1
|
Sharmeen S, Woolfork AG, Hage DS. Generation of affinity maps for thiazolidinediones with human serum albumin using affinity microcolumns. II. Effects of advanced glycation end products on multisite drug binding. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124333. [PMID: 39395238 DOI: 10.1016/j.jchromb.2024.124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Multisite protein interactions by the thiazolidinedione-class drugs pioglitazone and rosiglitazone were examined by using high-performance affinity microcolumns that contained normal human serum albumin (HSA) vs HSA that had been modified to form advanced glycation end products by glyoxal (Go) or methylglyoxal (MGo). The results were used to generate an affinity map for these drugs at several key regions on HSA. Strong binding (∼105 M-1) by these drugs was seen at both Sudlow sites I and II. About a 50 % decrease in the affinities at Sudlow site II was observed for pioglitazone for Go-modified HSA, while either a 47 % decrease or 1.6-fold increase in affinity was seen for MGo-modified HSA, depending on the extent of modification. The binding affinity for rosiglitazone at Sudlow site II had a 40-83 % decrease for Go-modified HSA and either a non-significant change or 1.4-fold increase for MGo-modified HSA. At Sudlow site I, pioglitazone gave a 41 % decrease in affinity for either Go or MGo-modified HSA, and for rosiglitazone up to a 55 % decrease or 1.3-fold increase in affinity was noted. Positive allosteric effects were seen by these drugs with the tamoxifen site of HSA, and neither drug had any notable binding at the digitoxin site for the normal or modified forms of HSA. Rosiglitazone also had weak interactions at a site in subdomain IB, which increased in affinity by up to 5.0-fold with the Go- or MGo-modified HSA. This study illustrated how affinity microcolumns can be used to provide a detailed analysis of solute-protein systems that involve complex interactions. The data obtained should also be valuable in providing a better understanding of how drug interactions with HSA and other proteins can be altered by modifications of these binding agents in diseases such as diabetes.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, USA.
| |
Collapse
|
2
|
Liu Y, Yuan Z, Zhao P, Li C, Qin L, Zhao T, Zhu X, Feng S. Studies on the binding of wedelolactone to human serum albumin with multi-spectroscopic analysis, molecular docking and molecular dynamic simulation. Biophys Chem 2024; 307:107198. [PMID: 38359582 DOI: 10.1016/j.bpc.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Wedelolactone (WEL) is a small molecule compound isolated from Eclipta prostrate L., which has been reported to possess various biological activities such as anti-hepatotoxicity, anti-hypertension, anti-tumour, anti-phospholipase A2 and detoxification activity against snake venom. In the present study, we investigated the interaction of WEL with human serum albumin (HSA) using simultaneous fluorescence, UV-visible spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), molecular docking technique and molecular dynamics simulation. We found that the interaction between HSA and WEL can exhibit a static fluorescence burst mechanism, and the binding process is essentially spontaneous, with the main forces manifested as hydrogen bonding, van der Waals force and electrostatic interactions. Competitive binding and molecular docking studies showed that WEL preferentially bound to HSA in substructural region IIA (site I); molecular dynamics simulations showed that HSA interacted with WEL to form a stable complex, which also induced conformational changes in HSA. The study of the interaction between WEL and HSA can provide a reference for a more in-depth study of the pharmacodynamic mechanism of WEL and its further development and utilisation.
Collapse
Affiliation(s)
- Yali Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen Yuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Changxin Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Qin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianlun Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojing Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shuai Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Sharmeen S, Woolfork A, Hage DS. Generation of affinity maps for thiazolidinediones with human serum albumin using affinity microcolumns. I. Studies of effects by glycation on multisite drug binding. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124070. [PMID: 38460447 DOI: 10.1016/j.jchromb.2024.124070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Human serum albumin (HSA) is known to undergo modifications by glucose during diabetes. This process produces glycated HSA that can have altered binding to some drugs. In this study, high-performance affinity microcolumns and competition studies were used to see how glycation affects the binding by two thiazolidinedione-class drugs (i.e., pioglitazone and rosiglitazone) at specific regions of HSA. These regions included Sudlow sites I and II, the tamoxifen and digitoxin sites, and a drug-binding site located in subdomain IB. At Sudlow site II, the association equilibrium constants (or binding constants) for pioglitazone and rosiglitazone with normal HSA were 1.7 × 105 M-1 and 2.0 × 105 M-1 at pH 7.4 and 37 °C, with values that changed by up to 5.7-fold for glycated HSA. Sudlow site I of normal HSA had binding constants for pioglitazone and rosiglitazone of 3.4 × 105 M-1 and 4.6 × 105 M-1, with these values changing by up to 1.5-fold for glycated HSA. Rosiglitazone was found to also bind a second region that had a positive allosteric effect on Sudlow site I for all the tested preparations of HSA (binding affinity, 1.1-3.2 × 105 M-1; coupling constant for Sudlow site I, 1.20-1.34). Both drugs had a strong positive allosteric effect on the tamoxifen site of HSA (coupling constants, 13.7-19.9 for pioglitazone and 3.7-11.5 for rosiglitazone). Rosiglitazone also had weak interactions at a site in subdomain IB, with a binding constant of 1.4 × 103 M-1 for normal HSA and a value that was altered by up to 6.8-fold with glycated HSA. Neither of the tested drugs had any significant binding at the digitoxin site. The results were used to produce affinity maps that described binding by these thiazolidinediones with HSA and the effects of glycation on these interactions during diabetes.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | - Ashley Woolfork
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, USA.
| |
Collapse
|
4
|
Akbari V, Ghobadi S. Evaluation of the effect of phenylpropanoids on the binding of heparin to human serum albumin and glycosylated human serum albumin concerning anticoagulant activity: A comparison study. Int J Biol Macromol 2024; 257:128732. [PMID: 38092116 DOI: 10.1016/j.ijbiomac.2023.128732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The nonenzymatic advanced glycation end products (AGEs) and the accumulation of AGEs are the two main factors associated with the long-term pathogenesis of diabetes. Human serum albumin (HSA) as the most abundant serum protein has a higher fortuity to be modified by nonenzymatic glycation. In this study, the interaction of three phenylpropanoids (caffeic acid (Caf), p-coumaric acid (Cou), and cinnamic acid (Cin)) toward HSA and glycosylated HSA (gHSA) was analyzed by multiple spectroscopic techniques combined with molecular docking. The formation of fibrils in HSA and gHSA was confirmed by the Thioflavin T (ThT) assay. The phenylpropanoids have shown anti-fibrillation properties in vitro. The obtained thermodynamic parameters indicated that hydrogen bonding and van der Waals forces are the main forces in the binding interaction, and the quenching mechanism of the protein fluorescence is static. Molecular docking results, as well as the in vitro results, showed that Caf, Cou, and Cin exhibit more stable interactions with HSA, respectively. In addition, molecular docking analysis showed that Caf and Cou interact well with K199. Given the critical role of K199 in HSA glycosylation in diabetic patients, this process inhibits the interaction of stabilizer compounds and thus accelerates gHSA aggregation.
