1
|
Wang J, Hui X, Liu H, Dai X. Classification, characteristics, harmless treatment and safety assessment of antibiotic pharmaceutical wastewater (APWW): A comprehensive review. CHEMOSPHERE 2024; 366:143504. [PMID: 39389375 DOI: 10.1016/j.chemosphere.2024.143504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The issues related to the spread of antibiotics and antibiotic resistance genes (ARGs) have garnered significant attention from researchers and governments. The production of antibiotics can lead to the emission of high-concentration pharmaceutical wastewater, which contains antibiotic residues and various other pollutants. This review compiles the classification and characteristics of antibiotic pharmaceutical wastewater (APWW), offers an overview of the development, advantages, and disadvantages of diverse harmless treatment processes, and presents a strategy for selecting appropriate treatment approaches. Biological treatment remains the predominant approach for treating APWW. In addition, several alternative methods can be employed to address the challenges associated with APWW treatment. On the other hand, the present safety assessment of the effluent resulting from APWW treatment is inadequate, necessitating more comprehensive research in this domain. It is recommended that researches in this area consider the issue of toxicity and antibiotic resistance as well. The PNECR model (similar to ecotoxicological PNECs but used to specifically refer to endpoints related to antimicrobial resistance) (Murray et al., 2024) is an emerging tool used for evaluating the antimicrobial resistance (AMR) issue. This model is, characterized by its simplicity and effectiveness, is a promising tool for assessing the safety of treated APWW.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xuesong Hui
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
2
|
Gao X, Liu M, Lei M, Kong Y, Xu X, Zhang Q. A Zn-MOF-based mixed matrix membrane as an ultrastable luminescent sensor for selective and visual detection of antibiotics and pesticides in food samples. Talanta 2024; 277:126303. [PMID: 38796929 DOI: 10.1016/j.talanta.2024.126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The detection of antibiotics and pesticides are of great significance since their residues threaten the health of human beings by accumulation. However, most traditional solid chemical sensors are suffer from the limitations of low sensitivity and economic practicability because of the aggregating nature and unstable of solid sensors. Herein, a new luminescent sensor 1@PMMA (1, [(ZnL)·H2O]n (H2L = 5-(4-(pyridin-4-yl)benzamido)benzene-1,3-dioic acid); PMMA = poly(methyl methacrylate)) was successfully prepared. Notably, the polymer matrix provided the chemical protection for MOF particles. The as fabricated 1@PMMA was stable in milk, honey and egg as well as exhibited strong blue emission under ultraviolet light irradiation, which can act as luminescent probe for detecting antibiotics and pesticides. More interestingly, 1@PMMA exhibited visual, real-time and recyclable detection of antibiotics ornidazole (ODZ) and pesticides 2,6-dichloro-4-nitrobenzenamine (DCN) in real food samples. This work shows that the luminescent MOF-based mixed matrix membranes could be applied as good candidates for sensing analytes in practical application.
Collapse
Affiliation(s)
- Xiuting Gao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Mengying Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Mingyuan Lei
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, Shandong 250014, China
| | - Yuxia Kong
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinjiang Xu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Qingfu Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
3
|
He Y, Liu L, Wang Q, Dong X, Huang J, Jia X, Peng X. Bio-degraded of sulfamethoxazole by microbial consortia without addition nutrients: Mineralization, nitrogen removal, and proteomic characterization. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133558. [PMID: 38262313 DOI: 10.1016/j.jhazmat.2024.133558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Sulfamethoxazole (SMX) is widely employed as an antibiotic, while its residue in environment has become a common public concern. Using 100 mg/L SMX as the sole nutrient source, the acclimated sludge obtained by this study displayed an excellent SMX degradation performance. The addition of SMX resulted in significant microbiological differentiation within the acclimated sludge. Microbacterium (6.6%) was identified as the relatively dominant genera in metabolism group that used SMX as sole carbon source. Highly expressed proteins from this strain strongly suggested its essential role in SMX degradation, while the degradation of SMX by other strains (Thaurea 78%) in co-metabolism group appeared to also rely on this strain. The interactions of differentially expressed proteins were primarily involved in metabolic pathways including TCA cycle and nitrogen metabolism. It is concluded that the sulfonamides might serve not only as the carbon source but also as the nitrogen source in the reactor. A total of 24 intermediates were identified, 13 intermediates were newly reported. The constructed pathway suggested the mineralizing and nitrogen conversion ability towards SMX. Batch experiments also proved that the acclimated sludge displayed ability to biodegrade other sulfonamides, including SM2 and SDZ and SMX-N could be removed completely.
Collapse
Affiliation(s)
- Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
5
|
Ettadili FE, Aghris S, Laghrib F, Farahi A, Bakasse M, Lahrich S, Mhammedi MAEL. Electrochemical detection of ornidazole in commercial milk and water samples using an electrode based on green synthesis of silver nanoparticles using cellulose separated from Phoenix dactylifera seed. Int J Biol Macromol 2023; 242:124995. [PMID: 37236559 DOI: 10.1016/j.ijbiomac.2023.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The widespread use of antibiotics has contributed to the control of disease and the nutritional well-being of livestock. Antibiotics reach the environment via excretions (urine and feces) from human and domestic animals, through non proper disposal or handling of unused drugs. The present study describes a green method for the synthesis of silver nanoparticle (AgNPs) using cellulose extracted from Phoenix dactylifera seed powder via mechanical stirrer method for the electroanalytical determination of ornidazole (ODZ) in milk and water samples. The cellulose extract is used as the reducing and stabilizer agent for the synthesis of AgNPs. The obtained AgNPs were characterized by UV-Vis, SEM and EDX, presenting a spherical shape and an average size of 48.6 nm. The electrochemical sensor (AgNPs/CPE) was fabricated by dipping a carbon paste electrode (CPE) in the AgNPs colloidal solution. The sensor shows acceptable linearity with ODZ concentration in the linear range from 1.0 × 10-5 to 1.0 × 10-3 M with a limit of detection (LOD =3S/P) and quantification (LOQ =10S/P) of 7.58 × 10-7 M and 2.08 × 10-6 M respectively.
