1
|
Estrada-Reyes Y, Cervantes-Alfaro JM, López-Vázquez MÁ, Olvera-Cortés ME. Prefrontal serotonin depletion delays reversal learning and increases theta synchronization of the infralimbic-prelimbic-orbitofrontal prefrontal cortex circuit. Front Pharmacol 2024; 15:1501896. [PMID: 39691394 PMCID: PMC11649410 DOI: 10.3389/fphar.2024.1501896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Prefrontal serotonin plays a role in the expression of flexible behavior during reversal learning tasks as its depletion delays reversal learning. However, the mechanisms by which serotonin modulates the prefrontal cortex functions during reversal learning remain unclear. Nevertheless, serotonin has been shown to modulate theta activity during spatial learning and memory. Methods We evaluated the effects of prefrontal serotonin depletion on theta activity in the prefrontal infralimbic, prelimbic, and orbitofrontal (IL, PL, and OFC) subregions of male rats during a spatial reversal learning task in an aquatic T-maze. Results Prefrontal serotonin depletion delayed spatial reversal learning and increased theta activity power in the PL and OFC. Furthermore, animals with serotonin depletion had increased functional coupling between the OFC and the IL and PL cortices compared with the control group. Discussion These results indicate that serotonin regulates reversal learning through modulation of prefrontal theta activity by tuning both the power and functional synchronization of the prefrontal subregions.
Collapse
Affiliation(s)
- Yoana Estrada-Reyes
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - José Miguel Cervantes-Alfaro
- Laboratorio de Neurociencias, Departamento de Posgrado, Facultad de Ciencias Médicas Y biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| |
Collapse
|
2
|
Pilotto A, Galli A, Zatti C, Placidi F, Izzi F, Premi E, Caminiti SP, Presotto L, Rizzardi A, Catania M, Lupini A, Purin L, Pasolini MP, Mercuri NB, Chiaravalotti A, Fernandes M, Calvello C, Lucchini S, Bertagna F, Paghera B, Perani D, Berg D, Padovani A, Liguori C. Insular monoaminergic deficits in prodromal α-synucleinopathies. Ann Clin Transl Neurol 2024; 11:2836-2845. [PMID: 39444171 PMCID: PMC11572750 DOI: 10.1002/acn3.52151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 10/25/2024] Open
Abstract
METHODS This study assessed data from two cohorts of patients with alpha-synucleinopathies (University of Brescia and University of Rome Tor-Vergata cohorts). Consecutive participants with video-polysomnography-confirmed iRBD, Parkinson's disease (PD), dementia with Lewy bodies (DLB) and controls underwent neurological, clinical and 123I-FP-CIT SPECT imaging assessments. Individuals with iRBD were longitudinally monitored to collect clinical phenoconversion to PD or DLB. The main outcome was to identify whole brain 123 I-FP-CIT SPECT measures reflecting monoaminergic deficits in each clinical group as compared to controls. RESULTS The cohort (n = 184) included 45 patients with iRBD, 47 PD, 42 DLB and 50 age-matched controls. Individuals with iRBD were categorized as RBD-DAT- (n = 32) and RBD-DAT+ (n = 13), according to nigrostriatal assessment used in clinical practice. Compared to controls, RBD-DAT- showed an early involvement of the left insula, which increased in RBD-DAT+, and was present in patients with Parkinson's disease and dementia with Lewy bodies. Longitudinal cox regression analyses revealed a higher risk of phenoconversion in individuals with iRBD and insular monoaminergic deficits [HR = 3.387; CI 95%: 1.18-10.27]. INTERPRETATION In this study, altered insular monoaminergic binding in iRBD was associated with phenoconversion to DLB or PD. These findings may provide a helpful stratification approach for future pharmacological or non-pharmacological interventions.