Collapse
Affiliation(s)
- Vali Akbari
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| |
Collapse
|
5
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
6
|
Mlčochová H, Michalcová L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug‐plasma protein studies by combining it with mass spectrometry detection. Electrophoresis 2022; 43:955-963. [DOI: 10.1002/elps.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hana Mlčochová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
7
|
Ovbude ST, Tao P, Li Z, Hage DS. High-Performance affinity chromatographic studies of repaglinide and nateglinide interactions with normal and glyoxal- or methylglyoxal-modified human albumin serum. J Pharm Biomed Anal 2021; 201:114097. [PMID: 33933705 DOI: 10.1016/j.jpba.2021.114097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
During diabetes human serum albumin (HSA), an important drug transport protein, can be modified by agents such as glyoxal (Go) and methylglyoxal (MGo) to form advanced glycation end-products. High-performance affinity microcolumns and zonal elution competition studies were used to compare interactions by the anti-diabetic drugs repaglinide and nateglinide with normal and Go- or MGo-modified HSA at Sudlow sites I and II of this protein. Both drugs had their strongest binding at Sudlow site II for the normal and modified forms of HSA. The association equilibrium constants at this site for repaglinide and nateglinide with normal HSA were 6.1 (± 0.2) × 104 M-1 and 7.1 (± 0.8) × 105 M-1, respectively, at pH 7.4 and 37⁰C; these values increased by up to 3.6-fold for repaglinide and decreased by up to 45-55 % for nateglinide when HSA was modified by Go or MGo at levels seen in prediabetes or diabetes. Both drugs were also found to bind at Sudlow site I, with association equilibrium constants at this site on normal HSA of 4.2 (± 0.3) × 104 M-1 for repaglinide and 5.0 (± 0.1) × 104 M-1 for nateglinide. The binding strength for repaglinide at Sudlow site I increased by 1.3- to 1.7-fold with the Go-modified HSA and decreased slightly (i.e., up to 19 %) for the MGo-modified HSA, while nateglinide showed only a small or insignificant change in binding with the same modified HSA samples. These results indicated that binding by repaglinide and nateglinide with HSA can be altered significantly by modification of this protein with Go or MGo, making these modifications of potential interest in the treatment of patients with these drugs during diabetes.
Collapse
Affiliation(s)
- Susan T Ovbude
- Chemistry Department, University of Nebraska, Lincoln, NE, 68588, USA
| | - Pingyang Tao
- Chemistry Department, University of Nebraska, Lincoln, NE, 68588, USA
| | - Zhao Li
- Chemistry Department, University of Nebraska, Lincoln, NE, 68588, USA
| | - David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
8
|
Zhang S, Gan R, Zhao L, Sun Q, Xiang H, Xiang X, Zhao G, Li H. Unveiling the interaction mechanism of alogliptin benzoate with human serum albumin: Insights from spectroscopy, microcalorimetry, and molecular docking and molecular dynamics analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119040. [PMID: 33068900 DOI: 10.1016/j.saa.2020.119040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The interaction between a DPP-4 inhibitor, alogliptin benzoate (AB), and human serum albumin (HSA) was systematically investigated via spectroscopy, microcalorimetry and molecular simulations. Steady-state fluorescence and time-resolved fluorescence spectrometry illustrated that the fluorescence quenching type of AB to HSA was static and caused by the formation of ground state AB-HSA complex. Isothermal titration calorimetry (ITC) combined with fluorescence spectra revealed that the affinity of AB to the subdomain IIA of HSA was moderate with a binding constant in the order of 104. Molecular docking analysis and thermodynamic parameters demonstrated that this combination was maintained by hydrogen bonding along with van der Waals force and hydrophobic force. Circular dichroism and three-dimensional (3D) fluorescence showed that AB increased the hydrophobicity of Trp residue and the α-helix content of HSA by 1.99%. Microdifferential scanning calorimetry revealed that the addition of AB enhanced the thermal stability of HSA. The action forces, binding stability, binding sites, and protein structure of the AB-HSA system were evaluated via molecular dynamics analysis in the simulated environment. On the basis of molecular docking, MD simulation constructed a more reliable 3D model of the AB-HSA complex in terms of spatial structure.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ruixue Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hongzhao Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xi Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Gang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
9
|
Jeličić ML, Brusač E, Klarić DA, Nigović B, Turk N, Mornar A. A chromatographic approach to development of 5-aminosalicylate/folic acid fixed-dose combinations for treatment of Crohn's disease and ulcerative colitis. Sci Rep 2020; 10:20838. [PMID: 33257796 PMCID: PMC7705649 DOI: 10.1038/s41598-020-77654-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Medication adherence is an important factor in inflammatory bowel disease therapy, which includes regular supplementation of malabsorbed vitamins. Absorption of folic acid is limited due to the damaging of the gastrointestinal tract, which can increase the chances to develop megaloblastic anaemia and colorectal cancer. In this work, 5-aminosalicylates (mesalazine, balsalazide, sulfasalazine and olsalazine) and folic acid were characterized regarding their pharmacokinetic related properties (hydrophobicity, phospholipid and plasma protein binding) using the biomimetic chromatographic approach. Despite the high binding percentage of 5-aminosalicylates for human serum albumin (> 61.44%), results have shown that folic acid binding to human serum albumin protein is far greater (69.40%) compared to α1-acid-glycoprotein (3.45%). Frontal analysis and zonal elution studies were conducted to provide an insight into the binding of folic acid to human serum albumin and potential competition with 5-aminosalicylates. The analytical method for the simultaneous determination of assay in proposed fixed-dose combinations was developed and validated according to ICH Q2 (R1) and FDA method validation guidelines. Separation of all compounds was achieved within 16 min with satisfactory resolution (Rs > 3.67) using the XBridge Phenyl column (150 × 4.6 mm, 3.5 µm). High linearity (r > 0.9997) and precision (RSD < 2.29%) was obtained, whilst all recoveries were within the regulatory defined range by British (100.0 ± 5.0%) and United States Pharmacopeia (100.0 ± 10.0%).
Collapse
Affiliation(s)
- Mario-Livio Jeličić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Edvin Brusač
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Daniela Amidžić Klarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Biljana Nigović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Nikša Turk
- Clinical Hospital Center Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia
| | - Ana Mornar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
10
|
Nevídalová H, Michalcová L, Glatz Z. Applicability of capillary electrophoresis-frontal analysis for displacement studies: Effect of several drugs on l-tryptophan and lidocaine binding to human serum albumin. J Sep Sci 2020; 43:4225-4233. [PMID: 32966669 DOI: 10.1002/jssc.202000594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 01/30/2023]
Abstract
The effective concentration of a drug in the blood, i.e. the concentration of a free drug in the blood, is influenced by the strength of drug binding onto plasma proteins. Besides its efficacy, these interactions subsequently influence the liberation, absorption, distribution, metabolism, excretion, and toxicological properties of the drug. It is important to not only determine the binding strength and stoichiometry, but also the binding site of a drug on the plasma protein molecule, because the co-administration of drugs with the same binding site can affect the above-mentioned concentration and as a result the pharmacological behavior of the drugs and lead to side effects caused by the change in free drug concentration, its toxicity. In this study, the binding characteristics of six drugs with human serum albumin, the most abundant protein in human plasma, were determined by capillary electrophoresis-frontal analysis, and the obtained values of binding parameters were compared with the literature data. The effect of several drugs and site markers on the binding of l-tryptophan and lidocaine to human serum albumin was investigated in subsequent displacement studies which thus demonstrated the usability of capillary electrophoresis as an automated high-throughput screening method for drug-protein binding studies.