Collapse
Affiliation(s)
- F E Ettadili
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - S Aghris
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, Laboratory of Electrochemistry Engineering, Modeling, and Environment, Faculty of Sciences, Fez, Morocco
| | - A Farahi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M A E L Mhammedi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco.
| |
Collapse
|
6
|
Zhang J, Li Y, Gong Y, Zhu C, Zhang L, Tang H, He W, Wang B. Bi(Ⅲ) and Ce(Ⅳ) functionalized carbon nitride photocatalyst for antibiotic degradation: Synthesis, toxicity, and mechanism investigations. CHEMOSPHERE 2023; 333:138888. [PMID: 37209849 DOI: 10.1016/j.chemosphere.2023.138888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Graphite-phase carbon nitride (g-C3N4) has shown great potential for antibiotic wastewater treatment due to its unique electronic structure and corresponding to visible light. In this study, a series of Bi/Ce/g-C3N4 photocatalysts with different doping amount were developed by direct calcination method for Rhodamine B and sulfamethoxazole photocatalytic degradation. The experiment result shows that the photocatalytic performance of Bi/Ce/g-C3N4 catalysts were better than that of single component samples. Under the optimal experimental conditions, the degradation rates of RhB (20 min) and SMX (120 min) by 3Bi/Ce/g-C3N4 reached 98.3% and 70.5%, respectively. The theoretical calculation results of DFT show that after Bi and Ce doping modification, the band-gap width of g-C3N4 is reduced to 1.215 eV and carrier migration rate is greatly improved. The enhanced photocatalytic activity was mainly attributed to the capture of electrons after doping modification, which inhibition of photogenerated carriers recombination and reduced the gap width. The cyclic treatment experiment of sulfamethoxazole showed that Bi/Ce/g-C3N4 catalysts had good stability. Ecosar evaluation and leaching toxicity test showed that Bi/Ce/g-C3N4 can be safely used for wastewater treatment. This study provides a perfect strategy for modifying g-C3N4 and a new way to improve the photocatalytic performance.
Collapse
Affiliation(s)
- Jian Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, PR China(2).
| | - Yuanchun Li
- College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, PR China(2)
| | - Yuanyi Gong
- College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, PR China(2)
| | - Chuntao Zhu
- College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, PR China(2)
| | - Lanhe Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, PR China(2)
| | - Hong Tang
- College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, PR China(2)
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China(2).
| | - Bing Wang
- College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, PR China(2)
| |
Collapse
|
7
|
Mehrabanpour N, Nezamzadeh-Ejhieh A, Ghattavi S. Cefotaxime degradation by the coupled binary CdS-PbS: characterization and the photocatalytic process kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33725-33736. [PMID: 36495433 DOI: 10.1007/s11356-022-24613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Increased water pollution due to discharging industrial/urban/hospital wastewater has been adopted to introduce/develop novel removal techniques/catalyst/adsorbent. The hexagonal (wurtzite) CdS and the cubic PbS nanoparticles (NPs) were synthesized, coupled, and supported onto clinoptilolite NPs (CNP). Then, the sample was characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR), and a scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM-EDX) techniques. The average crystallite size for CdS NPs, PbS NPs, CNP, and CdS-PbS/CNP samples was obtained at about 24, 36, 27, and 14 nm using the Scherrer formula value of nanometer, by the W-H formula, 31, 17, 39, and 51, respectively. Only a detectable slope can be observed from the DRS spectra for CdS NPs at 591 nm corresponding to an Eg value of 2.1 eV. PbS NPs have a broad abruption peak that begins from the visible region and extends to the IR region of the light. A boosted photocatalytic activity of the supported binary catalysts towards cefotaxime (CT) was reached. An apparent first kinetic model was reached with a k-value of 0.021 min-1 corresponding to the t1/2 value of 33 min. A decreased COD trend for the photodegraded CT solutions was reached, and the chemical oxygen demand (COD) results in the Hinshelwood model showed a k-value of 0.016 min-1, corresponding to a t1/2 value of 43 min.
Collapse
Affiliation(s)
- Najme Mehrabanpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran.
| | - Shirin Ghattavi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Islamic Republic of Iran
| |
Collapse
|
8
|
Afzal MZ, Hameed S, Mohiuddin M, Abbasi A. Simultaneous adsorptive removal of three fluoroquinolones using humic acid modified hydrogel beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24398-24407. [PMID: 36344886 DOI: 10.1007/s11356-022-23855-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
This study elaborates the simultaneous removal of three different fluoroquinolones (FQs), i.e., Norfloxacin (NOR), Lomefloxacin (LOM), and Enrofloxacin (ENR) from water using hydrogel beads of humic acid coated biochar (HA-BC) and chitosan. In our previous study, this adsorbent has already achieved tremendous results for the removal of a single FQ, i.e., ciprofloxacin. Now, initial concentrations of all FQs were set 100 mg/L each, and the maximum adsorbed amounts were 38.08 mg/g (NOR), 25.03 mg/g (LOM), and 29.72 mg/g (ENR). Adsorption attained equilibrium after 24 h, which obeyed the pseudo-second-order kinetic model. The mutation of humic acid-biochar/chitosan hydrogel beads (HBCB) with alcoholic solvents, i.e., methanol and ethanol to replace water decreased its sorption capacities from 38.08 mg/g (NOR) to 34.91 mg/g and 32.19 mg/g, respectively. Similarly, from 25.03 mg/g (LOM) to 22.81 mg/g and 19.91 mg/g, and 29.72 mg/g (ENR) to 26.52 mg/g and 24.64 mg/g. Adsorption isotherm data for all FQs were up to both Langmuir and Freundlich, but it suited more to that of Langmuir adsorption isotherm model. Sorption capacities, for all FQs, had a minor decline due to addition of NaCl, NaNO3, and Na2SO4. However, there was a huge decline when Na3PO4 was added into the adsorption system. Adsorbent was desorbed and regenerated for consecutive removal, and it showed good adsorption in the 4th cycle, i.e., 47 mg/g net adsorption. These results prove that HBCB is not only effective for adsorption removal of ciprofloxacin but also for other FQs too.
Collapse
Affiliation(s)
| | - Salma Hameed
- Department of Environmental Sciences, University of Jhang, Jhang, Punjab, Pakistan
| | - Muhammad Mohiuddin
- Department of Environmental Sciences, Kohsar University, Murree, 47150, Pakistan
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University, Murree, 47150, Pakistan
| |
Collapse
|
9
|
Moral-Rodríguez AI, Leyva-Ramos R, Mendoza-Mendoza E, Díaz-Flores PE, Carrales-Alvarado DH, Alexandre-Franco MF, Fernández-González C. Single adsorption of diclofenac and ronidazole from aqueous solution on commercial activated carbons: effect of chemical and textural properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25193-25204. [PMID: 35015236 DOI: 10.1007/s11356-021-17466-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
The importance of the textural and physicochemical characteristics upon the adsorption capacity of the commercial activated carbons (ACs) Coconut, Wood, Merck, Darco, and Norit towards ronidazole (RNZ) and diclofenac (DCF) from water solution was investigated thoroughly in this work. At pH = 7, Coconut AC and Wood AC presented the highest adsorption capacity towards RNZ (444 mg/g) and DCF (405 mg/g). The maximum mass of RNZ adsorbed onto Coconut AC was higher in this study than those outlined previously in other works. Besides, the maximum capacity of Wood AC for adsorbing DCF was comparable to those found for other ACs. The adsorption capacity of all the ACs was increased by surface area and was favored by incrementing the acidic site concentration. The π-π stacking interactions were the predominant adsorption mechanism for the RNZ and DCF adsorption on ACs, and the acidic sites favored the adsorption capacity by activating the π-π stacking. Electrostatic interactions did not influence the adsorption of RNZ on Coconut AC, but electrostatic repulsion decreased that of DCF on Wood AC. The adsorption of DCF on Wood AC was reversible but not that of RNZ on Coconut AC. Besides, the adsorption of RNZ and DCF on the Coconut and Wood ACs was endothermic in the range of 15-25 °C.
