1
|
Bernardo-Bermejo S, Fernández-Martínez AB, Lucio-Cazaña FJ, Castro-Puyana M, Marina ML. Quantification of relevant metabolites in apoptotic bodies from HK-2 cells by targeted metabolomics based on liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2024; 1329:343190. [PMID: 39396280 DOI: 10.1016/j.aca.2024.343190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Apoptotic bodies play an important role in the cellular communication as a consequence of the great variety of biomolecules they harbor. There is evidence that 1st generation apoptotic bodies from HK-2 cells induced by cisplatin or UV light trigger apoptosis in naïve HK-2 cells whereas 2nd generation apoptotic bodies activate cell proliferation showing an opposite effect. Thus, the development of new analytical strategies to quantify the changes in the involved metabolites is imperative to shed light on the biological mechanisms which trigger apoptosis and cell proliferation. RESULTS A LC-(Q-Orbitrap)MS method has been developed to quantify the metabolites unequivocally identified in the apoptotic body fluid from HK-2 cells in our previous works based on untargeted metabolomics. Thus, two different columns and gradients were tested and the HILIC column was selected taking into account the retention times and chromatographic separation. Also, different normal collision energies were tested for each metabolite and the parallel reaction monitoring was chosen to carry out the quantitative analysis. Once the method was optimized, it was evaluated in terms of linearity, limits of detection and quantification, matrix effects, accuracy, and precision, for each metabolite. Limits of detection ranged from 0.02 to 1.4 ng mL-1. A total of 9 relevant metabolites proposed as potential biomarkers to reveal metabolic differences among apoptotic bodies from HK-2 cells were quantified and some insights about the biological relevance were discussed. SIGNIFICANCE The first targeted metabolomics methodology enabling the quantification of relevant metabolites in apoptotic bodies from HK-2 cells was developed using LC-(Q-Orbitrap)MS. Pyridoxine, kynurenine, and creatine concentrations were determined in apoptotic bodies from HK-2 cells treated with cisplatin and UV light. Phenylacetylglycine, hippuric acid, butyrylcarnitine, acetylcarnitine, carnitine, and phenylalanine were determined in 1st and 2nd generation apoptotic bodies from HK-2 cells treated with cisplatin. Concentrations determined were useful to establish their biological role in the metabolism.
Collapse
Affiliation(s)
- Samuel Bernardo-Bermejo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Ana B Fernández-Martínez
- Universidad Autónoma de Madrid, Departamento de Biología, Facultad de Ciencias, Campus de Cantoblanco, Calle Darwin, 2, 28049, Madrid, Spain
| | - Francisco Javier Lucio-Cazaña
- Universidad de Alcalá, Departamento de Biología de Sistemas, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Castro-Puyana
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
2
|
Hasan MM, Razu MH, Akter S, Mou SA, Islam M, Khan M. Development and validation of a non-invasive method for quantifying amino acids in human saliva. RSC Adv 2024; 14:22292-22303. [PMID: 39010921 PMCID: PMC11247435 DOI: 10.1039/d4ra01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
As an analytical matrix, saliva has superior characteristics than blood and urine. Saliva collection is, first and foremost, non-invasive, making it convenient, painless, and secure for more susceptible people. Second, it does not need professional training for medical personnel, resulting in cost-effectiveness and suitability for extensive collection in support of research. In this study, we developed a method and used it to quantify 13 salivary-free amino acid (SFAA) profiles to support the early clinical diagnosis of diseases using LC-MS/MS. Using an Intrada Amino Acid column (100 × 3 mm, 3 μm), chromatographic separation was accomplished with a binary gradient elution, and an electrospray ionisation source running in the positive ionisation mode was chosen for data collection using the multiple reaction monitoring (MRM) modes. Amino acids were extracted from saliva using acetonitrile. In the MRM mode, LODs and LOQs for ten amino acids were in the range of 0.06-2.50 μM and 0.19-7.58 μM, respectively, and those values were in the range of 1.00-3.00 μM and 3.00-8.50 μM, respectively, for three amino acids. Matrix-matched six-point calibration curves showed a linear correlation coefficient (r 2) of ≥0.998. Recovery experiments validated the method by spiking the control sample at three different concentration levels (5, 50 and 100 μM), and the accuracy level was 85-110%. Except for Thr and Ser, intra- (n = 3) and inter-day (n = 3) precision fell between 0.02 and 7.28. Salivary amino acids can serve as possible biomarkers for various malignancies, with fluctuations in body fluids being crucial for cancer diagnosis; therefore, examining amino acid patterns in saliva can assist in early cancer detection. LC-MS offers improved selectivity and sensitivity for non-derivatised amino acid analysis, surpassing conventional methods and offering proactive quality assurance, making it suitable for complicated sample matrices. These discoveries could be significant in investigating new pathways and cancer treatments and looking for possible AA biomarkers for other malignancies and diseases.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Sonia Akter
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Salma Akter Mou
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Minhazul Islam
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| |
Collapse
|
3
|
Chen J, Qiu Y, Guo J, Shan L, Chen G, Wang F, Wang W. Determining of 18 amino acids in plasma of pregnant women with sleep disorders by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1241:124163. [PMID: 38815356 DOI: 10.1016/j.jchromb.2024.124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
Many pregnant women experience sleep disorders, and amino acid levels could play a crucial role in affecting maternal sleep. To explore this potential relationship, an accurate and effective UHPLC-MS/MS method has been developed to monitor 18 amino acids in the plasma samples of pregnant women. This method aims to assess how plasma amino acid levels might be linked to sleep disorders during pregnancy. Plasma samples were precipitated with acetonitrile containing 0.2% formic acid. We used 5% seralbumin as the surrogate matrix to establish quantitative curves for amino acid determination in human plasma. The method was validated in both the surrogate matrix and human plasma. The optimized UHPLC-MS/MS method was validated, showing that that the analytes had comparable recovery and negligible matrix effects in both 5% seralbumin and human plasma. The linearity, lower limit of quantification, precision, accuracy, and stability all met the acceptance criteria. The validated method was successfully applied to determination of the plasma levels of 18 amino acids in pregnant women with or without sleep disorders, indicating that alanine, lysine, tryptophan, glutamic acid, and phenylalanine levels had significant changes which may be related to sleep disorders during early pregnancy. An accurate, reliable, and efficient UHPLC-MS/MS method was successfully developed and support to find the specific amino acids as potential biomarkers for sleep disorders in pregnant women.
Collapse
Affiliation(s)
- Jindong Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yifan Qiu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ligang Shan
- Department of Anesthesiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Guangxue Chen
- Department of Gynaecology and Obstetrics, Beijing Jishuitan Hospital, Beijing102208, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
4
|
Kipura T, Hotze M, Hofer A, Egger AS, Timpen LE, Opitz CA, Townsend PA, Gethings LA, Thedieck K, Kwiatkowski M. Automated Liquid Handling Extraction and Rapid Quantification of Underivatized Amino Acids and Tryptophan Metabolites from Human Serum and Plasma Using Dual-Column U(H)PLC-MRM-MS and Its Application to Prostate Cancer Study. Metabolites 2024; 14:370. [PMID: 39057693 PMCID: PMC11279291 DOI: 10.3390/metabo14070370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Amino acids (AAs) and their metabolites are important building blocks, energy sources, and signaling molecules associated with various pathological phenotypes. The quantification of AA and tryptophan (TRP) metabolites in human serum and plasma is therefore of great diagnostic interest. Therefore, robust, reproducible sample extraction and processing workflows as well as rapid, sensitive absolute quantification are required to identify candidate biomarkers and to improve screening methods. We developed a validated semi-automated robotic liquid extraction and processing workflow and a rapid method for absolute quantification of 20 free, underivatized AAs and six TRP metabolites using dual-column U(H)PLC-MRM-MS. The extraction and sample preparation workflow in a 96-well plate was optimized for robust, reproducible high sample throughput allowing for transfer of samples to the U(H)PLC autosampler directly without additional cleanup steps. The U(H)PLC-MRM-MS method, using a mixed-mode reversed-phase anion exchange column with formic acid and a high-strength silica reversed-phase column with difluoro-acetic acid as mobile phase additive, provided absolute quantification with nanomolar lower limits of quantification within 7.9 min. The semi-automated extraction workflow and dual-column U(H)PLC-MRM-MS method was applied to a human prostate cancer study and was shown to discriminate between treatment regimens and to identify metabolites responsible for discriminating between healthy controls and patients on active surveillance.
Collapse
Affiliation(s)
- Tobias Kipura
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexa Hofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Lea E. Timpen
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Christiane A. Opitz
- German Cancer Research Center (DKFZ), Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Paul A. Townsend
- Division of Cancer Sciences, Manchester Cancer Research Center, Manchester Academic Health Sciences Center, University of Manchester, Manchester M20 4GJ, UK
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lee A. Gethings
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
- Freiburg Materials Research Center (FMF), Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Thuraphan P, Suang S, Bunrod A, Kanjanakawinkul W, Chaiyana W. Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging. Pharmaceuticals (Basel) 2024; 17:679. [PMID: 38931346 PMCID: PMC11206733 DOI: 10.3390/ph17060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to extract bioactive proteins and protein hydrolysates from Apis mellifera larvae and assess their potential application in cosmetics as well as their irritation properties. The larvae were defatted and extracted using various mediums, including DI water, along with 0.5 M aqueous solutions of sodium hydroxide, ascorbic acid, citric acid, and hydrochloric acid. Subsequently, the crude proteins were hydrolyzed using the Alcalase® enzyme. All extracts underwent testing for antioxidant activities via the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and Griess assays. Anti-aging properties were evaluated in terms of anti-collagenase and anti-hyaluronidase effects. Irritation potential was assessed using the hen's egg chorioallantoic membrane (HET-CAM) test. The results revealed that the sodium hydroxide extraction showed promising outcomes in terms of yield, protein content, and effectiveness in inhibiting hyaluronidase, with the highest inhibition at 78.1 ± 1.5%, comparable to that of oleanolic acid. Conversely, crude protein extracted with ascorbic acid and its hydrolysate showed notable antioxidant and collagenase-inhibitory activities. Remarkably, their anti-collagenase effects were comparable to those of ascorbic acid and lysine. Additionally, it demonstrated safety upon testing with the CAM. In conclusion, the findings provided valuable insights into the utilization of A. mellifera larval proteins as active ingredients with a wide range of cosmeceutical applications, particularly due to their antioxidant, anti-aging, and low irritation properties, which hold significant promise for anti-skin wrinkles.
