1
|
McLoughlin ST, Wilcox P, Han S, Caccamese JF, Fisher JP. Comparison of cation and anion-mediated resolution enhancement of bioprinted hydrogels for membranous tissue fabrication. J Biomed Mater Res A 2024; 112:2329-2345. [PMID: 39101685 DOI: 10.1002/jbm.a.37783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Fabrication of engineered thin membranous tissues (TMTs) presents a significant challenge to researchers, as these structures are small in scale, but present complex anatomies containing multiple stratified cell layers. While numerous methodologies exist to fabricate such tissues, many are limited by poor mechanical properties, need for post-fabrication, or lack of cytocompatibility. Extrusion bioprinting can address these issues, but lacks the resolution necessary to generate biomimetic, microscale TMT structures. Therefore, our goal was to develop a strategy that enhances bioprinting resolution below its traditional limit of 150 μm and delivers a viable cell population. We have generated a system to effectively shrink printed gels via electrostatic interactions between anionic and cationic polymers. Base hydrogels are composed of gelatin methacrylate type A (cationic), or B (anionic) treated with anionic alginate, and cationic poly-L-lysine, respectively. Through a complex coacervation-like mechanism, the charges attract, causing compaction of the base GelMA network, leading to reduced sample dimensions. In this work, we evaluate the role of both base hydrogel and shrinking polymer charge on effective print resolution and cell viability. The alginate anion-mediated system demonstrated the ability to reach bioprinting resolutions of 70 μm, while maintaining a viable cell population. To our knowledge, this is the first study that has produced such significant enhancement in extrusion bioprinting capabilities, while also remaining cytocompatible.
Collapse
Affiliation(s)
- Shannon T McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Paige Wilcox
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Sarang Han
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - John F Caccamese
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Shi D, Wang W, Liang Y, Duan L, Du G, Xie Y. Ultralow Energy Consumption Angstrom-Fluidic Memristor. NANO LETTERS 2023; 23:11662-11668. [PMID: 38064458 DOI: 10.1021/acs.nanolett.3c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The emergence of nanofluidic memristors has made a giant leap to mimic the neuromorphic functions of biological neurons. Here, we report neuromorphic signaling using Angstrom-scale funnel-shaped channels with poly-l-lysine (PLL) assembled at nano-openings. We found frequency-dependent current-voltage characteristics under sweeping voltage, which represents a diode in low frequencies, but it showed pinched current hysteresis as frequency increases. The current hysteresis is strongly dependent on pH values but weakly dependent on salt concentration. We attributed the current hysteresis to the entropy barrier of PLL molecules entering and exiting the Angstrom channels, resulting in reversible voltage-gated open-close state transitions. We successfully emulated the synaptic adaptation of Hebbian learning using voltage spikes and obtained a minimum energy consumption of 2-23 fJ in each spike per channel. Our findings pave a new way to mimic neuronal functions by Angstrom channels in low energy consumption.
Collapse
Affiliation(s)
- Deli Shi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wenhui Wang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yizheng Liang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Libing Duan
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Guanghua Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanbo Xie
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
- School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
3
|
Hofer A, Taccardi N, Moritz M, Wichmann C, Hübner S, Drobek D, Engelhardt M, Papastavrou G, Spiecker E, Papp C, Wasserscheid P, Bachmann J. Preparation of geometrically highly controlled Ga particle arrays on quasi-planar nanostructured surfaces as a SCALMS model system. RSC Adv 2023; 13:4011-4018. [PMID: 36756587 PMCID: PMC9890623 DOI: 10.1039/d2ra07585g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
This study establishes a preparative route towards a model system for supported catalytically active liquid metal solutions (SCALMS) on nanostructured substrates. This model is characterized by a uniquely precise geometrical control of the gallium particle size distribution. In a SCALMS system, the Ga serves as a matrix material which can be decorated with a catalytically active material subsequently. The corresponding Ga containing precursor is spin-coated on aluminum based substrates, previously nanostructured by electrochemical anodization. The highly ordered substrates are functionalized with distinct oxide coatings by atomic layer deposition (ALD) independently from the morphology. After preparation of the metal particles on the oxide interface, the characterization of our model system in terms of its geometry parameters (droplet diameter, size distribution and population density) points to SiO2 as the best suited surface for a highly controlled geometry. This flexible model system can be functionalized with a dissolved noble metal catalyst for the application chosen.