Collapse
Affiliation(s)
- Adriana I Moral-Rodríguez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, UASLP, Av. Dr. Manuel Nava No. 6, SLP 78210, San Luis Potosí, Mexico
| | - Roberto Leyva-Ramos
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, UASLP, Av. Dr. Manuel Nava No. 6, SLP 78210, San Luis Potosí, Mexico.
| | - Esmeralda Mendoza-Mendoza
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, UASLP, Av. Dr. Manuel Nava No. 6, SLP 78210, San Luis Potosí, Mexico
- Cátedra-CONACYT, Mexico City, Mexico
| | - Paola E Díaz-Flores
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, SLP 78321, San Luis Potosí, Mexico
| | | | | | | |
Collapse
|
10
|
Mehrabanpour N, Nezamzadeh-Ejhieh A, Ghattavi S. The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5089-5102. [PMID: 35978238 DOI: 10.1007/s11356-022-22557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
In recent decades, increased world population and industrial activities explosively polluted our environment, especially the aquatic resources. This requires introducing/developing novel methods to decrease the pollution extent of such resources. Here, the hexagonal (wurtzite) CdS nanoparticles (NPs) were synthesized and supported onto ball-mill prepared clinoptilolite NPs (CNP). Samples were briefly characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM-EDX), and diffuse reflectance spectroscopy (DRS) techniques. The average crystallite size for CdS NPs and CdS-CNP samples was estimated to be about 9.0 nm and 12.3 nm (from the Scherrer formula) and about 19.7 and 17.5 nm (from the Williamson-Hall model), respectively. From the DRS spectra, the absorption wavelengths of 595 and 546 nm correspond to band gap energies of 2.08, and 2.27 eV was obtained for CdS NPs and CdS-CNP samples. The samples were then used in the photodegradation of cefotaxime (CT), and the results showed a boosted photocatalytic activity for CdS-CNP rather than CdS NPs. The photodegradation process obeyed the pseudo-first-order kinetic model, and the CdS and CdS-CNP catalysts obtained the k-values of 0.013 min-1 and 0.023 min-1. When the photodegraded CT solutions were used in COD experiments, the k-values changed to 0.011 min-1 and 0.029 min-1, respectively. The zeolite support is an eco-friendly natural zeolite with abundant deposits in Iran that yields a cost-effective method.
Collapse
Affiliation(s)
- Najme Mehrabanpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Shirin Ghattavi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Islamic Republic of Iran
| |
Collapse
|
11
|
Nasrollahi N, Vatanpour V, Khataee A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156010. [PMID: 35595150 DOI: 10.1016/j.scitotenv.2022.156010] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics and related pharmaceuticals are applied to enhance public health and life quality. A major environmental concern is wastewaters from pharmaceutical industries, which contain significant amounts of antibiotics. Pharmaceutical industries apply conventional processes (biological, filtration, coagulation, flocculation, and sedimentation) for wastewater treatment, but these approaches cannot remove antibiotics completely. Moreover, unmetabolized antibiotics released by humans and animals are dangerous for municipal and effluent wastewater. Besides, antibiotic resistance is another challenge in treatment of wastewater for superbugs. This comprehensive study summarizes different techniques for antibiotic removal with an emphasis on membrane technology in individual and hybrid systems such as chemical, physical, biological, and conditional-based strategies. A combination of membrane processes with advanced oxidation processes (AOPs), adsorption, and biological treatments can be the right solution for perfect removal. Furthermore, this review briefly compares different procedures for antibiotic removal, which can be helpful for further studies with their advantages and drawbacks.
Collapse
Affiliation(s)
- Nazanin Nasrollahi
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
12
|
Al-Hakkani MF, Gouda GA, Hassan SHA, Saddik MS, El-Mokhtar MA, Ibrahim MA, Mohamed MMA, Nagiub AM. Cefotaxime removal enhancement via bio-nanophotocatalyst α-Fe 2O 3 using photocatalytic degradation technique and its echo-biomedical applications. Sci Rep 2022; 12:11881. [PMID: 35831423 PMCID: PMC9279508 DOI: 10.1038/s41598-022-14922-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 01/01/2023] Open
Abstract
The present paper evaluates the photocatalytic degradation (PCD) performance of the biofabricated hematite nanoparticles (α-HNPs) for the degradation approach of the Cefotaxime (Cfm). The optimum pH of the solution to achieve the best PCD was found to be 10.5. The kinetics study for the PCD of the Cfm via α-HNPs has been investigated and the reaction was found to be fellow pseudo-first-order at R2 = 0.992. The mass loading impact of α-HNPs was investigated and estimated for the maximum degradation of Cfm 0.4 mg/mL. UV-Vis confirmed that α-HNPs had a direct transition bandgap at 3.78 eV at a maximum absorption wavelength of 362 nm with suspension stability for 7 days. The probable mechanism of the Cfm PCD via α-HNPs and the degradation pathway was conducted. The validation of the suspension stability of the α-HNPs (-68.6 ± 11.8 mV) was determined using the zeta potential investigation test. XRD investigation was conducted after Cfm PCD showing an average crystallite size of 27.0 nm. XRD, TEM, SEM, EDX, and FT-IR analyses have been conducted for the α-HNPs before and after Cfm PCD confirming the high efficiency for the reusability of the current biocatalyst α-HNPs for further use. TEM results of the particle sizes of α-HNPs were found at 19.2 ± 4.4 and 20.6 ± 7.4 nm respectively before and after Cfm PCD. The efficiency of the Cfm PCD was found to be 99.1% after 6 h. High potent as an antibacterial agent of α-HNPs was investigated either α-HNPs alone or after its PCD activity against Cfm. The antibacterial activity revealed high sensitivity, especially toward Gram-positive species indicating its promising ability against pathogenic issues. Interestingly, Cfm@α-HNPs showed superior anti-proliferative activity as tested by MTT assay and were able to induce apoptosis in MCF7 and HepG2 cell lines using the flow cytometry technique at 20.7% and 17% respectively. Also, The IC50 of hydrogen peroxide scavenging was estimated and it was manifested that 635.8 and 665.6 μg/mL of α-HNPs before and after the PCD process of Cfm respectively.
