1
|
An BH, Xu DM, Wang RT, Wen YX, Geng R, Wu JY, Tang XC, Chen HB. The simultaneous removal of methylene blue (MB) and Ca 2+ by recyclable adsorbents based the scales derived from coal gasification system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32519-32537. [PMID: 38658508 DOI: 10.1007/s11356-024-33240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
The transformation of solid wastes from industrial production into effective adsorbents could significantly contribute to wastewater treatment. In this study, after acidizing and burning soft scale (SS) from coal gasification system, two magnetic adsorbents (mag-ASS and mag-BASS) were prepared via the combination of magnetite with ultrasonic, respectively. The treatment effects of mag-ASS and mag-BASS were then investigated for simulated wastewater containing macromolecular organic matter [i.e., methylene blue (MB)] and Ca2+. The results indicated that the pseudo second order kinetic, Elovich, Freundlich, Langmuir and Temkin model could well describe the adsorption behavior of MB and Ca2+ onto mag-ASS and mag-BASS. The maximum adsorption capacities of mag-ASS for MB and mag-BASS for Ca2+ were 600.53 mg/g and 102.54 mg/g, respectively. Surprisingly, the adsorption abilities of mag-ASS for MB and mag-BASS for Ca2+ show significantly higher than the others. The adsorption mechanisms of MB mainly included electrostatic interaction, π-π conjugate interaction and cation exchange, while those of Ca2+ were mainly electrostatic interaction and cation exchange. The diffusion of MB and Ca2+ onto the magnetic adsorbents might be controlled by the combined effects of intraparticle and liquid film diffusion. There was no significant reduction in adsorption capacity after 8 cycles of adsorption and desorption, indicating that SS-based magnetic adsorbents had good recyclability and stability. Moreover, the removal efficiency of mag-BASS for total hardness and total organic carbon in real coal gasification gray water (CGGW) was 82.60 and 64.10%, respectively. The treatment of CGGW and the resource of wastes would significantly promote the reasonable disposal of coal gasification scales.
Collapse
Affiliation(s)
- Bai-Hong An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Run-Ting Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Ye-Xuan Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Rui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Jia-Yun Wu
- Sinopec Ningbo Engineering Co., LTD, Ningbo, 315103, China
| | - Xian-Chun Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hong-Bin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Konon M, Brazovskaya EY, Kreisberg V, Semenova E, Polyakova IG, Osipov A, Antropova T. Novel Inorganic Membranes Based on Magnetite-Containing Silica Porous Glasses for Ultrafiltration: Structure and Sorption Properties. MEMBRANES 2023; 13:341. [PMID: 36984728 PMCID: PMC10057932 DOI: 10.3390/membranes13030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Porous glasses (PGs) obtained from sodium borosilicate (NBS) phase-separated glasses via leaching are promising inorganic membranes. Introducing Fe2O3 into NBS glasses imparts ferrimagnetic properties due to magnetite crystallization. Leaching of such glasses leads to the formation of magnetic PGs with interesting electro-surface characteristics. This work aimed to investigate the process of obtaining magnetite-containing PGs from NBS glasses depending on silica content, using XRPD and Raman spectroscopy, studying the PG membranes' structural characteristics and their sorption properties with respect to methylene blue (MB). Obtained PGs were characterized by a polymodal distribution of mesopores and a small number of micropores with specific surface area values of 32-135 m2/g and an average mesopore diameter of 5-41 nm. The kinetic data were analyzed using pseudo-first-order, pseudo-second-order, and intra-particle diffusion equations. The equilibrium isotherms were fitted with Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. MB adsorption was found to be a complex process. The glass with the highest specific surface area demonstrated the maximum sorption capacity (10.5 mg/g). The pore size of PGs allowed them to be considered potential novel magnetic membranes for ultrafiltration.
