1
|
Chandramouli A, Kamat SS. A Facile LC-MS Method for Profiling Cholesterol and Cholesteryl Esters in Mammalian Cells and Tissues. Biochemistry 2024; 63:2300-2309. [PMID: 38986142 DOI: 10.1021/acs.biochem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cholesterol is central to mammalian lipid metabolism and serves many critical functions in the regulation of diverse physiological processes. Dysregulation in cholesterol metabolism is causally linked to numerous human diseases, and therefore, in vivo, the concentrations and flux of cholesterol and cholesteryl esters (fatty acid esters of cholesterol) are tightly regulated. While mass spectrometry has been an analytical method of choice for detecting cholesterol and cholesteryl esters in biological samples, the hydrophobicity, chemically inert nature, and poor ionization of these neutral lipids have often proved a challenge in developing lipidomics compatible liquid chromatography-mass spectrometry (LC-MS) methods to study them. To overcome this problem, here, we report a reverse-phase LC-MS method that is compatible with existing high-throughput lipidomics strategies and capable of identifying and quantifying cholesterol and cholesteryl esters from mammalian cells and tissues. Using this sensitive yet robust LC-MS method, we profiled different mammalian cell lines and tissues and provide a comprehensive picture of cholesterol and cholesteryl esters content in them. Specifically, among cholesteryl esters, we find that mammalian cells and tissues largely possess monounsaturated and polyunsaturated variants. Taken together, our lipidomics compatible LC-MS method to study this lipid class opens new avenues in understanding systemic and tissue-level cholesterol metabolism under various physiological conditions.
Collapse
Affiliation(s)
- Aakash Chandramouli
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
2
|
Dueñas ME, Peltier‐Heap RE, Leveridge M, Annan RS, Büttner FH, Trost M. Advances in high-throughput mass spectrometry in drug discovery. EMBO Mol Med 2023; 15:e14850. [PMID: 36515561 PMCID: PMC9832828 DOI: 10.15252/emmm.202114850] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
High-throughput (HT) screening drug discovery, during which thousands or millions of compounds are screened, remains the key methodology for identifying active chemical matter in early drug discovery pipelines. Recent technological developments in mass spectrometry (MS) and automation have revolutionized the application of MS for use in HT screens. These methods allow the targeting of unlabelled biomolecules in HT assays, thereby expanding the breadth of targets for which HT assays can be developed compared to traditional approaches. Moreover, these label-free MS assays are often cheaper, faster, and more physiologically relevant than competing assay technologies. In this review, we will describe current MS techniques used in drug discovery and explain their advantages and disadvantages. We will highlight the power of mass spectrometry in label-free in vitro assays, and its application for setting up multiplexed cellular phenotypic assays, providing an exciting new tool for screening compounds in cell lines, and even primary cells. Finally, we will give an outlook on how technological advances will increase the future use and the capabilities of mass spectrometry in drug discovery.
Collapse
Affiliation(s)
- Maria Emilia Dueñas
- Laboratory for Biomedical Mass Spectrometry, Biosciences InstituteNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Rachel E Peltier‐Heap
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Melanie Leveridge
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Roland S Annan
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Frank H Büttner
- Drug Discovery Sciences, High Throughput BiologyBoehringer Ingelheim Pharma GmbH&CoKGBiberachGermany
| | - Matthias Trost
- Laboratory for Biomedical Mass Spectrometry, Biosciences InstituteNewcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
3
|
Tarfeen N, Nisa KU, Nisa Q. MALDI-TOF MS: application in diagnosis, dereplication, biomolecule profiling and microbial ecology. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9340741 DOI: 10.1007/s43538-022-00085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized scientific research over the past few decades and has provided a unique platform in ongoing technological developments. Undoubtedly, there has been a bloom chiefly in the field of biological sciences with this emerging technology, and has enabled researchers to generate critical data in the field of disease diagnoses, drug development, dereplication. It has received well acceptance in the field of microbial identification even at strain level, as well as diversified field like biomolecule profiling (proteomics and lipidomics) has evolved tremendously. Additionally, this approach has received a lot more attention over conventional technologies due to its high throughput, speed, and cost effectiveness. This review aims to provide a detailed insight regarding the application of MALDI-TOF MS in the context of medicine, biomolecule profiling, dereplication, and microbial ecology. In general, the expansion in the application of this technology and new advancements it has made in the field of science and technology has been highlighted.