Collapse
Affiliation(s)
- Paphawarin Thuraphan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
| | - Suphawan Suang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
| | - Anurak Bunrod
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Jastrząb R, Tomecki R, Jurkiewicz A, Graczyk D, Szczepankowska AK, Mytych J, Wolman D, Siedlecki P. The strain-dependent cytostatic activity of Lactococcus lactis on CRC cell lines is mediated through the release of arginine deiminase. Microb Cell Fact 2024; 23:82. [PMID: 38481270 PMCID: PMC10938756 DOI: 10.1186/s12934-024-02345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.
Collapse
Affiliation(s)
- Rafał Jastrząb
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
- Olimp Laboratories, Pustynia 84F, Debica, 39-200, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-089, Poland
| | - Aneta Jurkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Damian Graczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Agnieszka K Szczepankowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | | | - Damian Wolman
- Olimp Laboratories, Pustynia 84F, Debica, 39-200, Poland
| | - Pawel Siedlecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland.
| |
Collapse
|
7
|
Rabti H, Amrane M, Lalaouna A, Flilissa A, Benguerba Y. Optimization and validation of a bioanalytical HPLC-UV technique for simultaneous determination of underivatized phenylalanine and tyrosine in the blood for phenylketonuria diagnosis and monitoring. Biomed Chromatogr 2024; 38:e5758. [PMID: 37795814 DOI: 10.1002/bmc.5758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
This study aimed to develop a fast, accurate, and precise high-performance liquid chromatography with UV detection method for simultaneous analysis of underivatized phenylalanine (Phe) and tyrosine (Tyr) in biological samples. Separation of the analytes was accomplished using a Discovery HS F5-3 column, which offered better retention and peak symmetry for the tested analytes. Chromatographic conditions were optimized using central composite experimental design, and three factors were investigated: the concentration of ammonium acetate (A), the acetonitrile proportion in the mobile phase (B) and the column oven temperature (C). The approach was verified using β-expectation tolerance intervals for total error measurement that did not exceed 15%. Optimal settings were A = 50 mm, B = 24% and C = 28°C. The method applicability was determined using human plasma from 75 volunteers. The limits of detection and quantification of the technique were satisfactory at 9 and 29 μm for Phe and 4 and 13 μm for Tyr. The mean analytical bias in spiking levels was acceptable, ranging from -1.649 to +1.659% for both substances, with RSD <5% in all instances. The suggested approach was successfully used to analyze Phe and Tyr in human blood samples and calculate the Phe/Tyr ratio.
Collapse
Affiliation(s)
- Hadjira Rabti
- Laboratory of Cardiovascular Diseases with Genetic and Nutritional Origin (LMCGN), Ferhat Abbas-Setif 1 University, Setif, Algeria
- Department of Pharmaceutical Engineering, Faculty of Process Engineering, Salah Boubnider-Constantine 3 University, Constantine, Algeria
| | - Mounira Amrane
- Laboratory of Cardiovascular Diseases with Genetic and Nutritional Origin (LMCGN), Ferhat Abbas-Setif 1 University, Setif, Algeria
- Mokhtari Abdelghani Cancer Center, Elbez, Setif, Algeria
| | - Abdeldjalil Lalaouna
- Analytical Chemistry Laboratory, Pharmacy Department, Faculty of Medicine, Salah Boubnider-Constantine 3 University, Constantine, Algeria
| | - Abdenacer Flilissa
- Laboratory of Cardiovascular Diseases with Genetic and Nutritional Origin (LMCGN), Ferhat Abbas-Setif 1 University, Setif, Algeria
| | - Yacine Benguerba
- Biopharmacy and Pharmatechnie Laboratory (LBPT), Ferhat ABBAS University- Setif 1, Setif, Algeria
| |
Collapse
|
8
|
Skvorak K, Liu J, Kruse N, Mehmood R, Das S, Jenne S, Chng C, Lao UL, Duan D, Asfaha J, Du F, Teadt L, Sero A, Ching C, Riggins J, Pope L, Yan P, Mashiana H, Ismaili MHA, McCluskie K, Huisman G, Silverman AP. Oral enzyme therapy for maple syrup urine disease (MSUD) suppresses plasma leucine levels in intermediate MSUD mice and healthy nonhuman primates. J Inherit Metab Dis 2023; 46:1089-1103. [PMID: 37494004 DOI: 10.1002/jimd.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Maple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism affecting several thousand individuals worldwide. MSUD patients have elevated levels of plasma leucine and its metabolic product α-ketoisocaproate (KIC), which can lead to severe neurotoxicity, coma, and death. Patients must maintain a strict diet of protein restriction and medical formula, and periods of noncompliance or illness can lead to acute metabolic decompensation or cumulative neurological impairment. Given the lack of therapeutic options for MSUD patients, we sought to develop an oral enzyme therapy that can degrade leucine within the gastrointestinal tract prior to its systemic absorption and thus enable patients to maintain acceptable plasma leucine levels while broadening their access to natural protein. We identified a highly active leucine decarboxylase enzyme from Planctomycetaceae bacterium and used directed evolution to engineer the enzyme for stability to gastric and intestinal conditions. Following high-throughput screening of over 12 000 enzyme variants over 9 iterative rounds of evolution, we identified a lead variant, LDCv10, which retains activity following simulated gastric or intestinal conditions in vitro. In intermediate MSUD mice or healthy nonhuman primates given a whey protein meal, oral treatment with LDCv10 suppressed the spike in plasma leucine and KIC and reduced the leucine area under the curve in a dose-dependent manner. Reduction in plasma leucine correlated with decreased brain leucine levels following oral LDCv10 treatment. Collectively, these data support further development of LDCv10 as a potential new therapy for MSUD patients.
Collapse
Affiliation(s)
| | - Joyce Liu
- Codexis, Inc., Redwood City, California, USA
| | - Nikki Kruse
- Codexis, Inc., Redwood City, California, USA
| | | | | | | | | | - U Loi Lao
- Codexis, Inc., Redwood City, California, USA
| | - Da Duan
- Codexis, Inc., Redwood City, California, USA
| | | | - Faye Du
- Codexis, Inc., Redwood City, California, USA
| | - Leann Teadt
- Codexis, Inc., Redwood City, California, USA
| | | | | | | | - Lianne Pope
- Codexis, Inc., Redwood City, California, USA
| | - Ping Yan
- Codexis, Inc., Redwood City, California, USA
| | | | | | | | | | | |
Collapse
|
9
|
Liu J, Xie Z, Fu J, Yu M, Wang T, Qi C, Liu P, Hui X, Wang D, Ding L, Zhang Q, Xie T, Xiao X. Quantitative profiling and diagnostic potential of one-carbon and central metabolism pools in MODY2 and T1DM. Diabetol Metab Syndr 2023; 15:206. [PMID: 37875989 PMCID: PMC10594937 DOI: 10.1186/s13098-023-01175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young type 2 (MODY2) is a rare genetic disorder characterized as mild fasting hyperglycemia with low risk of vascular complications caused by glucokinase gene mutation. This study aims to investigate metabolites alteration associated with MODY2, exploring possible mechanism underlying characteristic clinical manifestations and low cardiovascular risks of MODY2 and providing serum metabolite biomarkers to facilitating MODY2 diagnosis. METHODS Fasting serum samples from MODY2, type 1 diabetes (T1DM) and healthy individuals were collected. By using targeted metabolomics via liquid chromatography-tandem mass spectrometry platform, we quantified the metabolites involved in tricarboxylic acid (TCA) cycle and one-carbon metabolism. RESULTS Metabolomic profiling revealed significant difference of intermediates from central metabolism cycle, methionine cycle and several amino acids between MODY2 and T1DM groups. Among these, serum citrate, α-ketoglutaric acid, serine, glycine, glutamine and homocysteine were significantly elevated in MODY2 patients compared with T1DM patients; and compared with healthy subjects, malate and methionine levels were significantly increased in the two groups of diabetic patients. The correlation analysis with clinical indexes showed that α- ketoglutarate, serine, glycine, and glutamine were negatively correlated with blood glucose indicators including fasting blood glucose, HbA1c, and GA, while citrate was positively correlated with C-peptide. And homocysteine displayed positive correlation with HDL and negative with C-reactive protein, which shed light on the mechanism of mild symptoms and low risk of cardiovascular complications in MODY2 patients. A panel of 4 metabolites differentiated MODY2 from T1DM with AUC of 0.924, and a combination of clinical indices and metabolite also gained good diagnostic value with AUC 0.948. CONCLUSION In this research, we characterized the metabolite profiles of TCA cycle and one-carbon metabolism in MODY2 and T1DM and identified promising diagnostic biomarkers for MODY2. This study may provide novel insights into the pathogenesis and clinical manifestations of MODY2.