Collapse
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Leboffe L, di Masi A, Polticelli F, Trezza V, Ascenzi P. Structural Basis of Drug Recognition by Human Serum Albumin. Curr Med Chem 2020; 27:4907-4931. [DOI: 10.2174/0929867326666190320105316] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Background:
Human serum albumin (HSA), the most abundant protein in plasma,
is a monomeric multi-domain macromolecule with at least nine binding sites for endogenous
and exogenous ligands. HSA displays an extraordinary ligand binding capacity as a depot and
carrier for many compounds including most acidic drugs. Consequently, HSA has the potential
to influence the pharmacokinetics and pharmacodynamics of drugs.
Objective:
In this review, the structural determinants of drug binding to the multiple sites of
HSA are analyzed and discussed in detail. Moreover, insight into the allosteric and competitive
mechanisms underpinning drug recognition, delivery, and efficacy are analyzed and discussed.
Conclusion:
As several factors can modulate drug binding to HSA (e.g., concurrent administration
of drugs competing for the same binding site, ligand binding to allosteric-coupled
clefts, genetic inherited diseases, and post-translational modifications), ligand binding to HSA
is relevant not only under physiological conditions, but also in the pharmacological therapy
management.
Collapse
Affiliation(s)
- Loris Leboffe
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Viviana Trezza
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I- 00146 Roma, Italy
| |
Collapse
|
12
|
Rodriguez EL, Poddar S, Choksi M, Hage DS. Development of an on-line immunoextraction/entrapment system for protein capture and use in drug binding studies by high-performance affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1136:121812. [PMID: 31841979 DOI: 10.1016/j.jchromb.2019.121812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/17/2022]
Abstract
An on-line purification and entrapment system was developed that could extract a protein from a sample such as serum and entrap this protein within a small column for use in high-performance affinity chromatography. Human serum albumin (HSA) was employed as a model protein for this work. Immunoextraction columns containing polyclonal anti-HSA antibodies were developed to capture and isolate HSA from applied samples. This was followed by the use of a strong cation-exchange column to recapture and focus HSA as it eluted from the immunoextraction columns. The recaptured HSA was entrapped within 1.0 cm × 2.1 mm I.D. columns containing hydrazide-activated silica and in the presence of oxidized glycogen as a capping agent. The binding and elution properties of HSA on the various components of this system were examined and optimized. The entrapped columns produced by this system were then evaluated for their use in binding studies with several sulfonylurea drugs. The HSA columns created by this approach typically contained 0.3-0.6 nmol HSA and were stable over several weeks and more than 50-60 sample injections. Drug binding constants could be determined with these columns in 8 min or less by zonal elution and gave good agreement with literature values. The same system could be used for the capture and entrapment of other proteins by utilizing antibodies against the given target for immunoextraction.
Collapse
Affiliation(s)
| | - Saumen Poddar
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | - Meera Choksi
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
13
|
Mohammadnia F, Fatemi MH, Taghizadeh SM. Study on the interaction of anti-inflammatory drugs with human serum albumin using molecular docking, quantitative structure-activity relationship, and fluorescence spectroscopy. LUMINESCENCE 2019; 35:266-273. [PMID: 31766079 DOI: 10.1002/bio.3723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/27/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
The interaction of 14 anti-inflammatory drugs with human serum albumin (HSA) was investigated using fluorescence quenching, molecular docking studies, and quantitative structure-activity relationship (QSAR) methodology. Binding of anti-inflammatory drugs to HSA plays a fundamental role in their transport, distribution, delivery, and elimination. Binding constants of these drugs to HSA, obtained using the fluorescence quenching method, were within the range 0.01 × 104 M-1 (acetaminophen) to 1881.05 × 104 M-1 (meloxicam). Binding sites and binding constants of these anti-inflammatory drugs were estimated using molecular docking. Inspection of the obtained values for docking score, logKb and Kb , showed that the drugs in this data set have a relatively strong binding constant for HSA. QSAR modelling was applied for binding constants obtained from fluorescence quenching and theoretical molecular descriptors. This modelling led to a linear two-parameter model with a correlation coefficient of 0.95 and adequate robustness. The descriptor results showed the importance of a bonding network and electronegativity as the discriminative structural factors in binding affinity for the HSA molecule.
Collapse
Affiliation(s)
- F Mohammadnia
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandarn, Babolsar, Iran
| | - M H Fatemi
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandarn, Babolsar, Iran
| | - S M Taghizadeh
- Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Islamic Republic of Iran
| |
Collapse
|
14
|
Tsopelas F, Tsantili-Kakoulidou A. Advances with weak affinity chromatography for fragment screening. Expert Opin Drug Discov 2019; 14:1125-1135. [DOI: 10.1080/17460441.2019.1648425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | |
Collapse
|
15
|
Tao P, Li Z, Woolfork AG, Hage DS. Characterization of tolazamide binding with glycated and normal human serum albumin by using high-performance affinity chromatography. J Pharm Biomed Anal 2019; 166:273-280. [PMID: 30682693 DOI: 10.1016/j.jpba.2019.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Sulfonylurea drugs are antidiabetic drugs that are utilized in the treatment of type II diabetes and often have significant binding with human serum albumin (HSA). Immobilized samples of normal or glycated HSA in affinity microcolumns were used to investigate interactions of these proteins with the sulfonylurea drug tolazamide. HPLC and frontal analysis were used to first examine the overall binding of this drug with these samples of HSA. It was found that tolazamide had two general classes of binding sites (i.e., high and low affinity) for normal and glycated HSA. The higher affinity sites had binding constants of around 4.3-6.0 × 104 M-1 for these interactions at pH 7.4 and 37 °C, while the lower affinity sites had binding strengths of 4.9-9.1 × 103 M-1. Zonal competition studies between tolazamide and probes for Sudlow sites I and II on HSA were also performed and used to provide site-specific affinities for tolazamide at these sites. A decrease of 22% in affinity was observed for tolazamide at Sudlow site I and an increase up to 58% was seen at Sudlow site II when comparing glycated HSA with normal HSA. These observed changes were compared to those of other first-generation sulfonylurea drugs, providing information on how glycation can alter the total and local binding strength of tolazamide and related compounds with HSA under levels of glycation seen in patients with diabetes.