Collapse
|
4
|
Marczak L, Idkowiak J, Tracz J, Stobiecki M, Perek B, Kostka-Jeziorny K, Tykarski A, Wanic-Kossowska M, Borowski M, Osuch M, Formanowicz D, Luczak M. Mass Spectrometry-Based Lipidomics Reveals Differential Changes in the Accumulated Lipid Classes in Chronic Kidney Disease. Metabolites 2021; 11:275. [PMID: 33925471 PMCID: PMC8146808 DOI: 10.3390/metabo11050275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by the progressive loss of functional nephrons. Although cardiovascular disease (CVD) complications and atherosclerosis are the leading causes of morbidity and mortality in CKD, the mechanism by which the progression of CVD accelerates remains unclear. To reveal the molecular mechanisms associated with atherosclerosis linked to CKD, we applied a shotgun lipidomics approach fortified with standard laboratory analytical methods and gas chromatography-mass spectrometry technique on selected lipid components and precursors to analyze the plasma lipidome in CKD and classical CVD patients. The MS-based lipidome profiling revealed the upregulation of triacylglycerols in CKD and downregulation of cholesterol/cholesteryl esters, sphingomyelins, phosphatidylcholines, phosphatidylethanolamines and ceramides as compared to CVD group and controls. We have further observed a decreased abundance of seven fatty acids in CKD with strong inter-correlation. In contrast, the level of glycerol was elevated in CKD in comparison to all analyzed groups. Our results revealed the putative existence of a functional causative link-the low cholesterol level correlated with lower estimated glomerular filtration rate and kidney dysfunction that supports the postulated "reverse epidemiology" theory and suggest that the lipidomic background of atherosclerosis-related to CKD is unique and might be associated with other cellular factors, i.e., inflammation.
Collapse
Affiliation(s)
- Lukasz Marczak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
| | - Jakub Idkowiak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Joanna Tracz
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Maciej Stobiecki
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-001 Poznan, Poland;
| | - Katarzyna Kostka-Jeziorny
- Department of Hypertension, Angiology and Internal Disease, Poznan University of Medical Sciences, 61-001 Poznan, Poland; (K.K.-J.); (A.T.)
| | - Andrzej Tykarski
- Department of Hypertension, Angiology and Internal Disease, Poznan University of Medical Sciences, 61-001 Poznan, Poland; (K.K.-J.); (A.T.)
| | - Maria Wanic-Kossowska
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Marcin Borowski
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marcin Osuch
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Magdalena Luczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| |
Collapse
|
5
|
Gong M, Wei W, Hu Y, Jin Q, Wang X. Structure determination of conjugated linoleic and linolenic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122292. [PMID: 32755819 DOI: 10.1016/j.jchromb.2020.122292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic and linolenic acids (CLA and CLnA) can be found in dairy, ruminant meat and oilseeds, these types of unsaturated fatty acids consist of various positional and geometrical isomers, and have demonstrated health-promoting potential for human beings. Extensive reviews have reported the physiological effects of CLA, CLnA, while little is known regarding their isomer-specific effects. However, the isomers are difficult to identify, owing to (i) the similar retention time in common chromatographic methods; and (ii) the isomers are highly sensitive to high temperature, pH changes, and oxidation. The uncertainties in molecular structure have hindered investigations on the physiological effects of CLA and CLnA. Therefore, this review presents a summary of the currently available technologies for the structural determination of CLA and CLnA, including the presence confirmation, double bond position determination, and the potential stereo-isomer determination. Special focus has been projected to the novel techniques for structure determination of CLA and CLnA. Some possible future directions are also proposed.