Collapse
Affiliation(s)
- André Hofer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Chemistry of Thin Film Materials, IZNF Cauerstr. 3 91058 Erlangen Germany
| | - Nicola Taccardi
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Chemical and Biological Engineering, Institute of Chemical Reaction Engineering (CRT) Egerlandstr. 3 91058 Erlangen Germany
| | - Michael Moritz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Chair of Physical Chemistry II Egerlandstr. 3 91058 Erlangen Germany
| | - Christoph Wichmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Chair of Physical Chemistry II Egerlandstr. 3 91058 Erlangen Germany
| | - Sabine Hübner
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF Cauerstr. 3 91058 Erlangen Germany
| | - Dominik Drobek
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF Cauerstr. 3 91058 Erlangen Germany
| | - Matthias Engelhardt
- Universität Bayreuth, Chair of Physical Chemistry II Universitätsstr. 30 95447 Bayreuth Germany
| | - Georg Papastavrou
- Universität Bayreuth, Chair of Physical Chemistry II Universitätsstr. 30 95447 Bayreuth Germany
| | - Erdmann Spiecker
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF Cauerstr. 3 91058 Erlangen Germany
| | - Christian Papp
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Chair of Physical Chemistry II Egerlandstr. 3 91058 Erlangen Germany
- Angewandte Physikalische Chemie, FU Berlin Arnimalle 22 14195 Berlin Germany
| | - Peter Wasserscheid
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Chemical and Biological Engineering, Institute of Chemical Reaction Engineering (CRT) Egerlandstr. 3 91058 Erlangen Germany
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
| | - Julien Bachmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Chemistry of Thin Film Materials, IZNF Cauerstr. 3 91058 Erlangen Germany
| |
Collapse
|
4
|
Żeliszewska P, Wasilewska M, Batys P, Pogoda K, Deptuła P, Bucki R, Adamczyk Z. SARS-CoV-2 Spike Protein (RBD) Subunit Adsorption at Abiotic Surfaces and Corona Formation at Polymer Particles. Int J Mol Sci 2022; 23:ijms232012374. [PMID: 36293231 PMCID: PMC9604293 DOI: 10.3390/ijms232012374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022] Open
Abstract
The adsorption kinetics of the SARS-CoV-2 spike protein subunit with the receptor binding domain at abiotic surfaces was investigated. A combination of sensitive methods was used such as atomic force microscopy yielding a molecular resolution, a quartz microbalance, and optical waveguide lightmode spectroscopy. The two latter methods yielded in situ information about the protein adsorption kinetics under flow conditions. It was established that at pH 3.5-4 the protein adsorbed on mica and silica surfaces in the form of compact quasi-spherical aggregates with an average size of 14 nm. The maximum coverage of the layers was equal to 3 and 1 mg m-2 at pH 4 and 7.4, respectively. The experimental data were successfully interpreted in terms of theoretical results derived from modeling. The experiments performed for flat substrates were complemented by investigations of the protein corona formation at polymer particles carried out using in situ laser Doppler velocimetry technique. In this way, the zeta potential of the protein layers was acquired as a function of the coverage. Applying the electrokinetic model, these primary data were converted to the dependence of the subunit zeta potential on pH. It was shown that a complete acid-base characteristic of the layer can be acquired only using nanomolar quantities of the protein.
Collapse
Affiliation(s)
- Paulina Żeliszewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
- Correspondence: (P.Ż.); (Z.A.)
| | - Monika Wasilewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
| | - Piotr Batys
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland
| | - Zbigniew Adamczyk
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
- Correspondence: (P.Ż.); (Z.A.)
| |
Collapse
|
5
|
Zdarta J, Sigurdardóttir SB, Jankowska K, Pinelo M. Laccase immobilization in polyelectrolyte multilayer membranes for 17α-ethynylestradiol removal: Biocatalytic approach for pharmaceuticals degradation. CHEMOSPHERE 2022; 304:135374. [PMID: 35718027 DOI: 10.1016/j.chemosphere.2022.135374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic membrane reactors equipped with multifunctional biocatalytic membranes are promising and sustainable alternatives for removal of micropollutants, including steroid estrogens, under mild conditions. Thus, in this study an effort was made to produce novel multifunctional biocatalytic polyelectrolyte multilayer membranes via polyelectrolyte layer-by-layer assembly with laccase enzyme immobilized between or into polyelectrolyte layers. In this study, multifunctional biocatalytic membranes are considered as systems composed of commercially available filtration membrane modified by polyelectrolytes and immobilized enzymes, which are produced for complex treatment of water pollutants. The multifunctionality of the proposed systems is related to the fact that these membranes are capable of micropollutants removal via simultaneous catalytic conversion, membrane adsorption and membrane rejection making remediation process more complex, however, also more efficient. Briefly, cationic poly-l-lysine and polyethylenimine as well as anionic poly(sodium 4-styrenesulfonate) polyelectrolytes were deposited onto NP010 nanofiltration and UFX5 ultrafiltration membranes to produce systems for removal of 17α-ethynylestradiol. Images from scanning electron microscopy confirm effective enzyme deposition, whereas results of zeta potential measurements indicate introduction of positive charge onto the membranes. Based on preliminary results, four membranes with over 70%, activity retention produced using polyethylenimine in internal and entrapped mode, were selected for degradation tests. Systems based on UFX5 membrane allowed over 60% 17α-ethynylestradiol removal within 100 min, whereas NP010-based systems removed over 75% of estrogen within 150 min. Further, around 80% removal of 17α-ethynylestradiol was possible from the solutions at concentration up to 0.1 mg/L at pH ranging from 4 to 6 and at the pressure up to 3 bar, indicating high activity of the immobilized laccase over wide range of process conditions. Produced systems exhibited also great long-term stability followed by limited enzyme elution from the membrane. Finally, removal of over 70% and 60% of 17α-ethynylestradiol, respectively by NP010 and UFX5 systems after 8 cycles of repeated use indicate high reusability potential of the systems and suggest their practical application in removal of micropollutants, including estrogens.