Collapse
Affiliation(s)
- Pingyang Tao
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Zhao Li
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ashley G Woolfork
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David S Hage
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
16
|
Yang B, Zheng X, Hage DS. Binding studies based on ultrafast affinity extraction and single- or two-column systems: Interactions of second- and third-generation sulfonylurea drugs with normal or glycated human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:8-16. [PMID: 30366211 DOI: 10.1016/j.jchromb.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
Ultrafast affinity extraction was evaluated and used with microcolumns containing human serum albumin (HSA) to measure the global affinity constants and dissociation rate constants for several second- and third-generation sulfonylurea drugs with solution-phase normal HSA or glycated HSA. Glibenclamide, glimepiride and glipizide were used as model drugs for this work. Both single- and two-column systems were considered for the analysis of global affinities for the model drugs. These methods were optimized with respect to the flow rates, column sizes and sample residence times that were employed with each drug for ultrafast affinity extraction. Data acquired with single-column systems were further utilized to estimate the dissociation rate constants for normal HSA and glycated HSA with the given drugs. The binding constants obtained by the single- and two-column systems showed good agreement with each other and with values obtained from the literature. Use of a single-column system indicated that levels of glycation found in controlled or advanced diabetes resulted in a 18-44% decrease in the overall binding strength of the model drugs with HSA. Although the two-column system allowed work with smaller free drug fractions and clinically-relevant drug/protein concentrations, the single-column system required less protein, provided better precision, and was easier to use in binding studies.
Collapse
Affiliation(s)
- Bao Yang
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - Xiwei Zheng
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
17
|
Tao P, Li Z, Matsuda R, Hage DS. Chromatographic studies of chlorpropamide interactions with normal and glycated human serum albumin based on affinity microcolumns. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1097-1098:64-73. [PMID: 30205233 DOI: 10.1016/j.jchromb.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 01/02/2023]
Abstract
Sulfonylurea drugs have significant binding to proteins in blood, with most of this binding believed to occur with human serum albumin (HSA). High performance affinity chromatography and affinity microcolumns containing immobilized HSA were used to investigate binding by the sulfonylurea drug chlorpropamide to normal HSA and glycated HSA, which is a modified form of HSA that has an increased serum concentration in diabetes. Experiments employing frontal analysis indicated that the binding by chlorpropamide gave a good fit to a two-site model for both normal HSA and glycated HSA samples that were representative of controlled or advanced diabetes. These interactions involved a set of moderate-to-high affinity sites and a set of lower affinity sites, with binding constants in the range of 6.2-9.9 × 104 M-1 and 0.18-0.57 × 104 M-1, respectively, at pH 7.4 and 37 °C. Competition studies utilizing a zonal elution format demonstrated that chlorpropamide could interact at both Sudlow sites I and II of HSA, with affinities in the range expected for the moderate-to-high affinity sites of this drug. The affinity of chlorpropamide at Sudlow site I had a small increase of up to 1.2-fold when comparing the normal HSA and glycated HSA samples. Chlorpropamide gave a larger 1.4- to over 1.5-fold increase at Sudlow site II when the affinity of this drug was compared between normal HSA and the same samples of glycated HSA. These results were compared to those obtained previously with other sulfonylurea drugs to help determine how glycation can change the overall and site-selective binding strength of these drugs with HSA at levels of protein modification that are seen in patients with diabetes.
Collapse
Affiliation(s)
- Pingyang Tao
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhao Li
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | - Ryan Matsuda
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
18
|
Tao P, Poddar S, Sun Z, Hage DS, Chen J. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography. Methods 2018; 146:3-11. [PMID: 29409783 PMCID: PMC6072616 DOI: 10.1016/j.ymeth.2018.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022] Open
Abstract
Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets.
Collapse
Affiliation(s)
- Pingyang Tao
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Saumen Poddar
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Zuchen Sun
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Jianzhong Chen
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Marković OS, Cvijetić IN, Zlatović MV, Opsenica IM, Konstantinović JM, Terzić Jovanović NV, Šolaja BA, Verbić TŽ. Human serum albumin binding of certain antimalarials. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:128-139. [PMID: 29128746 DOI: 10.1016/j.saa.2017.10.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37°C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.
Collapse
Affiliation(s)
- Olivera S Marković
- Department of Chemistry-IChTM, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Ilija N Cvijetić
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Mario V Zlatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Igor M Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | | | | | - Bogdan A Šolaja
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Tatjana Ž Verbić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
20
|
Zhang C, Rodriguez E, Bi C, Zheng X, Suresh D, Suh K, Li Z, Elsebaei F, Hage DS. High performance affinity chromatography and related separation methods for the analysis of biological and pharmaceutical agents. Analyst 2018; 143:374-391. [PMID: 29200216 PMCID: PMC5768458 DOI: 10.1039/c7an01469d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The last few decades have witnessed the development of many high-performance separation methods that use biologically related binding agents. The combination of HPLC with these binding agents results in a technique known as high performance affinity chromatography (HPAC). This review will discuss the general principles of HPAC and related techniques, with an emphasis on their use for the analysis of biological compounds and pharmaceutical agents. Various types of binding agents for these methods will be considered, including antibodies, immunoglobulin-binding proteins, aptamers, enzymes, lectins, transport proteins, lipids, and carbohydrates. Formats that will be discussed for these methods range from the direct detection of an analyte to indirect detection based on chromatographic immunoassays, as well as schemes based on analyte extraction or depletion, post-column detection, and multi-column systems. The use of biological agents in HPLC for chiral separations will also be considered, along with the use of HPAC as a tool to screen or study biological interactions. Various examples will be presented to illustrate these approaches and their applications in fields such as biochemistry, clinical chemistry, and pharmaceutical research.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Z, Hage DS. Analysis of stereoselective drug interactions with serum proteins by high-performance affinity chromatography: A historical perspective. J Pharm Biomed Anal 2017; 144:12-24. [PMID: 28094095 PMCID: PMC5505820 DOI: 10.1016/j.jpba.2017.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
The interactions of drugs with serum proteins are often stereoselective and can affect the distribution, activity, toxicity and rate of excretion of these drugs in the body. A number of approaches based on affinity chromatography, and particularly high-performance affinity chromatography (HPAC), have been used as tools to study these interactions. This review describes the general principles of affinity chromatography and HPAC as related to their use in drug binding studies. The types of serum agents that have been examined with these methods are also discussed, including human serum albumin, α1-acid glycoprotein, and lipoproteins. This is followed by a description of the various formats based on affinity chromatography and HPAC that have been used to investigate drug interactions with serum proteins and the historical development for each of these formats. Specific techniques that are discussed include zonal elution, frontal analysis, and kinetic methods such as those that make use of band-broadening measurements, peak decay analysis, or ultrafast affinity extraction.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
22
|
Hage DS. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications. Clin Chem 2017; 63:1083-1093. [PMID: 28396561 DOI: 10.1373/clinchem.2016.262253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically related binding agent, are 2 methods that can be used to study these interactions. CONTENT This review presents various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples.