Collapse
Affiliation(s)
- Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBrescia25123Italy
- Department of Continuity of Care and Frailty, Neurology UnitASST Spedali Civili of BresciaBrescia25123Italy
- Laboratory of Digital Neurology and BiosensorsUniversity of BresciaBrescia25123Italy
- Neurobiorepository and Laboratory of Advanced Biological MarkersUniversity of Brescia and ASST Spedali Civili Hospital25123BresciaItaly
| | - Alice Galli
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBrescia25123Italy
- Laboratory of Digital Neurology and BiosensorsUniversity of BresciaBrescia25123Italy
| | - Cinzia Zatti
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBrescia25123Italy
- Department of Continuity of Care and Frailty, Neurology UnitASST Spedali Civili of BresciaBrescia25123Italy
- Laboratory of Digital Neurology and BiosensorsUniversity of BresciaBrescia25123Italy
| | - Fabio Placidi
- Sleep Medicine Centre, Neurology UnitUniversity Hospital of Rome Tor Vergata00133Italy
- Department of Systems MedicineUniversity of Rome Tor VergataRome00133Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology UnitUniversity Hospital of Rome Tor Vergata00133Italy
| | - Enrico Premi
- Vascular NeurologyASST Spedali Civili of BresciaBrescia25123Italy
| | - Silvia P. Caminiti
- Department of Brain and Behavioral SciencesUniveristy of PaviaPavia27100Italy
| | - Luca Presotto
- Department of Physics “G. Occhialini”University of Milano‐BicoccaMilan20126Italy
| | - Andrea Rizzardi
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBrescia25123Italy
- Department of Continuity of Care and Frailty, Neurology UnitASST Spedali Civili of BresciaBrescia25123Italy
- Laboratory of Digital Neurology and BiosensorsUniversity of BresciaBrescia25123Italy
| | - Marcello Catania
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBrescia25123Italy
| | - Alessandro Lupini
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBrescia25123Italy
| | - Leandro Purin
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBrescia25123Italy
| | - Maria P. Pasolini
- Sleep Disorder CenterASST Spedali Civili of BresciaBrescia25123Italy
| | - Nicola B. Mercuri
- Sleep Medicine Centre, Neurology UnitUniversity Hospital of Rome Tor Vergata00133Italy
- Department of Systems MedicineUniversity of Rome Tor VergataRome00133Italy
| | | | - Mariana Fernandes
- Department of Systems MedicineUniversity of Rome Tor VergataRome00133Italy
| | - Carmen Calvello
- Department of Systems MedicineUniversity of Rome Tor VergataRome00133Italy
| | | | | | | | | | - Daniela Berg
- Department of NeurologyChristian‐Albrechts‐University of KielKiel24098Germany
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBrescia25123Italy
- Department of Continuity of Care and Frailty, Neurology UnitASST Spedali Civili of BresciaBrescia25123Italy
- Laboratory of Digital Neurology and BiosensorsUniversity of BresciaBrescia25123Italy
- Neurobiorepository and Laboratory of Advanced Biological MarkersUniversity of Brescia and ASST Spedali Civili Hospital25123BresciaItaly
- Brain Health CenterUniversity of Brescia25123BresciaItaly
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology UnitUniversity Hospital of Rome Tor Vergata00133Italy
- Department of Systems MedicineUniversity of Rome Tor VergataRome00133Italy
| |
Collapse
|
3
|
Haghir H, Kuckertz A, Zhao L, Hami J, Palomero-Gallagher N. A new map of the rat isocortex and proisocortex: cytoarchitecture and M 2 receptor distribution patterns. Brain Struct Funct 2024; 229:1795-1822. [PMID: 37318645 PMCID: PMC11485150 DOI: 10.1007/s00429-023-02654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Neurotransmitters and their receptors are key molecules in information transfer between neurons, thus enabling inter-areal communication. Therefore, multimodal atlases integrating the brain's cyto- and receptor architecture constitute crucial tools to understand the relationship between its structural and functional segregation. Cholinergic muscarinic M2 receptors have been shown to be an evolutionarily conserved molecular marker of primary sensory areas in the mammalian brain. To complement existing rodent atlases, we applied a silver cell body staining and quantitative in vitro receptor autoradiographic visualization of M2 receptors to alternating sections throughout the entire brain of five adult male Wistar rats (three sectioned coronally, one horizontally, one sagittally). Histological sections and autoradiographs were scanned at a spatial resolution of 1 µm and 20 µm per pixel, respectively, and files were stored as 8 bit images. We used these high-resolution datasets to create an atlas of the entire rat brain, including the olfactory bulb, cerebellum and brainstem. We describe the cyto- and M2 receptor architectonic features of 48 distinct iso- and proisocortical areas across the rat forebrain and provide their mean M2 receptor density. The ensuing parcellation scheme, which is discussed in the framework of existing comprehensive atlasses, includes the novel subdivision of mediomedial secondary visual area Oc2MM into anterior (Oc2MMa) and posterior (Oc2MMp) parts, and of lateral visual area Oc2L into rostrolateral (Oc2Lr), intermediate dorsolateral (Oc2Lid), intermediate ventrolateral (Oc2Liv) and caudolateral (Oc2Lc) secondary visual areas. The M2 receptor densities and the comprehensive map of iso-and proisocortical areas constitute useful tools for future computational and neuroscientific studies.