Collapse
Affiliation(s)
- Jieying Liu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ziyan Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Junling Fu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Yu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Tong Wang
- Department of Endocrinology, The 305 Hospital of People's Liberation Army of China, Beijing, 100017, China
| | - Cuijuan Qi
- Department of Endocrinology, Hebei General Hospital, Hebei, 050051, China
| | - Peng Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Dongmei Wang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Lu Ding
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Qian Zhang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Ting Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinhua Xiao
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China.
| |
Collapse
|
10
|
Chen Y, Tu MJ, Han F, Liu Z, Batra N, Lara PN, Chen HW, Bi H, Yu AM. Use of recombinant microRNAs as antimetabolites to inhibit human non-small cell lung cancer. Acta Pharm Sin B 2023; 13:4273-4290. [PMID: 37799388 PMCID: PMC10547963 DOI: 10.1016/j.apsb.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
During the development of therapeutic microRNAs (miRNAs or miRs), it is essential to define their pharmacological actions. Rather, miRNA research and therapy mainly use miRNA mimics synthesized in vitro. After experimental screening of unique recombinant miRNAs produced in vivo, three lead antiproliferative miRNAs against human NSCLC cells, miR-22-3p, miR-9-5p, and miR-218-5p, were revealed to target folate metabolism by bioinformatic analyses. Recombinant miR-22-3p, miR-9-5p, and miR-218-5p were shown to regulate key folate metabolic enzymes to inhibit folate metabolism and subsequently alter amino acid metabolome in NSCLC A549 and H1975 cells. Isotope tracing studies further confirmed the disruption of one-carbon transfer from serine to folate metabolites by all three miRNAs, inhibition of glucose uptake by miR-22-3p, and reduction of serine biosynthesis from glucose by miR-9-5p and -218-5p in NSCLC cells. With greater activities to interrupt NSCLC cell respiration, glycolysis, and colony formation than miR-9-5p and -218-5p, recombinant miR-22-3p was effective to reduce tumor growth in two NSCLC patient-derived xenograft mouse models without causing any toxicity. These results establish a common antifolate mechanism and differential actions on glucose uptake and metabolism for three lead anticancer miRNAs as well as antitumor efficacy for miR-22-3p nanomedicine, which shall provide insight into developing antimetabolite RNA therapies.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Fangwei Han
- School of Public Health, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Primo N. Lara
- Department of Internal Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
11
|
Yamamoto FY, Pérez-López C, Lopez-Antia A, Lacorte S, de Souza Abessa DM, Tauler R. Linking MS1 and MS2 signals in positive and negative modes of LC-HRMS in untargeted metabolomics using the ROIMCR approach. Anal Bioanal Chem 2023; 415:6213-6225. [PMID: 37587312 PMCID: PMC10558381 DOI: 10.1007/s00216-023-04893-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Data-independent acquisition (DIA) mode in liquid chromatography (LC) high-resolution mass spectrometry (HRMS) has emerged as a powerful strategy in untargeted metabolomics for detecting a broad range of metabolites. However, the use of this approach also represents a challenge in the analysis of the large datasets generated. The regions of interest (ROI) multivariate curve resolution (MCR) approach can help in the identification and characterization of unknown metabolites in their mixtures by linking their MS1 and MS2 DIA spectral signals. In this study, it is proposed for the first time the analysis of MS1 and MS2 DIA signals in positive and negative electrospray ionization modes simultaneously to increase the coverage of possible metabolites present in biological systems. In this work, this approach has been tested for the detection and identification of the amino acids present in a standard mixture solution and in fish embryo samples. The ROIMCR analysis allowed for the identification of all amino acids present in the analyzed mixtures in both positive and negative modes. The methodology allowed for the direct linking and correspondence between the MS signals in their different acquisition modes. Overall, this approach confirmed the advantages and possibilities of performing the proposed ROIMCR simultaneous analysis of mass spectrometry signals in their differing acquisition modes in untargeted metabolomics studies.
Collapse
Affiliation(s)
- Flávia Yoshie Yamamoto
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil
| | - Carlos Pérez-López
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Ana Lopez-Antia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | | | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
12
|
Skvorak K, Mitchell V, Teadt L, Franklin KA, Lee HO, Kruse N, Huitt-Roehl C, Hang J, Du F, Galanie S, Guan S, Aijaz H, Zhang N, Rajkovic G, Kruger WD, Ismaili MHA, Huisman G, McCluskie K, Silverman AP. An orally administered enzyme therapeutic for homocystinuria that suppresses homocysteine by metabolizing methionine in the gastrointestinal tract. Mol Genet Metab 2023; 139:107653. [PMID: 37463544 DOI: 10.1016/j.ymgme.2023.107653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.
Collapse
Affiliation(s)
- Kristen Skvorak
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Vesna Mitchell
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Leann Teadt
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Hyung-Ok Lee
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Nikki Kruse
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Julie Hang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Faye Du
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Steven Guan
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Hera Aijaz
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Nianliu Zhang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Warren D Kruger
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | | | - Gjalt Huisman
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | | |
Collapse
|
13
|
Xu X, Arunagiri A, Alam M, Haataja L, Evans CR, Zhao I, Castro-Gutierrez R, Russ HA, Demangel C, Qi L, Tsai B, Liu M, Arvan P. Nutrient-dependent regulation of β-cell proinsulin content. J Biol Chem 2023; 299:104836. [PMID: 37209827 PMCID: PMC10302188 DOI: 10.1016/j.jbc.2023.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023] Open
Abstract
Insulin is made from proinsulin, but the extent to which fasting/feeding controls the homeostatically regulated proinsulin pool in pancreatic β-cells remains largely unknown. Here, we first examined β-cell lines (INS1E and Min6, which proliferate slowly and are routinely fed fresh medium every 2-3 days) and found that the proinsulin pool size responds to each feeding within 1 to 2 h, affected both by the quantity of fresh nutrients and the frequency with which they are provided. We observed no effect of nutrient feeding on the overall rate of proinsulin turnover as quantified from cycloheximide-chase experiments. We show that nutrient feeding is primarily linked to rapid dephosphorylation of translation initiation factor eIF2α, presaging increased proinsulin levels (and thereafter, insulin levels), followed by its rephosphorylation during the ensuing hours that correspond to a fall in proinsulin levels. The decline of proinsulin levels is blunted by the integrated stress response inhibitor, ISRIB, or by inhibition of eIF2α rephosphorylation with a general control nonderepressible 2 (not PERK) kinase inhibitor. In addition, we demonstrate that amino acids contribute importantly to the proinsulin pool; mass spectrometry shows that β-cells avidly consume extracellular glutamine, serine, and cysteine. Finally, we show that in both rodent and human pancreatic islets, fresh nutrient availability dynamically increases preproinsulin, which can be quantified without pulse-labeling. Thus, the proinsulin available for insulin biosynthesis is rhythmically controlled by fasting/feeding cycles.
Collapse
Affiliation(s)
- Xiaoxi Xu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Maroof Alam
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Charles R Evans
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ivy Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Roberto Castro-Gutierrez
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA; Diabetes Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Holger A Russ
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA; Diabetes Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Inserm U1224, Université Paris Cité, Paris, France
| | - Ling Qi
- Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Billy Tsai
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
14
|
Chang R, Wang X, Li Y, Zhang S. Pyridinium and ammonium stable isotope labeling agents and their performance in the analysis of alkylamines in food and food packaging materials. Food Chem 2023; 408:135240. [PMID: 36549157 DOI: 10.1016/j.foodchem.2022.135240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Two pairs of stable isotope labeling (SIL) agents, (4-carboxyphenyl)trimethylammonium iodide (d0-CPTA) and its deuterated counterpart d3-CPTA, 1-methyl-nicotinamide iodide (d0-MNA) and its deuterated counterpart d3-MNA, were designed and synthesized. Their mass spectrometry (MS) sensitivity enhancement effect was studied and compared with commercial dansyl chloride to provide inspiration for labeling agent design. CPTA with quaternary ammonium group showed much higher MS sensitivity enhancement effect and was applied to the SIL analysis of alkylamines in food and food packaging materials. The matrix effect was minimized due to the SIL strategy and the permanent charge of the CPTA. The limits of detection (LODs) were in the range of 2.9-5.1 ng/L, and the limits of quantitation (LOQs) were in the range of 9.6-16.8 ng/L. The recoveries ranged from 91.2 % to 97.1 % with relative standard deviations of less than 6.6 %, and the matrix effect ranged from -1.8 % to -4.9 %.
Collapse
Affiliation(s)
- Rui Chang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, PR China
| | - Xueting Wang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, PR China
| | - Yanxin Li
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, PR China
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, PR China.
| |
Collapse
|
15
|
Wang Y, Li Z, Chen R. Simultaneous Determination of Metabolites Related to Arginine Metabolism in Rat plasma by Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry. J Chromatogr Sci 2023; 61:203-210. [PMID: 35704851 DOI: 10.1093/chromsci/bmac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/15/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022]
Abstract
Arginine and its metabolites play important roles in pain and analgesia. This study aimed to develop a comprehensive quantification method for amino acids and metabolites related to arginine metabolism in rat plasma by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS). Rat plasma was diluted to reduce the matrix effect and deproteinized with acetonitrile. The analytes were separated on a Syncronis HILIC column with a gradient elution. MS analysis was performed in positive ion mode with an electrospray ionization source using multiple reaction monitoring technology. All calibration curves for the 10 analytes showed good linear regression (R2 > 0.99). The limits of detection (LODs) were in the range of 0.9-13.4 μg/L. The established method was validated for intra-day and inter-day precisions (relative standard deviation [RSDs] < 6.21%) and accuracy (average recovery ranged from 87.34% to 100.35% with the RSD values less than 11.41%). This method was successfully applied to characterize dynamic alterations in the plasma of rats with neuropathic pain and thus provide service to explore the mechanism of action between metabolite changes and clinical disease.