Collapse
Affiliation(s)
- Jakub Zdarta
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs, Lyngby, Denmark; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965, Poznan, Poland.
| | - Sigyn Björk Sigurdardóttir
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs, Lyngby, Denmark
| | - Katarzyna Jankowska
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs, Lyngby, Denmark
| | - Manuel Pinelo
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
6
|
Morga M, Batys P, Kosior D, Bonarek P, Adamczyk Z. Poly-L-Arginine Molecule Properties in Simple Electrolytes: Molecular Dynamic Modeling and Experiments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3588. [PMID: 35329277 PMCID: PMC8951092 DOI: 10.3390/ijerph19063588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Physicochemical properties of poly-L-arginine (P-Arg) molecules in NaCl solutions were determined by molecular dynamics (MD) modeling and various experimental techniques. Primarily, the molecule conformations, the monomer length and the chain diameter were theoretically calculated. These results were used to interpret experimental data, which comprised the molecule secondary structure, the diffusion coefficient, the hydrodynamic diameter and the electrophoretic mobility determined at various ionic strengths and pHs. Using these data, the electrokinetic charge and the effective ionization degree of P-Arg molecules were determined. In addition, the dynamic viscosity measurements for dilute P-Arg solutions enabledto determine the molecule intrinsic viscosity, which was equal to 500 and 90 for ionic strength of 10-5 and 0.15 M, respectively. This confirmed that P-Arg molecules assumed extended conformations and approached the slender body limit at the low range of ionic strength. The experimental data were also used to determine the molecule length and the chain diameter, which agreed with theoretical predictions. Exploiting these results, a robust method for determining the molar mass of P-Arg samples, the hydrodynamic diameter, the radius of gyration and the sedimentation coefficient was proposed.
Collapse
Affiliation(s)
- Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (P.B.); (D.K.)
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (P.B.); (D.K.)
| | - Dominik Kosior
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (P.B.); (D.K.)
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, PL-30387 Krakow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (P.B.); (D.K.)
| |
Collapse
|
7
|
Molotkovsky RJ, Galimzyanov TR, Ermakov YA. Heterogeneity in Lateral Distribution of Polycations at the Surface of Lipid Membrane: From the Experimental Data to the Theoretical Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6623. [PMID: 34772149 PMCID: PMC8585412 DOI: 10.3390/ma14216623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Natural and synthetic polycations of different kinds attract substantial attention due to an increasing number of their applications in the biomedical industry and in pharmacology. The key characteristic determining the effectiveness of the majority of these applications is the number of macromolecules adsorbed on the surface of biological cells or their lipid models. Their study is complicated by a possible heterogeneity of polymer layer adsorbed on the membrane. Experimental methods reflecting the structure of the layer include the electrokinetic measurements in liposome suspension and the boundary potential of planar bilayer lipid membranes (BLM) and lipid monolayers with a mixed composition of lipids and the ionic media. In the review, we systematically analyze the methods of experimental registration and theoretical description of the laterally heterogeneous structures in the polymer layer published in the literature and in our previous studies. In particular, we consider a model based on classical theory of the electrical double layer, used to analyze the available data of the electrokinetic measurements in liposome suspension with polylysines of varying molecular mass. This model suggests a few parameters related to the heterogeneity of the polymer layer and allows determining the conditions for its appearance at the membrane surface. A further development of this theoretical approach is discussed.
Collapse
Affiliation(s)
- Rodion J. Molotkovsky
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Yury A. Ermakov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
8
|
Żeliszewska P, Wasilewska M, Cieśla M, Adamczyk Z. Deposition of Polymer Particles with Fibrinogen Corona at Abiotic Surfaces under Flow Conditions. Molecules 2021; 26:molecules26206299. [PMID: 34684880 PMCID: PMC8538388 DOI: 10.3390/molecules26206299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The deposition kinetics of polymer particles with fibrinogen molecule coronas at bare and poly-L-lysine (PLL) modified mica was studied using the microfluid impinging-jet cell. Basic physicochemical characteristics of fibrinogen and the particles were acquired using dynamic light scattering and the electrophoretic mobility methods, whereas the zeta potential of the substrates was determined using streaming potential measurements. Subsequently, an efficient method for the preparation of the particles with coronas, characterized by a controlled fibrinogen coverage, was developed. This enabled us to carry out measurements, which confirmed that the deposition kinetics of the particles at mica vanished at pH above 5. In contrast, the particle deposition of PLL modified mica was at maximum for pH above 5. It was shown that the deposition kinetics could be adequately analyzed in terms of the mean-field approach, analogously to the ordinary colloid particle behavior. This contrasts the fibrinogen molecule behavior, which efficiently adsorbs at negatively charged substrates for the entire range pHs up to 9.7. These results have practical significance for conducting label-free immunoassays governed by the specific antigen/antibody interactions.