Collapse
Affiliation(s)
- Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Meckelmann SW, Hawksworth JI, White D, Andrews R, Rodrigues P, O'Connor A, Alvarez-Jarreta J, Tyrrell VJ, Hinz C, Zhou Y, Williams J, Aldrovandi M, Watkins WJ, Engler AJ, Lo Sardo V, Slatter DA, Allen SM, Acharya J, Mitchell J, Cooper J, Aoki J, Kano K, Humphries SE, O'Donnell VB. Metabolic Dysregulation of the Lysophospholipid/Autotaxin Axis in the Chromosome 9p21 Gene SNP rs10757274. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002806. [PMID: 32396387 PMCID: PMC7299226 DOI: 10.1161/circgen.119.002806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Common chromosome 9p21 single nucleotide polymorphisms (SNPs) increase coronary heart disease risk, independent of traditional lipid risk factors. However, lipids comprise large numbers of structurally related molecules not measured in traditional risk measurements, and many have inflammatory bioactivities. Here, we applied lipidomic and genomic approaches to 3 model systems to characterize lipid metabolic changes in common Chr9p21 SNPs, which confer ≈30% elevated coronary heart disease risk associated with altered expression of ANRIL, a long ncRNA. METHODS Untargeted and targeted lipidomics was applied to plasma from NPHSII (Northwick Park Heart Study II) homozygotes for AA or GG in rs10757274, followed by correlation and network analysis. To identify candidate genes, transcriptomic data from shRNA downregulation of ANRIL in HEK-293 cells was mined. Transcriptional data from vascular smooth muscle cells differentiated from induced pluripotent stem cells of individuals with/without Chr9p21 risk, nonrisk alleles, and corresponding knockout isogenic lines were next examined. Last, an in-silico analysis of miRNAs was conducted to identify how ANRIL might control lysoPL (lysophosphospholipid)/lysoPA (lysophosphatidic acid) genes. RESULTS Elevated risk GG correlated with reduced lysoPLs, lysoPA, and ATX (autotaxin). Five other risk SNPs did not show this phenotype. LysoPL-lysoPA interconversion was uncoupled from ATX in GG plasma, suggesting metabolic dysregulation. Significantly altered expression of several lysoPL/lysoPA metabolizing enzymes was found in HEK cells lacking ANRIL. In the vascular smooth muscle cells data set, the presence of risk alleles associated with altered expression of several lysoPL/lysoPA enzymes. Deletion of the risk locus reversed the expression of several lysoPL/lysoPA genes to nonrisk haplotype levels. Genes that were altered across both cell data sets were DGKA, MBOAT2, PLPP1, and LPL. The in-silico analysis identified 4 ANRIL-regulated miRNAs that control lysoPL genes as miR-186-3p, miR-34a-3p, miR-122-5p, and miR-34a-5p. CONCLUSIONS A Chr9p21 risk SNP associates with complex alterations in immune-bioactive phospholipids and their metabolism. Lipid metabolites and genomic pathways associated with coronary heart disease pathogenesis in Chr9p21 and ANRIL-associated disease are demonstrated.
Collapse
Affiliation(s)
- Sven W Meckelmann
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom.,Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany (S.W.M.)
| | - Jade I Hawksworth
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Daniel White
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Robert Andrews
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Patricia Rodrigues
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Anne O'Connor
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Jorge Alvarez-Jarreta
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Christine Hinz
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - You Zhou
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Julie Williams
- Division of Neuropsychiatric Genetics and Genomics and Dementia Research Institute at Cardiff, School of Medicine (J.W.), Cardiff University, United Kingdom
| | - Maceler Aldrovandi
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - William J Watkins
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Adam J Engler
- Department of Bioengineering, University of San Diego, La Jolla, CA (A.J.E.)
| | - Valentina Lo Sardo
- Department of Cellular and Molecular Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (V.L.S.)
| | - David A Slatter
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Stuart M Allen
- School of Computer Science and Informatics (S.M.A.), Cardiff University, United Kingdom
| | - Jay Acharya
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Jacquie Mitchell
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Jackie Cooper
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Junken Aoki
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (J. Aoki, K.K.)
| | - Kuniyuki Kano
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (J. Aoki, K.K.)
| | | | - Valerie B O'Donnell
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| |
Collapse
|
7
|
Bowman AP, Blakney GT, Hendrickson CL, Ellis SR, Heeren RMA, Smith DF. Ultra-High Mass Resolving Power, Mass Accuracy, and Dynamic Range MALDI Mass Spectrometry Imaging by 21-T FT-ICR MS. Anal Chem 2020; 92:3133-3142. [PMID: 31955581 PMCID: PMC7031845 DOI: 10.1021/acs.analchem.9b04768] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Detailed characterization
of complex biological surfaces by matrix-assisted
laser desorption/ionization (MALDI) mass spectrometry imaging (MSI)
requires instrumentation that is capable of high mass resolving power,
mass accuracy, and dynamic range. Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR MS) offers the highest mass spectral
performance for MALDI MSI experiments, and often reveals molecular
features that are unresolved on lower performance instrumentation.