Collapse
Affiliation(s)
- Hossein Haghir
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anika Kuckertz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Javad Hami
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- Faculty of Medicine, HMU Health and Medical University Potsdam, 14471, Potsdam, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Coffeen U, Ramírez-Rodríguez GB, Simón-Arceo K, Mercado F, Almanza A, Jaimes O, Parra-Vitela D, Vázquez-Barreto M, Pellicer F. The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception. Cells 2024; 13:1718. [PMID: 39451236 PMCID: PMC11506361 DOI: 10.3390/cells13201718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/26/2024] Open
Abstract
The insular cortex (IC) is a brain region that both receives relevant sensory information and is responsible for emotional and cognitive processes, allowing the perception of sensory information. The IC has connections with multiple sites of the pain matrix, including cortico-cortical interactions with the anterior cingulate cortex (ACC) and top-down connections with sites of descending pain inhibition. We explored the changes in the extracellular release of serotonin (5HT) and its major metabolite, 5-hydroxyindoleacetic acid (5HIAA), after inflammation was induced by carrageenan injection. Additionally, we explored the role of 5HT receptors (the 5HT1A, 5HT2A, and 5HT3 receptors) in the IC after inflammatory insult. The results showed an increase in the extracellular levels of 5HT and 5-HIAA during the inflammatory process compared to physiological levels. Additionally, the 5HT1A receptor was overexpressed. Finally, the 5HT1A, 5HT2A, and 5HT3 receptor blockade in the IC had antinociceptive effects. Our results highlight the role of serotonergic neurotransmission in long-lasting inflammatory nociception within the IC.
Collapse
Affiliation(s)
- Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Gerardo B. Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Karina Simón-Arceo
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Francisco Mercado
- Laboratorio de Fisiología Celular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (F.M.); (A.A.)
| | - Angélica Almanza
- Laboratorio de Fisiología Celular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (F.M.); (A.A.)
| | - Orlando Jaimes
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Doris Parra-Vitela
- CIANyD Centro Integral Para la Atención de Neuropatía y Dolor, Toluca 50110, Mexico;
| | | | - Francisco Pellicer
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| |
Collapse
|
5
|
Ng AJ, Vincelette LK, Li J, Brady BH, Christianson JP. Serotonin modulates social responses to stressed conspecifics via insular 5-HT 2C receptors in rat. Neuropharmacology 2023; 236:109598. [PMID: 37230216 PMCID: PMC10330840 DOI: 10.1016/j.neuropharm.2023.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Behaviors associated with distress can affect the anxiety-like states in observers and this social transfer of affect shapes social interactions among stressed individuals. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT2C) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1 μg in 0.5 μL) for the inhibitory 5-HT1A autoreceptors which silences 5-HT neuronal activity. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN60) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT2C receptor antagonist (SB242084, 1 mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT2C receptors. SB242084 administered directly into the insular cortex (5 μM in 0.5 μL bilaterally) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT2C receptor mRNA (htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons (vglut1) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT2C receptors.
Collapse
Affiliation(s)
- Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Lindsay K Vincelette
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Jiayi Li
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Bridget H Brady
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
6
|
Janušonis S, Haiman JH, Metzler R, Vojta T. Predicting the distribution of serotonergic axons: a supercomputing simulation of reflected fractional Brownian motion in a 3D-mouse brain model. Front Comput Neurosci 2023; 17:1189853. [PMID: 37265780 PMCID: PMC10231035 DOI: 10.3389/fncom.2023.1189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
The self-organization of the brain matrix of serotonergic axons (fibers) remains an unsolved problem in neuroscience. The regional densities of this matrix have major implications for neuroplasticity, tissue regeneration, and the understanding of mental disorders, but the trajectories of its fibers are strongly stochastic and require novel conceptual and analytical approaches. In a major extension to our previous studies, we used a supercomputing simulation to model around one thousand serotonergic fibers as paths of superdiffusive fractional Brownian motion (FBM), a continuous-time stochastic process. The fibers produced long walks in a complex, three-dimensional shape based on the mouse brain and reflected at the outer (pial) and inner (ventricular) boundaries. The resultant regional densities were compared to the actual fiber densities in the corresponding neuroanatomically-defined regions. The relative densities showed strong qualitative similarities in the forebrain and midbrain, demonstrating the predictive potential of stochastic modeling in this system. The current simulation does not respect tissue heterogeneities but can be further improved with novel models of multifractional FBM. The study demonstrates that serotonergic fiber densities can be strongly influenced by the geometry of the brain, with implications for brain development, plasticity, and evolution.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Justin H. Haiman
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
- Asia Pacific Center for Theoretical Physics, Pohang, South Korea
| | - Thomas Vojta
- Department of Physics, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
7
|
Ng AJ, Vincelette LK, Li J, Brady BH, Christianson JP. Serotonin modulates social responses to stressed conspecifics via insular 5-HT 2C receptors in rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529065. [PMID: 36824837 PMCID: PMC9949146 DOI: 10.1101/2023.02.18.529065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Social interaction allows for the transfer of affective states among individuals, and the behaviors and expressions associated with pain and fear can evoke anxiety-like states in observers which shape subsequent social interactions. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT 2C ) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1µg in 0.5µL) for the inhibitory 5-HT 1A autoreceptors which silences 5-HT neuronal activity via G-protein coupled inward rectifying potassium channels. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN50) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT 2C receptor antagonist (SB242084, 1mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT 2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT 2C receptors. SB242084 administered directly into the insular cortex (5µM bilaterally in 0.5µL ) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT 2C receptor mRNA ( htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons ( vglut1 ) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT 2C receptors.