Collapse
Affiliation(s)
- Marina Konon
- Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena Yu. Brazovskaya
- Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Valery Kreisberg
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina Semenova
- Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Irina G. Polyakova
- Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Armenak Osipov
- Institute of Mineralogy, South Urals Federal Research Center of Mineralogy and Geoecology, Urals Branch of RAS, 456317 Miass, Russia
| | - Tatiana Antropova
- Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Kouser M, Chowhan B, Sharma N, Gupta M. Transformation of Waste Toner Powder into Valuable Fe 2O 3 Nanoparticles for the Preparation of Recyclable Co(II)-NH 2-SiO 2@Fe 2O 3 and Its Applications in the Synthesis of Polyhydroquinoline and Quinazoline Derivatives. ACS OMEGA 2022; 7:47619-47633. [PMID: 36591190 PMCID: PMC9798778 DOI: 10.1021/acsomega.2c04512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Ecological recycling of waste materials by converting them into valuable nanomaterials can be considered a great opportunity for management and fortification of the environment. This article deals with the environment-friendly synthesis of Fe2O3 nanoparticles (composed of α-Fe2O3 and γ-Fe2O3) using waste toner powder (WTP) via calcination. Fe2O3 nanoparticles were then coated with silica using TEOS, functionalized with silane (APTMS), and immobilized with Co(II) to get the desired biocompatible and cost-effective catalyst, i.e., Co(II)-NH2-SiO2@Fe2O3. The structural features in terms of evaluation of morphology, particle size, presence of functional groups, polycrystallinity, and metal content over the surface were determined by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (P-XRD), field emission gun-scanning electron microscopy (FEG-SEM), energy-dispersive X-ray analysis (EDX), high resolution-transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), Brunauer-Emmett-Teller (BET) analysis, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) studies. XPS confirmed the (II) oxidation state of Co, and ICP-AES and EDX supported the loading of Co(II) over the surface of the support. P-XRD proved the polycrystalline nature of the Fe2O3 core and even after functionalization. In comparison to previously reported methods, Co(II)-NH2-SiO2@Fe2O3 provides an eco-friendly procedure for the synthesis of polyhydroquinoline and quinazoline derivatives with several advantages such as a short reaction time and high yield. Polyhydroquinoline and quinazoline derivatives are important scaffolds in pharmacologically active compounds. Moreover, the developed nanocatalyst was recyclable, and HR-TEM and P-XRD confirmed the agglomeration in the recycled catalyst resulted in a decrease in yield after the fifth run. The present protocol provides a new strategy of recycling e-waste into a heterogeneous nanocatalyst for the synthesis of heterocycles via multicomponent reactions. This made the synthesized catalyst convincingly more superior to other previously reported catalysts for organic transformations.
Collapse
|
4
|
Facile Preparation of Porous Carbon Derived from Pomelo Peel for Efficient Adsorption of Methylene Blue. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103096. [PMID: 35630572 PMCID: PMC9144290 DOI: 10.3390/molecules27103096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Pomelo peel waste-derived porous carbon (PPPC) was prepared by a facile one-step ZnCl2 activation method. The preparation parameters of PPPC were the mass ratio of ZnCl2 to pomelo peel of 2:1, carbonization temperature of 500 °C, and carbonization time of 1 h. This obtained PPPC possessed abundant macro-,meso-, and micro-porous structures, and a large specific surface area of 939.4 m2 g-1. Surprisingly, it had excellent adsorption ability for methylene blue, including a high adsorption capacity of 602.4 mg g-1 and good reusability. The adsorption isotherm and kinetic fitted with Langmuir and pseudo-second order kinetic models. This work provides a novel strategy for pomelo peel waste utilization and a potential adsorbent for treating dye wastewater.
Collapse
|
5
|
Aziz K, Aziz F, Mamouni R, Aziz L, Saffaj N. Engineering of highly Brachychiton populneus shells@polyaniline bio-sorbent for efficient removal of pesticides from wastewater: Optimization using BBD-RSM approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Ren L, Tang Z, Du J, Chen L, Qiang T. Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126130. [PMID: 34229397 DOI: 10.1016/j.jhazmat.2021.126130] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Novel composite foam (CMCTS-PUF-s) was prepared by immobilizing carboxymethyl chitosan (CMCTS) on polyurethane foam (PUF) in which amino groups in CMCTS reacted with isocyanate groups in polyurethane prepolymer. The adsorption capacity of the optimal composite foam (CMCTS-PUF-5) reached to 118.2 mg/g with 5% CMCTS loading. The removal rate to methylene blue (MB) was up to 97.1%, which was obviously higher than 18.9% of PUF. After recycling for five times, the removal rate still reached 83.2%, which strongly proved the excellent reusability of immobilizing CMCTS modified PUF. The characterization results of FTIR and TG showed that CMCTS was well loaded on PUF by covalent bond. The Young's modulus and tensile strength of CMCTS-PUF-5 were increased by 252% and 97% compared with that of PUF. MIP characterization result showed the porosity of CMCTS-PUF-5 was 73.99% and the pore sizes were mainly distributed between 50 and 150 µm, which provide sufficient diffusion channels and active sites for MB dyes. The adsorption kinetics and isotherm proved pseudo-second-order kinetic model and Langmuir isotherm model could well describe the adsorption process of CMCTS-PUF-5. Therefore, CMCTS-PUF-s presents excellent recoverability, high stability and attractive adsorption efficiency, shows the potential application in future treatment of dye wastewater.
Collapse
Affiliation(s)
- Longfang Ren
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China.
| | - Zheng Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Jinyao Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Lu Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| |
Collapse
|
7
|
Hao PV, Minh PN, Hong PN, Huy NN, Oanh PT, Nguyen HT, Tran TD, Van Thanh D, Nguyen VTK, Dang NV. Gram-scale synthesis of electrochemically oxygenated graphene nanosheets for removal of methylene blue from aqueous solution. NANOTECHNOLOGY 2021; 32:16LT01. [PMID: 33455951 DOI: 10.1088/1361-6528/abdc8b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, oxygenated graphene nanosheets (OGNs) were successfully synthesized using a simple electrochemical exfoliation approach and applied to remove methylene blue (MB) in an aqueous solution. The surface morphology and structure of the OGNs were characterized by scanning electron microscopy, transmission electron microscopy, Raman, and x-ray photoelectron spectroscopy. The adsorption performance of OGNs towards aqueous MB was tested by batch experiments. Results showed that a large number of functional groups in OGNs enhanced the removal of MB from the aqueous solution due to the electrostatic interactions between the electrochemically oxygenated groups (e.g. C-OH, C-O, and C=O) and dye molecules. Using Langmuir adsorption isotherm, the maximum MB adsorption capacity (q max) was determined as high as 476.19 mg g-1. These results suggested that the as-prepared OGNs is an effective and promising adsorbent for removing MB, which could be studied extensively for color removal in wastewater treatment.