Collapse
Affiliation(s)
- David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE.
| |
Collapse
|
23
|
Lima JM, Salmazo Vieira P, Cavalcante de Oliveira AH, Cardoso CL. Label-free offline versus online activity methods for nucleoside diphosphate kinase b using high performance liquid chromatography. Analyst 2016; 141:4733-41. [DOI: 10.1039/c6an00655h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Label-free methodologies for nucleoside diphosphate kinase fromLeishmaniaspp. (LmNDKb): anofflineLC-UV assay for solubleLmNDKb and anonlinetwo-dimensional LC-UV system based on immobilizedLmNDKb to help screenLmNDKb ligands and measure NDKb activity.
Collapse
Affiliation(s)
- Juliana Maria Lima
- Departamento de Química
- Grupo de Cromatografia de Bioafinidade e Produtos Naturais
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- 14040-901
| | - Plínio Salmazo Vieira
- Laboratório Nacional de Biociências (LNBio)
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)
- Campinas
- Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- Departamento de Química
- Grupo de Cromatografia de Bioafinidade e Produtos Naturais
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- 14040-901
| | - Carmen Lúcia Cardoso
- Departamento de Química
- Grupo de Cromatografia de Bioafinidade e Produtos Naturais
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- 14040-901
| |
Collapse
|
24
|
Li Z, Beeram SR, Bi C, Suresh D, Zheng X, Hage DS. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:1-39. [PMID: 26827600 DOI: 10.1016/bs.apcsb.2015.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of drugs with proteins and other agents in serum is of interest in personalized medicine because this process can affect the dosage and action of drugs. The extent of this binding may also vary with a given disease state. These interactions may involve serum proteins, such as human serum albumin or α1-acid glycoprotein, or other agents, such as lipoproteins. High-performance affinity chromatography (HPAC) is a tool that has received increasing interest as a means for studying these interactions. This review discusses the general principles of HPAC and the various approaches that have been used in this technique to examine drug-protein binding and in work related to personalized medicine. These approaches include frontal analysis and zonal elution, as well as peak decay analysis, ultrafast affinity extraction, and chromatographic immunoassays. The operation of each method is described and examples of applications for these techniques are provided. The type of information that can be obtained by these methods is also discussed, as related to the analysis of drug-protein binding and the study of clinical or pharmaceutical samples.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sandya R Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - D Suresh
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
25
|
Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography. Anal Bioanal Chem 2015; 408:131-40. [PMID: 26462924 DOI: 10.1007/s00216-015-9082-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022]
Abstract
Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333-665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7-9.5% were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5-10 min or less and required only 1-5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research.
Collapse
|
26
|
Anguizola J, Debolt E, Suresh D, Hage DS. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:175-181. [PMID: 26468085 DOI: 10.1016/j.jchromb.2015.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/01/2022]
Abstract
The primary endogenous ligands of human serum albumin (HSA) are non-esterified fatty acids, with 0.1-2mol of fatty acids normally being bound to HSA. In type II diabetes, fatty acid levels in serum are often elevated, and the presence of high glucose results in an increase in the non-enzymatic glycation of HSA. High-performance affinity chromatography (HPAC) was used to examine the combined effects of glycation and the presence of long chain fatty acids on the binding of HSA with R-warfarin and l-tryptophan (i.e., probes for Sudlow sites I and II, the major sites for drugs on this protein). Zonal elution competition studies were used to examine the interactions of myristic acid, palmitic acid and stearic acid with these probes on HSA. It was found that all these fatty acids had direct competition with R-warfarin at Sudlow site I of normal HSA and glycated HSA, with the glycated HSA typically having stronger binding for the fatty acids at this site. At Sudlow site II, direct competition was observed for all the fatty acids with l-tryptophan when using normal HSA, while glycated HSA gave no competition or positive allosteric interactions between these fatty acids and l-tryptophan. These data indicated that glycation can alter the interactions of drugs and fatty acids at specific binding sites on HSA. The results of this study should lead to a better understanding of how these interactions may change during diabetes and demonstrate how HPAC can be used to examine drug/solute-protein interactions in complex systems.
Collapse
Affiliation(s)
- Jeanethe Anguizola
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - Erin Debolt
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - D Suresh
- Home Department: Department of Chemistry, Tumkur University, Tumkur, Karnataka 572103, India
| | - David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
27
|
Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin. J Chromatogr A 2015; 1408:133-44. [PMID: 26189669 DOI: 10.1016/j.chroma.2015.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 11/22/2022]
Abstract
High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins.
Collapse
|
28
|
Matsuda R, Li Z, Zheng X, Hage DS. Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography. Anal Bioanal Chem 2015; 407:5309-21. [PMID: 25912461 PMCID: PMC6359935 DOI: 10.1007/s00216-015-8688-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
Abstract
In diabetes, the elevated levels of glucose in the bloodstream can result in the nonenzymatic glycation of proteins such as human serum albumin (HSA). This type of modification has been shown to affect the interactions of some drugs with HSA, including several sulfonylurea drugs that are used to treat type II diabetes. This study used high-performance affinity chromatography (HPAC) to examine the interactions of glipizide (i.e., a second-generation sulfonylurea drug) with normal HSA or HSA that contained various levels of in vitro glycation. Frontal analysis indicated that glipizide was interacting with both normal and glycated HSA through two general groups of sites: a set of relatively strong interactions and a set of weaker interactions with average association equilibrium constants at pH 7.4 and 37 °C in the range of 2.4-6.0 × 10(5) and 1.7-3.7 × 10(4) M(-1), respectively. Zonal elution competition studies revealed that glipizide was interacting at both Sudlow sites I and II, which were estimated to have affinities of 3.2-3.9 × 10(5) and 1.1-1.4 × 10(4) M(-1). Allosteric effects were also noted to occur for this drug between the tamoxifen site and the binding of R-warfarin at Sudlow site I. Up to an 18% decrease in the affinity for glipizide was observed at Sudlow site I ongoing from normal HSA to glycated HSA, while up to a 27% increase was noted at Sudlow site II. This information should be useful in indicating how HPAC can be used to investigate other drugs that have complex interactions with proteins. These results should also be valuable in providing a better understanding of how glycation may affect drug-protein interactions and the serum transport of drugs such as glipizide during diabetes.
Collapse
Affiliation(s)
- Ryan Matsuda
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | - Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| |
Collapse
|
29
|
Matsuda R, Anguizola J, Hoy KS, Hage DS. Analysis of drug-protein interactions by high-performance affinity chromatography: interactions of sulfonylurea drugs with normal and glycated human serum albumin. Methods Mol Biol 2015; 1286:255-277. [PMID: 25749961 DOI: 10.1007/978-1-4939-2447-9_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-performance affinity chromatography (HPAC) is a type of liquid chromatography that has seen growing use as a tool for the study of drug-protein interactions. This report describes how HPAC can be used to provide information on the number of binding sites, equilibrium constants, and changes in binding that can occur during drug-protein interactions. This approach will be illustrated through recent data that have been obtained by HPAC for the binding of sulfonylurea drugs and other solutes to the protein human serum albumin (HSA), and especially to forms of this protein that have been modified by non-enzymatic glycation. The theory and use of both frontal analysis and zonal elution competition studies in such work will be discussed. Various practical aspects of these experiments will be presented, as well as factors to consider in the extension of these methods to other drugs and proteins or additional types of biological interactions.