Collapse
|
8
|
Hingorani M, Viviani AML, Sanfilippo JE, Janušonis S. High-resolution spatiotemporal analysis of single serotonergic axons in an in vitro system. Front Neurosci 2022; 16:994735. [PMID: 36353595 PMCID: PMC9638127 DOI: 10.3389/fnins.2022.994735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vertebrate brains have a dual structure, composed of (i) axons that can be well-captured with graph-theoretical methods and (ii) axons that form a dense matrix in which neurons with precise connections operate. A core part of this matrix is formed by axons (fibers) that store and release 5-hydroxytryptamine (5-HT, serotonin), an ancient neurotransmitter that supports neuroplasticity and has profound implications for mental health. The self-organization of the serotonergic matrix is not well understood, despite recent advances in experimental and theoretical approaches. In particular, individual serotonergic axons produce highly stochastic trajectories, fundamental to the construction of regional fiber densities, but further advances in predictive computer simulations require more accurate experimental information. This study examined single serotonergic axons in culture systems (co-cultures and monolayers), by using a set of complementary high-resolution methods: confocal microscopy, holotomography (refractive index-based live imaging), and super-resolution (STED) microscopy. It shows that serotonergic axon walks in neural tissue may strongly reflect the stochastic geometry of this tissue and it also provides new insights into the morphology and branching properties of serotonergic axons. The proposed experimental platform can support next-generation analyses of the serotonergic matrix, including seamless integration with supercomputing approaches.
Collapse
|
9
|
Lee C, Zhang Z, Janušonis S. Brain serotonergic fibers suggest anomalous diffusion-based dropout in artificial neural networks. Front Neurosci 2022; 16:949934. [PMID: 36267232 PMCID: PMC9577023 DOI: 10.3389/fnins.2022.949934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Random dropout has become a standard regularization technique in artificial neural networks (ANNs), but it is currently unknown whether an analogous mechanism exists in biological neural networks (BioNNs). If it does, its structure is likely to be optimized by hundreds of millions of years of evolution, which may suggest novel dropout strategies in large-scale ANNs. We propose that the brain serotonergic fibers (axons) meet some of the expected criteria because of their ubiquitous presence, stochastic structure, and ability to grow throughout the individual's lifespan. Since the trajectories of serotonergic fibers can be modeled as paths of anomalous diffusion processes, in this proof-of-concept study we investigated a dropout algorithm based on the superdiffusive fractional Brownian motion (FBM). The results demonstrate that serotonergic fibers can potentially implement a dropout-like mechanism in brain tissue, supporting neuroplasticity. They also suggest that mathematical theories of the structure and dynamics of serotonergic fibers can contribute to the design of dropout algorithms in ANNs.
Collapse
Affiliation(s)
- Christian Lee
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Zheng Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
10
|
Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev 2021; 128:282-293. [PMID: 34139249 PMCID: PMC8335358 DOI: 10.1016/j.neubiorev.2021.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Serotonin is a critical neuromodulator involved in development and behavior. Its role in reward is however still debated. Here, we first review classical studies involving electrical stimulation protocols and pharmacological approaches. Contradictory results on the serotonergic' involvement in reward emerge from these studies. These differences might be ascribable to either the diversity of cellular types within the raphe nuclei or/and the specific projection pathways of serotonergic neurons. We continue to review more recent work, using optogenetic approaches to activate serotonergic cells in the Raphe to VTA pathway. From these studies, it appears that activation of this pathway can lead to reinforcement learning mediated through the excitation of dopaminergic neurons by serotonergic neurons co-transmitting glutamate. Finally, given the importance of serotonin during development on adult emotion, the effect of abnormal early-life levels of serotonin on the dopaminergic system will also be discussed. Understanding the interaction between the serotonergic and dopaminergic systems during development and adulthood is critical to gain insight into the specific facets of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, UMR 5292- INSERM U1028- Université Lyon 1, 69675 Bron Cedex, France
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
11
|
Fahrenkopf A, Li G, Wood RI, Wagner CK. Developmental exposure to the synthetic progestin, 17α-hydroxyprogesterone caproate, disrupts the mesocortical serotonin pathway and alters impulsive decision-making in rats. Dev Neurobiol 2021; 81:763-773. [PMID: 34318625 PMCID: PMC8440456 DOI: 10.1002/dneu.22847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/25/2023]
Abstract
The synthetic progestin, 17α-hydroxyprogesterone caproate (17-OHPC), is administered to women at risk for preterm birth during a critical period of fetal development for mesocortical pathways. Yet, little information is available regarding the potential effects of 17-OHPC on the developing fetal brain. In rat models, the mesocortical serotonin pathway is sensitive to progestins. Progesterone receptor (PR) is expressed in layer 3 pyramidal neurons of medial prefrontal cortex (mPFC) and in serotonergic neurons of the dorsal raphe. The present study tested the hypothesis that exposure to 17-OHPC during development disrupts serotonergic innervation of the mPFC in adolescence and impairs behavior mediated by this pathway in adulthood. Administration of 17-OHPC from postnatal days 1-14 decreased the density of SERT-ir fibers within superficial and deep layers and decreased the density of synaptophysin-ir boutons in all layers of prelimbic mPFC at postnatal day 28. In addition, rats exposed to 17-OHPC during development were less likely to make impulsive choices in the Delay Discounting task, choosing the larger, delayed reward more often than controls at moderate delay times. Interestingly, 17-OHPC exposed rats were more likely to fail to make any choice (i.e., increased omissions) compared to controls at longer delays, suggesting disruptions in decision-making. These results suggest that further investigation is warranted in the clinical use of 17-OHPC to better inform a risk/benefit analysis of progestin use in pregnancy.