Collapse
Affiliation(s)
- Mostafa F Al-Hakkani
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| | - Gamal A Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sedky H A Hassan
- Department of Biology, College of Science, Sultan Qaboos University, 123, Muscat, Oman
- Department of Botany and Microbiology, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Mohammed S Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maggie A Ibrahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mahmoud M A Mohamed
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Adham M Nagiub
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
13
|
Effective removal of tinidazole by MIL-53(Al)-NDC metal-organic framework from aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Xu M, Wang J, Zhang L, Wang Q, Liu W, An Y, Hao L, Wang C, Wang Z, Wu Q. Construction of hydrophilic hypercrosslinked polymer based on natural kaempferol for highly effective extraction of 5-nitroimidazoles in environmental water, honey and fish samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128288. [PMID: 35066223 DOI: 10.1016/j.jhazmat.2022.128288] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
A series of novel hydroxyl-functional hypercrosslinked polymers (named as HCPs-Kae) were fabricated using natural and environmentally benign kaempferol as monomer via one-step Friedel-Crafts reaction. The prepared HCP-Kae1-24 h exhibited large surface area, good hydrophilicity and excellent adsorption performance to 5-nitroimidazoles (5-NDZs). Thus, by applying HCP-Kae1-24 h as a solid-phase extraction adsorbent, a sensitive method was developed for enrichment of 5-NDZs including metronidazole, ronidazole, secnidazole, dimetridazole and ornidazole prior to high performance liquid chromatography analysis. Under the optimum conditions, good linearities were achieved in the range of 0.10-100.0 ng mL-1 for water, 1.3-500.0 ng g-1 for honey, and 1.7-100.0 ng g-1 for fish meat. The detection limits of the method were 0.03-0.05 ng mL-1, 0.4-1.0 ng g-1, 0.5-1.0 ng g-1 for water, honey and fish meat, respectively. High method recovery was obtained in the range of 84-118% with relative standard deviations lower than 8.9%. The established method was successfully applied to the detection of 5-NDZs in environmental water, honey and fish samples. This work provides a new strategy for constructing hydroxyl-functional HCPs by using natural resource as robust adsorbent for adsorption/extraction applications.
Collapse
Affiliation(s)
- Mingming Xu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Junmin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lihong Zhang
- Department of Basic Courses, Hebei Agricultural University, Huanghua 061100, Hebei, China
| | - Qianqian Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yangjuan An
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
15
|
Azizi D, Arif A, Blair D, Dionne J, Filion Y, Ouarda Y, Pazmino AG, Pulicharla R, Rilstone V, Tiwari B, Vignale L, Brar SK, Champagne P, Drogui P, Langlois VS, Blais JF. A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. ENVIRONMENTAL RESEARCH 2022; 207:112196. [PMID: 34634314 DOI: 10.1016/j.envres.2021.112196] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
In the recent years, endocrine disrupting compounds (EDCs) has received increasing attention due to their significant toxic effects on human beings and wildlife by affecting their endocrine systems. As an important group of emerging pollutant, EDCs have been detected in various aquatic environments, including surface waters, groundwater, wastewater, runoff, and landfill leachates. Their removal from water resources has also been an emerging concern considering growing population as well as reducing access to fresh water resources. EDC removal from wastewaters is highly dependent on physicochemical properties of the given EDCs present in each wastewater types as well as various aquatic environments. Due to chemical, physical and physicochemical diversities in these parameters, variety of technologies consisting of physical, biological, electrochemical, and chemical processes have been developed for their removal. This review highlights that the effectiveness of EDC removal is highly dependent of selecting the appropriate technology; which decision is made upon a full wastewater chemical characterization. This review aims to provide a comprehensive perspective about all the current technologies used for EDCs removal from various aquatic matrices along with rising challenges such as the antimicrobial resistance gene transfer during EDC treatment.
Collapse
Affiliation(s)
- Dariush Azizi
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Ayman Arif
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - David Blair
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Dionne
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yassine Ouarda
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Ana Gisell Pazmino
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Bhagyashree Tiwari
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Pascale Champagne
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada; Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Patrick Drogui
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Jean-François Blais
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
16
|
Zirconium(IV) Metal Organic Frameworks with Highly Selective Sorption for Diclofenac under Batch and Continuous Flow Conditions. CRYSTALS 2022. [DOI: 10.3390/cryst12030424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diclofenac (DCF) is among the most effective non-steroidal anti-inflammatory drugs (NSAIDs) and at the same time one of the most consumed drugs worldwide. Since the ever-increasing use of diclofenac poses serious threats to ecosystems, its substantial removal is crucial. To address this issue, a variety of sorbents have been employed. Herein we present the diclofenac removal properties of two metal organic frameworks, namely [Zr6O4(OH)4(NH2BDC)6]·xH2O (MOR-1) and H16[Zr6O16(H2PATP)4]·xH2O (MOR-2). Batch studies revealed fast sorption kinetics for removal of DCF− from water as well as particularly high selectivity for the drug vs. common competitive species. Moreover, the composite MOR-1-alginic acid material was utilized in a sorption column, displaying remarkable removal efficiency towards DCF− anions. Significantly, this is the first time that column sorption data for removal of NSAIDs using MOF-based materials is reported.
Collapse
|
17
|
Yang Z, Luo Y, Yue J, Wang X, Xu H, Ye Q, Zhang Y, Xing X, Wang Q, Zhang J. Activation of O 2 by zero-valent zinc assisted with Cu(II) for organics removal: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127506. [PMID: 34666294 DOI: 10.1016/j.jhazmat.2021.127506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This study proposes a method to activate O2 by accelerating the corrosion process for zero-valent zinc (ZVZ) with the assistance of Cu(II), promoting the consecutive production of reactive oxygen species. The mechanisms for reactive oxygen species generation are clarified with metronidazole (MTZ) as the targeted pollutant. The outcome suggests the association of Cu(Ⅱ) and ZVZ presents an apparent cooperative activity, an enhancement of 85% in MTZ removal is attained for the ZVZ/Cu(Ⅱ) system after 10 min compared to that for ZVZ. Analysis of the mechanisms involved indicates that this improvement is due to the addition of Cu(Ⅱ), which can accelerate the corrosion of ZVZ. In addition, quenching experiments and electron paramagnetic resonance (EPR) technology show that superoxide radicals (·O2-) result in rapid MTZ degradation. The primary component that is liable for O2 activation and a certain amount of H2O2 generation is verified to be ZVZ. Moreover, Cu(I) is detected in the ZVZ/Cu(Ⅱ) system, which arises from a direct reduction pathway driven by ZVZ and an indirect reduction pathway driven by active hydrogen atoms.