Collapse
Affiliation(s)
- Ryan Matsuda
- Department of Chemistry, University of Nebraska-Lincoln, 704 Hamilton Hall, 639 N 12 Street, Lincoln, NE, 68588-0304, USA
| | | | | | | |
Collapse
|
30
|
Zheng X, Matsuda R, Hage DS. Analysis of free drug fractions by ultrafast affinity extraction: interactions of sulfonylurea drugs with normal or glycated human serum albumin. J Chromatogr A 2014; 1371:82-9. [PMID: 25456590 PMCID: PMC4254497 DOI: 10.1016/j.chroma.2014.10.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/04/2014] [Accepted: 10/24/2014] [Indexed: 02/08/2023]
Abstract
Ultrafast affinity extraction and a multi-dimensional affinity system were developed for measuring free drug fractions at therapeutic levels. This approach was used to compare the free fractions and global affinity constants of several sulfonylurea drugs in the presence of normal human serum albumin (HSA) or glycated forms of this protein, as are produced during diabetes. Affinity microcolumns containing immobilized HSA were first used to extract the free drug fractions in injected drug/protein mixtures. As the retained drug eluted from the HSA microcolumn, it was passed through a second HSA column for further separation and measurement. Items that were considered during the optimization of this approach included the column sizes and flow rates that were used, and the time at which the second column was placed on-line with the HSA microcolumn. This method required only 1.0 μL of a sample per injection and was able to measure free drug fractions as small as 0.09-2.58% with an absolute precision of ±0.02-0.5%. The results that were obtained indicated that glycation can affect the free fractions of sulfonylurea drugs at typical therapeutic levels and that the size of this effect varies with the level of HSA glycation. Global affinity constants that were estimated from these free drug fractions gave good agreement with those predicted from previous binding studies or determined through a reference method. The same approach could be utilized with other drugs and proteins or modified binding agents of clinical or pharmaceutical interest.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ryan Matsuda
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
31
|
Zheng X, Li Z, Beeram S, Podariu M, Matsuda R, Pfaunmiller EL, White CJ, Carter N, Hage DS. Analysis of biomolecular interactions using affinity microcolumns: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:49-63. [PMID: 24572459 PMCID: PMC4112177 DOI: 10.1016/j.jchromb.2014.01.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/15/2022]
Abstract
Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sandya Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Ryan Matsuda
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Erika L Pfaunmiller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Christopher J White
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - NaTasha Carter
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
32
|
Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Vargas Badilla J, Zheng X, Hage B, Hage DS. Studies of metabolite-protein interactions: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:48-58. [PMID: 24321277 PMCID: PMC4032809 DOI: 10.1016/j.jchromb.2013.11.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 11/25/2022]
Abstract
The study of metabolomics can provide valuable information about biochemical pathways and processes at the molecular level. There have been many reports that have examined the structure, identity and concentrations of metabolites in biological systems. However, the binding of metabolites with proteins is also of growing interest. This review examines past reports that have looked at the binding of various types of metabolites with proteins. An overview of the techniques that have been used to characterize and study metabolite-protein binding is first provided. This is followed by examples of studies that have investigated the binding of hormones, fatty acids, drugs or other xenobiotics, and their metabolites with transport proteins and receptors. These examples include reports that have considered the structure of the resulting solute-protein complexes, the nature of the binding sites, the strength of these interactions, the variations in these interactions with solute structure, and the kinetics of these reactions. The possible effects of metabolic diseases on these processes, including the impact of alterations in the structure and function of proteins, are also considered.
Collapse
Affiliation(s)
- Ryan Matsuda
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jeanethe Anguizola
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Matthew Sobansky
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Elliott Rodriguez
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - John Vargas Badilla
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Benjamin Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
33
|
Matsuda R, Kye SH, Anguizola J, Hage DS. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography. REVIEWS IN ANALYTICAL CHEMISTRY 2014; 33:79-94. [PMID: 26526139 PMCID: PMC4623599 DOI: 10.1515/revac-2013-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered.
Collapse
Affiliation(s)
| | | | | | - David S. Hage
- Corresponding author: David S. Hage, Department of Chemistry, 704 Hamilton Hall, University of Nebraska, Lincoln, NE 68588-0304, USA,
| |
Collapse
|
34
|
Indurthi VS, Leclerc E, Vetter SW. Calorimetric investigation of diclofenac drug binding to a panel of moderately glycated serum albumins. Eur J Pharm Sci 2014; 59:58-68. [DOI: 10.1016/j.ejps.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/27/2023]
|
35
|
Forsberg EM, Sicard C, Brennan JD. Solid-phase biological assays for drug discovery. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:337-359. [PMID: 25000820 DOI: 10.1146/annurev-anchem-071213-020241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the past 30 years, there has been a significant growth in the use of solid-phase assays in the area of drug discovery, with a range of new assays being used for both soluble and membrane-bound targets. In this review, we provide some basic background to typical drug targets and immobilization protocols used in solid-phase biological assays (SPBAs) for drug discovery, with emphasis on particularly labile biomolecular targets such as kinases and membrane-bound receptors, and highlight some of the more recent approaches for producing protein microarrays, bioaffinity columns, and other devices that are central to small molecule screening by SPBA. We then discuss key applications of such assays to identify drug leads, with an emphasis on the screening of mixtures. We conclude by highlighting specific advantages and potential disadvantages of SPBAs, particularly as they relate to particular assay formats.
Collapse
Affiliation(s)
- Erica M Forsberg
- Biointerfaces Institute, McMaster University, Hamilton, Ontario L8S 4L8, Canada;
| | | | | |
Collapse
|
36
|
Wang Q, Zhang SR, Ji X. Investigation of interaction of antibacterial drug sulfamethoxazole with human serum albumin by molecular modeling and multi-spectroscopic method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:84-90. [PMID: 24463244 DOI: 10.1016/j.saa.2013.12.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Interaction of sulfamethoxazole (SMX) with human serum albumin (HSA) was investigated by molecular modeling and multi-spectroscopic methods under physiological conditions. The interaction mechanism was firstly predicted through molecular modeling that confirmed the interaction between SMX and HSA. The binding parameters and the thermodynamic parameters at different temperatures for the reaction had been calculated according to the Stern-Volmer, Hill, Scatchard and the Van't Hoff equations, respectively. One independent class of binding site existed during the interaction between HSA and SMX. The binding constants decreased with the increasing temperatures, which meant that the quenching mechanism was a static quenching. The thermodynamic parameters of the reaction, namely standard enthalpy ΔH(0) and entropy ΔS(0), had been calculated to be -16.40 kJ mol(-1) and 32.33 J mol(-1) K(-1), respectively, which suggested that the binding process was exothermic, enthalpy driven and spontaneous. SMX bound to HSA was mainly based on electrostatic interaction, but hydrophobic interactions and hydrogen bonds could not be excluded from the binding. The conformational changes of HSA in the presence of SMX were confirmed by the three-dimensional fluorescence spectroscopy, UV-vis absorption spectroscopy and circular dichroism (CD) spectroscopy. CD data suggested that the protein conformation was altered with the reduction of α-helices from 55.37% to 41.97% at molar ratio of SMX/HSA of 4:1.
