthilath R, Richaud Thiriez B, Dehillotte C, Lemonnier L, Guillien A, Degano B, Dalphin ML, Dalphin JC, Plésiat P. Clinical and microbiological characteristics of cystic fibrosis adults never colonized by Pseudomonas aeruginosa: Analysis of the French CF registry. PLoS One 2019; 14:e0210201. [PMID: 30620748 PMCID: PMC6324790 DOI: 10.1371/journal.pone.0210201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa is the main cause of chronic airway infection in cystic fibrosis (CF). However, for unclear reasons some patients are never colonized by P. aeruginosa. The objectives of this study were to better define the clinical, genetic, and microbiological characteristics of such a subpopulation and to identify predictive factors of non-colonization with P. aeruginosa. The French CF patient registry 2013–2014 was used to identify CF patients aged ≥ 20 years. The clinical outcomes, CF Transmembrane conductance Regulator (CFTR) genotypes, and microbiological data of patients reported positive at least once for P. aeruginosa (“Pyo” group, n = 1,827) were compared to those of patients with no history of P. aeruginosa isolation (“Never” group, n = 303). Predictive factors of non-colonization by P. aeruginosa were identified by multivariate logistic regression model with backward selection. Absence of aspergillosis (odds ratio (OR) [95% CI] = 1.64 [1.01–2.66]), absence of diabetes (2.25 [1.21–4.18]), pancreatic sufficiency (1.81 [1.30–2.52]), forced expiratory volume 1 (FEV1) ≥ 80% (3.03 [2.28–4.03]), older age at CF diagnosis (1.03 [1.02–1.04]), and absence of F508del/F508del genotype (2.17 [1.48–3.19]) were predictive clinical factors associated with absence of infection (“Never” group). Microbiologically, this same group was associated with more frequent detection of Haemophilus influenzae and lower rates of Stenotrophomonas maltophilia, Achromobacter xylosoxidans and Aspergillus spp. (all p<0.01) in sputum. This study strongly suggests that the absence of pulmonary colonization by P. aeruginosa in a minority of CF adults (14.2%) is associated with a milder form of the disease. Recent progress in the development of drugs to correct CFTR deficiency thus may be decisive in the control of P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Réchana Vongthilath
- Department of Respiratory Medicine, University Hospital Jean Minjoz, Besançon, France
| | | | | | - Lydie Lemonnier
- Medical Department of Vaincre La Mucoviscidose, Paris, France
| | - Alicia Guillien
- Department of Physiology, University Hospital Jean Minjoz, Besançon, France
| | - Bruno Degano
- Department of Physiology, University Hospital Jean Minjoz, Besançon, France
- EA3920, University of Franche-Comté, Besançon, France
| | - Marie-Laure Dalphin
- Department of Pediatric Medicine, University Hospital Jean Minjoz, Besançon, France
| | - Jean-Charles Dalphin
- Department of Respiratory Medicine, University Hospital Jean Minjoz, Besançon, France
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France
| | - Patrick Plésiat
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France
- Department of Bacteriology, University Hospital Jean Minjoz, Besançon, France
- * E-mail:
| |
Collapse
|
39
|
Tracy MC, Moss RB. The myriad challenges of respiratory fungal infection in cystic fibrosis. Pediatr Pulmonol 2018; 53:S75-S85. [PMID: 29992775 DOI: 10.1002/ppul.24126] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
Fungal infection in cystic fibrosis (CF) is a recognized challenge, with many areas requiring further investigation. Consensus definitions exist for allergic bronchopulmonary aspergillus in CF, but the full scope of clinically relevant non-allergic fungal disease in CF-asymptomatic colonization, transient or chronic infection localized to endobronchial mucus plugs or airway tissue, and invasive disease-is yet to be clearly defined. Recent advances in mycological culture and non-culture identification have expanded the list of both potential pathogens and community commensals in the lower respiratory tract. Here we aim to outline the current understanding of fungal presence in the CF respiratory tract, risk factors for acquiring fungi, host-pathogen interactions that influence the role of fungi from bystander to pathogen, advances in the diagnostic approaches to isolating and identifying fungi in CF respiratory samples, challenges of classifying clinical phenotypes of CF patients with fungi, and current treatment approaches. Development and validation of biomarkers characteristic of different fungal clinical phenotypes, and controlled trials of antifungal agents in well-characterized target populations, remain central challenges to surmount and goals to be achieved.