Collapse
Affiliation(s)
- Ying Wang
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, P. R. China
- Life Sciences Institute, Zunyi Medical University, Zunyi 563000, P. R. China
| | - ZhiRong Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, P. R. China
| | - RongXiang Chen
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, P. R. China
- Life Sciences Institute, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
16
|
Anderson AJ, Hortin JM, Jacobson AR, Britt DW, McLean JE. Changes in Metal-Chelating Metabolites Induced by Drought and a Root Microbiome in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:1209. [PMID: 36986899 PMCID: PMC10055107 DOI: 10.3390/plants12061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The essential metals Cu, Zn, and Fe are involved in many activities required for normal and stress responses in plants and their microbiomes. This paper focuses on how drought and microbial root colonization influence shoot and rhizosphere metabolites with metal-chelation properties. Wheat seedlings, with and without a pseudomonad microbiome, were grown with normal watering or under water-deficit conditions. At harvest, metal-chelating metabolites (amino acids, low molecular weight organic acids (LMWOAs), phenolic acids, and the wheat siderophore) were assessed in shoots and rhizosphere solutions. Shoots accumulated amino acids with drought, but metabolites changed little due to microbial colonization, whereas the active microbiome generally reduced the metabolites in the rhizosphere solutions, a possible factor in the biocontrol of pathogen growth. Geochemical modeling with the rhizosphere metabolites predicted Fe formed Fe-Ca-gluconates, Zn was mainly present as ions, and Cu was chelated with the siderophore 2'-deoxymugineic acid, LMWOAs, and amino acids. Thus, changes in shoot and rhizosphere metabolites caused by drought and microbial root colonization have potential impacts on plant vigor and metal bioavailability.
Collapse
Affiliation(s)
- Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Joshua M. Hortin
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA
| | - Astrid R. Jacobson
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT 84322, USA
| | - David W. Britt
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Joan E. McLean
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
17
|
3-Methoxytyrosine as an indicator of dopaminergic manipulation in equine plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1220:123652. [PMID: 36933516 DOI: 10.1016/j.jchromb.2023.123652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
The use of catechol-O-methyltransferase inhibitors may mask doping agents, primarily levodopa, administered to racehorses and prolong the stimulating effects of dopaminergic compounds such as dopamine. It is known that 3-methoxytyramine is a metabolite of dopamine and 3-methoxytyrosine is a metabolite of levodopa thus these compounds are proposed to be potential biomarkers of interest. Previous research established a urinary threshold of 4,000 ng/mL for 3-methoxytyramine to monitor misuse of dopaminergic agents. However, there is no equivalent biomarker in plasma. To address this deficiency a rapid protein precipitation method was developed and validated to isolate target compounds from 100 µL equine plasma. A liquid chromatography-high resolution accurate mass (LC-HRAM) method using an IMTAKT Intrada amino acid column provided quantitative analysis of 3-methoxytyrosine (3-MTyr) with lower limit of quantification of 5 ng/mL. Reference population profiling (n = 1129) investigated the expected basal concentrations for raceday samples from equine athletes and showed a right-skewed distribution (skewness = 2.39, kurtosis = 10.65) which resulted from large variation (RSD = 71%) within the data. Logarithmic transformation of the data provided a normal distribution (skewness = 0.26, kurtosis = 3.23) resulting in the proposal of a conservative threshold for plasma 3-MTyr of 1,000 ng/mL at a 99.995% confidence level. A 12-horse administration study of Stalevo® (800 mg L-DOPA, 200 mg carbidopa, 1600 mg entacapone) revealed elevated 3-MTyr concentrations for 24-hours post-administration.
Collapse
|
18
|
Hou YC, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Yeh SL, Lin MT. Glutamine and leucine administration attenuates muscle atrophy in sepsis. Life Sci 2023; 314:121327. [PMID: 36584912 DOI: 10.1016/j.lfs.2022.121327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIMS This study investigated whether l-glutamine (Gln) and/or l-leucine (Leu) administration could attenuate muscle atrophy in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. MATERIALS AND METHODS Septic mice were given a daily intraperitoneal injection of Gln, Leu, or Gln plus Leu, and mice were sacrificed on either day 1 or 4 after CLP. Blood and muscles were collected for analysis of amino acid contents and markers related to protein degradation, muscle regeneration, and protein synthesis. KEY FINDINGS Leu treatment alone increased both muscle mass and total muscle protein content on day 4 after CLP. Gln administration reduced muscular Gln contents on day 1 and enhanced plasma Gln levels on day 4. Higher plasma branched-chain amino acid (BCAA) abundances and lower muscular BCAA levels were observed in Leu-treated mice on day 4. Gln and Leu individually suppressed muscle expressions of the E3 ubiquitin ligase genes, Trim63 and Fbxo32, on day 4 after CLP. As to muscle expressions of myogenic genes, both Gln and Leu upregulated Myog expression on day 1, but Leu alone enhanced Myf5 gene expression, whereas Gln plus Leu increased MyoD and Myog expression levels on day 4. Akt/mammalian target of rapamycin (mTOR) signaling was only activated by Gln and Leu when individually administered. SIGNIFICANCE Gln and/or Leu administration reduces sepsis-induced muscle degradation and promotes myogenic gene expressions. Leu treatment alone had more-pronounced effects on maintaining muscle mass during sepsis. A combination of Gln and Leu failed to show synergistic effects on alleviating sepsis-induced muscle atrophy.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Tsiaka T, Lantzouraki DZ, Polychronaki G, Sotiroudis G, Kritsi E, Sinanoglou VJ, Kalogianni DP, Zoumpoulakis P. Optimization of Ultrasound- and Microwave-Assisted Extraction for the Determination of Phenolic Compounds in Peach Byproducts Using Experimental Design and Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2023; 28:molecules28020518. [PMID: 36677576 PMCID: PMC9867053 DOI: 10.3390/molecules28020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
The conversion of plant byproducts, which are phenolic-rich substrates, to valuable co-products by implementing non-conventional extraction techniques is the need of the hour. In the current study, ultrasound- (UAE) and microwave-assisted extraction (MAE) were applied for the recovery of polyphenols from peach byproducts. Two-level screening and Box-Behnken design were adopted to optimize extraction efficiency in terms of total phenolic content (TPC). Methanol:water 4:1% v/v was the extraction solvent. The optimal conditions of UAE were 15 min, 8 s ON-5 s OFF, and 35 mL g-1, while MAE was maximized at 20 min, 58 °C, and 16 mL g-1. Regarding the extracts' TPC and antioxidant activity, MAE emerged as the method of choice, whilst their antiradical activity was similar in both techniques. Furthermore, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine chlorogenic acid and naringenin in byproducts' extracts. 4-Chloro-4'-hydroxybenzophenone is proposed as a new internal standard in LC-MS/MS analysis in foods and byproducts. Chlorogenic acid was extracted in higher yields when UAE was used, while MAE favored the extraction of the flavonoid compound, naringenin. To conclude, non-conventional extraction could be considered as an efficient and fast alternative for the recovery of bioactive compounds from plant matrices.
Collapse
Affiliation(s)
- Thalia Tsiaka
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Dimitra Z. Lantzouraki
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Georgia Polychronaki
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Rio Patras, Greece
| | - Georgios Sotiroudis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Vassilia J. Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Despina P. Kalogianni
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Rio Patras, Greece
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
20
|
Chromatomass-Spectrometric Method for the Quantitative Determination of Amino- and Carboxylic Acids in Biological Samples. Metabolites 2022; 13:metabo13010016. [PMID: 36676941 PMCID: PMC9863782 DOI: 10.3390/metabo13010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
A highly sensitive method for the qualitative and quantitative determination of amino- and carboxylic acids, as well as a number of urea and methionine cycle metabolites in the studied solutions, is presented. Derivatives (esterification) were obtained for amino acids by their reaction in a solution of 3 N of hydrochloric acid in n-butanol for 15 min at 65 °C and for carboxylic acids by their reaction with phenol in ethyl acetate with 3 N of hydrochloric acid for 20 min at 65 °C. Experimental work on the determination of individual metabolites was carried out using the HPLC-MS/MS method and included the creation of a library of spectra of the analyzed compounds and their quantitative determination. Multiplex methods have been developed for the quantitative analysis of the desired metabolites in a wide range of concentrations of 3-4 orders of magnitude. The approach to the analysis of metabolites was developed based on the method of the dynamic monitoring of multiple reactions of the formation of fragments for a mass analyzer with a triple quadrupole (QQQ). The effective chromatographic separation of endogenous metabolites was carried out within 13 min. The calibration curves of the analyzed compounds were stable throughout the concentration range and had the potential to fit below empirical levels. The developed methods and obtained experimental data are of interest for a wide range of biomedical studies, as well as for monitoring the content of endogenous metabolites in biological samples under various pathological conditions. The sensitivity limit of the methods for amino acids was about 4.8 nM and about 0.5 μM for carboxylic acids. Up to 19 amino- and up to 12 carboxy acids and about 10 related metabolites can be tested in a single sample.