Collapse
Affiliation(s)
- Qin Wang
- School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China.
| | - Sheng-Rui Zhang
- School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China.
| | - Xiaohui Ji
- School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| |
Collapse
|
37
|
Exploring drug–protein interactions using the relationship between injection volume and capacity factor. J Chromatogr A 2014; 1339:137-44. [DOI: 10.1016/j.chroma.2014.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/15/2022]
|
38
|
Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev 2013; 26:274-88. [PMID: 23554417 DOI: 10.1128/cmr.00092-12] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the optimization of dosing regimens of anti-infective agents, it is imperative to have a good understanding of pharmacokinetics (PK) and pharmacodynamics (PD). Whenever possible, drug efficacy needs to be related to unbound concentrations at the site of action. For anti-infective drugs, the infection site is typically located outside plasma, and a drug must diffuse through capillary membranes to reach its target. Disease- and drug-related factors can contribute to differential tissue distribution. As a result, the assumption that the plasma concentration of drugs represents a suitable surrogate of tissue concentrations may lead to erroneous conclusions. Quantifying drug exposure in tissues represents an opportunity to relate the pharmacologically active concentrations to an observed pharmacodynamic parameter, such as the MIC. Selection of an appropriate specimen to sample and the advantages and limitations of the available sampling techniques require careful consideration. Ultimately, the goal will be to assess the appropriateness of a drug and dosing regimen for a specific pathogen and infection.
Collapse
|
39
|
Encinas MV, Lissi E, Vergara C. Association of Valdecoxib, a Nonsteroidal Anti-Inflammatory Drug, with Human Serum Albumin. Photochem Photobiol 2013; 89:1399-405. [DOI: 10.1111/php.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Maria V. Encinas
- Facultad de Química y Biología; Universidad de Santiago de Chile; Santiago Chile
| | - Eduardo Lissi
- Facultad de Química y Biología; Universidad de Santiago de Chile; Santiago Chile
| | - Claudio Vergara
- Facultad de Química y Biología; Universidad de Santiago de Chile; Santiago Chile
| |
Collapse
|
40
|
Anguizola JA, Basiaga SBG, Hage DS. Effects of Fatty Acids and Glycation on Drug Interactions with Human Serum Albumin. ACTA ACUST UNITED AC 2013; 1:239-250. [PMID: 24349966 DOI: 10.2174/2213235x1130100005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The presence of elevated glucose concentrations in diabetes is a metabolic change that leads to an increase in the amount of non-enzymatic glycation that occurs for serum proteins. One protein that is affected by this process is the main serum protein, human serum albumin (HSA), which is also an important carrier agent for many drugs and fatty acids in the circulatory system. Sulfonylureas drugs, used to treat type 2 diabetes, are known to have significant binding to HSA. This study employed ultrafiltration and high-performance affinity chromatography to examine the effects of HSA glycation on the interactions of several sulfonylurea drugs (i.e., acetohexamide, tolbutamide and gliclazide) with fatty acids, whose concentrations in serum are also affected by diabetes. Similar overall changes in binding were noted for these drugs with normal HSA or glycated HSA and in the presence of the fatty acids. For most of the tested drugs, the addition of physiological levels of the fatty acids to normal HSA and glycated HSA produced weaker binding. At low fatty acid concentrations, many of these systems followed a direct competition model while others involved a mixed-mode interaction. In some cases, there was a change in the interaction mechanism between normal HSA and glycated HSA, as seen with linoleic acid. Systems with only direct competition also gave notable changes in the affinities of fatty acids at their sites of drug competition when comparing normal HSA and glycated HSA. This research demonstrated the importance of considering how changes in the concentrations and types of metabolites (e.g., in this case, glucose and fatty acids) can alter the function of a protein such as HSA and its ability to interact with drugs or other agents.
Collapse
Affiliation(s)
- Jeanethe A Anguizola
- Chemistry Department, University of Nebraska-Lincoln, 704 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | - Sara B G Basiaga
- Chemistry Department, University of Nebraska-Lincoln, 704 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Chemistry Department, University of Nebraska-Lincoln, 704 Hamilton Hall, Lincoln, NE 68588-0304, USA
| |
Collapse
|
41
|
Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, Koke M, Hage DS. Review: Glycation of human serum albumin. Clin Chim Acta 2013; 425:64-76. [PMID: 23891854 DOI: 10.1016/j.cca.2013.07.013] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
Glycation involves the non-enzymatic addition of reducing sugars and/or their reactive degradation products to amine groups on proteins. This process is promoted by the presence of elevated blood glucose concentrations in diabetes and occurs with various proteins that include human serum albumin (HSA). This review examines work that has been conducted in the study and analysis of glycated HSA. The general structure and properties of HSA are discussed, along with the reactions that can lead to modification of this protein during glycation. The use of glycated HSA as a short-to-intermediate term marker for glycemic control in diabetes is examined, and approaches that have been utilized for measuring glycated HSA are summarized. Structural studies of glycated HSA are reviewed, as acquired for both in vivo and in vitro glycated HSA, along with data that have been obtained on the rate and thermodynamics of HSA glycation. In addition, this review considers various studies that have investigated the effects of glycation on the binding of HSA with drugs, fatty acids and other solutes and the potential clinical significance of these effects.
Collapse
Affiliation(s)
- Jeanethe Anguizola
- Chemistry Department, University of Nebraska, 704 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jackson AJ, Anguizola J, Pfaunmiller EL, Hage DS. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin. Anal Bioanal Chem 2013; 405:5833-41. [PMID: 23657448 PMCID: PMC3696424 DOI: 10.1007/s00216-013-6981-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/25/2022]
Abstract
Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1-3.3% (± one standard deviation) and elution within 0.50-3.00 min for solutes with binding affinities of 1 × 10(4)-3 × 10(5) M(-1). Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125-145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug-protein binding or related biointeractions.