Collapse
Affiliation(s)
- Michael C Tracy
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Palo Alto, California
| | - Richard B Moss
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Palo Alto, California
| |
Collapse
|
40
|
De Baets F, De Keyzer L, Van Daele S, Schelstraete P, Van Biervliet S, Van Braeckel E, Thomas M, Wanyama SS. Risk factors and impact of allergic bronchopulmonary aspergillosis in Pseudomonas aeruginosa-negative CF patients. Pediatr Allergy Immunol 2018; 29:726-731. [PMID: 29981532 DOI: 10.1111/pai.12953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a major complication in cystic fibrosis (CF) patients. Risk factors for ABPA and clinical deterioration in CF patients, negative for Pseudomonas aeruginosa (Pa), were explored. METHODS We performed a retrospective case-control study in 73 Pa-negative patients. Each patient was matched with 2 controls for age, gender, pancreas sufficiency, DeltaF508 mutation (homozygous or heterozygous), and Pa colonization. RESULTS Median FEV1 at the year of diagnosis (index year) was significantly lower in patients with ABPA. The median of cumulative values of FEV1 and FVC before the index year was not significantly different. After the index year, the median of cumulative data for FEV1 and FVC was significantly lower; there were significantly more hospitalization days and more IV antibiotic days compared to controls. Comparing pre- and post-index year data in patients with ABPA, significantly more hospitalization days and more IV antibiotic days were observed after the index year. During the period preceding the index year, significantly more ABPA patients were treated with rhDNase and inhaled corticosteroids. CONCLUSIONS Bronchial damage cannot be considered as a facilitating factor for ABPA. ABPA causes a significant increase in bronchial damage. In patients with ABPA, further bronchial damage can be controlled by an increase in hospitalization days and use of IV antibiotics. rhDNase and inhaled corticosteroids were associated with the development of ABPA.
Collapse
Affiliation(s)
- Frans De Baets
- Pediatric Pulmonology Department, University Hospital Gent, Gent, Belgium
| | - Linde De Keyzer
- Pediatric Pulmonology Department, University Hospital Gent, Gent, Belgium
| | - Sabine Van Daele
- Pediatric Pulmonology Department, University Hospital Gent, Gent, Belgium
| | - Petra Schelstraete
- Pediatric Pulmonology Department, University Hospital Gent, Gent, Belgium
| | | | | | - Muriel Thomas
- Scientific Institute of Public Health, Brussels, Belgium
| | | |
Collapse
|
41
|
Wang D, Wu C, Gao J, Zhao S, Ma X, Wei B, Feng L, Wang Y, Xue X. Comparative study of primary pulmonary cryptococcosis with multiple nodules or masses by CT and pathology. Exp Ther Med 2018; 16:4437-4444. [PMID: 30542394 PMCID: PMC6257807 DOI: 10.3892/etm.2018.6745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
The manifestations of pulmonary cryptococcosis with multiple nodules or masses on computed tomography (CT) are diverse and difficult to differentiate from those of lung cancer and pulmonary tuberculosis. The present study compared the multislice spiral CT signs with pathological results and used the pathological results to explain the CT signs with the aim of improving the accuracy of the diagnosis of this disease. A retrospective analysis of 20 patients with primary pulmonary cryptococcosis with multiple nodules or masses was performed. Based on the CT signs, eight patients had been misdiagnosed with lung cancer accompanied by intrapulmonary metastasis andthree patients had been misdiagnosed with tuberculosis. The major CT manifestations were a cluster of nodules or masses located within 2 cm below the pleura and distributed along the bronchi. A total of nine patients had primary lesions with diameters of 1.1–2.0 cm and 12 patients had satellite lesions with diameters of 0.1–1.0 cm. Regarding treatment, 5 patients underwent surgical monotherapy, 12 patients underwent antifungal monotherapy and three patients received surgery in combination with antifungal therapy. HE staining indicated that Cryptococcus neoformans was engulfed by macrophages, which were surrounded by massive infiltrating lymphocytes and a large amount of fibrous tissue, which formed multinucleated macrophages or granulomas. Periodic acid-Schiff staining was positive and acid fast staining was negative. In conclusion, comparison of CT signs with the pathological manifestation of pulmonary cryptococcosis with multiple nodules or masses indicated that the pathological results may explain certain imaging signs. Combination of CT and pathological examination may provide a deeper understanding of this disease and improve the accuracy of its diagnosis.