Higher magnetic field strength improves all performance characteristics
of FT-ICR; mass resolving power improves linearly, while mass accuracy
and dynamic range improve quadratically with magnetic field strength.
Here, MALDI MSI at 21T is demonstrated for the first time: mass resolving
power in excess of 1 600 000 (at m/z 400), root-mean-square mass measurement accuracy below
100 ppb, and dynamic range per pixel over 500:1 were obtained from
the direct analysis of biological tissue sections. Molecular features
with m/z differences as small as
1.79 mDa were resolved and identified with high mass accuracy. These
features allow for the separation and identification of lipids to
the underlying structures of tissues. The unique molecular detail,
accuracy, sensitivity, and dynamic range combined in a 21T MALDI FT-ICR
MSI experiment enable researchers to visualize molecular structures
in complex tissues that have remained hidden until now. The instrument
described allows for future innovative, such as high-end studies to
unravel the complexity of biological, geological, and engineered organic
material surfaces with an unsurpassed detail.
Collapse
Affiliation(s)
- Andrew P Bowman
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS) , Maastricht University , Universiteitssingel 50 , Maastricht 6629ER , The Netherlands
| | - Greg T Blakney
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS) , Maastricht University , Universiteitssingel 50 , Maastricht 6629ER , The Netherlands
| | - Christopher L Hendrickson
- National High Magnetic Field Laboratory , Florida State University , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310-4005 , United States.,Department of Chemistry and Biochemistry , Florida State University , 95 Chieftain Way , Tallahassee , Florida 32306 , United States
| | - Shane R Ellis
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS) , Maastricht University , Universiteitssingel 50 , Maastricht 6629ER , The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS) , Maastricht University , Universiteitssingel 50 , Maastricht 6629ER , The Netherlands
| | - Donald F Smith
- National High Magnetic Field Laboratory , Florida State University , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310-4005 , United States
| |
Collapse
|
8
|
Wolrab D, Jirásko R, Chocholoušková M, Peterka O, Holčapek M. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Anjos S, Feiteira E, Cerveira F, Melo T, Reboredo A, Colombo S, Dantas R, Costa E, Moreira A, Santos S, Campos A, Ferreira R, Domingues P, Domingues MRM. Lipidomics Reveals Similar Changes in Serum Phospholipid Signatures of Overweight and Obese Pediatric Subjects. J Proteome Res 2019; 18:3174-3183. [DOI: 10.1021/acs.jproteome.9b00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Anjos
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Eva Feiteira
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Chemistry and CESAM and ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Andrea Reboredo
- Clinical Pathology, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
| | - Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Dantas
- Endocrinology, Diabetes and Nutrition, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
| | - Elisabete Costa
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sónia Santos
- Department of Chemistry and CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Campos
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário M. Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Chemistry and CESAM and ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Mika A, Sledzinski T, Stepnowski P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem 2019; 26:60-103. [PMID: 28971757 DOI: 10.2174/0929867324666171003121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases. OBJECTIVE We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases. METHOD Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article. RESULTS The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry. CONCLUSION Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
11
|
Leopold J, Popkova Y, Engel KM, Schiller J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules 2018; 8:biom8040173. [PMID: 30551655 PMCID: PMC6316665 DOI: 10.3390/biom8040173] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) is one of the most successful “soft” ionization methods in the field of mass spectrometry and enables the analysis of a broad range of molecules, including lipids. Although the details of the ionization process are still unknown, the importance of the matrix is commonly accepted. Both, the development of and the search for useful matrices was, and still is, an empirical process, since properties like vacuum stability, high absorption at the laser wavelength, etc. have to be fulfilled by a compound to become a useful matrix. This review provides a survey of successfully used MALDI matrices for the lipid analyses of complex biological samples. The advantages and drawbacks of the established organic matrix molecules (cinnamic or benzoic acid derivatives), liquid crystalline matrices, and mixtures of common matrices will be discussed. Furthermore, we will deal with nanocrystalline matrices, which are most suitable to analyze small molecules, such as free fatty acids. It will be shown that the analysis of mixtures and the quantitative analysis of small molecules can be easily performed if the matrix is carefully selected. Finally, some basic principles of how useful matrix compounds can be “designed” de novo will be introduced.