Collapse
Affiliation(s)
- Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
- Correspondence: (P.Ż.); (Z.A.)
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Michał Cieśla
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Stanisława Łojasiewicza 11, 30-348 Krakow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
- Correspondence: (P.Ż.); (Z.A.)
| |
Collapse
|
9
|
Sahu SS, Cavallaro S, Hååg P, Nagy Á, Karlström AE, Lewensohn R, Viktorsson K, Linnros J, Dev A. Exploiting Electrostatic Interaction for Highly Sensitive Detection of Tumor-Derived Extracellular Vesicles by an Electrokinetic Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42513-42521. [PMID: 34473477 PMCID: PMC8447189 DOI: 10.1021/acsami.1c13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 × 106 particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.
Collapse
Affiliation(s)
- Siddharth Sourabh Sahu
- Department
of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| | - Sara Cavallaro
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Petra Hååg
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Ábel Nagy
- Department
of Protein Science, School of Chemistry, Biotechnology, and Health
(CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department
of Protein Science, School of Chemistry, Biotechnology, and Health
(CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Rolf Lewensohn
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Theme
Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164 Solna, Sweden
| | - Kristina Viktorsson
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jan Linnros
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Apurba Dev
- Department
of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
10
|
Amorim S, Pashkuleva I, Reis CA, Reis RL, Pires RA. Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. J Mater Chem B 2021; 8:3880-3885. [PMID: 32222753 DOI: 10.1039/d0tb00407c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on the development of layer-by-layer (LbL) constructs whose viscoelastic properties and bioactivity can be finely tuned by using polyanions of different size and/or crosslinking. As a polyanion we used hyaluronic acid (HA) - a multi-signaling biomolecule whose bioactivity depends on its molecular weight. We investigated the interplay between the mechanical properties of the LbL systems built using HA of different sizes and the specific HA-mediated biochemical interactions. We characterized the assembled materials and their interactions with CD44, the main HA receptor, by Quartz Crystal Microbalance with Dissipation (QCM-D), Surface Plasmon Resonance (SPR) and Atomic Force Microscopy (AFM). We observed that the presence of CD44 resulted in the disruption of the non-crosslinked multilayers, while crosslinked films remain stable and bind CD44 in a HA molecular weight and charge specific fashion.
Collapse
Affiliation(s)
- Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Celso A Reis
- i3S, University of Porto, Portugal and IPATIMUP, Porto, Portugal and Department of Pathology and Oncology, Faculty of Medicine, Porto University, Portugal and Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
11
|
Cytocompatibility of stabilized black phosphorus nanosheets tailored by directly conjugated polymeric micelles for human breast cancer therapy. Sci Rep 2021; 11:9304. [PMID: 33927292 PMCID: PMC8085149 DOI: 10.1038/s41598-021-88791-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
The novel procedure of few-layer black phosphorus (FLBP) stabilization and functionalisation was here proposed. The cationic polymer PLL and non-ionic PEG have been involved into encapsulation of FLBP to allow sufficient time for further nanofabrication process and overcome environmental degradation. Two different spacer chemistry was designed to bind polymers to tumor-homing peptides. The efficiency of functionalisation was examined by RP-HPLC, microscopic (TEM and SEM) and spectroscopic (FT-IR and Raman) techniques as well supported by ab-initio modelling. The cell and dose dependent cytotoxicity of FLBP and its bioconjugates was evaluated against HB2, MCF-7 and MDA-MB-231 cell lines. Functionalisation allowed not only for improvement of environmental stability, but also enhances therapeutic effect by abolished the cytotoxicity of FLBP against HB2 cell line. Moreover, modification of FLBP with PLL caused increase of selectivity against highly aggressive breast cancer cell lines. Results indicate the future prospect application of black phosphorus nanosheets as nanocarrier, considering its unique features synergistically with conjugated polymeric micelles.