Collapse
|
21
|
Elmelund E, Galsgaard KD, Johansen CD, Trammell SA, Bomholt AB, Winther-Sørensen M, Hunt JE, Sørensen CM, Kruse T, Lau JF, Grevengoed TJ, Holst JJ, Wewer Albrechtsen NJ. Opposing effects of chronic glucagon receptor agonism and antagonism on amino acids, hepatic gene expression, and alpha cells. iScience 2022; 25:105296. [PMID: 36325048 PMCID: PMC9618771 DOI: 10.1016/j.isci.2022.105296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 01/09/2023] Open
Abstract
The pancreatic hormone, glucagon, is known to regulate hepatic glucose production, but recent studies suggest that its regulation of hepatic amino metabolism is equally important. Here, we show that chronic glucagon receptor activation with a long-acting glucagon analog increases amino acid catabolism and ureagenesis and causes alpha cell hypoplasia in female mice. Conversely, chronic glucagon receptor inhibition with a glucagon receptor antibody decreases amino acid catabolism and ureagenesis and causes alpha cell hyperplasia and beta cell loss. These effects were associated with the transcriptional regulation of hepatic genes related to amino acid uptake and catabolism and by the non-transcriptional modulation of the rate-limiting ureagenesis enzyme, carbamoyl phosphate synthetase-1. Our results support the importance of glucagon receptor signaling for amino acid homeostasis and pancreatic islet integrity in mice and provide knowledge regarding the long-term consequences of chronic glucagon receptor agonism and antagonism. Glucagon receptor agonism increases amino acid catabolism and hepatic CPS-1 activity Glucagon receptor signaling regulates the number of pancreatic alpha cells Glucagon regulates the hepatic transcription of genes involved in amino acid metabolism
Collapse
Affiliation(s)
- Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Samuel A.J. Trammell
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Trisha J. Grevengoed
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark
- Corresponding author
| |
Collapse
|
22
|
Teepoo S, Sannok T, Arsawiset S. A portable device as a paper test strip platform with smartphone applicationfor detection of branched-chain amino acids in edible insects. Food Chem 2022; 405:134560. [DOI: 10.1016/j.foodchem.2022.134560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
|
23
|
Yao Y, Yu YC, Cai MR, Zhang ZQ, Bai J, Wu HM, Li P, Zhao TT, Ni J, Yin XB. UPLC-MS/MS method for the determination of the herb composition of Tangshen formula and the in vivo pharmacokinetics of its metabolites in rat plasma. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:402-426. [PMID: 34907611 DOI: 10.1002/pca.3098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Tangshen formula (TSF) is a traditional Chinese medicine composed of seven medicinal herbs including Astragalus membranaceus, Rehmannia glutinosa Libosch, Citrus aurantium L., etc. which is used to treat diabetic nephropathy III, IV qi and yin deficiency and stasis syndrome. Most of the studies on TSF are pharmacological and pharmacodynamic experiments. There are few basic studies on its chemical substances, and the effective constituents are not clear. OBJECTIVE To analyse the main chemical components of TSF and the absorbed components in rat plasma following oral administration based on liquid chromatography tandem mass spectrometry (LC-MS/MS). Moreover, providing a rapid and valid analytical strategy for simultaneous determination of six components in rat plasma and use it in pharmacokinetic studies. RESULTS A total of 132 components were identified in TSF, and 44 components were identified in rat plasma after oral TSF, 35 of which were prototype components and nine were metabolic components. A sensitive and reliable LC-MS/MS method was developed for simultaneous determination of six components in rat plasma. The intra-day and inter-day precision relative standard deviation (RSD) was lower than 15%; the accuracy of low, medium and high concentrations ranged from 80% to 120%. The recovery met the requirements and the RSD of the recoveries was less than 15%. CONCLUSION A total of 132 components were identified in TSF. The LC-MS/MS quantitative method for the simultaneous determination of morroniside, loganin, notoginsenoside R1 , ginsenoside Re, ginsenoside Rb1 and astragaloside IV in rat plasma was established for the first time. The pharmacokinetic parameters are clarified, which can guide the clinical medication of TSF.
Collapse
Affiliation(s)
- Yu Yao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Ying-Chao Yu
- Medical Department, Yujiawu Community Healthcare Center, Beijing, China
| | - Meng-Ru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Qin Zhang
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Bai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Min Wu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ting-Ting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Bin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Ma W, Yang B, Li J, Li X. Development of a Simple, Underivatized Method for Rapid Determination of Free Amino Acids in Honey Using Dilute-and-Shoot Strategy and Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2022; 27:molecules27031056. [PMID: 35164320 PMCID: PMC8838828 DOI: 10.3390/molecules27031056] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
A simple, fast and reliable analytical method was developed for 20 free amino acids (FAAs) determination in honey samples through a dilute-and-shoot strategy and hydrophilic interaction liquid chromatography tandem mass spectrometry. Compared with previous reports, direct dilution by water has significantly reduced the matrix effect and facilitated full extraction of FAAs. Further, a 5 min determination method was established with an acetonitrile–water mobile phase system with 0.1% formic acid addition. The established method was validated and demonstrated several advantages including short detection time, wide linear range over 3–4 orders of magnitude, high sensitivity down to 0.1 ng/mL and negligible matrix effect. Twenty FAAs were determined in 10 honey samples from different botanical origins by this method, and 19 FAAs were found. This general applicable method was also promising for fast determination of FAAs in other practical samples.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (W.M.); (J.L.)
| | - Bingxin Yang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China;
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (W.M.); (J.L.)
| | - Xianjiang Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China;
- Correspondence: ; Tel.: +86-10-64524737
| |
Collapse
|
25
|
Shioji Y, Kobayashi T, Yoshida T, Otagiri T, Onoda K, Yoshioka Y, Sasada T, Miyoshi N. Nitrogen Balance and Bioavailability of Amino Acids in Spirulina Diet-Fed Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13780-13786. [PMID: 34677963 DOI: 10.1021/acs.jafc.1c04840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spirulina widely known to consumers as a health food is mainly a dried product. Since data for raw spirulina as a protein source are insufficient, the nutritional values of dry and raw spirulina diets in Wistar rats were determined. Digestibility coefficients were significantly lower in the dry (84.1 ± 0.5%) and raw (85.7 ± 0.4%) spirulina diets than that in the casein diet (96.6 ± 0.2%), although biological values of dry (86.3 ± 1.3%) and raw (77.9 ± 2.6%) spirulina diets were significantly higher than that of the casein diet (71.9 ± 2.5%). The protein digestibility-corrected amino acid score of raw spirulina (86.6 ± 0.5%) was significantly higher than that of dry spirulina (85.1 ± 0.5%). Additionally, amino acid profiling of portal/venous blood in spirulina diet-fed rats revealed that Ala, Gly, Val, and Leu/Ile were markedly decreased after systemic circulation. These results suggest that dry and raw spirulina diets may be effective not only as a protein source but also as a supplement to support protein/amino acid bioavailability.
Collapse
Affiliation(s)
- Yudai Shioji
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Kakegawa Biocenter of VUTEQ Corporation, Shizuoka 437-1304, Japan
| | - Takuma Kobayashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takuya Yoshida
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Tomoka Otagiri
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Keita Onoda
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yasukiyo Yoshioka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Tatsuya Sasada
- Kakegawa Biocenter of VUTEQ Corporation, Shizuoka 437-1304, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
26
|
Zheng Y, Zhao H, Tong M, Zhu L, Ma S, Cai Z. Characterization and Determination of 13C-Labeled Nonessential Amino Acids in a 13C 5-Glutamine Isotope Tracer Experiment with a Mass Spectrometry Strategy Combining Parallel Reaction Monitoring and Multiple Reaction Monitoring. Anal Chem 2021; 93:13564-13571. [PMID: 34570481 DOI: 10.1021/acs.analchem.1c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotopic tracer, a powerful technique for metabolic pathway analysis, is currently widely applied in metabolic flux analysis. However, the qualitative and quantitative analyses of 13C-labeled metabolites pose great challenges, especially in complex biological sample matrices. Here, we present an integrated method for the qualitative and quantitative analyses of various isotopologues and isotopomers of 13C-labeled nonessential amino acids (NEAAs) in HepG2 cells incubated with 13C5-glutamine (Gln) based on ultra-high-performance liquid chromatography (UHPLC) coupled with tandem mass spectrometry (MS). First, accurate mass-to-charge (m/z) values of protonated isotopologues and elution time of standards were simultaneously analyzed to characterize 13C-labeled NEAAs by high-resolution Orbitrap MS in the parallel reaction monitoring (PRM) mode. Second, isotopologues and isotopomers of 13C-labeled NEAAs were investigated in HepG2 cells incubated with 13C5-Gln at different time points. Ultimately, a total of 66 multiple reaction monitoring (MRM) transitions were performed by UHPLC coupled with triple quadrupole MS. Among them, 29 MRM transitions were monitored for pure metabolites (unambiguously identified). The other 37 MRM transitions were monitored for mixtures with exactly identical MRM transitions and retention time. The application of targeted profiling of 13C-labeled NEAAs in the dynamic 13C-labeling experiment indicated that the concentration-time profiles of NEAAs were different from each other. The concentrations of most 13C-labeled Gln, Glu, Pro, and Asp altered after 13C5-Gln incubation, indicating that Gln plays a fundamental role in the biosynthesis of Glu, Pro, and Asp. The proposed PRM-MRM combination mode LC-MS approach is expected to provide valuable insights into analyses of isotope-labeled metabolites in isotope tracer experiments.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
27
|
Liang X, Zhou R, Li Y, Yang L, Su M, Lai KP. Clinical characterization and therapeutic targets of vitamin A in patients with hepatocholangiocarcinoma and coronavirus disease. Aging (Albany NY) 2021; 13:15785-15800. [PMID: 34176789 PMCID: PMC8266307 DOI: 10.18632/aging.203220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Recent reports indicate that patients with hepatocholangiocarcinoma (CHOL) have a higher morbidity and mortality rate for coronavirus disease (COVID-19). Anti-CHOL/COVID-19 medicines are inexistent. Vitamin A (VA) refers to a potent nutrient with anti-cytotoxic and anti-inflammatory actions. Therefore, this study aimed to determine the potential functions and molecular mechanisms of VA as a potential treatment for patients with both CHOL and COVID-19 (CHOL/COVID-19). The transcriptome data of CHOL patients were obtained from the Cancer Genome Analysis database. Furthermore, the network pharmacology approach and bioinformatics analysis were used to identify and reveal the molecular functions, therapeutic biotargets, and signaling of VA against CHOL/COVID-19. First, clinical findings identified the medical characteristics of CHOL patients with COVID-19, such as susceptibility gene, prognosis, recurrence, and survival rate. Anti-viral and anti-inflammatory pathways, and immunopotentiation were found as potential targets of VA against CHOL/COVID-19. These findings illustrated that VA may contribute to the clinical management of CHOL/COVID-19 achieved by induction of cell repair, suppression of oxidative stress and inflammatory reaction, and amelioration of immunity. Nine vital therapeutic targets (BRD2, NOS2, GPT, MAPK1, CXCR3, ICAM1, CDK4, CAT, and TMPRSS13) of VA against CHOL/COVID-19 were identified. For the first time, the potential pharmacological biotargets, function, and mechanism of action of VA in CHOL/COVID-19 were elucidated.