Collapse
Affiliation(s)
- Jenny Leopold
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig University, D-04107 Leipzig, Germany.
| | - Yulia Popkova
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig University, D-04107 Leipzig, Germany.
| | - Kathrin M Engel
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig University, D-04107 Leipzig, Germany.
| | - Jürgen Schiller
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig University, D-04107 Leipzig, Germany.
| |
Collapse
|
12
|
Kuklenyik Z, Jones JI, Gardner MS, Schieltz DM, Parks BA, Toth CA, Rees JC, Andrews ML, Carter K, Lehtikoski AK, McWilliams LG, Williamson YM, Bierbaum KP, Pirkle JL, Barr JR. Core lipid, surface lipid and apolipoprotein composition analysis of lipoprotein particles as a function of particle size in one workflow integrating asymmetric flow field-flow fractionation and liquid chromatography-tandem mass spectrometry. PLoS One 2018; 13:e0194797. [PMID: 29634782 PMCID: PMC5892890 DOI: 10.1371/journal.pone.0194797] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 12/18/2022] Open
Abstract
Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples.
Collapse
Affiliation(s)
- Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeffery I. Jones
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael S. Gardner
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David M. Schieltz
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bryan A. Parks
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christopher A. Toth
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jon C. Rees
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael L. Andrews
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kayla Carter
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Antony K. Lehtikoski
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lisa G. McWilliams
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Yulanda M. Williamson
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kevin P. Bierbaum
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James L. Pirkle
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Selective enrichment of n-3 fatty acids in human plasma lipid motifs following intake of marine fish. J Nutr Biochem 2018; 54:57-65. [DOI: 10.1016/j.jnutbio.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022]
|
14
|
Gardner MS, McWilliams LG, Jones JI, Kuklenyik Z, Pirkle JL, Barr JR. Simultaneous Quantification of Free Cholesterol, Cholesteryl Esters, and Triglycerides without Ester Hydrolysis by UHPLC Separation and In-Source Collision Induced Dissociation Coupled MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2319-2329. [PMID: 28801822 PMCID: PMC5645443 DOI: 10.1007/s13361-017-1756-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 05/31/2023]
Abstract
We demonstrate the application of in-source nitrogen collision-induced dissociation (CID) that eliminates the need for ester hydrolysis before simultaneous analysis of esterified cholesterol (EC) and triglycerides (TG) along with free cholesterol (FC) from human serum, using normal phase liquid chromatography (LC) coupled to atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (MS/MS). The analysis requires only 50 μL of 1:100 dilute serum with a high-throughput, precipitation/evaporation/extraction protocol in one pot. Known representative mixtures of EC and TG species were used as calibrators with stable isotope labeled analogs as internal standards. The APCI MS source was operated with nitrogen source gas. Reproducible in-source CID was achieved with the use of optimal cone voltage (declustering potential), generating FC, EC, and TG lipid class-specific precursor fragment ions for multiple reaction monitoring (MRM). Using a representative mixture of purified FC, CE, and TG species as calibrators, the method accuracy was assessed with analysis of five inter-laboratory standardization materials, showing -10% bias for Total-C and -3% for Total-TG. Repeated duplicate analysis of a quality control pool showed intra-day and inter-day variation of 5% and 5.8% for FC, 5.2% and 8.5% for Total-C, and 4.1% and 7.7% for Total-TG. The applicability of the method was demonstrated on 32 serum samples and corresponding lipoprotein sub-fractions collected from normolipidemic, hypercholesterolemic, hypertriglyceridemic, and hyperlipidemic donors. The results show that in-source CID coupled with isotope dilution UHPLC-MS/MS is a viable high precision approach for translational research studies where samples are substantially diluted or the amounts of archived samples are limited. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael S. Gardner
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee Campus, Atlanta, GA 30341 USA
| | - Lisa G. McWilliams
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee Campus, Atlanta, GA 30341 USA
| | - Jeffrey I. Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee Campus, Atlanta, GA 30341 USA
| | - Zsuzsanna Kuklenyik
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee Campus, Atlanta, GA 30341 USA
| | - James L. Pirkle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee Campus, Atlanta, GA 30341 USA
| | - John R. Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee Campus, Atlanta, GA 30341 USA
| |
Collapse
|
15
|
Duval J, Colas C, Pecher V, Poujol M, Tranchant JF, Lesellier E. Hyphenation of ultra high performance supercritical fluid chromatography with atmospheric pressure chemical ionisation high resolution mass spectrometry: Part 1. Study of the coupling parameters for the analysis of natural non-polar compounds. J Chromatogr A 2017; 1509:132-140. [DOI: 10.1016/j.chroma.2017.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/24/2017] [Accepted: 06/07/2017] [Indexed: 11/25/2022]