Collapse
Affiliation(s)
- Pham Van Hao
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Vietnam
- TNU-University of Information and Communication Technology, Z115 St., Quyet Thang Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Phan Ngoc Minh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Vietnam
- Centre for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Vietnam
| | - Phan Ngoc Hong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Vietnam
- Centre for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Vietnam
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Phung Thi Oanh
- Faculty of Basic Sciences, TNU-University of Medicine and Pharmacy, 284 Luong Ngoc Quyen St., Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Hai Thanh Nguyen
- Faculty of Basic Sciences, TNU-University of Medicine and Pharmacy, 284 Luong Ngoc Quyen St., Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Trang Doan Tran
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Dang Van Thanh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Vietnam
- Faculty of Basic Sciences, TNU-University of Medicine and Pharmacy, 284 Luong Ngoc Quyen St., Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Van Thi Khanh Nguyen
- Faculty of Physics and Technology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Nguyen Van Dang
- Faculty of Physics and Technology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| |
Collapse
|
8
|
Xian Y, Liang M, Wu Y, Wang B, Hou X, Dong H, Wang L. Fluorine and nitrogen functionalized magnetic graphene as a novel adsorbent for extraction of perfluoroalkyl and polyfluoroalkyl substances from water and functional beverages followed by HPLC-Orbitrap HRMS determination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138103. [PMID: 32224403 DOI: 10.1016/j.scitotenv.2020.138103] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Most of the reported magnetic adsorbents are difficult to absorb multi-class of per- and polyfluoroalkyl substances (PFASs), especially the short-chain PFASs. In this work, a novel fluorine and nitrogen functionalized magnetic graphene (G-NH-FBC/Fe2O3) was first synthesized and characterized by scanning electron microscope (SEM), Fourier Transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The as-prepared G-NH-FBC/Fe2O3 was utilized as adsorbents for the magnetic solid-phase extraction (MSPE) of 19 PFASs from water and functional beverages and showed excellent adsorption capacity probably due to the hydrophobic interaction. Under the optimal pretreatment and instrumental conditions, a selective and sensitive high performance liquid chromatography Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was developed for the determination of PFASs. Results indicated that the proposed method had favorable linearity (R2 ≥ 0.994) within a wide range of concentrations. Limit of detection (LOD) and limit of quantification (LOQ) for the developed method ranged from 3 ng/L to 15 ng/L and 10 ng/L to 49 ng/L, respectively. Finally, the method was successfully applied to determine PFASs in drinking water, river water, tap water, factory drainage and functional beverages with recoveries ranging from 71.9% to 117.6% and relative standard deviation of <10%. The prepared G-NH-FBC/Fe2O3 was easy to recycle and could be reused for five times without significant decrease in extraction recoveries of PFASs. These results demonstrated that this novel magnetic G-NH-FBC/Fe2O3 could efficiently enrich PFASs and the proposed method is reliable and robust for the determination of PFASs in water and beverage samples.
Collapse
Affiliation(s)
- Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China.
| | - Bin Wang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Liya Wang
- Guangdong Institute of Food Inspection, Guangzhou 510435, China
| |
Collapse
|
9
|
Ciğeroğlu Z, Haşimoğlu A, Özdemir OK. Synthesis, characterization and an application of graphene oxide nanopowder: methylene blue adsorption and comparison between experimental data and literature data. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1710526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zeynep Ciğeroğlu
- Department of Chemical Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Aydın Haşimoğlu
- Nanotechnology Research Center, Gebze Institute of Technology, Kocaeli, Turkey
| | - Oğuz Kaan Özdemir
- Department of Metallurgy and Material Science Engineering, Chemical-Mettalurgy Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
10
|
Facile Synthesis of High Performance Iron Oxide/Carbon Nanocatalysts Derived from the Calcination of Ferrocenium for the Decomposition of Methylene Blue. Catalysts 2019. [DOI: 10.3390/catal9110948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron oxide/carbon nanocatalysts were successfully synthesized by the calcination of ferrocenium at high temperatures ranging from 500 to 900 °C. Then the synthesized nanocomposites were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy), VSM (Vibrating-Sample Magnetometry), BET (Brunauer-Emmett-Teller surface area measurements), TGA (Thermogravimetric Analysis), XPS (X-Ray Photoelectron Spectroscopy), EPR (Electron Paramagnetic Resonance), and CHN elemental analysis. The prepared nanocatalysts were applied for the decomposition of methylene blue as a model in wastewater treatment. It was unexpected to discover that the prepared nanocatalysts were highly active for the reaction with methylene blue in the dark even though no excess of hydrogen peroxide was added. The nanocatalyst calcined at 800 °C exhibited the rod shape with the best catalytic activity. The nanocatalysts could be reused for 12 times without the significant loss of the catalytic activity.