Collapse
Affiliation(s)
- Zhiwei Yang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yiwen Luo
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Jiapeng Yue
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Xinyu Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Hao Xu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Qian Ye
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yujian Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Xinyi Xing
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Qingguo Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
18
|
Enhanced effect of pyrite on the removal of metronidazole by zero valent iron. J Colloid Interface Sci 2021; 600:775-783. [PMID: 34051465 DOI: 10.1016/j.jcis.2021.05.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/08/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023]
Abstract
The abuse and improper disposal of antibiotics including metronidazole (MNZ) result in serious contamination in aquatic environments. In this study, pyrite, which was not reactive for MNZ removal, was simply mixed with zero valent iron (ZVI) to efficiently remove MNZ in anaerobic aqueous solutions. A dual ZVI/pyrite system consisting of ZVI (1.0 g/L) and pyrite (4.0 g/L) removed MNZ completely in 360 min within a broad pH0 range (5.0-9.0), and it still maintained a high removal efficiency (~80%) even at a high pH0 of 10.0. By contrast, single ZVI (1.0 g/L) showed much lower efficiency (4.8%-22.0%) within the same pH0 range (5.0-10.0). On investigating the mechanism of MNZ removal, the cooperation between ZVI and pyrite enhanced the surface corrosion of ZVI and facilitated the redox cycle of Fe(III)/Fe(II) to generate more sorbed Fe(II), which was a dominant reactive species for MNZ removal. Pyrite also activated the ZVI surface to form FeS@Fe in situ, accelerating the electron transfer from Fe0 core to the surface-enriched MNZ, and stimulated the formation of green rust sulfate on the ZVI surface to further promote MNZ removal. LC-MS analysis confirmed ZVI/pyrite reductively transformed MNZ into readily biodegradable products by denitration and cleavage of hydroxyethyl.
Collapse
|
19
|
Yang W, Yang Z, Shao L, Li S, Liu Y, Xia X. Photocatalytic reduction of Cr(VI) over cinder-based nanoneedle in presence of tartaric acid: Synergistic performance and mechanism. J Environ Sci (China) 2021; 107:194-204. [PMID: 34412782 DOI: 10.1016/j.jes.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/13/2023]
Abstract
Cr(VI) is a common heavy metal ion, which will seriously harm human body and environment. Therefore, the removal of Cr(VI) has become an attractive topic. In this work, cinder was used as a raw material to synthesize a nanoneedle material: γ-(AlOOH@FeOOH) (γ-Al@Fe). The physicochemical properties of γ-Al@Fe were thoroughly characterized, and its effectiveness as a catalyst for photocatalytic reduction of Cr(VI) was evaluated. The results showed that Cr(VI) could be efficiently reduced by γ-Al@Fe in the presence of tartaric acid (TA) under visible light. The variable factors on the reaction were investigated in detail, and the results showed that under optimal conditions (γ-Al@Fe 0.4 g/L, TA 0.6 g/L, pH 2), Cr(VI) was completely reduced within 7 min. Besides, scavenger experiments and EPR proved that O2• - and CO2• - played a significant role in the photocatalytic reduction of Cr(VI). TA acts as a sacrificial agent to trap the holes and generate strong reducing free radicals: CO2• -. Dissolving O2 could react with electrons to generate O2• -. This work discussed the performance and mechanism of photocatalytic reduction of Cr(VI) in detail, which provided a new idea for the resource utilization of solid waste and the treatment of heavy metal sewage.
Collapse
Affiliation(s)
- Wenwu Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhenfei Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luhua Shao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sijian Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yutang Liu
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China.
| |
Collapse
|
20
|
Forouzesh M, Ebadi A, Abedini F. Thermocatalytic persulfate activation for metronidazole removal in the continuous operation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Chaturvedi P, Giri BS, Shukla P, Gupta P. Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and perspective. BIORESOURCE TECHNOLOGY 2021; 319:124161. [PMID: 33007697 DOI: 10.1016/j.biortech.2020.124161] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Continuous discharge and persistence of antibiotics in aquatic ecosystem is identified as emerging environment health hazard. Partial degradation and inappropriate disposal induce appearance of diverse antibiotic resistant genes (ARGs) and bacteria, hence their execution is imperative. Conventional methods including waste water treatment plants (WWTPs) are found ineffective for the removal of recalcitrant antibiotics. Therefore, constructive removal of antibiotics from environmental matrices and other alternatives have been discussed. This review summarizes present scenario and removal of micro-pollutants, antibiotics from environment. Various strategies including physicochemical, bioremediation, use of bioreactor, and biocatalysts are recognized as potent antibiotic removal strategies. Microbial Fuel Cells (MFCs) and biochar have emerged as promising biodegradation processes due to low cost, energy efficient and environmental benignity. With higher removal rate (20-50%) combined/ hybrid processes seems to be more efficient for permanent and sustainable elimination of reluctant antibiotics.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
22
|
Amir Azizi. Green Synthesized Fe3O4/Cellulose Nanocomposite Suitable Adsorbent for Metronidazole Removal. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420050012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Barbosa JA, Labuto G, Carrilho ENVM. Magnetic nanomodified activated carbon: characterization and use for organic acids sorption in aqueous medium. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1791832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Júlia Adorno Barbosa
- Laboratório de Materiais Poliméricos e Biossorventes, Universidade Federal de São Carlos, Araras, Brazil
| | - Geórgia Labuto
- Laboratory of Integrated Sciences, Universidade Federal de São Paulo, Diadema, Brazil
- Departamento de Química, Universidade Federal de São Paulo, Diadema, Brazil
| | - Elma Neide Vasconcelos Martins Carrilho
- Laboratório de Materiais Poliméricos e Biossorventes, Universidade Federal de São Carlos, Araras, Brazil
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, Brazil
| |
Collapse
|
24
|
Pakzad K, Alinezhad H, Nasrollahzadeh M. Euphorbia polygonifolia
extract assisted biosynthesis of Fe
3
O
4
@CuO nanoparticles: Applications in the removal of metronidazole, ciprofloxacin and cephalexin antibiotics from aqueous solutions under UV irradiation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khatereh Pakzad
- Faculty of Chemistry University of Mazandaran Babolsar 47416‐13534 Iran
| | | | | |
Collapse
|
25
|
Ghribi F, Sehailia M, Aoudjit L, Touahra F, Zioui D, Boumechhour A, Halliche D, Bachari K, Benmaamar Z. Solar-light promoted photodegradation of metronidazole over ZnO-ZnAl2O4 heterojunction derived from 2D-layered double hydroxide structure. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112510] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Saadi S, Moteshaker PM, Rokni SE, Ahmadidoust G, Farnoodian N, Yousefi A. The electrochemical degradation of the metronidazole (MNZ) antibiotic using electrochemical oxidation on a stainless steel316 coated with beta lead oxide (SS316/β-PbO2) anode. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractMetronidazole (MNZ) is one of the pharmaceutical products which is considered as one of the most important pollutants in the environment due to its wide use and resistance to biodegradation. Hence, the purpose of this study is the optimization of the electrochemical degradation of the metronidazole (MNZ) antibiotic using electrochemical oxidation on a stainless steel316 coated with beta lead oxide (SS316/β-PbO2) anode. In the studied electrochemical process, the response surface methodology (RSM) involving a five-level ((pH (A) and electrolysis time (B), current density (C), and MNZ concentration (D)). The central composite design (CCD) was employed for optimizing and modeling of the electrochemical process in the degradation of MNZ. The preparation of SS316/β-PbO2 anode was accomplished using the electro-deposition method. Scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) analyses were conducted for accurate evaluation and characterization of the coated electrode. The effect of influencing factors on electrochemical degradation of MNZ was studied, and the highest MNZ degradation efficiency was observed to be 98.88% after 120 min under the optimal conditions including the supporting electrolyte concentration of 1.0 g/100 cc, the initial MNZ concentration of 30.1 mg/L, pH of 4 and the current density of 9.99 mA/cm2. The linear regression coefficient (R2) between experiments and different response values in the model was 0.99. Moreover, the statistical analysis of the results indicated that in the range studied, the most effective parameters in MNZ degradation are MNZ concentration and pH. In general, it can be concluded that the electrochemical process using SS316/β-PbO2 anode can effectively eliminate metronidazole, and it can be considered as an efficient method in the degradation of various pollutants.