|
16
|
Christinat N, Masoodi M. Comprehensive Lipoprotein Characterization Using Lipidomics Analysis of Human Plasma. J Proteome Res 2017. [DOI: 10.1021/acs.jproteome.7b00236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nicolas Christinat
- Lipid Biology, Nestlé Institute of Health Sciences, EPFL Innovation Park, Bâtiment
H, 1015 Lausanne, Switzerland
| | - Mojgan Masoodi
- Lipid Biology, Nestlé Institute of Health Sciences, EPFL Innovation Park, Bâtiment
H, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Tuñón-López JA, Beneito-Cambra M, Robles-Molina J, Parras-Guijarro DJ, Molina-Díaz A, Sánchez-Vizcaíno A, García-Reyes JF. Multiclass profiling of lipids of archaeological interest by ultra-high pressure liquid chromatography-atmospheric pressure chemical ionization-high resolution mass spectrometry. Microchem J 2017. [DOI: 10.1016/j.microc.2016.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol 2017; 13:79-91. [PMID: 27767036 DOI: 10.1038/nrendo.2016.169] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus and cardiovascular disease form a metabolic disease continuum that has seen a dramatic increase in prevalence in developed and developing countries over the past two decades. Dyslipidaemia resulting from hypercaloric diets is a major contributor to the pathogenesis of metabolic disease, and lipid-lowering therapies are the main therapeutic option for this group of disorders. However, the fact that dysfunctional lipid metabolism extends far beyond cholesterol and triglycerides is becoming increasingly clear. Lipidomic studies and mouse models are helping to explain the complex interactions between diet, lipid metabolism and metabolic disease. These studies are not only improving our understanding of this complex biology, but are also identifying potential therapeutic avenues to combat this growing epidemic. This Review examines what is currently known about phospholipid and sphingolipid metabolism in the setting of obesity and how metabolic pathways are being modulated for therapeutic effect.
Collapse
Affiliation(s)
- Peter J Meikle
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, Australia
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 201 Presidents Circle, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
19
|
Mundra PA, Shaw JE, Meikle PJ. Lipidomic analyses in epidemiology. Int J Epidemiol 2016; 45:1329-1338. [PMID: 27286762 DOI: 10.1093/ije/dyw112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 12/31/2022] Open
Abstract
Clinical lipid measurements have been the mainstay of risk assessment for chronic disease since the Framingham study commenced over 60 years ago. Thousands of subsequent epidemiological studies have provided much insight into the relationship between plasma lipid profiles, health and disease. However, the human lipidome consists of thousands of individual lipid species, and current lipidomic technology presents us with an unprecedented opportunity to measure lipid phenotypes, representing genomic, metabolic, diet and lifestyle-related exposures, in large epidemiological studies. The number of epidemiological studies using lipidomic profiling is increasing and has the potential to provide improved biological and clinical insight into human disease. In this review, we discuss current lipidomic technologies, epidemiological studies using these technologies and the statistical approaches used in the analysis of the resulting data. We highlight the potential of integrating genomic and lipidomic datasets and discuss the future opportunities and challenges in this emerging field.
Collapse
Affiliation(s)
| | - Jonathan E Shaw
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia and
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia and
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Aristizabal Henao JJ, Metherel AH, Smith RW, Stark KD. Tailored Extraction Procedure Is Required To Ensure Recovery of the Main Lipid Classes in Whole Blood When Profiling the Lipidome of Dried Blood Spots. Anal Chem 2016; 88:9391-9396. [PMID: 27575696 DOI: 10.1021/acs.analchem.6b03030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of dried blood spots has increased in research and clinical settings recently, particularly in field studies and screening, but comprehensive acyl-specific lipidomic profiling of dried blood spots has yet to be examined. An untargeted ultrahigh-performance liquid chromatography-tandem mass spectrometry method was adapted for the analysis of lipid extracts from human whole blood samples and dried blood spots collected on chromatography paper. Lipid recoveries were examined after different durations of exposure to extraction solvents (chloroform/methanol), physical disruption (homogenization or sonication) of the paper containing the dried blood spots, and acidification of extraction solvents. We demonstrated that comprehensive untargeted profiles can be obtained from dried blood spot samples that are comparable with whole blood for several species of lipids including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, triacylglycerol, and cholesteryl ester. However, homogenization of the dried blood spots, followed by a 24 h exposure to solvents, and extraction with an acidic buffer (0.2 M NaHPO4 + 0.1 M hydrochloric acid) was required. Dried blood spots can be used for comprehensive, untargeted lipidomics of the most abundant lipid species in whole blood, but additional sample processing steps are required.