Collapse
Affiliation(s)
- Abby J. Jackson
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jeanethe Anguizola
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Erika L. Pfaunmiller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
43
|
Anguizola J, Joseph K, Barnaby OS, Matsuda R, Alvarado G, Clarke W, Cerny RL, Hage DS. Development of affinity microcolumns for drug-protein binding studies in personalized medicine: interactions of sulfonylurea drugs with in vivo glycated human serum albumin. Anal Chem 2013; 85:4453-60. [PMID: 23544441 PMCID: PMC3696407 DOI: 10.1021/ac303734c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This report used high-performance affinity microcolumns to examine the changes in binding by sulfonylurea drugs to in vivo glycated HSA that had been isolated from individual patients with diabetes. An immunoextraction approach was developed to isolate HSA and glycated HSA from clinical samples, using only 20 μL of plasma or serum and 6-12 nmol of protein to prepare each affinity microcolumn. It was found that the affinity microcolumns could be used in either frontal analysis or zonal elution studies, which typically required only 4-8 min per run. The microcolumns had good stability and allowed data to be obtained for multiple drugs and experimental conditions over hundreds of sample application cycles. Both the overall binding, as measured by frontal analysis, and site-specific interactions, as examined by zonal elution, showed good agreement with previous data that had been obtained for in vitro glycated HSA with similar levels of modification. It was also possible to directly compare the changes in site-specific binding that occurred between sulfonylurea drugs or as the level of HSA glycation was varied. This method is not limited to clinical samples of glycated HSA but could be adapted for work with other modified proteins of interest in personalized medicine.
Collapse
Affiliation(s)
| | - K.S. Joseph
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | - Omar S. Barnaby
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | - Ryan Matsuda
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | | | - William Clarke
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ronald L. Cerny
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | - David S. Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
44
|
Filip Z, Jan K, Vendula S, Jana KZ, Kamil M, Kamil K. Albumin and α1-acid glycoprotein: old acquaintances. Expert Opin Drug Metab Toxicol 2013; 9:943-54. [DOI: 10.1517/17425255.2013.790364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Matsuda R, Anguizola J, Joseph K, Hage DS. Analysis of drug interactions with modified proteins by high-performance affinity chromatography: binding of glibenclamide to normal and glycated human serum albumin. J Chromatogr A 2012; 1265:114-22. [PMID: 23092871 PMCID: PMC3489001 DOI: 10.1016/j.chroma.2012.09.091] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/14/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
Abstract
High-performance affinity chromatography (HPAC) was used to examine the changes in binding that occur for the sulfonylurea drug glibenclamide with human serum albumin (HSA) at various stages of glycation for HSA. Frontal analysis on columns containing normal HSA or glycated HSA indicated glibenclamide was interacting through both high affinity sites (association equilibrium constant, K(a), 1.4-1.9 × 10(6)M(-1) at pH 7.4 and 37 °C) and lower affinity sites (K(a), 4.4-7.2 × 10(4)M(-1)). Competition studies were used to examine the effect of glycation at specific binding sites of HSA. An increase in affinity of 1.7- to 1.9-fold was seen at Sudlow site I with moderate to high levels of glycation. An even larger increase of 4.3- to 6.0-fold in affinity was noted at Sudlow site II for all of the tested samples of glycated HSA. A slight decrease in affinity may have occurred at the digitoxin site, but this change was not significant for any individual glycated HSA sample. These results illustrate how HPAC can be used as tool for examining the interactions of relatively non-polar drugs like glibenclamide with modified proteins and should lead to a more complete understanding of how glycation can alter the binding of drugs in blood.
Collapse
Affiliation(s)
- Ryan Matsuda
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | - Jeanethe Anguizola
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | - K.S. Joseph
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| |
Collapse
|
46
|
Hage DS, Anguizola JA, Bi C, Li R, Matsuda R, Papastavros E, Pfaunmiller E, Vargas J, Zheng X. Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. J Pharm Biomed Anal 2012; 69:93-105. [PMID: 22305083 DOI: 10.1016/j.jpba.2012.01.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered.
Collapse
Affiliation(s)
- David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tong Z, Joseph K, Hage DS. Detection of heterogeneous drug-protein binding by frontal analysis and high-performance affinity chromatography. J Chromatogr A 2011; 1218:8915-24. [PMID: 21612784 PMCID: PMC3163114 DOI: 10.1016/j.chroma.2011.04.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
This study examined the use of frontal analysis and high-performance affinity chromatography for detecting heterogeneous binding in biomolecular interactions, using the binding of acetohexamide with human serum albumin (HSA) as a model. It was found through the use of this model system and chromatographic theory that double-reciprocal plots could be used more easily than traditional isotherms for the initial detection of binding site heterogeneity. The deviations from linearity that were seen in double-reciprocal plots as a result of heterogeneity were a function of the analyte concentration, the relative affinities of the binding sites in the system and the amount of each type of site that was present. The size of these deviations was determined and compared under various conditions. Plots were also generated to show what experimental conditions would be needed to observe these deviations for general heterogeneous systems or for cases in which some preliminary information was available on the extent of binding heterogeneity. The methods developed in this work for the detection of binding heterogeneity are not limited to drug interactions with HSA but could be applied to other types of drug-protein binding or to additional biological systems with heterogeneous binding.
Collapse
Affiliation(s)
- Zenghan Tong
- Chemistry Department University of Nebraska, Lincoln Lincoln, NE 68588-0304 (USA)
| | - K.S. Joseph
- Chemistry Department University of Nebraska, Lincoln Lincoln, NE 68588-0304 (USA)
| | - David S. Hage
- Chemistry Department University of Nebraska, Lincoln Lincoln, NE 68588-0304 (USA)
| |
Collapse
|
48
|
Vetter SW, Indurthi VS. Moderate glycation of serum albumin affects folding, stability, and ligand binding. Clin Chim Acta 2011; 412:2105-16. [DOI: 10.1016/j.cca.2011.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/11/2023]
|
49
|
Yoo MJ, Hage DS. High-throughput analysis of drug dissociation from serum proteins using affinity silica monoliths. J Sep Sci 2011; 34:2255-63. [PMID: 21661111 PMCID: PMC4620944 DOI: 10.1002/jssc.201100280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 01/16/2023]
Abstract
A noncompetitive peak decay method was used with 1 mm×4.6 mm id silica monoliths to measure the dissociation rate constants (kd) for various drugs with human serum albumin (HSA) and α1-acid glycoprotein (AGP). Flow rates up to 9 mL/min were used in these experiments, resulting in analysis times of only 20-30 s. Using a silica monolith containing immobilized HSA, dissociation rate constants were measured for amitriptyline, carboplatin, cisplatin, chloramphenicol, nortriptyline, quinidine, and verapamil, giving values that ranged from 0.37 to 0.78 s(-1). Similar work with an immobilized AGP silica monolith gave kd values for amitriptyline, nortriptyline, and lidocaine of 0.39-0.73 s(-1). These kd values showed good agreement with values determined for drugs with similar structures and/or affinities for HSA or AGP. It was found that a kd of up to roughly 0.80 s(-1) could be measured by this approach. This information made it possible to obtain a better understanding of the advantages and possible limitations of the noncompetitive peak decay method and in the use of affinity silica monoliths for the high-throughput analysis of drug-protein dissociation.
Collapse
Affiliation(s)
- Michelle J. Yoo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| |
Collapse
|
50
|
Meng FY, Yu SR, Liang LX, Zhong XP, Wang L, Zhu JM, Lin CW. Synthesis and Structural Studies of an Organic Complex and its Association with BSA. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.7.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|