Collapse
Affiliation(s)
- Dongxu Wang
- Department of CT Diagnosis, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chongchong Wu
- Department of Radiology, Chinese PLA General Hospital, Beijing 100038, P.R. China
| | - Jie Gao
- Department of Pathology, Chinese PLA General Hospital, Beijing 100038, P.R. China
| | - Shaohong Zhao
- Department of Radiology, Chinese PLA General Hospital, Beijing 100038, P.R. China
| | - Xidong Ma
- Department of Respiratory Disease, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bo Wei
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Limin Feng
- Department of CT Diagnosis, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yuguang Wang
- Department of CT Diagnosis, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xinying Xue
- Department of Respiratory Disease, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
42
|
Schäfer J, Griese M, Chandrasekaran R, Chotirmall SH, Hartl D. Pathogenesis, imaging and clinical characteristics of CF and non-CF bronchiectasis. BMC Pulm Med 2018; 18:79. [PMID: 29788954 PMCID: PMC5964733 DOI: 10.1186/s12890-018-0630-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
Bronchiectasis is a common feature of severe inherited and acquired pulmonary disease conditions. Among inherited diseases, cystic fibrosis (CF) is the major disorder associated with bronchiectasis, while acquired conditions frequently featuring bronchiectasis include post-infective bronchiectasis and chronic obstructive pulmonary disease (COPD). Mechanistically, bronchiectasis is driven by a complex interplay of inflammation and infection with neutrophilic inflammation playing a predominant role. The clinical characterization and management of bronchiectasis should involve a precise diagnostic workup, tailored therapeutic strategies and pulmonary imaging that has become an essential tool for the diagnosis and follow-up of bronchiectasis. Prospective future studies are required to optimize the diagnostic and therapeutic management of bronchiectasis, particularly in heterogeneous non-CF bronchiectasis populations.
Collapse
Affiliation(s)
- Jürgen Schäfer
- Department of Radiology, Division of Pediatric Radiology, University of Tübingen, Tübingen, Germany.
| | | | | | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dominik Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany.,Roche Pharma Research & Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
43
|
Scheffold A, Schwarz C, Bacher P. Fungus-Specific CD4 T Cells as Specific Sensors for Identification of Pulmonary Fungal Infections. Mycopathologia 2017; 183:213-226. [PMID: 29168073 DOI: 10.1007/s11046-017-0229-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Abstract
Patients with cystic fibrosis (CF) suffer from chronic lung infections, caused by bacterial, viral or fungal pathogens, which determine morbidity and mortality. The contribution of individual pathogens to chronic disease and acute lung exacerbations is often difficult to determine due to the complex composition of the lung microbiome in CF. In particular, the relevance of fungal pathogens in CF airways remains poorly understood due to limitations of current diagnostics to identify the presence of fungal pathogens and to resolve the individual host-pathogen interaction status. T-lymphocytes play an essential role in host defense against pathogens, but also in inappropriate immune reactions such as allergies. They have the capacity to specifically recognize and discriminate the different pathogens and orchestrate a diverse array of effector functions. Thus, the analysis of the fungus-specific T cell status of an individual can in principle provide detailed information about the identity of the fungal pathogen(s) encountered and the actual fungus-host interaction status. This may allow to classify patients, according to appropriate (protective) or inappropriate (pathology-associated) immune reactions against individual fungal pathogens. However, T cell-based diagnostics are currently not part of the clinical routine. The identification and characterization of fungus-specific T cells in health and disease for diagnostic purposes are associated with significant challenges. Recent technological developments in the field of fungus-specific T helper cell detection provide new insights in the host T cell-fungus interaction. In this review, we will discuss basic principles and the potential of T cell-based diagnostics, as well as the perspectives and further needs for use of T cells for improved clinical diagnostics of fungal diseases.