Collapse
|
12
|
Sergeeva IP, Sobolev VD. Polylysine Adsorption on Fused Quartz Surface. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Roeven E, Kuzmyn AR, Scheres L, Baggerman J, Smulders MMJ, Zuilhof H. PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10187-10199. [PMID: 32820926 PMCID: PMC7498161 DOI: 10.1021/acs.langmuir.0c01675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
In this work, we compare three routes to prepare antifouling coatings that consist of poly(l-lysine)-poly(N-(2-hydroxypropyl)methacrylamide) bottlebrushes. The poly(l-lysine) (PLL) backbone is self-assembled onto the surface by charged-based interactions between the lysine groups and the negatively charged silicon oxide surface, whereas the poly(N-(2-hydroxypropyl)methacrylamide) [poly(HPMA)] side chains, grown by reversible addition-fragmentation chain-transfer (RAFT) polymerization, provide antifouling properties to the surface. First, the PLL-poly(HPMA) coatings are synthesized in a bottom-up fashion through a grafting-from approach. In this route, the PLL is self-assembled onto a surface, after which a polymerization agent is immobilized, and finally HPMA is polymerized from the surface. In the second explored route, the PLL is modified in solution by a RAFT agent to create a macroinitiator. After self-assembly of this macroinitiator onto the surface, poly(HPMA) is polymerized from the surface by RAFT. In the third and last route, the whole PLL-poly(HPMA) bottlebrush is initially synthesized in solution. To this end, HPMA is polymerized from the macroinitiator in solution and the PLL-poly(HPMA) bottlebrush is then self-assembled onto the surface in just one step (grafting-to approach). Additionally, in this third route, we also design and synthesize a bottlebrush polymer with a PLL backbone and poly(HPMA) side chains, with the latter containing 5% carboxybetaine (CB) monomers that eventually allow for additional (bio)functionalization in solution or after surface immobilization. These three routes are evaluated in terms of ease of synthesis, scalability, ease of characterization, and a preliminary investigation of their antifouling performance. All three coating procedures result in coatings that show antifouling properties in single-protein antifouling tests. This method thus presents a new, simple, versatile, and highly scalable approach for the manufacturing of PLL-based bottlebrush coatings that can be synthesized partly or completely on the surface or in solution, depending on the desired production process and/or application.
Collapse
Affiliation(s)
- Esther Roeven
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Luc Scheres
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Jacob Baggerman
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People’s Republic of China
- Department
of Chemical and Materials Engineering, King
Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Lin CY, Ma T, Siwy ZS, Balme S, Hsu JP. Tunable Current Rectification and Selectivity Demonstrated in Nanofluidic Diodes through Kinetic Functionalization. J Phys Chem Lett 2020; 11:60-66. [PMID: 31814408 DOI: 10.1021/acs.jpclett.9b03344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The possibility of tuning the current rectification and selectivity in nanofluidic diodes is demonstrated both experimentally and theoretically through dynamically functionalizing a conical nanopore with poly-l-lysine. We identified an optimum functionalization time equivalent to optimum modification depth that assures the highest rectification degrees. Results showed that the functionalization time-dependent rectification behavior of nanofluidic diodes is dominated by the properties of current at positive voltages that in our electrode configuration indicate the "on" state of the diode and accumulation of ions in the nanopore. The functionalization time also tunes the ion selectivity of the diode. If the functionalization time is sufficiently short, an unusual depletion of counterions near the bipolar interface results in a cation-selective nanopore. However, a further increase in the duration of functionalization renders a nanopore that is an anion-selective nanopore. The dynamic functionalization presented in this Letter enables tuning ion selectivity of nanopores.
Collapse
Affiliation(s)
- Chih-Yuan Lin
- Department of Physics and Astronomy , University of California , Irvine , California 92697 , United States
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Tianji Ma
- Institut Européen des Membranes , UMR5635 UM ENSCM CNRS, Place Eugène Bataillon , 34095 Montpellier Cedex 5, France
| | - Zuzanna S Siwy
- Department of Physics and Astronomy , University of California , Irvine , California 92697 , United States
- Department of Chemistry , University of California , Irvine , California 92697 , United States
- Department of Biomedical Engineering , University of California , Irvine , California 92697 , United States
| | - Sébastien Balme
- Institut Européen des Membranes , UMR5635 UM ENSCM CNRS, Place Eugène Bataillon , 34095 Montpellier Cedex 5, France
| | - Jyh-Ping Hsu
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
15
|
Dobbs HA, Degen GD, Berkson ZJ, Kristiansen K, Schrader AM, Oey T, Sant G, Chmelka BF, Israelachvili JN. Electrochemically Enhanced Dissolution of Silica and Alumina in Alkaline Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15651-15660. [PMID: 31454249 DOI: 10.1021/acs.langmuir.9b02043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dissolution of mineral surfaces at asymmetric solid-liquid-solid interfaces in aqueous solutions occurs in technologically relevant processes, such as chemical/mechanical polishing (CMP) for semiconductor fabrication, formation and corrosion of structural materials, and crystallization of materials relevant to heterogeneous catalysis or drug delivery. In some such processes, materials at confined interfaces exhibit dissolution rates that are orders of magnitude larger than dissolution rates of isolated surfaces. Here, the dissolution of silica and alumina in close proximity to a charged gold surface or mica in alkaline solutions of pH 10-11 is shown to depend on the difference in electrostatic potentials of the surfaces, as determined from measurements conducted using a custom-built electrochemical pressure cell and a surface forces apparatus (SFA). The enhanced dissolution is proposed to result from overlap of the electrostatic double layers between the dissimilar charged surfaces at small intersurface separation distances (<1 Debye length). A semiquantitative model shows that overlap of the electric double layers can change the magnitude and direction of the electric field at the surface with the less negative potential, which results in an increase in the rate of dissolution of that surface. When the surface electrochemical properties were changed, the dissolution rates of silica and alumina were increased by up to 2 orders of magnitude over the dissolution rates of isolated compositionally similar surfaces under otherwise identical conditions. The results provide new insights on dissolution processes that occur at solid-liquid-solid interfaces and yield design criteria for controlling dissolution through electrochemical modification, with relevance to diverse technologies.