Collapse
Affiliation(s)
- Sommayeh Saadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Mahmoudpoor Moteshaker
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Seyed Ehsan Rokni
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Ghobad Ahmadidoust
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Narges Farnoodian
- Department of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Arman Yousefi
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University Bonab, Bonab, Islamic Republic of Iran
| |
Collapse
|
27
|
Application of carbon nanotubes for removal of emerging contaminants of concern in engineered water and wastewater treatment systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s41204-019-0059-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Afzal MZ, Yue R, Sun XF, Song C, Wang SG. Enhanced removal of ciprofloxacin using humic acid modified hydrogel beads. J Colloid Interface Sci 2019; 543:76-83. [PMID: 30782519 DOI: 10.1016/j.jcis.2019.01.083] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/24/2023]
Abstract
In this study, humic acid coated biochar (HA-BC) and chitosan were combined to prepare an adsorbent with enhanced reactivity for the removal of ciprofloxacin (CIP). With initial CIP concentrations of 250 mg/L, the maximum adsorbed amount was 154.89 mg/g. Removal rates reached equilibrium after 12 h, obeying the pseudo second-order kinetic model. Adsorption isotherm data was better fitted to the Langmuir isotherm model. The sorption capacity of humic acid-biochar/chitosan hydrogel beads (HBCB) decreased by 11.42%, 6.66%, 9.32%, and 23.92% in the presence of NaCl, NaNO3, Na2SO4, and Na3PO4, respectively. A complex mechanism was found to be responsible for the adsorptive removal of CIP including, hydrogen bonding, π-π electron donor-acceptor (EDA) interactions and hydrophobic interactions. After four regeneration steps, sorption capacity remained sufficient (61.23 mg/g). These removal results indicate that HBCB is durable and effective for long term CIP removal.
Collapse
Affiliation(s)
- Muhammad Zaheer Afzal
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Earth and Environmental Sciences, Bahria University, Islamabad 44000, Pakistan
| | - Rengyu Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xue-Fei Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
29
|
Xu L, Li W, Désesquelles P, Van-Oanh NT, Thomas S, Yang J. A Statistical Model and DFT Study of the Fragmentation Mechanisms of Metronidazole by Advanced Oxidation Processes. J Phys Chem A 2019; 123:933-942. [DOI: 10.1021/acs.jpca.8b10554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| | - Pierre Désesquelles
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
- Centre des Sciences Nucléaires et des Sciences de la Matière (CSNSM), Université Paris-Sud and CNRS-IN2P3, Université Paris-Saclay, Bâtiment 104, 15 rue Clemenceau, F91405 Orsay Cédex, France
| | - Nguyen-Thi Van-Oanh
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Sud, Université Paris-Saclay, F91405 Orsay Cédex, France
| | - Sébastien Thomas
- Centre des Sciences Nucléaires et des Sciences de la Matière (CSNSM), Université Paris-Sud and CNRS-IN2P3, Université Paris-Saclay, Bâtiment 104, 15 rue Clemenceau, F91405 Orsay Cédex, France
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Sud, Université Paris-Saclay, F91405 Orsay Cédex, France
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
30
|
Aboudalle A, Djelal H, Fourcade F, Domergue L, Assadi AA, Lendormi T, Taha S, Amrane A. Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment: By-products monitoring and performance enhancement. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:85-95. [PMID: 30014918 DOI: 10.1016/j.jhazmat.2018.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
In order to mineralize Metronidazole (MTZ), a process coupling an electro-Fenton pretreatment and a biological degradation was implemented. A mono-compartment batch reactor containing a carbon-felt cathode and a platinum anode was employed to carry out the electro-Fenton pretreatment of MTZ. A total degradation of MTZ (100 mg L-1) was observed at 0.07 mA.cm-2 after only 20 min of electrolysis. Yet, after 1 and 2 h of electrolysis, the mineralization level remained low (16.2% and 32% respectively), guaranteeing a significant residual organic content for further biological treatment. LCMS/MS was used to determine the intermediates by-products and hence to propose a plausible degradation pathway. An increase from 0 to 0.44 and 0.6 for 1 and 2 h of electrolysis was observed for the BOD5/COD ratio. Thus, from 1 h of electro-Fenton pretreatment, the electrolysis by-products were considered biodegradable. A biological treatment of the electrolysis by-products after 1 and 2 h was then realized. The mineralization yields reached very close values, about 84% for 1 and 2 h of electrolysis after 504 h of biological treatment, namely close to 89% for the overall process, showing the pertinence of the proposed coupled process.