Collapse
Affiliation(s)
- Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.
| | - Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Centre Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
44
|
Furuuchi K, Ito A, Hashimoto T, Kumagai S, Ishida T. Clinical significance of Aspergillus species isolated from respiratory specimens in patients with Mycobacterium avium complex lung disease. Eur J Clin Microbiol Infect Dis 2017; 37:91-98. [DOI: 10.1007/s10096-017-3105-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/07/2017] [Indexed: 11/28/2022]
|
45
|
Aspergillus Bronchitis in Patients with Cystic Fibrosis. Mycopathologia 2017; 183:61-69. [PMID: 28819878 DOI: 10.1007/s11046-017-0190-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/06/2017] [Indexed: 10/19/2022]
Abstract
Aspergillus fumigatus frequently colonizes the airways of patients with cystic fibrosis (CF) and may cause various severe infections, such as bronchitis. Serological data, sputum dependent markers and longitudinal data of treated cases of Aspergillus bronchitis were evaluated for further description of this infection. This study, which comprises three substudies, aimed to analyze epidemiological data of Aspergillus in CF and the entity of Aspergillus bronchitis. In a first step, data of the German Cystic Fibrosis Registry were used to evaluate the frequency of Aspergillus colonization in patients with CF (n = 2599). Then a retrospective analysis of 10 cases of Aspergillus bronchitis was performed to evaluate longitudinal data for lung function and clinical presentation parameters: sputum production, cough and physical capacity. Finally, a prospective cohort study (n = 22) was conducted to investigate serological markers for Aspergillus bronchitis: total serum IgE, specific serum IgE, specific serum IgG, as well as sputum galactomannan, real-time PCR detection of Aspergillus DNA in sputum and fungal cultures. Analysis of the German CF registry revealed an Aspergillus colonization rate of 32.5% among the 2599 patients. A retrospective data analysis of 10 treated cases revealed the clinical course of Aspergillus bronchitis, including repeated positive sputum culture findings for A. fumigatus, no antibiotic treatment response, total serum IgE levels <200 kU/l, no observation of new pulmonary infiltrates and appropriate antifungal treatment response. Antifungal treatment durations of 4 ± 1.6 (2-6) weeks significantly reduced cough (P = 0.0067), sputum production (P < 0.0001) and lung function measures (P = 0.0358) but not physical capacity (P = 0.0794). From this retrospective study, a prevalence of 1.6% was calculated. In addition, two cases of Aspergillus bronchitis were identified in the prospective cohort study according to immunological, molecular and microbiological parameters. A prevalence of 9% was assessed. Aspergillus bronchitis appears to occur in a minority of colonized CF patients. Antifungal treatment may reduce respiratory symptoms and restore lung function.
Collapse
|
46
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|
47
|
Progress in Definition, Prevention and Treatment of Fungal Infections in Cystic Fibrosis. Mycopathologia 2017; 183:21-32. [DOI: 10.1007/s11046-017-0182-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
|
48
|
Reece E, Segurado R, Jackson A, McClean S, Renwick J, Greally P. Co-colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: an Irish registry analysis. BMC Pulm Med 2017; 17:70. [PMID: 28431569 PMCID: PMC5401475 DOI: 10.1186/s12890-017-0416-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary infection is the main cause of death in cystic fibrosis (CF). Aspergillus fumigatus (AF) and Pseudomonas aeruginosa (PA) are the most prevalent fungal and bacterial pathogens isolated from the CF airway, respectively. Our aim was to determine the effect of different colonisation profiles of AF and PA on the clinical status of patients with CF. METHODS A retrospective analysis of data from the Cystic Fibrosis Registry of Ireland from 2013 was performed to determine the effect of intermittent and persistent colonisation with AF or PA or co-colonisation with both microorganisms on clinical outcome measures in patients with CF. Key outcomes measured included forced expiratory volume in one second (FEV1), number of hospitalisations, respiratory exacerbations and antimicrobials prescribed, and complications of CF, including CF related diabetes (CFRD) and allergic bronchopulmonary aspergillosis (ABPA). RESULTS The prevalence of AF and PA colonisation were 11% (5% persistent, 6% intermittent) and 31% (19% persistent, 12% intermittent) in the Irish CF population, respectively. Co-colonisation with both pathogens was associated with a 13.8% reduction in FEV1 (p = 0.016), higher levels of exacerbations (p = 0.042), hospitalisations (p = 0.023) and antimicrobial usage (p = 0.014) compared to non-colonised patients and these clinical outcomes were comparable to those persistently colonised with PA. Intermittent and persistent AF colonisation were not associated with poorer clinical outcomes or ABPA. Patients with persistent PA had a higher prevalence of CFRD diagnosis (p = 0.012). CONCLUSIONS CF patients co-colonised with AF and PA had poor clinical outcomes comparable to patients persistently colonised with PA, emphasising the clinical significance of co-colonisation with these microorganisms.