Collapse
Affiliation(s)
- Allyssa Fahrenkopf
- Psychogenics Inc. Paramus, NJ USA
- Department of Psychology & Center for Neuroscience Research, University at Albany, Albany, NY USA
| | - Grace Li
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ruth I. Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Christine K. Wagner
- Department of Psychology & Center for Neuroscience Research, University at Albany, Albany, NY USA
| |
Collapse
|
12
|
Bittar TP, Labonté B. Functional Contribution of the Medial Prefrontal Circuitry in Major Depressive Disorder and Stress-Induced Depressive-Like Behaviors. Front Behav Neurosci 2021; 15:699592. [PMID: 34234655 PMCID: PMC8257081 DOI: 10.3389/fnbeh.2021.699592] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Despite decades of research on the neurobiology of major depressive disorder (MDD), the mechanisms underlying its expression remain unknown. The medial prefrontal cortex (mPFC), a hub region involved in emotional processing and stress response elaboration, is highly impacted in MDD patients and animal models of chronic stress. Recent advances showed alterations in the morphology and activity of mPFC neurons along with profound changes in their transcriptional programs. Studies at the circuitry level highlighted the relevance of deciphering the contributions of the distinct prefrontal circuits in the elaboration of adapted and maladapted behavioral responses in the context of chronic stress. Interestingly, MDD presents a sexual dimorphism, a feature recognized in the molecular field but understudied on the circuit level. This review examines the recent literature and summarizes the contribution of the mPFC circuitry in the expression of MDD in males and females along with the morphological and functional alterations that change the activity of these neuronal circuits in human MDD and animal models of depressive-like behaviors.
Collapse
Affiliation(s)
- Thibault P. Bittar
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
13
|
Goh JY, O'Sullivan SE, Shortall SE, Zordan N, Piccinini AM, Potter HG, Fone KCF, King MV. Gestational poly(I:C) attenuates, not exacerbates, the behavioral, cytokine and mTOR changes caused by isolation rearing in a rat 'dual-hit' model for neurodevelopmental disorders. Brain Behav Immun 2020; 89:100-117. [PMID: 32485291 DOI: 10.1016/j.bbi.2020.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many psychiatric illnesses have a multifactorial etiology involving genetic and environmental risk factors that trigger persistent neurodevelopmental impairments. Several risk factors have been individually replicated in rodents, to understand disease mechanisms and evaluate novel treatments, particularly for poorly-managed negative and cognitive symptoms. However, the complex interplay between various factors remains unclear. Rodent dual-hit neurodevelopmental models offer vital opportunities to examine this and explore new strategies for early therapeutic intervention. This study combined gestational administration of polyinosinic:polycytidylic acid (poly(I:C); PIC, to mimic viral infection during pregnancy) with post-weaning isolation of resulting offspring (to mirror adolescent social adversity). After in vitro and in vivo studies required for laboratory-specific PIC characterization and optimization, we administered 10 mg/kg i.p. PIC potassium salt to time-mated Lister hooded dams on gestational day 15. This induced transient hypothermia, sickness behavior and weight loss in the dams, and led to locomotor hyperactivity, elevated striatal cytokine levels, and increased frontal cortical JNK phosphorylation in the offspring at adulthood. Remarkably, instead of exacerbating the well-characterized isolation syndrome, gestational PIC exposure actually protected against a spectrum of isolation-induced behavioral and brain regional changes. Thus isolation reared rats exhibited locomotor hyperactivity, impaired associative memory and reversal learning, elevated hippocampal and frontal cortical cytokine levels, and increased mammalian target of rapamycin (mTOR) activation in the frontal cortex - which were not evident in isolates previously exposed to gestational PIC. Brains from adolescent littermates suggest little contribution of cytokines, mTOR or JNK to early development of the isolation syndrome, or resilience conferred by PIC. But notably hippocampal oxytocin, which can protect against stress, was higher in adolescent PIC-exposed isolates so might contribute to a more favorable outcome. These findings have implications for identifying individuals at risk for disorders like schizophrenia who may benefit from early therapeutic intervention, and justify preclinical assessment of whether adolescent oxytocin manipulations can modulate disease onset or progression.