Collapse
|
11
|
Lu W, Guo X, Yang B, Wang S, Liu Y, Yao H, Liu C, Pang H. Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem 2019. [DOI: 10.1002/celc.201901006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wenjie Lu
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Xiaotian Guo
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Biao Yang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Sibo Wang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Yong Liu
- Collaborative Innovation Center of Nonferrous Metals of Henan Province Henan Key Laboratory of High-Temperature Structural and Functional Materials School of Materials Science and EngineeringHenan University of Science and Technology Luoyang China
| | - Hang Yao
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Chun‐Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Huan Pang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| |
Collapse
|
12
|
Gusain R, Gupta K, Joshi P, Khatri OP. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv Colloid Interface Sci 2019; 272:102009. [PMID: 31445351 DOI: 10.1016/j.cis.2019.102009] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Metal oxide nanomaterials and their composites are comprehensively reviewed for water remediation. The controlled morphological and textural features, variable surface chemistry, high surface area, specific crystalline nature, and abundant availability make the nanostructured metal oxides and their composites highly selective materials for efficient removal of organic pollutants based on adsorption and photocatalytic degradation. A wide range of metal oxides like iron oxides, magnesium oxide, titanium oxides, zinc oxides, tungsten oxides, copper oxides, metal oxides composites, and graphene-metal oxides composites having variable structural, crystalline and morphological features are reviewed emphasizing the recent development, challenges, and opportunities for adsorptive removal and photocatalytic degradation of organic pollutants viz. dyes, pesticides, phenolic compounds, and so on. It also covers the deep discussion on the photocatalytic mechanism of metal oxides and their composites along with the properties relevant to photocatalysis. High photodegradation efficiency, economically-viable approaches for the preparation of photocatalytic materials, and controlled band-gap engineering make metal oxides highly efficient photocatalysts for degradation of organic pollutants. The review would be an excellent resource for researchers who are currently focusing on metal oxides-based materials for water remediation as well as for those who are interested in adsorptive and photocatalytic applications of metal oxides and their composites.
Collapse
Affiliation(s)
- Rashi Gusain
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Kanika Gupta
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Pratiksha Joshi
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Om P Khatri
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
13
|
Wu D, Niu Y, Wang C, Wu H, Li Q, Chen Z, Xu B, Li H, Zhang LY. γ-Fe2O3 nanoparticles stabilized by holey reduced graphene oxide as a composite anode for lithium-ion batteries. J Colloid Interface Sci 2019; 552:633-638. [DOI: 10.1016/j.jcis.2019.05.091] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
|
14
|
Feng J, Liu Y, Zhang L, Zhu J, Chen J, Xu H, Yang H, Yan W. Effects of calcination temperature on organic functional groups of TiO2 and the adsorption performance of the TiO2 for methylene blue. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1574822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jiangtao Feng
- Department of Environmental Science and Engineering, Xi′an Jiaotong University, Xi′an, P.R. China
| | - Yunpeng Liu
- Department of Environmental Science and Engineering, Xi′an Jiaotong University, Xi′an, P.R. China
| | - Lin Zhang
- Department of Environmental Science and Engineering, Xi′an Jiaotong University, Xi′an, P.R. China
| | - Jinwei Zhu
- Department of Environmental Science and Engineering, Xi′an Jiaotong University, Xi′an, P.R. China
- Shaanxi Electrical Equipment Institution, Xi′an, P.R. China
| | - Jie Chen
- Department of Environmental Science and Engineering, Xi′an Jiaotong University, Xi′an, P.R. China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi′an Jiaotong University, Xi′an, P.R. China
| | - Honghui Yang
- Department of Environmental Science and Engineering, Xi′an Jiaotong University, Xi′an, P.R. China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi′an Jiaotong University, Xi′an, P.R. China
| |
Collapse
|
15
|
Zhang W, Li H, Tang J, Lu H, Liu Y. Ginger Straw Waste-Derived Porous Carbons as Effective Adsorbents toward Methylene Blue. Molecules 2019; 24:E469. [PMID: 30696112 PMCID: PMC6384592 DOI: 10.3390/molecules24030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 11/24/2022] Open
Abstract
In this work, ginger straw waste-derived porous carbons, with high adsorption capacity, high adsorption rate, and good reusability for removing the toxic dye of methylene blue from wastewater, were prepared by a facile method under oxygen-limiting conditions. This study opens a new approach for the utilization of ginger straw waste, and the porous materials can be employed as great potential adsorbents for treating dye wastewater.