Collapse
Affiliation(s)
- Emma Reece
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Trinity Centre for Health Science, Tallaght Hospital, Dublin 24, Ireland
| | - Ricardo Segurado
- UCD CSTAR, School of Public Health, Physiotherapy and Sports Science, UCD, Dublin 4, Ireland
| | - Abaigeal Jackson
- Cystic Fibrosis Registry of Ireland, Woodview house, UCD Belfield, Dublin 4, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland.,School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 24, Ireland
| | - Julie Renwick
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Trinity Centre for Health Science, Tallaght Hospital, Dublin 24, Ireland.
| | - Peter Greally
- Cystic Fibrosis Registry of Ireland, Woodview house, UCD Belfield, Dublin 4, Ireland.,Department of Respiratory Medicine, The National Children's Hospital, Tallaght hospital, Dublin 24, Ireland
| |
Collapse
|
49
|
Schwarz C, Brandt C, Antweiler E, Krannich A, Staab D, Schmitt-Grohé S, Fischer R, Hartl D, Thronicke A, Tintelnot K. Prospective multicenter German study on pulmonary colonization with Scedosporium /Lomentospora species in cystic fibrosis: Epidemiology and new association factors. PLoS One 2017; 12:e0171485. [PMID: 28178337 PMCID: PMC5298894 DOI: 10.1371/journal.pone.0171485] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/21/2017] [Indexed: 11/19/2022] Open
Abstract
Background An increasing rate of respiratory colonization and infection in cystic fibrosis (CF) is caused by fungi of the Scedosporium apiospermum species complex or Lomentospora prolificans (Sac-Lp). These fungi rank second among the filamentous fungi colonizing the CF airways, after Aspergillus fumigatus. However, the epidemiology, clinical relevance and risk of pulmonary colonization with Sac-Lp are rarely understood in CF. The objective of the present prospective multicenter study was to study pathogen distribution and determine association factors of pulmonary Sac-Lp colonization in patients with CF. Material and methods Clinical, microbiological and laboratory data of 161 patients aged 6–59 years with CF in Germany were analyzed for Sac-Lp distribution and association factors. The free statistical software R was utilized to investigate adjusted logistic regression models for association factors. Results Of the 161 patients included in the study, 74 (56%) were male. The median age of the study cohort was 23 years (interquartile range 13–32 years). 58 patients of the total cohort (36%) were < 18 years old. Adjusted multivariate regression analysis revealed that Sac-Lp colonization was associated with younger age (OR 0.8684, 95%CI: 0.7955–0.9480, p<0.005) and less colonization with H. influenzae (OR 0.0118, 95%CI: 0.0009–0.1585, p<0.001). In addition, Sac-Lp-colonized patients had more often allergic bronchopulmonary aspergillosis (ABPA) (OR 14.6663, 95%CI: 2.1873–98.3403, p<0.01) and have been colonized more often with the mucoid phenotype of Pseudomonas aeruginosa (OR 9.8941, 95%CI: 1.0518–93.0705, p<0.05). Conclusion Newly found association of ABPA and Pseudomonas revealed new probable risk factors for Sac-Lp colonization. Allergy might play a role in inducing immunologic host reactions which lead to a less effective response to species of Sac-Lp.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité –Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Claudia Brandt
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Antweiler
- Reference Laboratory for Cryptococcosis, Scedosporiosis and Imported Systemic Mycoses, FG 16, Robert Koch Institute, Berlin, Germany
| | - Alexander Krannich
- Biostatistics Unit, Berlin Institute of Health, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Doris Staab
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité –Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Dominik Hartl
- Universitätsklinikum für Kinder- und Jugendmedizin Tübingen, Department of General Pediatrics, Pediatric Hematology and Oncology, Tübingen, Germany
| | - Anja Thronicke
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Tintelnot
- Reference Laboratory for Cryptococcosis, Scedosporiosis and Imported Systemic Mycoses, FG 16, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
50
|
Abstract
For a long time, the microbiology of cystic fibrosis has been focussed on Pseudomonas aeruginosa and associated Gram-negative pathogens. An increasing body of evidence has been compiled demonstrating an important role for moulds and yeasts within this complex patient group. Whether or not fungi are active participants, spectators or transient passersby remain to be elucidated. However, functionally, they do appear to play a contributory role in pathogenesis, albeit we do not know if this is a direct or indirect effect. The following review examines some of the key evidence for the role of fungi in CF pathogenesis.
Collapse
|