Collapse
Affiliation(s)
- Jen-Yin Goh
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Sinead E Shortall
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicole Zordan
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kevin C F Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
14
|
Ju A, Fernandez-Arroyo B, Wu Y, Jacky D, Beyeler A. Expression of serotonin 1A and 2A receptors in molecular- and projection-defined neurons of the mouse insular cortex. Mol Brain 2020; 13:99. [PMID: 32594910 PMCID: PMC7322839 DOI: 10.1186/s13041-020-00605-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
The serotonin (5-HT) system is the target of multiple anxiolytics, including Buspirone, which is a partial agonist of the serotonin 1A receptor (5-HT1A). Similarly, ligands of the serotonin 2A receptor (5-HT2A) were shown to alter anxiety level. The 5-HT1A and 2A receptors are widely expressed across the brain, but the target region(s) underlying the influence of those receptors on anxiety remain unknown. Interestingly, recent studies in human and non-human primates have shown that the 5-HT1A and 5-HT2A binding potentials within the insular cortex (insula) are correlated to anxiety. As an initial step to define the function of 5-HT transmission in the insula, we quantified the proportion of specific neuronal populations of the insula expressing 5-HT1A or 5-HT2A. We analyzed seven neural populations, including three defined by a molecular marker (putative glutamate, GABA or parvalbumin), and four defined by their projections to different downstream targets. First, we found that more than 70% of putative glutamatergic neurons, and only 30% of GABAergic neurons express the 5-HT1A. Second, within insular projection neurons, 5-HT1A is highly expressed (75-80%) in the populations targeting one sub-nuclei of the amygdala (central or basolateral), or targeting the rostral or caudal sections of the lateral hypothalamus (LH). Similarly, 70% of putative glutamatergic neurons and only 30% of insular GABAergic neurons contain 5-HT2A. Finally, the 5-HT2A is present in a majority of insula-amygdala and insula-LH projection neurons (73-82%). These observations suggest that most glutamatergic neurons can respond to 5-HT through 5-HT1A or 5-HT2A in the insula, and that 5-HT directly affects a limited number of GABAergic neurons. This study defines a molecular and neuroanatomical map of the 5-HT system within the insular cortex, providing ground knowledge to identify the potential role of serotonergic modulation of selective insular populations in anxiety.
Collapse
Affiliation(s)
- Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Beatriz Fernandez-Arroyo
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Yifan Wu
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Débora Jacky
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France.
| |
Collapse
|
15
|
Janušonis S, Detering N, Metzler R, Vojta T. Serotonergic Axons as Fractional Brownian Motion Paths: Insights Into the Self-Organization of Regional Densities. Front Comput Neurosci 2020; 14:56. [PMID: 32670042 PMCID: PMC7328445 DOI: 10.3389/fncom.2020.00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
All vertebrate brains contain a dense matrix of thin fibers that release serotonin (5-hydroxytryptamine), a neurotransmitter that modulates a wide range of neural, glial, and vascular processes. Perturbations in the density of this matrix have been associated with a number of mental disorders, including autism and depression, but its self-organization and plasticity remain poorly understood. We introduce a model based on reflected Fractional Brownian Motion (FBM), a rigorously defined stochastic process, and show that it recapitulates some key features of regional serotonergic fiber densities. Specifically, we use supercomputing simulations to model fibers as FBM-paths in two-dimensional brain-like domains and demonstrate that the resultant steady state distributions approximate the fiber distributions in physical brain sections immunostained for the serotonin transporter (a marker for serotonergic axons in the adult brain). We suggest that this framework can support predictive descriptions and manipulations of the serotonergic matrix and that it can be further extended to incorporate the detailed physical properties of the fibers and their environment.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nils Detering
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Thomas Vojta
- Department of Physics, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
16
|
Wihan J, Grosch J, Kalinichenko LS, Müller CP, Winkler J, Kohl Z. Layer-specific axonal degeneration of serotonergic fibers in the prefrontal cortex of aged A53T α-synuclein–expressing mice. Neurobiol Aging 2019; 80:29-37. [DOI: 10.1016/j.neurobiolaging.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/25/2019] [Accepted: 03/23/2019] [Indexed: 01/07/2023]
|
17
|
Price AE, Sholler DJ, Stutz SJ, Anastasio NC, Cunningham KA. Endogenous Serotonin 5-HT 2A and 5-HT 2C Receptors Associate in the Medial Prefrontal Cortex. ACS Chem Neurosci 2019; 10:3241-3248. [PMID: 30645940 DOI: 10.1021/acschemneuro.8b00669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The 5-HT2A receptor (5-HT2AR) and 5-HT2CR are localized to the same neurons within the medial prefrontal cortex (mPFC), which regulates executive function, decision-making, and reward-guided learning and memory processes. The 5-HT2AR and 5-HT2CR coimmunoprecipitate in the mPFC of male Sprague-Dawley rats, while in vitro studies demonstrate the presence of a physical interaction between the 5-HT2AR and 5-HT2CR. The purpose of this study was to identify mPFC subregions in which the 5-HT2AR and 5-HT2CR physically interact ex vivo in the male Sprague-Dawley rat. We established the expression patterns of 5-HT2AR and 5-HT2CR in layers I-VI of the anterior cingulate cortex (ACC), prelimbic (PL), and infralimbic (IL) subregions using double-label fluorescence immunohistochemistry in male rats. We then employed the proximity ligation assay (PLA) to test the hypothesis that the 5-HT2AR and 5-HT2CR form a close, physical association within these mPFC subregions. Our results demonstrate subregion- and layer-specific expression of the 5-HT2AR and 5-HT2CR proteins using immunofluorescence and single recognition PLA, and a spatially close (within 40 nm) interaction between the 5-HT2AR and 5-HT2CR that occurs along a dorsal-ventral gradient in the rat mPFC.