Collapse
Affiliation(s)
- Wenlin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Huihe Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Hongjia Lu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Yiqing Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| |
Collapse
|
16
|
Han Q, Li W, Zhou Z, Fang Z, Chen L, Xu Z, Qian X. Graphene Oxide/ Polyacrylic acid-based double network skeleton for enhanced cationic dye adsorption. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qiaoqiao Han
- Jiangsu R&D Center of the Ecological Textile Engineering & Technology, Yancheng Polytechnic College, Yancheng, People’s Republic of China
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin People’s Republic of China
| | - Wenxiao Li
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin People’s Republic of China
| | - Zhiyong Zhou
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin People’s Republic of China
| | - Zhou Fang
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin People’s Republic of China
| | - Lei Chen
- Jiangsu R&D Center of the Ecological Textile Engineering & Technology, Yancheng Polytechnic College, Yancheng, People’s Republic of China
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin People’s Republic of China
| | - Zhiwei Xu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin People’s Republic of China
| | - Xiaoming Qian
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin People’s Republic of China
| |
Collapse
|
17
|
Yao T, Jia W, Feng Y, Zhang J, Lian Y, Wu J, Zhang X. Preparation of reduced graphene oxide nanosheet/Fe xO y/nitrogen-doped carbon layer aerogel as photo-Fenton catalyst with enhanced degradation activity and reusability. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:62-71. [PMID: 30236943 DOI: 10.1016/j.jhazmat.2018.08.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/02/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
In this manuscript, a novel reduced graphene oxide nanosheet/FexOy/nitrogen-doped carbon layer (rGS/FexOy/NCL) aerogel with FexOy NPs sandwiched between rGS and NCL was prepared via a two-step method. Their catalytic performance was evaluated in a photo-Fenton degradation of rhodamine B. It was found that rGS/FexOy/NCL aerogel represented higher degradation activity than the sum of rGS/NCL support and FexOy NPs, suggesting synergistic effect was established between support and reactive species. The degradation activity was investigated on the basis of aerogel usage, FexOy loading, H2O2 dosage, pH value and RhB concentration. To test stability and reusability, leaching experiments, cyclic experiments and structural analysis were carried out. Based on inhibitor experiment and intermediate detection, a possible catalytic mechanism and degradation pathway of RhB were proposed.
Collapse
Affiliation(s)
- Tongjie Yao
- MIIT Key Lab of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China.
| | - Wenjie Jia
- MIIT Key Lab of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China
| | - Yan Feng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, China
| | - Junshuai Zhang
- MIIT Key Lab of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China
| | - Yongfu Lian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, China
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, China.
| | - Xiao Zhang
- MIIT Key Lab of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China
| |
Collapse
|
18
|
Hoseini A, Farhadi S, Zabardasti A. Yolk–shell microspheres assembled from Preyssler‐type NaP
5
W
30
O
110
14−
polyoxometalate and MIL‐101(Cr) metal–organic framework: A new inorganic–organic nanohybrid for fast and selective removal of cationic organic dyes from aqueous media. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Saeed Farhadi
- Department of ChemistryLorestan University Khorramabad Iran
| | | |
Collapse
|
19
|
Han Q, Chen L, Li W, Zhou Z, Fang Z, Xu Z, Qian X. Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu 2+ from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34438-34447. [PMID: 30306446 DOI: 10.1007/s11356-018-3409-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Three-dimensional (3D) double network graphene oxide/polyacrylic acid (GO/PAA) hybrid aerogels were fabricated under mild conditions from the mixture of GO and acrylic acid (AA) monomers using a one-pot in situ solution polymerization process which included the polymerization of AA and the self-assembly of functional GO sheets. The PAA chains served as not only binder to assemble GO sheets into 3D framework but also modifier to provide more active functional groups. The adsorbents based on such material exhibited superior adsorption performance towards Cu2+ ions in aqueous media due to rich mesopores, high specific surface area, and abundant active sites. This work brings a new vision for assembling 3D porous graphene-based nanomaterials as adsorbents in environmental protection.
Collapse
Affiliation(s)
- Qiaoqiao Han
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Lei Chen
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China.
| | - Wenxiao Li
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhiyong Zhou
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhou Fang
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhiwei Xu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Xiaoming Qian
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| |
Collapse
|
20
|
Didehban KH, Mirshokraie SA, Mohammadi F, Azimvand J. Preparation and Characterization of Reduced Graphene Oxide–Fe3O4 Nanocomposites in Polyacrylamide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418110092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Yao T, Jia W, Tong X, Feng Y, Qi Y, Zhang X, Wu J. One-step preparation of nanobeads-based polypyrrole hydrogel by a reactive-template method and their applications in adsorption and catalysis. J Colloid Interface Sci 2018; 527:214-221. [DOI: 10.1016/j.jcis.2018.05.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
22
|
Chen L, Han Q, Li W, Zhou Z, Fang Z, Xu Z, Wang Z, Qian X. Three-dimensional graphene-based adsorbents in sewage disposal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25840-25861. [PMID: 30039490 DOI: 10.1007/s11356-018-2767-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
A kind of graphene functional materials based on three-dimensional (3D) porous structure is a new star for environmental application in the past decades because it not only inherits the perfect carbon crystal structure of two-dimensional (2D) graphene sheets but also exhibits several advantages such as extremely low density, high porosity, and big surface area, all which enable diverse contaminants to easily access and diffuse into 3D networks, and make these materials ideal adsorbents with superior adsorptivity and recyclability. This review aims to summarize the recent progress in constructing 3D graphene-based adsorbents (3DGBAs) with two hybrid systems such as graphene/polymers and graphene/inorganic nanomaterials, and to provide a fundamental understanding of synthetic methods for interconnecting these nanostructures, structure-property relationships, and extensive applications in environmental protection towards adsorption of heavy metals, dyes, oils, and organic pollutants. Furthermore, we make a forecast on the future development opportunities and technical challenges, which is hoped to make an inspiration for the researchers to exploit a new family of graphene-based adsorption materials. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China.