Collapse
|
16
|
Morga M, Adamczyk Z, Kosior D, Kujda-Kruk M. Kinetics of Poly-l-lysine Adsorption on Mica and Stability of Formed Monolayers: Theoretical and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12042-12052. [PMID: 31433647 DOI: 10.1021/acs.langmuir.9b02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various physicochemical parameters of poly-l-lysine (PLL) solutions comprising the diffusion coefficient, the electrophoretic mobility, the density, and the intrinsic viscosity were determined for the pH range 3.0-9.2. This allowed us to calculate derivative parameters characterizing the PLL molecule such as: zeta potential, the number of electrokinetic charges, ionization degree, contour length, and cross section area. These data were exploited in theoretical calculations of PLL adsorption kinetics on solid substrates under diffusion transport. A hybrid approach was used comprising a blocking function derived from the random sequential adsorption (RSA) model. In experiments, the PLL adsorption on mica was studied using the streaming potential measurements and interpreted in terms of a general electrokinetic model. This confirmed a side-on adsorption mechanism of the macroion molecules at the examined pH range. Additionally, using this method, the stability of PLL monolayers was determined performing in situ desorption kinetic experiments. In this way, the equilibrium adsorption constant and the energy minimum depth were determined. It was confirmed that the monolayer stability decreases with pH following the decrease in the number of electrokinetic charges per molecule. This confirmed the electrostatic interaction driven adsorption mechanism of PLL. It is also predicted that at pH 5.7-7.4 the monolayers were stable under diffusion-controlled desorption over the time exceeding 100 h. In addition to their significance for basic science, the results obtained in this work can be exploited for developing procedures for preparing stable PLL monolayers of well controlled coverage and electrokinetic properties.
Collapse
Affiliation(s)
| | | | - Dominik Kosior
- Department of Inorganic and Analytical Chemistry , University of Geneva , Sciences II, 30 Quai Ernest-Ansermet , 1205 Geneva , Switzerland
| | | |
Collapse
|
17
|
Ghilini F, Rodríguez González MC, Miñán AG, Pissinis D, Creus AH, Salvarezza RC, Schilardi PL. Highly Stabilized Nanoparticles on Poly-l-Lysine-Coated Oxidized Metals: A Versatile Platform with Enhanced Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23657-23666. [PMID: 29927235 DOI: 10.1021/acsami.8b07529] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The increasing incidence of infections in implantable devices has encouraged the search for biocompatible antimicrobial surfaces. To inhibit the bacterial adhesion and proliferation on biomaterials, several surface functionalization strategies have been developed. However, most of these strategies lead to bacteriostatic effect and only few of these are able to reach the bactericidal condition. In this work, bactericidal surfaces were designed through the functionalization of titanium surfaces with poly-l-lysine (PLL) as the mediator for the incorporation of antimicrobial silver nanoparticles (AgNPs). This functionalization influences the adsorption of the particles on the substrate impeding the agglomeration observed when bare titanium surfaces are used, leading to a homogeneous distribution of AgNPs on the surfaces. The antimicrobial activity of this surface has been tested against two different strains, namely, Staphylococcus aureus and Pseudomonas aeruginosa. For both strains and different AgNPs sizes, the surface modified with PLL and AgNPs shows a much enhanced antimicrobial activity in comparison with AgNPs deposited on bare titanium. This enhanced antibacterial activity is high enough to reach bactericidal effect, a condition hard to achieve in antimicrobial surfaces. Importantly, the designed surfaces are able to decrease the bacterial viability more than 5 orders with respect to the initial bacterial inoculum. That means that a relative low load of AgNPs on the PLL-modified titanium surfaces reaches 99.999% bacterial death after 24 h. The results of the present study are important to avoid infections in indwelling materials by reinforcing the preventive antibiotic therapy usually dosed throughout the surgical procedure and during the postoperative period.