Collapse
Affiliation(s)
- Amanda E. Price
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Dennis J. Sholler
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sonja J. Stutz
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Noelle C. Anastasio
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kathryn A. Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
18
|
Distinct regional patterns in noradrenergic innervation of the rat prefrontal cortex. J Chem Neuroanat 2019; 96:102-109. [PMID: 30630012 DOI: 10.1016/j.jchemneu.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Abstract
The anatomy and functions of the rodent prefrontal cortex (PFC) have been extensively studied. It is now clear that the PFC is at the core of various executive functions and that these functions depend on monoaminergic neuromodulation. The PFC receives extensive projections from monoaminergic nuclei and, in particular, from the locus cœruleus (LC) which is the major source of noradrenaline (NA) in the cortex. Projections of this nucleus have long been considered to act diffusely and uniformly throughout the entire brain. However, recent studies have revealed a separate innervation of prefrontal sub-regions by non-collateralizing LC neurons, suggesting a specific modulation of their functions. Following this idea, we aimed at describing more precisely the pattern of noradrenergic innervation into different orbital (OFC) and medial (mPFC) sub-regions of the PFC. We focused on the lateral (LO), ventral (VO) and medial (MO) portions of the OFC, and on areas 32d (A32d), 32v (A32v) and 25 (A25) in the mPFC. Using Dopamine-β-Hydroxylase as a specific noradrenergic marker, we performed an automatic quantification of noradrenergic fibers and varicosities in each of these sub-regions. The results indicate that noradrenergic innervation is heterogeneous in some prefrontal sub-regions along the rostro-caudal axis. Functional dissociations have been recently reported in prefrontal sub-regions along the rostro-caudal direction. Our findings add neuroanatomical support to this emergent idea.
Collapse
|
19
|
Janušonis S, Detering N. A stochastic approach to serotonergic fibers in mental disorders. Biochimie 2018; 161:15-22. [PMID: 30056260 DOI: 10.1016/j.biochi.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023]
Abstract
Virtually all brain circuits are physically embedded in a three-dimensional matrix of fibers that release 5-hydroxytryptamine (5-HT, serotonin). The density of this matrix varies across brain regions and cortical laminae, and it is altered in some mental disorders, including Major Depressive Disorder and Autism Spectrum Disorder. We investigate how the regional structure of the serotonergic matrix depends on the stochastic behavior of individual serotonergic fibers and introduce a new framework for the quantitative analysis of this behavior. In particular, we show that a step-wise random walk, based on the von Mises-Fisher probability distribution, can provide a realistic and mathematically concise description of these fibers. We also consider other stochastic models, including the fractional Brownian motion. The proposed approach seeks to advance the current understanding of the ascending reticular activating system (ARAS) and may also support future theory-guided therapeutic approaches.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA.