| | - Qiaoqiao Han
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Wenxiao Li
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhiyong Zhou
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhou Fang
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhiwei Xu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zexiang Wang
- Tianjin Xuwo Technology Co., Ltd., Tianjin, 300000, People's Republic of China
| | - Xiaoming Qian
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| |
Collapse
|
23
|
Zhang LY, Wu D, Gong Y, Liu H, Chen W, Bi L. Carbon Monoxide-Templated Synthesis of Coral-Like Clean PtPd Nanochains as Efficient Oxygen Reduction Catalyst. ChemElectroChem 2018. [DOI: 10.1002/celc.201800575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lian Ying Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 P. R. China
- Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology; Chongqing University of Arts and Sciences; Chongqing 402160 P. R. China
- CAS Key Laboratory of Low-Coal Conversion Science & Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; Shanghai 201210 P. R. China
| | - Diben Wu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 P. R. China
| | - Yuyan Gong
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 P. R. China
| | - Hongdong Liu
- Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology; Chongqing University of Arts and Sciences; Chongqing 402160 P. R. China
| | - Wei Chen
- CAS Key Laboratory of Low-Coal Conversion Science & Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; Shanghai 201210 P. R. China
| | - Lei Bi
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 P. R. China
| |
Collapse
|
24
|
Pu S, Xue S, Yang Z, Hou Y, Zhu R, Chu W. In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe 3O 4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17310-17320. [PMID: 29654454 DOI: 10.1007/s11356-018-1872-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
A superparamagnetic graphene oxide (GO)/Fe3O4 nanocomposite (MGO) was prepared by a facile in situ co-precipitation strategy, resulting in a prospective material for the application of graphene oxide in wastewater treatment. MGO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The prepared adsorbent showed a high adsorption efficiency relevant to the purification of dye-contaminated wastewater and could be readily magnetically separated. The maximum adsorption capacity was ca. 546.45 mg g-1 for the common cationic dye methylene blue (MB) and ca. 628.93 mg g-1 for the anionic dye Congo red (CR). The adsorption processes fit the pseudo-second-order kinetic model well, which revealed that these processes may involve the chemical interaction between adsorbate and adsorbent. The thermodynamic parameters indicated that the adsorption reaction was an endothermic and spontaneous process. Furthermore, the prepared magnetic adsorbent had a wide effective pH range from 5 to 11 and showed good stability after five reuse cycles. The synthetic MGO showed great potential as a promising adsorbent for organic contaminant removal in wastewater treatment.
Collapse
Affiliation(s)
- Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
| | - Shengyang Xue
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Zeng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Yaqi Hou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Rongxin Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Wei Chu
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| |
Collapse
|
25
|
One-pot aqueous fabrication of reduced graphene oxide supported porous PtAg alloy nanoflowers to greatly boost catalytic performances for oxygen reduction and hydrogen evolution. J Colloid Interface Sci 2018; 513:455-463. [DOI: 10.1016/j.jcis.2017.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/28/2023]
|
26
|
Farhadi S, Mahmoudi F, Amini MM, Dusek M, Jarosova M. Synthesis and characterization of a series of novel perovskite-type LaMnO 3/Keggin-type polyoxometalate hybrid nanomaterials for fast and selective removal of cationic dyes from aqueous solutions. Dalton Trans 2018; 46:3252-3264. [PMID: 28224153 DOI: 10.1039/c6dt04866h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, Keggin-type heteropoly acids H3PMo12O40 (PMo12), H3PW12O40 (PW12) and H4SiW12O40 (SiW12) were successfully supported on silica-coated perovskite type LaMnO3 nanoparticles by a simple acid-base reaction. These novel hybrid nanomaterials (denoted as LaMnO3@SiO2/PMo12 (1), LaMnO3@SiO2/PW12 (2), and LaMnO3@SiO2/SiW12 (3)) were characterized by means of FT-IR, PXRD, inductively coupled plasma (ICP) spectrometry, SEM, EDX, TEM and BET surface area analysis. Furthermore, the adsorption abilities of 1-3 were tested towards cationic methylene blue (MB) and anionic methyl orange (MO) dyes. The results revealed that the MB dye can be removed almost completely (≥98%) by adsorbents 1-3 in 1, 30 and 0.5 minutes, respectively. For the most efficient adsorbent 3, the effects of the initial concentration and the initial pH values of MB solution on its adsorption ability were examined. Furthermore, the selective adsorption of the hybrid materials towards mixed MB & MO solution was investigated. The nanomaterials 1-3 could be easily separated from the aqueous solution and reused several times without any impact on their adsorption abilities and structures.