Collapse
Affiliation(s)
- Fiorela Ghilini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP-CONICET, CC16 Suc4 , La Plata 1900 , Buenos Aires , Argentina
| | - Miriam C Rodríguez González
- Área de Química Física, Departamento de Química, Facultad de Ciencias , Universidad de La Laguna, Instituto de Materiales y Nanotecnología (IMN) , 38200 La Laguna , Tenerife , Spain
| | - Alejandro G Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP-CONICET, CC16 Suc4 , La Plata 1900 , Buenos Aires , Argentina
| | - Diego Pissinis
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP-CONICET, CC16 Suc4 , La Plata 1900 , Buenos Aires , Argentina
| | - Alberto Hernández Creus
- Área de Química Física, Departamento de Química, Facultad de Ciencias , Universidad de La Laguna, Instituto de Materiales y Nanotecnología (IMN) , 38200 La Laguna , Tenerife , Spain
| | - Roberto C Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP-CONICET, CC16 Suc4 , La Plata 1900 , Buenos Aires , Argentina
| | - Patricia L Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP-CONICET, CC16 Suc4 , La Plata 1900 , Buenos Aires , Argentina
| |
Collapse
|
18
|
Bratek-Skicki A, Eloy P, Morga M, Dupont-Gillain C. Reversible Protein Adsorption on Mixed PEO/PAA Polymer Brushes: Role of Ionic Strength and PEO Content. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3037-3048. [PMID: 29406751 DOI: 10.1021/acs.langmuir.7b04179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteins at interfaces are a key for many applications in the biomedical field, in biotechnologies, in biocatalysis, in food industry, etc. The development of surface layers that allow to control and manipulate proteins is thus highly desired. In previous works, we have shown that mixed polymer brushes combining the protein-repellent properties of poly(ethylene oxide) (PEO) and the stimuli-responsive adsorption behavior of poly(acrylic acid) (PAA) could be synthesized and used to achieve switchable protein adsorption. With the present work, we bring more insight into the rational design of such smart thin films by unravelling the role of PEO on the adsorption/desorption of proteins. The PEO content of the mixed PEO/PAA brushes was regulated, on the one hand, by using PEO with different molar masses and, on the other hand, by varying the ratio of PEO and PAA in the solutions used to synthesize the brushes. The influence of ionic strength on the protein adsorption behavior was also further examined. The behavior of three proteins-human serum albumin, lysozyme, and human fibrinogen, which have very different size, shape, and isoelectric point-was investigated. X-ray photoelectron spectroscopy, quartz crystal microbalance, atomic force microscopy, and streaming potential measurements were used to characterize the mixed polymer brushes and, in particular, to estimate the fraction of each polymer within the brushes. Protein adsorption and desorption conditions were selected based on previous studies. While brushes with a lower PEO content allowed the higher protein adsorption to occur, fully reversible adsorption could only be achieved when the PEO surface density was at least 25 PEO units per nm2. Taken together, the results increase the ability to finely tune protein adsorption, especially with temporal control. This opens up possibilities of applications in biosensor design, separation technologies, nanotransport, etc.
Collapse
Affiliation(s)
- Anna Bratek-Skicki
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , PL30239 Krakow , Poland
| | - Pierre Eloy
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , PL30239 Krakow , Poland
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| |
Collapse
|
19
|
Zhao Y, Zhang YH, Zhuge Z, Tang YH, Tao JW, Chen Y. Synthesis of a Poly-l-Lysine/Black Phosphorus Hybrid for Biosensors. Anal Chem 2018; 90:3149-3155. [DOI: 10.1021/acs.analchem.7b04395] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yun Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ye-Hua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen Zhuge
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi-Hong Tang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jian-Wei Tao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yong Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
20
|
Morga M, Adamczyk Z, Kosior D, Oćwieja M. Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization. Phys Chem Chem Phys 2018; 20:15368-15379. [DOI: 10.1039/c8cp01049h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuning the properties of bilayers by controlled deposition of nanoparticles.
Collapse
Affiliation(s)
- Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- 30-239 Krakow
- Poland
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- 30-239 Krakow
- Poland
| | - Dominik Kosior
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- 30-239 Krakow
- Poland
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- 30-239 Krakow
- Poland
| |
Collapse
|
21
|
Wang W, Yan Y, Wang Q. A Fluorescence Turn-on Probe for Al(III) Based on a Naphthaldehyde Derivative. CHEM LETT 2017. [DOI: 10.1246/cl.170727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wenling Wang
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers’ University, Yancheng, Jiangsu 224051, P. R. China
| | - Yulin Yan
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers’ University, Yancheng, Jiangsu 224051, P. R. China
| | - Qingming Wang
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers’ University, Yancheng, Jiangsu 224051, P. R. China
| |
Collapse
|
22
|