Collapse
Affiliation(s)
- Xiao Liang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Rui Zhou
- Department of Hepatobiliary Surgery, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Yu Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
28
|
Zhang L, Zheng W, Li X, Wang S, Xiao M, Xiao R, Zhang D, Ke N, Cai H, Cheng J, Chen X, Gong M. A merged method for targeted analysis of amino acids and derivatives using parallel reaction monitoring combined with untargeted profiling by HILIC-Q-Orbitrap HRMS. J Pharm Biomed Anal 2021; 203:114208. [PMID: 34148019 DOI: 10.1016/j.jpba.2021.114208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
With continuously increased scan rate and sensitivity, high resolution mass spectrometry (HRMS) allows for both reliable targeted analysis (e.g., parallel reaction monitoring, PRM) and a global overview for discovery-based untargeted profiling (e.g., data dependent acquisition, DDA) to be performed. Based on previous study on PRM for large scale targeted metabolomics quantification, we developed an innovative method merged targeted and untargeted approaches in a single run. In our workflow, the scheduled PRM for targeted analysis of amino acids and derivatives combined with the full scan was acquired in every sample injection by hydrophilic interaction liquid chromatography tandem quadrupole-Orbitrap high resolution mass spectrometry (HILIC-Q-Orbitrap HRMS). The identification of metabolic features from full scan was further performed with DDA methodology on grouped quality control (QC) samples and matched with available database. Specifically, 20 amino acids and 40 derivatives were selected for targeted analysis with optimal chromatographic separation and PRM parameters. All isomers within the selected metabolites were totally separated in the robust HILIC condition. 36 of selected metabolites were well-detected and showed a good linearity and reproducibility in NIST SRM 1950 plasma. Moreover, the absolute quantification performance of targeted PRM method was systematically validated using 10 amino acids with the corresponding stable isotope-labeled internal standards (SIL-IS). Finally, the newly developed method was successfully applied to analysis of the plasma samples from patients of pancreatic benign tumor and pancreatic cancer. The significant reduction of circulating amino acids in patients with pancreatic malignancy was confirmed by targeted PRM method and other amino acids modifications as well as polar metabolites were identified with untargeted profiling. Therefore, we have established a workflow that combines specifically and reliably targeted PRM method as well as broad-coverage untargeted profiling, which provides an innovative strategy for basic and clinical metabolomics study.
Collapse
Affiliation(s)
- Lu Zhang
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Zheng
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Li
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shisheng Wang
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming Xiao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Xiao
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dingkun Zhang
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nengwen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huawei Cai
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolei Chen
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Meng Gong
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Matsuyama H, Tanaka W, Miyoshi N, Miyazaki T, Michimoto H, Sakakibara H. Beneficial effects of the consumption of sun-dried radishes (Raphanus sativus cv. YR-Hyuga-Risou) on dyslipidemia in apolipoprotein E-deficient mice. J Food Biochem 2021; 45:e13727. [PMID: 33856698 DOI: 10.1111/jfbc.13727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/24/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022]
Abstract
In the present study, we evaluated the effects of daily consumption of raw (RR) or sun-dried (SDR) radishes (Raphanus sativus cv. YR-Hyuga-Risou) on apolipoprotein E-deficient (ApoE-/- ) mice. Daily consumption of RR for 16 weeks significantly decreased body weight gain in the both wild-type and ApoE-/- mice. The wild-type mice fed the SDR diet gained significantly less body weight than the ApoE-/- mice fed the same diet, although the ApoE-/- mice showed a trend toward decreased body weight gain. Consumption of both diets led to a marked decrease in visceral fat weight and serum triglyceride levels in ApoE-/- mice. Oral fat tolerance tests indicated that pretreatment with RR or SDR mitigated the increase in serum triglyceride levels seen after oil administration. In conclusion, we found that daily consumption of both RR- and SDR-containing diets can help us to prevent from dyslipidemia by inhibiting fat absorption.
Collapse
Affiliation(s)
- Hiroki Matsuyama
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Wataru Tanaka
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | |
Collapse
|
30
|
Qu Y, Wang W, Chen T, Yang Y, Zhang Y, Wang D. The neuroprotection of deproteinized calf blood extractives injection against Alzheimer's disease via regulation of Nrf-2 signaling. Aging (Albany NY) 2021; 13:11150-11169. [PMID: 33819182 PMCID: PMC8109110 DOI: 10.18632/aging.202776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/12/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer’s disease (AD) is characterized by cognitive decline due to the accumulation of extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles in the brain, which impair glutamate (Glu) metabolism. Deproteinized Calf Blood Extractive Injection (DCBEI) is a biopharmaceutical that contains 17 types of amino acids and 5 types of nucleotides. In this study, we found that DCBEI pretreatment reduced L-Glu-dependent neuroexcitation toxicity by maintaining normal mitochondrial function in HT22 cells. DCBEI treatment also reduced the expression of pro-apoptosis proteins and increased the expression of anti-apoptosis proteins. Furthermore, DCBEI attenuated AD-like behaviors (detected via the Morris water maze test) in B6C3-Tg (APPswePSEN1dE9)/Nju double transgenic (APP/PS1) mice; this effect was associated with a reduction in the amount of Aβ and neurofibrillary tangle deposition and the concomitant reduction of phospho-Tau in the hippocampus. Metabonomic profiling revealed that DCBEI regulated the level of neurotransmitters in the hippocampus of APP/PS1 mice. Label-free proteomics revealed that DCBEI regulated the expression of Nrf-2 and its downstream targets, as well as the levels of phospho-protein kinase B and mitogen-activated protein kinase. Together, these data show that DCBEI can ameliorate AD symptoms by upregulating Nrf2-mediated antioxidative pathways and thus preventing mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yumin Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
31
|
Wu J, Zhao M, Li C, Zhang Y, Wang DW. The SARS-CoV-2 induced targeted amino acid profiling in patients at hospitalized and convalescent stage. Biosci Rep 2021; 41:BSR20204201. [PMID: 33625490 PMCID: PMC7955102 DOI: 10.1042/bsr20204201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced an ongoing global health crisis. Here we utilized a combination of targeted amino acids (AAs) and clinical biochemical profiling to analyze the plasma of coronavirus disease 2019 (COVID-19) subjects at the hospitalization stage and 1-month post-infection convalescent stage, respectively, to investigate the systematic injury during COVID-19 disease progress. We found the virus-induced inflammatory status and reduced liver synthesis capacity in hospitalized patients, which manifested with increased branched-chain AAs (BCAAs), aromatic AAs (AAAs), one-carbon related metabolites, and decreased methionine. Most of these disturbances during infection recover except for the increased levels of medium-chain acylcarnitines (ACs) in the convalescent subjects, implying the existence of incomplete fatty acids oxidation during recovery periods. Our results suggested that the imbalance of the AA profiling in COVID-19 patients. The majority of disturbed AAs recovered in 1 month. The incomplete fatty acid oxidation products suggested it might take longer time for convalescent patients to get complete recovery.
Collapse
Affiliation(s)
- Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Chenze Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yuxuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
32
|
Taylor CM, Kasztan M, Sedaka R, Molina PA, Dunaway LS, Pollock JS, Pollock DM. Hydroxyurea improves nitric oxide bioavailability in humanized sickle cell mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R630-R640. [PMID: 33624556 DOI: 10.1152/ajpregu.00205.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite advancements in disease management, sickle cell nephropathy, a major contributor to mortality and morbidity in patients, has limited therapeutic options. Previous studies indicate hydroxyurea, a commonly prescribed therapy for sickle cell disease (SCD), can reduce renal injury in SCD but the mechanisms are uncertain. Because SCD is associated with reduced nitric oxide (NO) bioavailability, we hypothesized that hydroxyurea treatment would improve NO bioavailability in the humanized sickle cell mouse. Humanized male 12-wk-old sickle (HbSS) and genetic control (HbAA) mice were treated with hydroxyurea or regular tap water for 2 wk before renal and systemic NO bioavailability as well as renal injury were assessed. Untreated HbSS mice exhibited increased proteinuria, elevated plasma endothelin-1 (ET-1), and reduced urine concentrating ability compared with HbAA mice. Hydroxyurea reduced proteinuria and plasma ET-1 levels in HbSS mice. Untreated HbSS mice had reduced plasma nitrite and elevated plasma arginase concentrations compared with HbAA mice. Hydroxyurea treatment augmented plasma nitrite and attenuated plasma arginase in HbSS mice. Renal vessels isolated from HbSS mice also had elevated nitric oxide synthase 3 (NOS3) and arginase 2 expression compared with untreated HbAA mice. Hydroxyurea treatment did not alter renal vascular NOS3, however, renal vascular arginase 2 expression was significantly reduced. These data support the hypothesis that hydroxyurea treatment augments renal and systemic NO bioavailability by reducing arginase activity as a potential mechanism for the improvement on renal injury seen in SCD mice.