Collapse
Affiliation(s)
- Saeed Farhadi
- Department of Chemistry, Lorestan University, Khoramabad 68151-44316, Iran.
| | - Farzaneh Mahmoudi
- Department of Chemistry, Lorestan University, Khoramabad 68151-44316, Iran.
| | - Mostafa M Amini
- Department of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran.
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - Marketa Jarosova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| |
Collapse
|
27
|
Xu H, Yan B, Li S, Wang J, Wang C, Guo J, Du Y. One-pot fabrication of N-doped graphene supported dandelion-like PtRu nanocrystals as efficient and robust electrocatalysts towards formic acid oxidation. J Colloid Interface Sci 2018; 512:96-104. [DOI: 10.1016/j.jcis.2017.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/29/2022]
|
28
|
Zhang LY, Gong Y, Liu H, Yuan W, Liu Z. Ultrasmall and uniform Pt3Au clusters strongly suppress Ostwald ripening for efficient ethanol oxidation. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
29
|
Graphene decorated with Pd4Ir nanocrystals: Ultrasound-assisted synthesis, and application as a catalyst for oxidation of formic acid. J Colloid Interface Sci 2017; 505:783-788. [DOI: 10.1016/j.jcis.2017.06.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 01/08/2023]
|
30
|
Wei D, Zhang Y, Fu J. Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile-poly(methyl methacrylate) core-shell composite nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1897-1908. [PMID: 29046837 PMCID: PMC5629418 DOI: 10.3762/bjnano.8.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Carbon nanospheres with a high Brunauer-Emmett-Teller (BET) specific surface area were fabricated via the pyrolysis of polyacrylonitrile-poly(methyl methacrylate) (PAN-PMMA) core-shell nanoparticles. Firstly, PAN-PMMA nanoparticles at high concentration and low surfactant content were controllably synthesized by a two-stage azobisisobutyronitrile (AIBN)-initiated semicontinuous emulsion polymerization. The carbon nanospheres were obtained after the PAN core domain was converted into carbon and the PMMA shell was sacrificed via the subsequent heat treatment steps. The thickness of the PMMA shell can be easily adjusted by changing the feeding volume ratio (FVR) of methyl methacrylate (MMA) to acrylonitrile (AN). At an FVR of 1.6, the coarse PAN cores were completely buried in the PMMA shells, and the surface of the obtained PAN-PMMA nanoparticles became smooth. The thick PMMA shell can inhibit the adhesion between carbon nanospheres caused by cyclization reactions during heat treatment. The carbon nanospheres with a diameter of 35-65 nm and a high BET specific surface area of 612.8 m2/g were obtained from the PAN-PMMA nanoparticles synthesized at an FVR of 1.6. The carbon nanospheres exhibited a large adsorption capacity of 190.0 mg/g for methylene blue, thus making them excellent adsorbents for the removal of organic pollutants from water.
Collapse
Affiliation(s)
- Dafu Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Youwei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinping Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
31
|
Teixeira S, Mora H, Blasse LM, Martins P, Carabineiro S, Lanceros-Méndez S, Kühn K, Cuniberti G. Photocatalytic degradation of recalcitrant micropollutants by reusable Fe 3 O 4 /SiO 2 /TiO 2 particles. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Wang G, Wang S, Sun W, Sun Z, Zheng S. Oxygen functionalized carbon nanocomposite derived from natural illite as adsorbent for removal of cationic and anionic dyes. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Zhang W, Zhou Z. Citrus Pectin-Derived Carbon Microspheres with Superior Adsorption Ability for Methylene Blue. NANOMATERIALS 2017; 7:nano7070161. [PMID: 28665303 PMCID: PMC5535227 DOI: 10.3390/nano7070161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/26/2022]
Abstract
In this study, citrus pectin-derived, green, and tunable carbon microspheres with superior adsorption capacity and high adsorption rate, as well as good reusability toward methylene blue adsorption, were prepared by a facile hydrothermal method without any hazardous chemicals. The materials hold great potential for the treatment of methylene blue wastewater.
Collapse
Affiliation(s)
- Wenlin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
- Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
34
|
Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q, Zhu X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release 2017; 272:145-158. [PMID: 28442407 DOI: 10.1016/j.jconrel.2017.04.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Abstract
Precise delivery of antineoplastic drugs to specific tumor region has drawn much attention in recent years. Herein, a light/magnetic hyperthermia triggered drug delivery with multiple functionality is designed based on methotrexate (MTX) modified thermo-sensitive magnetoliposomes (MTX-MagTSLs). In this system, MTX and oleic acid modified magnetic nanoparticles (MNPs) can be applied in biological and magnetic targeting. Meanwhile, lipophilic fluorescent dye Cy5.5 and MNPs are encapsulated into the bilayer of liposomes, which can not only achieve dual-imaging effect to verify the MTX-MagTSLs accumulation in tumor region, but also provide an appropriate laser irradiation region to release Doxorubicin (Dox) under alternating magnetic field (AMF). Both in vitro and in vivo results revealed that MTX-MagTSLs possessed an excellent targeting ability towards HeLa cells and HeLa tumor-bearing mice. Furthermore, the heating effect of MTX-MagTSLs was amplified 4.2-fold upon combination with AMF and local precise near-infrared laser irradiation (808nm) (DUAL-mode) to rapidly reach the phase change temperature (Tm) of MTX-MagTSLs in 5min compared with either AMF or laser stimulation alone, resulting in a significantly enhanced release of Dox at tumor region and precise cancer synergetic theranostics.