Morga M, Michna A, Adamczyk Z. Formation and stability of polyelectrolyte/polypeptide monolayers determined by electrokinetic measurements. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Barrantes A, Wengenroth J, Arnebrant T, Haugen HJ. Poly- l -lysine/heparin multilayer coatings prevent blood protein adsorption. J Colloid Interface Sci 2017; 485:288-295. [DOI: 10.1016/j.jcis.2016.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/27/2022]
|
24
|
Zhao L, Zhao L, Yang S, Peng X, Wu J, Bian L, Wang X, Pu Q. Use of Pulsed Streaming Potential with a Prepared Cationic Polyelectrolyte Layer to Detect Deposition Kinetics of Graphene Oxide and Consequences of Particle Size Differences. Anal Chem 2016; 88:10437-10444. [PMID: 27696821 DOI: 10.1021/acs.analchem.6b02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The deposition kinetics of graphene oxide (GO) onto poly(ethylene imine) (PEI) layer was characterized in situ with pulsed streaming potential (SP) measurement, and it was found that the initial rate constant (ki) was dependent on the size of GO with same surface charge density at a fixed concentration under controlled experimental conditions. Assuming the deposition was controlled by diffusion at the initial stage, ki is proportional to Rh-2/3, where Rh is the hydrodynamic radius. By flushing a GO solution through a capillary coated with PEI, the initial change rate of relative SP (dEr/dt) was obtained in 20 s and ki was measured with five different concentrations in about 2 min. Three GO samples of different sizes obtained from the same batch of raw material were characterized with pulsed SP to get ki values, and their sizes were verified with atomic force microscopy and dynamic light scattering. The experimental results are consistent with the predicted effects of the size of NPs on their deposition kinetics.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Shenghong Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Xianglu Peng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Jing Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology , Beijing 100124, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| |
Collapse
|
25
|
Farkas E, Srankó D, Kerner Z, Setner B, Szewczuk Z, Malinka W, Horvath R, Szyrwiel Ł, Pap JS. Self-assembled, nanostructured coatings for water oxidation by alternating deposition of Cu-branched peptide electrocatalysts and polyelectrolytes. Chem Sci 2016; 7:5249-5259. [PMID: 30155174 PMCID: PMC6020527 DOI: 10.1039/c6sc00595k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/19/2016] [Indexed: 01/19/2023] Open
Abstract
This work demonstrates the heterogenization of homogeneous water oxidation electrocatalysts in surface coatings produced by combining the substances with a suitable polyelectrolyte.
This work demonstrates the heterogenization of homogeneous water oxidation electrocatalysts in surface coatings produced by combining the substances with a suitable polyelectrolyte. The electrocatalysts i.e. Cu(ii)-branched peptide complexes involving a 2,3-l-diaminopropionic acid junction unit are heterogenized by building composite layers on indium-tin-oxide (ITO) electrode surface. Alternating deposition of the peptide complexes and poly(l-lysine) or poly(allylamine hydrochloride) were carried out in the presence of phosphate in a pH range of 7.5–10.5. Discussion of the results is divided to (1) characteristics of composite layer buildup and (2) electrocatalytic water oxidation and accompanying changes of these layers. For (1), optical waveguide lightmode spectroscopy (OWLS) has been applied to reveal the layer-by-layer formation of a Cu-ligand/polyelectrolyte/phosphate coating. The fabricated structures had a nanoporous topography (atomic force microscopy). As for (2), electrochemistry employing coated ITO substrates indicated improved water oxidation electrocatalysis vs. neat ITO and dependence of this improvement on the presence or absence of a histidine ligand in the deposited Cu(ii)-complexes equally, as observed in homogeneous systems. Electrochemical OWLS revealed changes in the coatings in operando, upon alternating positive–zero–positive etc. polarization: after some initial loss of the coating mass steady-state electrolysis was sustained by a compact and stable layer. According to X-ray photoelectron spectroscopy Cu remains in an N-donor ligand environment after electrolysis.
Collapse
Affiliation(s)
- Enikő Farkas
- Nanobiosensorics Group , MTA Centre for Energy Research - MFA , H-1121 Budapest , Hungary . .,Doctoral School of Molecular- and Nanotechnologies , Faculty of Information Technology , University of Pannonia , Egyetem u. 10 , H-8200 Veszprém , Hungary
| | - Dávid Srankó
- Surface Chemistry and Catalysis Department , MTA Centre for Energy Research , Konkoly Thege str. 29-33 , H-1121 Budapest , Hungary .
| | - Zsolt Kerner
- Surface Chemistry and Catalysis Department , MTA Centre for Energy Research , Konkoly Thege str. 29-33 , H-1121 Budapest , Hungary .
| | - Bartosz Setner
- Faculty of Chemistry , Univ. of Wrocław , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Zbigniew Szewczuk
- Faculty of Chemistry , Univ. of Wrocław , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Wiesław Malinka
- Dept of Chemistry of Drugs , Wrocław Medical Univ. , ul. Borowska 211 , 50-552 Wrocław , Poland .
| | - Robert Horvath
- Nanobiosensorics Group , MTA Centre for Energy Research - MFA , H-1121 Budapest , Hungary .
| | - Łukasz Szyrwiel
- Dept of Chemistry of Drugs , Wrocław Medical Univ. , ul. Borowska 211 , 50-552 Wrocław , Poland . .,CNRS/UPPA , LCABIE , UMR5254 , Helioparc, 2, av. Pr. Angot, Pau , F-64053 , France
| | - József S Pap
- Surface Chemistry and Catalysis Department , MTA Centre for Energy Research , Konkoly Thege str. 29-33 , H-1121 Budapest , Hungary .
| |
Collapse
|