Collapse
Affiliation(s)
- Crystal M Taylor
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee Sedaka
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick A Molina
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Luke S Dunaway
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
33
|
Cao LL, Han Y, Wang Y, Pei L, Yue Z, Qin L, Liu B, Cui J, Jia M, Wang H. Metabolic Profiling Identified a Novel Biomarker Panel for Metabolic Syndrome-Positive Hepatocellular Cancer. Front Endocrinol (Lausanne) 2021; 12:816748. [PMID: 35154012 PMCID: PMC8826723 DOI: 10.3389/fendo.2021.816748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic syndrome (MetS) is an independent risk factor for hepatocellular cancer (HCC). Currently, there is no highly sensitive and specific biomarkers for HCC surveillance in MetS population. Metabolomics has been reported as a powerful technology for biomarker discovery. In the present study, we aimed to explore novel biomarkers with high sensitivity and specificity for MetS-positive [MetS(+)] HCC by metabolomic analysis. At first, many serum metabolites were found dysregulated in MetS(+) HCC individuals. Validation of the dysregulated metabolites by targeted metabolite analyses revealed that serum L-glutamic acid (L-glu), pipecolic acid (PA) and 7-methylguanine (7-mG) were increased in MetS(+) HCC compared to MetS group. Then a biomarker panel including L-glu, PA and alpha-fetoprotein (AFP) was identified as a novel biomarker for the diagnosis of MetS(+) HCC. Receiver operating characteristic (ROC) curve was drawn and the area under the ROC curve (AUC) was 0.87 for discriminating MetS(+) HCC from MetS group. The biomarker panel was capable of detecting small (AUC = 0.82) and early-stage (AUC = 0.78) tumors as well. Moreover, it exhibited great diagnostic performance (AUC = 0.93) for discriminating MetS(+) HCC from other MetS-associated cancers, including colorectal cancer and gastric cancer. Collectively, our study establishes a novel diagnostic tool for MetS(+) HCC.
Collapse
Affiliation(s)
- Lin-Lin Cao
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- *Correspondence: Lin-Lin Cao,
| | - Yi Han
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yuanxiao Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Li Qin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Boyu Liu
- Department of Pharmacy, Peking University People’s Hospital, Beijing, China
| | - Jingwen Cui
- SCIEX Analytical Instrument Trading Co., Shanghai, China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
34
|
Letertre MPM, Myridakis A, Whiley L, Camuzeaux S, Lewis MR, Chappell KE, Thaikkatil A, Dumas ME, Nicholson JK, Swann JR, Wilson ID. A targeted ultra performance liquid chromatography - Tandem mass spectrometric assay for tyrosine and metabolites in urine and plasma: Application to the effects of antibiotics on mice. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1164:122511. [PMID: 33460909 DOI: 10.1016/j.jchromb.2020.122511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Tyrosine plays a key role in mammalian biochemistry and defects in its metabolism (e.g., tyrosinemia, alkaptonuria etc.) have significant adverse consequences for those affected if left untreated. In addition, gut bacterially-derived p-cresol and its metabolites are of interest as a result of various effects on host xenobiotic metabolism. A fit-for-purpose quantitative ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay was developed to target and quantify tyrosine and eleven metabolites in urine and plasma. Dansylation, using dansyl chloride, was used to improve chromatographic and mass spectral properties for tyrosine and nine phenolic metabolites, with detection using positive electrospray ionisation (ESI). The sulfate and glucuronide conjugates of p-cresol, where the phenol group was blocked, were quantified intact, using negative ESI via polarity switching during the same run. Sample preparation for urine and plasma involved deproteinization by solvent precipitation (of acetonitrile:isopropyl alcohol (1:1 v/v)) followed by in situ dansylation in 96 well plates. To minimize sample and solvent usage, and maximize sensitivity, analysis was performed using microbore reversed-phase gradient UPLC on a C8 phase with a 7.5 min. cycle time. The coefficients of variation obtained were <15%, with lower limits of quantification ranging from 5 to 250 nM depending upon the analyte. The method was applied to plasma and urine samples obtained from mice placed on a high tyrosine diet with one subgroup of animals subsequently receiving antibiotics to suppress the gut microbiota. Whilst plasma profiles were largely unaffected by antibiotic treatment clear reductions in the amount of p-cresol sulfate and p-cresol glucuronide excreted in the urine were observed for these mice.
Collapse
Affiliation(s)
- Marine P M Letertre
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK.
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, SW7 2AZ, UK
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins South Building, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch Perth, WA, 6150, Australia; National Phenome Centre, Dept of metabolism, Digestion and Reproduction, Imperial College London, W12 0NN
| | - Stéphane Camuzeaux
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK; National Phenome Centre, Dept of metabolism, Digestion and Reproduction, Imperial College London, W12 0NN
| | - Matthew R Lewis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK; National Phenome Centre, Dept of metabolism, Digestion and Reproduction, Imperial College London, W12 0NN
| | - Katie E Chappell
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK; National Phenome Centre, Dept of metabolism, Digestion and Reproduction, Imperial College London, W12 0NN
| | - Annie Thaikkatil
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK
| | - Marc-Emmanuel Dumas
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins South Building, Perth, WA 6150, Australia; Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building South Kensington Campus, London SW72NA, UK
| | - Jonathan R Swann
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK; School of Human Development and Health, Faculty of Medicine, University of Southampton, UK
| | - Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
35
|
Tu MJ, Duan Z, Liu Z, Zhang C, Bold RJ, Gonzalez FJ, Kim EJ, Yu AM. MicroRNA-1291-5p Sensitizes Pancreatic Carcinoma Cells to Arginine Deprivation and Chemotherapy through the Regulation of Arginolysis and Glycolysis. Mol Pharmacol 2020; 98:686-694. [PMID: 33051382 PMCID: PMC7673485 DOI: 10.1124/molpharm.120.000130] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are dysregulated and addicted to continuous supply and metabolism of nutritional glucose and amino acids (e.g., arginine) to drive the synthesis of critical macromolecules for uncontrolled growth. Recent studies have revealed that genome-derived microRNA (miRNA or miR)-1291-5p (miR-1291-5p or miR-1291) may modulate the expression of argininosuccinate synthase (ASS1) and glucose transporter protein type 1 (GLUT1). We also developed a novel approach to produce recombinant miR-1291 agents for research, which are distinguished from conventional chemo-engineered miRNA mimics. Herein, we firstly demonstrated that bioengineered miR-1291 agent was selectively processed to high levels of target miR-1291-5p in human pancreatic cancer (PC) cells. After the suppression of ASS1 protein levels, miR-1291 perturbed arginine homeostasis and preferably sensitized ASS1-abundant L3.3 cells to arginine deprivation therapy. In addition, miR-1291 treatment reduced the protein levels of GLUT1 in both AsPC-1 and PANC-1 cells, leading to a lower glucose uptake (deceased > 40%) and glycolysis capacity (reduced approximately 50%). As a result, miR-1291 largely improved cisplatin efficacy in the inhibition of PC cell viability. Our results demonstrated that miR-1291 was effective to sensitize PC cells to arginine deprivation treatment and chemotherapy through targeting ASS1- and GLUT1-mediated arginolysis and glycolysis, respectively, which may provide insights into understanding miRNA signaling underlying cancer cell metabolism and development of new strategies for the treatment of lethal PC. SIGNIFICANCE STATEMENT: Many anticancer drugs in clinical use and under investigation exert pharmacological effects or improve efficacy of coadministered medications by targeting cancer cell metabolism. Using new recombinant miR-1291 agent, we revealed that miR-1291 acts as a metabolism modulator in pancreatic carcinoma cells through the regulation of argininosuccinate synthase- and glucose transporter protein type 1-mediated arginolysis and glycolysis. Consequently, miR-1291 effectively enhanced the efficacy of arginine deprivation (pegylated arginine deiminase) and chemotherapy (cisplatin), offering new insights into development of rational combination therapies.
Collapse
Affiliation(s)
- Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine (M.-J.T., Z.D., Z.L., C.Z., A.-M.Y.), Division of Surgical Oncology (R.J.B.), Division of Hematology and Oncology, Department of Internal Medicine (E.J.K.), University of California (UC) Davis School of Medicine, Sacramento, California; and Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.)
| | - Zhijian Duan
- Department of Biochemistry and Molecular Medicine (M.-J.T., Z.D., Z.L., C.Z., A.-M.Y.), Division of Surgical Oncology (R.J.B.), Division of Hematology and Oncology, Department of Internal Medicine (E.J.K.), University of California (UC) Davis School of Medicine, Sacramento, California; and Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.)