Collapse
Affiliation(s)
- Arwa Aboudalle
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France; Laboratoire de Biotechnologies Appliquées, Centre AZM pour la recherche en biotechnologies et ses applications, Ecole doctorale des sciences et technologies, Université Libanaise, Rue Al-Mitein, Tripoli, Lebanon.
| | - Hayet Djelal
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France; Ecole des Métiers de l'Environnement, Campus de Ker Lann, 35170 Bruz, France
| | - Florence Fourcade
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Lionel Domergue
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Aymen Amin Assadi
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Thomas Lendormi
- Université Bretagne Sud, FRE CNRS 3744, IRDL, F-56300 Pontivy, France
| | - Samir Taha
- Laboratoire de Biotechnologies Appliquées, Centre AZM pour la recherche en biotechnologies et ses applications, Ecole doctorale des sciences et technologies, Université Libanaise, Rue Al-Mitein, Tripoli, Lebanon; Faculté de santé publique, Université Libanaise, quartier Dam et Farz, Tripoli, Lebanon
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| |
Collapse
|
31
|
Application of ZnO and TiO2 nanoparticles coated onto montmorillonite in the presence of H2O2 for efficient removal of cephalexin from aqueous solutions. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0005-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
32
|
Zhou R, Li T, Su Y, Ma T, Zhang L, Ren H. Oxidative removal of metronidazole from aqueous solution by thermally activated persulfate process: kinetics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2466-2475. [PMID: 29127632 DOI: 10.1007/s11356-017-0518-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Metronidazole (MNZ) is widely used in clinical applications and animal feed as an antibiotic agent and additive, respectively. Widespread occurrence of MNZ in wastewater treatment and hospital effluents has been reported. In this study, the mechanism of MNZ degradation in aqueous solutions via thermally activated persulfate (TAP) process was established under different conditions. The kinetic model was derived for MNZ degradation and followed pseudo-first-order reaction kinetics and was consistent with the model fitted by experimental data (R 2 > 98.8%). The rate constant increased with the initial dosage of persulfate, as well as the temperature, and the yielding apparent activation energy was 23.9 kcal mol-1. The pH of the solutions did not have significant effect on MNZ degradation. The degradation efficiency of MNZ reached 96.6% within 180 min for an initial MNZ concentration of 100 mg L-1 under the optional condition of [PS]0 = 20 mM, T = 60 °C, and unadjusted pH. [Formula: see text] and HO · were confirmed using electron paramagnetic resonance (EPR) spectra during TAP process. Radical quenching study revealed that [Formula: see text] was mainly responsible for MNZ degradation at an unadjusted pH. MNZ mineralization evaluation showed that the removal efficiency of total organic carbon (TOC) reached more than 97.2%.
Collapse
Affiliation(s)
- Rui Zhou
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Tingting Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Yu Su
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Taigang Ma
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Lijian Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Hejun Ren
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
33
|
Yang W, Wu X, Liu T, Wang T, Hou X. A triazine-based conjugated microporous polymer composite for magnetic solid phase extraction of 5-nitroimidazoles coupled with UPLC-MS/MS for quantification. Analyst 2018; 143:5744-5753. [DOI: 10.1039/c8an01600c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A triazine-based conjugated microporous polymer composite for magnetic solid phase extraction of 5-nitroimidazoles coupled with UPLC-MS/MS for quantification.
Collapse
Affiliation(s)
- Wei Yang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Xia Wu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Tingting Liu
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Ting Wang
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| |
Collapse
|
34
|
Santana DR, Espino-Estévez M, Santiago DE, Méndez J, González-Díaz O, Doña-Rodríguez J. Treatment of aquaculture wastewater contaminated with metronidazole by advanced oxidation techniques. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.enmm.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Sources and impacts of pharmaceutical components in wastewater and its treatment process: A review. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0255-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Teimouri M, Waqif-Husain S, Saber-Tehrani M, Abroomand-Azar P. Photocatalytic and photoelectrocatalytic degradation of metoprolol tartrate in aqueous media by recyclable Co doping Fe3O4/TiO2 magnetic core–shell nanocomposites. RUSS J APPL CHEM+ 2017. [DOI: 10.1134/s1070427217080195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Gani KM, Tyagi VK, Kazmi AA. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17267-17284. [PMID: 28567676 DOI: 10.1007/s11356-017-9182-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 05/01/2017] [Indexed: 05/25/2023]
Abstract
Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.
Collapse
Affiliation(s)
- Khalid Muzamil Gani
- Department of Civil Engineering (Environmental Engineering Section), Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - Vinay Kumar Tyagi
- Nanyang Environment and Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore, 637141, Singapore
| | - Absar Ahmad Kazmi
- Department of Civil Engineering (Environmental Engineering Section), Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
38
|
Tan K, Hameed B. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.01.024] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Microwave-Assisted Synthesis of SiC Nanoparticles for the Efficient Adsorptive Removal of Nitroimidazole Antibiotics from Aqueous Solution. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7020205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
|
41
|
Pinto PS, Medeiros TPV, Ardisson JD, Lago RM. Role of [FeOx(OH)y] surface sites on the adsorption of β-lactamic antibiotics on Al2O3 supported Fe oxide. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:327-334. [PMID: 27318729 DOI: 10.1016/j.jhazmat.2016.05.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
In this work, [FeOx(OH)y]/Al2O3 composites with different Fe oxyhydroxy contents, i.e. 10, 20 and 50wt% treated at 150, 200, 300 and 450°C were investigated as adsorbents of β-lactamic antibiotics, i.e. cephalexin, ceftriaxone and especially amoxicillin, from aqueous solutions. The obtained results showed that the nature of the surface Fe(3+) species play a fundamental role on the adsorption process. The most efficient adsorption was obtained for the sample 150Fe50A (50% [FeOx(OH)y] supported in Al2O3 treated at 150°C) whereas the thermal treatment at higher temperatures caused a strong decrease on the adsorption capacity. Mössbauer, XRD, FTIR, Raman, TG-MS, SEM, CHN and BET of the composite 150Fe50A suggested an approximate composition of FeO0.65(OH)1.7 whereas at 450°C strong dehydroxylation process takes place to form FeO1.4(OH)0.21. These results combined with competitive adsorption using amoxicillin mixed with phosphate or H2O2 suggest that the antibiotic molecules adsorb by complexation on surface sites likely based on FeOx(OH)y by the replacement of the labile OH ligands.
Collapse
Affiliation(s)
- Paula S Pinto
- Departamento de Química, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil
| | - Tayline P V Medeiros
- Departamento de Química, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil
| | - José D Ardisson
- Laboratório de Física Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, MG 31270-901, Brazil
| | - Rochel M Lago
- Departamento de Química, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
42
|
Kennicutt AR, Morkowchuk L, Krein M, Breneman CM, Kilduff JE. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:653-676. [PMID: 27586364 DOI: 10.1080/1062936x.2016.1216465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units.