| | - Nils Detering
- Department of Statistics and Applied Probability, University of California, Santa Barbara, CA, 93106-3110, USA
| |
Collapse
|
20
|
Zhang HQ, Zhang Y, Liu L, Li JL, Lu YC, Yu YY, Li H, Zhang T, Chan YS, Zhang FX, Li YQ. Neural connection supporting endogenous 5-hydroxytryptamine influence on autonomic activity in medial prefrontal cortex. Auton Neurosci 2016; 203:25-32. [PMID: 27932203 DOI: 10.1016/j.autneu.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022]
Abstract
5-hydroxytryptamine (5-HT) transmission in the medial prefrontal cortex (mPFC) enhances or suppresses signal outflow to influence emotion-/cognition-based function performances and, putatively, the autonomic responses. The top-down cortical modulation of autonomic activities may be mediated in part through projections from mPFC to brain stem dorsal vagal complex (DVC). The abundant and heterogeneous densities of 5-HT fibers across laminae in mPFC suggest serotonergic innervation of mPFC-DVC projection neurons whereby endogenous 5-HT acts to regulate autonomic activities. The present study investigated the physical relationship between 5-HT fibers and the autonomic-related mPFC neurons by examining and quantitatively characterizing the 5-HT contacts upon retrogradely labeled mPFC-DVC projection neurons in pre- and infra-limbic cortices (PrL/IL) with light and electron microscopies combined with immunocytochemistry for 5-HT and presynaptic vesicle marker synaptophysin (Syn). 5-HT varicosities were observed, under confocal microscope, to form close appositions to or, at ultrastructural level, to form asymmetric axodendritic synapses and direct contacts upon the target neurons. About 16% of the entire 5-HTergic varicosities in lamina V of PrL/IL coexpressed Syn and about 24% of the peri-somatic 5-HTergic swellings demonstrated Syn-immunoreactivity (ir), suggesting a low frequency of putative synapses estimated at optical level. Ultrastructurally, examination of thirty-seven serially cut thin 5-HT boutons closely apposed to the labeled dendritic profiles demonstrated that only three contacts presented with identifiable asymmetric, synaptic membrane specializations. These data provide the first and direct morphological evidence supporting that endogenous 5-HT may be released mainly via direct contacts bearing no identifiable synaptic specializations as well as synapses, targeting autonomic-related mPFC neurons for autonomic regulation.
Collapse
Affiliation(s)
- Hao-Qiang Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China; Department of Orthopedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yong Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lin Liu
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China; Department of Dermatology, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ya-Cheng Lu
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ying-Ying Yu
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China; Department of Anatomy, Histology and Embryology, Basic Medical College, Fujian Medical University, Fuzhou, China
| | - Hui Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ying-Shing Chan
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Fu-Xing Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
21
|
Tian MK, Schmidt EF, Lambe EK. Serotonergic Suppression of Mouse Prefrontal Circuits Implicated in Task Attention. eNeuro 2016; 3:ENEURO.0269-16.2016. [PMID: 27844060 PMCID: PMC5099606 DOI: 10.1523/eneuro.0269-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
Serotonin (5-HT) regulates attention by neurobiological mechanisms that are not well understood. Layer 6 (L6) pyramidal neurons of prefrontal cortex play an important role in attention and express 5-HT receptors, but the serotonergic modulation of this layer and its excitatory output is not known. Here, we performed whole-cell recordings and pharmacological manipulations in acute brain slices from wild-type and transgenic mice expressing either eGFP or eGFP-channelrhodopsin in prefrontal L6 pyramidal neurons. Excitatory circuits between L6 pyramidal neurons and L5 GABAergic interneurons, including a population of interneurons essential for task attention, were investigated using optogenetic techniques. Our experiments show that prefrontal L6 pyramidal neurons are subject to strong serotonergic inhibition and demonstrate direct 5-HT-sensitive connections between prefrontal L6 pyramidal neurons and two classes of L5 interneurons. This work helps to build a neurobiological framework to appreciate serotonergic disruption of task attention and yields insight into the disruptions of attention observed in psychiatric disorders with altered 5-HT receptors and signaling.
Collapse
Affiliation(s)
- Michael K Tian
- Department of Physiology, University of Toronto , Toronto, ON, Canada
| | - Eric F Schmidt
- Laboratory of Molecular Biology, Rockefeller University , New York, NY
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Linley SB, Olucha-Bordonau F, Vertes RP. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat. J Comp Neurol 2016; 525:116-139. [PMID: 27213991 DOI: 10.1002/cne.24044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/03/2016] [Accepted: 05/20/2016] [Indexed: 02/01/2023]
Abstract
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT+ fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, 33431.,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Francisco Olucha-Bordonau
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, 12071, Castellón, Spain
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| |
Collapse
|
23
|
Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 2015; 67:176-97. [PMID: 25505168 DOI: 10.1124/pr.114.009514] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Leonard L Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| | - Kathryn A Cunningham
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| |
Collapse
|
24
|
Ishii H, Ohara S, Tobler PN, Tsutsui KI, Iijima T. Dopaminergic and serotonergic modulation of anterior insular and orbitofrontal cortex function in risky decision making. Neurosci Res 2015; 92:53-61. [DOI: 10.1016/j.neures.2014.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/15/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
|
25
|
Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence. Neuropsychopharmacology 2014; 39:370-82. [PMID: 23939424 PMCID: PMC3970795 DOI: 10.1038/npp.2013.199] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 11/08/2022]
Abstract
Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues ('cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors.
Collapse
|