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Medicine (M.-J.T., Z.D., Z.L., C.Z., A.-M.Y.), Division of Surgical Oncology (R.J.B.), Division of Hematology and Oncology, Department of Internal Medicine (E.J.K.), University of California (UC) Davis School of Medicine, Sacramento, California; and Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.)
| | - Chao Zhang
- Department of Biochemistry and Molecular Medicine (M.-J.T., Z.D., Z.L., C.Z., A.-M.Y.), Division of Surgical Oncology (R.J.B.), Division of Hematology and Oncology, Department of Internal Medicine (E.J.K.), University of California (UC) Davis School of Medicine, Sacramento, California; and Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.)
| | - Richard J Bold
- Department of Biochemistry and Molecular Medicine (M.-J.T., Z.D., Z.L., C.Z., A.-M.Y.), Division of Surgical Oncology (R.J.B.), Division of Hematology and Oncology, Department of Internal Medicine (E.J.K.), University of California (UC) Davis School of Medicine, Sacramento, California; and Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.)
| | - Frank J Gonzalez
- Department of Biochemistry and Molecular Medicine (M.-J.T., Z.D., Z.L., C.Z., A.-M.Y.), Division of Surgical Oncology (R.J.B.), Division of Hematology and Oncology, Department of Internal Medicine (E.J.K.), University of California (UC) Davis School of Medicine, Sacramento, California; and Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.)
| | - Edward J Kim
- Department of Biochemistry and Molecular Medicine (M.-J.T., Z.D., Z.L., C.Z., A.-M.Y.), Division of Surgical Oncology (R.J.B.), Division of Hematology and Oncology, Department of Internal Medicine (E.J.K.), University of California (UC) Davis School of Medicine, Sacramento, California; and Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine (M.-J.T., Z.D., Z.L., C.Z., A.-M.Y.), Division of Surgical Oncology (R.J.B.), Division of Hematology and Oncology, Department of Internal Medicine (E.J.K.), University of California (UC) Davis School of Medicine, Sacramento, California; and Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.)
| |
Collapse
|
36
|
Gamon LF, Guo C, He J, Hägglund P, Hawkins CL, Davies MJ. Absolute quantitative analysis of intact and oxidized amino acids by LC-MS without prior derivatization. Redox Biol 2020; 36:101586. [PMID: 32505089 PMCID: PMC7276450 DOI: 10.1016/j.redox.2020.101586] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/15/2023] Open
Abstract
The precise characterization and quantification of oxidative protein damage is a significant challenge due to the low abundance, large variety, and heterogeneity of modifications. Mass spectrometry (MS)-based techniques at the peptide level (proteomics) provide a detailed but limited picture due to incomplete sequence coverage and imperfect enzymatic digestion. This is particularly problematic with oxidatively modified and cross-linked/aggregated proteins. There is a pressing need for methods that can quantify large numbers of modified amino acids, which are often present in low abundance compared to the high background of non-damaged amino acids, in a rapid and reliable fashion. We have developed a protocol using zwitterionic ion-exchange chromatography coupled with LC-MS to simultaneously quantify both parent amino acids and their respective oxidation products. Proteins are hydrolyzed with methanesulfonic acid in the presence of tryptamine and purified by strong cation exchange solid phase extraction. The method was validated for the common amino acids (excluding Gln, Asn, Cys) and the oxidation products 3-chlorotyrosine (3-ClTyr), 3-nitrotyrosine (3-NO2Tyr), di-tyrosine, Nε-(1-carboxymethyl)-l-lysine, o,o’-di-tyrosine, 3,4,-dihydroxyphenylalanine, hydroxy-tryptophan and kynurenine. Linear standard curves were observed over ~3 orders of magnitude dynamic range (2–1000 pmol for parent amino acids, 80 fmol–20 pmol for oxidation products) with limit-of-quantification values as low as 200 fmol (o,o’-di-tyrosine). The validated method was used to quantify Tyr and Trp loss, and formation of 3-NO2Tyr on the isolated protein anastellin treated with peroxynitrous acid, and for 3-ClTyr formation (over a 2 orders of magnitude range) in cell lysates and complex protein mixtures treated with hypochlorous acid. Identification and quantification of oxidative protein damage is a major challenge. A versatile LC-MS assay is reported that involves hydrolysis to free amino acids. Quantification is possible for both parent amino acids and products in single runs. A dynamic range of 2-3 orders of magnitude is available for most analytes. Example of use with pure proteins, extracellular matrix and cell lysates are given.
Collapse
Affiliation(s)
- Luke F Gamon
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chaorui Guo
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jianfei He
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Hägglund
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clare L Hawkins
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Tang X, Chen H, Chen G, Duan C, Fan Q, Li H, Wang Y, Li Z, Shi W, Liu Y. Validated LC-MS/MS method of Sphingosine 1-phosphate quantification in human serum for evaluation of response to radiotherapy in lung cancer. Thorac Cancer 2020; 11:1443-1452. [PMID: 32233070 PMCID: PMC7262919 DOI: 10.1111/1759-7714.13409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background Sphingosine 1‐phosphate (S1P), a bioactive lipid, has been shown to mediate cancer processes. Therefore, accurate qualitative and quantitative determination is essential. The current assay method is still cumbersome to be of practical use worldwide and the aim of this study was therefore to develop a fast, accurate, precise and efficient LC‐MS/MS method for targeted analyses of S1P in serum samples. Methods Liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) is an established method used for monitoring and analyzing S1P levels in serum. We determined the level of serum S1P in 256 patients with lung cancer and 36 healthy donors, and used Spearman';s rank correlation analysis to evaluate the difference in serum S1P levels between radiotherapy and nonradiotherapy patients. Results Standard curves were linear over ranges of 25–600 ng/mL for S1P with correlation coefficient (r2) greater than 0.9996. The lower limit of quantifications (LLOQs) was 25 ng/mL. The intra‐ and interbatch precisions and accuracy was less than 10% for S1P. The recoveries of the method were found to be 80%–98%. Serum S1P levels in healthy donors were different from those in patients (P < 0.001). Of 256 lung cancer patients, 124 (48.4%) received radiotherapy and were identified to have concomitant low serum S1P levels (222.13 ± 48.63), whereas 132 (51.6%) who had not received radiotherapy were identified to have high levels (315.16 ± 51.06). The serum S1P levels were therefore associated with radiotherapy (Spearman's Rho = −0.653, P < 0.001). Conclusions Our results indicated that this new LC‐MS/MS method is rapid, sensitive, specific and reliable for the quantification of S1P levels in serum samples. The level of S1P in serum samples of patients with lung cancer who received radiotherapy was significantly lower than that in patients who did not receive radiotherapy. Key points An improved method was established to quantify S1P levels in human serum by LC‐MS/MS, which enabled the change in serum S1P levels in lung cancer patients to be monitored, in combination with radiotherapy, and their clinical significance to be analyzed.
Collapse
Affiliation(s)
- Xiaohui Tang
- School of Medicine and Life Sciences, University of Jinan Shandong Academy of Medical Sciences, Jinan, China.,Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haisheng Chen
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanxuan Chen
- Department of ICU, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Cunxian Duan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanhong Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhijun Li
- School of Medicine and Life Sciences, University of Jinan Shandong Academy of Medical Sciences, Jinan, China.,Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuguo Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
38
|
Yi W, Tu MJ, Liu Z, Zhang C, Batra N, Yu AX, Yu AM. Bioengineered miR-328-3p modulates GLUT1-mediated glucose uptake and metabolism to exert synergistic antiproliferative effects with chemotherapeutics. Acta Pharm Sin B 2020; 10:159-170. [PMID: 31993313 PMCID: PMC6976971 DOI: 10.1016/j.apsb.2019.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small noncoding RNAs derived from genome to control target gene expression. Recently we have developed a novel platform permitting high-yield production of bioengineered miRNA agents (BERA). This study is to produce and utilize novel fully-humanized BERA/miR-328-3p molecule (hBERA/miR-328) to delineate the role of miR-328-3p in controlling nutrient uptake essential for cell metabolism. We first demonstrated successful high-level expression of hBERA/miR-328 in bacteria and purification to high degree of homogeneity (>98%). Biologic miR-328-3p prodrug was selectively processed to miR-328-3p to suppress the growth of highly-proliferative human osteosarcoma (OS) cells. Besides glucose transporter protein type 1, gene symbol solute carrier family 2 member 1 (GLUT1/SLC2A1), we identified and verified large neutral amino acid transporter 1, gene symbol solute carrier family 7 member 5 (LAT1/SLC7A5) as a direct target for miR-328-3p. While reduction of LAT1 protein levels by miR-328-3p did not alter homeostasis of amino acids within OS cells, suppression of GLUT1 led to a significantly lower glucose uptake and decline in intracellular levels of glucose and glycolytic metabolite lactate. Moreover, combination treatment with hBERA/miR-328 and cisplatin or doxorubicin exerted a strong synergism in the inhibition of OS cell proliferation. These findings support the utility of novel bioengineered RNA molecules and establish an important role of miR-328-3p in the control of nutrient transport and homeostasis behind cancer metabolism.
Collapse
Key Words
- 2-NBDG, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose
- ABCG2, ATP-binding cassette subfamily G member 2
- ACN, acetonitrile
- Au/Uv, absorbance unit of ultraviolet-visible spectroscopy
- BCRP, breast cancer resistant protein
- BERA, bioengineered miRNA agent
- Bioengineered RNA
- CI, combination index
- CPT, cisplatin
- Cancer
- Chemosensitivity
- DOX, doxorubicin
- E. coli, Escherichia coli
- ESI, electrospray ionization
- FPLC, fast protein liquid chromatography
- Fa, fraction affected
- GLUT1
- GLUT1, glucose transporter protein type 1
- HCC, hepatocellular carcinoma
- HPLC, high-performance liquid chromatography
- IS, internal standard
- KRB, Krebs–Ringer bicarbonate
- LAT1
- LAT1, large neutral amino acid transporter 1
- LC–MS/MS, liquid chromatography–tandem mass spectroscopy
- MCT4, monocarboxylate transporter 4
- MRE, miRNA response elements
- MRM, multiple reaction monitoring
- MiR-328
- OS, osteosarcoma
- PAGE, polyacrylamide gel electrophoresis
- PTEN, phosphatase and tensin homolog
- PVDF, Polyvinylidene fluoride
- RAGE, receptor for advanced glycosylation end products
- RT-qPCR, reverse transcription quantitative real-time polymerase chain reaction
- SLC2A1, 7A5, 16A3, solute carrier family 2 member 1, family 7 member 5, family 16 member 3
- WT, wild type
- hBERA, humanized bioengineered miRNA agent
- hsa, Homo sapiens
- htRNASer, human seryl-tRNA
- mTOR, mammalian target of rapamycin
- miR or miRNA, microRNA
- ncRNA, noncoding RNAs
- nt, nucleotide
Collapse
Affiliation(s)
- Wanrong Yi
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Zhenzhen Liu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Chao Zhang
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Neelu Batra
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Ai-Xi Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| |
Collapse
|