Collapse
Affiliation(s)
- Juan J Aristizabal Henao
- Department of Kinesiology and ‡University of Waterloo Mass Spectrometry Facility, Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Adam H Metherel
- Department of Kinesiology and ‡University of Waterloo Mass Spectrometry Facility, Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Richard W Smith
- Department of Kinesiology and ‡University of Waterloo Mass Spectrometry Facility, Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology and ‡University of Waterloo Mass Spectrometry Facility, Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
21
|
Ghaste M, Mistrik R, Shulaev V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int J Mol Sci 2016; 17:ijms17060816. [PMID: 27231903 PMCID: PMC4926350 DOI: 10.3390/ijms17060816] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/02/2023] Open
Abstract
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Collapse
Affiliation(s)
- Manoj Ghaste
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | - Vladimir Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
22
|
Ovčačíková M, Lísa M, Cífková E, Holčapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 2016; 1450:76-85. [PMID: 27179677 DOI: 10.1016/j.chroma.2016.04.082] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/10/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022]
Abstract
Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification. Over 400 lipid species covering 14 polar and nonpolar lipid classes from 5 lipid categories are identified in total lipid extracts of human plasma, human urine and porcine brain. The general dependences of relative retention times on relative carbon number or relative double bond number are constructed and fit with the second degree polynomial regression. The regular retention patterns in homologous lipid series provide additional identification point for UHPLC/MS lipidomic analysis, which increases the confidence of lipid identification. The reprocessing of previously published data by our and other groups measured in the RP mode and ultrahigh-performance supercritical fluid chromatography on the silica column shows more generic applicability of the polynomial regression for the description of retention behavior and the prediction of retention times. The novelty of this work is the characterization of general trends in the retention behavior of lipids within logical series with constant fatty acyl length or double bond number, which may be used as an additional criterion to increase the confidence of lipid identification.
Collapse
Affiliation(s)
- Magdaléna Ovčačíková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Miroslav Lísa
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Eva Cífková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic.
| |
Collapse
|
23
|
Narváez-Rivas M, Zhang Q. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J Chromatogr A 2016; 1440:123-134. [PMID: 26928874 DOI: 10.1016/j.chroma.2016.02.054] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 11/30/2022]
Abstract
The goal of untargeted lipidomics is to have high throughput, yet comprehensive and unambiguous identification and quantification of lipids. Novel stationary phases in LC separation and new mass spectrometric instruments capable of high mass resolving power and faster scanning rate are essential to achieving this goal. In this work, 4 reversed phase LC columns coupled with a high field quadrupole orbitrap mass spectrometer (Q Exactive HF) were thoroughly compared using complex lipid standard mixture and rat plasma and liver samples. A good separation of all lipids was achieved in 24min of gradient. The columns compared include C30 and C18 functionalization on either core-shell or totally porous silica particles, with size ranging from 1.7 to 2.6μm. Accucore C30 column showed the narrowest peaks and highest theoretical plate number, and excellent peak capacity and retention time reproducibility (<1% standard deviation). As a result, it resulted in 430 lipid species identified from rat plasma and rat liver samples with highest confidence. The high resolution offered by the up-front RPLC allowed discrimination of cis/trans isomeric lipid species, and the high field orbitrap mass spectrometer afforded the clear distinction of isobaric lipid species in full scan MS and the unambiguous assignment of sn-positional isomers for lysophospholipids in MS/MS. Taken together, the high efficiency LC separation and high mass resolving MS analysis are very promising tools for untargeted lipidomics analysis.
Collapse
Affiliation(s)
- Mónica Narváez-Rivas
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
24
|
Čermák T, Laštovička P, Mužáková V, Líbalová M, Koukalová L, Kanďár R, Čegan A. Association of fatty acid profile in plasma lipid fractions with HbA1c in type 2 diabetic patients. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0399-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|