Collapse
Affiliation(s)
- A R Kennicutt
- a Department of Civil and Environmental Engineering , Rensselaer Polytechnic Institute , Troy , NY , USA
| | - L Morkowchuk
- b Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , NY , USA
| | - M Krein
- b Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , NY , USA
| | - C M Breneman
- b Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , NY , USA
| | - J E Kilduff
- a Department of Civil and Environmental Engineering , Rensselaer Polytechnic Institute , Troy , NY , USA
| |
Collapse
|
43
|
Zhang X, Guo W, Ngo HH, Wen H, Li N, Wu W. Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 172:193-200. [PMID: 26946168 DOI: 10.1016/j.jenvman.2016.02.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Currently, the occurrence and fate of antibiotics in the aquatic environment has become a very serious problem in that they can potentially and irreversibly damage the ecosystem and human health. For this reason, interest has increased in developing strategies to remove antibiotics from water. This study evaluated the performance of powdered activated carbon (PAC) in removing from water 6 representative groups of 28 antibiotics, namely Tetracyclines (TCs), Macrolides (MCs), Chloramphenicols (CPs), Penicillins (PNs), Sulfonamides (SAs) and Quinolones (QNs). Results indicate that PAC demonstrated superior adsorption capacity for all selected antibiotics. The removal efficiency was up to 99.9% in deionized water and 99.6% in surface water at the optimum conditions with PAC dosage of 20 mg/L and contact time of 120 min. According to the Freundlich model's adsorption isotherm, the values of n varied among these antibiotics and most were less than 1, suggesting that the adsorption of antibiotics onto PAC was nonlinear. Adsorption of antibiotics followed well the pseudo-second-order kinetic model (R(2) = 0.99). Analysis using the Weber-Morris model revealed that the intra-particle diffusion was not the only rate-controlling step. Overall, the findings in this study confirm that PAC is a feasible and viable option for removing antibiotics from water in terms of water quality improvement and urgent antibiotics pollution control. Further research is essential on the following subjects: (i) removing more types of antibiotics by PAC; (ii) the adsorption process; and (iii) the mechanism of the competitive adsorption existing between natural organic matters (NOMs) and antibiotics.
Collapse
Affiliation(s)
- Xinbo Zhang
- Department of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - Haitao Wen
- Department of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Nan Li
- Department of Environmental Sciences and Engineering, Tianjin University, Wei Jin Road 92, Tianjin 300072, China
| | - Wei Wu
- Tianjin Sino French Jieyuan Water Company Limited, Jieyuan Road 30, Tianjin 300121, China
| |
Collapse
|
44
|
Flores-Cano JV, Sánchez-Polo M, Messoud J, Velo-Gala I, Ocampo-Pérez R, Rivera-Utrilla J. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 169:116-125. [PMID: 26731310 DOI: 10.1016/j.jenvman.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/23/2015] [Accepted: 12/05/2015] [Indexed: 06/05/2023]
Abstract
This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion.
Collapse
Affiliation(s)
- J V Flores-Cano
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - M Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | - J Messoud
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - I Velo-Gala
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - R Ocampo-Pérez
- Center of Postgraduate Research and Studies, Faculty of Chemical Sciences, San Luis Potosí Autonomous University, Av. Dr. M. Nava No. 6, San Luis Potosí SLP 78210, Mexico
| | - J Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
45
|
Moral-Rodríguez AI, Leyva-Ramos R, Ocampo-Pérez R, Mendoza-Barron J, Serratos-Alvarez IN, Salazar-Rabago JJ. Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: equilibrium and intraparticle diffusion mechanisms. ADSORPTION 2016. [DOI: 10.1007/s10450-016-9758-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Mass Transfer Studies on Adsorption of Phenol from Wastewater UsingLantana camara, Forest Waste. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1155/2016/5809505] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adsorption is one of the important treatment methods for the removal of pollutants from wastewater. The determination of rate controlling step in the process is important in the design of the process. Therefore, in the present work, mass transfer studies were done to evaluate the rate-limiting step in the adsorption of phenol from aqueous solution ontoLantana camara. Different mass transfer models were used to find the rate-limiting step and also to find the values of external mass transfer coefficient and diffusion coefficient. The Biot number was found to investigate the importance of external mass transfer to intraparticle diffusion. From the various models studied and the Biot numbers obtained, it was found that the adsorption onLantana camarawas controlled by film diffusion. The sensitivity analysis was performed to study the significance of the model parameters on the adsorption process.
Collapse
|
47
|
Ahmed MB, Zhou JL, Ngo HH, Guo W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:112-26. [PMID: 26057999 DOI: 10.1016/j.scitotenv.2015.05.130] [Citation(s) in RCA: 506] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 04/15/2023]
Abstract
Antibiotics as emerging contaminants are of global concern due to the development of antibiotic resistant genes potentially causing superbugs. Current wastewater treatment technology cannot sufficiently remove antibiotics from sewage, hence new and low-cost technology is needed. Adsorptive materials have been extensively used for the conditioning, remediation and removal of inorganic and organic hazardous materials, although their application for removing antibiotics has been reported for ~30 out of 250 antibiotics so far. The literature on the adsorptive removal of antibiotics using different adsorptive materials is summarized and critically reviewed, by comparing different adsorbents with varying physicochemical characteristics. The efficiency for removing antibiotics from water and wastewater by different adsorbents has been evaluated by examining their adsorption coefficient (Kd) values. For sulfamethoxazole the different adsorbents followed the trend: biochar (BC)> multi-walled carbon nanotubes (MWCNTs)>graphite = clay minerals, and for tetracycline the adsorptive materials followed the trend: SWCNT > graphite > MWCNT = activated carbon (AC) > bentonite = humic substance = clay minerals. The underlying controlling parameters for the adsorption technology have been examined. In addition, the cost of preparing adsorbents has been estimated, which followed the order of BCs < ACs < ion exchange resins < MWCNTs < SWCNTs. The future research challenges on process integration, production and modification of low-cost adsorbents are elaborated.
Collapse
Affiliation(s)
- Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| |
Collapse
|
48
|
Abstract
Metallopolymers combine a processable, versatile organic polymeric skeleton with functional metals, providing multiple functions and methodologies in materials science. Taking advantage of cationic cobaltocenium as the key building block, organogels could be simply switched to hydrogels via a highly efficient ion exchange. With the unique ionic complexion ability, cobaltocenium moieties provide a robust soft substrate for recycling antibiotics from water. The essential polyelectrolyte nature offers the metallopolymer hydrogels to kill multidrug resistant bacteria. The multifunctional characteristics of these hydrogels highlight the potential for metallopolymers in the field of healthcare and environmental treatment.
Collapse
|
49
|
Delgado LF, Charles P, Glucina K, Morlay C. Adsorption of Ibuprofen and Atenolol at Trace Concentration on Activated Carbon. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.975360] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Qin L, Lin YL, Xu B, Hu CY, Tian FX, Zhang TY, Zhu WQ, Huang H, Gao NY. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes. WATER RESEARCH 2014; 65:271-81. [PMID: 25141357 DOI: 10.1016/j.watres.2014.07.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 05/12/2023]
Abstract
Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment.
Collapse
Affiliation(s)
- Lang Qin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Fu-Xiang Tian
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wen-Qian Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - He Huang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|