Collapse
Affiliation(s)
- Yuxin Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jinyuan Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yang Li
- College of Materials, Xiamen University, Xiamen, China
| | - Xinyi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Dan Zhao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Hua Song
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qing Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
35
|
Liu Z, Zhang LY, Wang Y, Zhao Z, Li CM. Self-Assembling PDDA on Graphene to Surfactant-Free Synthesize Uniform and Ultra-Small Pd Nanocrystals by Direct CO Reduction for Efficient Catalyst Toward Formic Acid Oxidation. ChemistrySelect 2017. [DOI: 10.1002/slct.201700599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ze Liu
- Institute for Clean Energy & Advanced Materials; Faculty of Materials & Energy; Southwest University; Chongqing 400715 China
| | - Lian Ying Zhang
- Institute for Clean Energy & Advanced Materials; Faculty of Materials & Energy; Southwest University; Chongqing 400715 China
- Institute of Energy and Environmental Materials; Qingdao University; Qingdao 266071 China
| | - Yi Wang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Zhiliang Zhao
- Institute for Clean Energy & Advanced Materials; Faculty of Materials & Energy; Southwest University; Chongqing 400715 China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials; Faculty of Materials & Energy; Southwest University; Chongqing 400715 China
- Institute of Materials Science and Devices; Suzhou University of Science and Technology; Suzhou 215011 China
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
36
|
Yin W, Hao S, Cao H. Solvothermal synthesis of magnetic CoFe2O4/rGO nanocomposites for highly efficient dye removal in wastewater. RSC Adv 2017. [DOI: 10.1039/c6ra26948f] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic CoFe2O4/rGO nanocomposites were fabricated via a solvothermal process and used as environmentally-friendly adsorbents for the adsorption of organic dyes.
Collapse
Affiliation(s)
- Wenzhu Yin
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Shuo Hao
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- College of Chemistry and Molecular Engineering
| | - Huaqiang Cao
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
37
|
Du J, Zhang L, Gao H, Liao Y. Removal of methylene blue from aqueous solutions using Poly(AA-co-DVB). J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1255955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jia Du
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Luanluan Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Hejun Gao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
- Institute of Applied Chemistry, China West Normal University, Nanchong, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
- College of Environmental Science and Engineering of China West Normal University, Nanchong, China
| |
Collapse
|
38
|
Zhang J, Yao T, Zhang H, Zhang X, Wu J. Preparation of raspberry-like γ-Fe 2O 3/crackled nitrogen-doped carbon capsules and their application as supports to improve catalytic activity. NANOSCALE 2016; 8:18693-18702. [PMID: 27734999 DOI: 10.1039/c6nr05418h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this manuscript, we have introduced a novel method to improve the catalytic activity of metal nanoparticles via optimizing the support structure. To this end, raspberry-like γ-Fe2O3/crackled nitrogen-doped carbon (CNC) capsules were prepared by a two-step method. Compared with traditional magnetic capsules, in γ-Fe2O3/CNC capsules, the γ-Fe2O3 nanoparticles were embedded in a CNC shell; therefore, they neither occupied the anchoring sites for metal nanoparticles nor came into contact with them, which was beneficial for increasing the metal nanoparticle loading. Numerous tiny cracks appeared on the porous CNC shell, which effectively improved the mass diffusion and transport in catalytic reactions. Additionally, the coordination interaction could be generated between the precursor metal ions and doped-nitrogen atoms in the capsule shell. With the help of these structural merits, γ-Fe2O3/CNC capsules were ideal supports for Pd nanoparticles, because they were beneficial for improving the Pd loading, reducing the nanoparticle size, increasing their dispersity and maximizing the catalytic performance of Pd nanoparticles anchored on the inner shell surface. As expected, γ-Fe2O3/CNC@Pd catalysts exhibited a dramatically enhanced catalytic activity towards hydrophilic 4-nitrophenol and hydrophobic nitrobenzene. The reaction rate constant k was compared with recent work and the corresponding reference samples. Moreover, they could be easily recycled by using a magnet and reused without an obvious loss of catalytic activity.
Collapse
Affiliation(s)
- Junshuai Zhang
- MIIT Key Lab of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China.
| | - Tongjie Yao
- MIIT Key Lab of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China.
| | - Hui Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, China.
| | - Xiao Zhang
- MIIT Key Lab of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China.
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, China.
| |
Collapse
|
39
|
Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2016.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Citrus pectin derived ultrasmall Fe3O4@C nanoparticles as a high-performance adsorbent toward removal of methylene blue. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.144] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
41
|
Zhang LY, Zhou Z, Liu Z, Li CM. An Efficient Electrocatalyst Derived from Bamboo Leaves for the Oxygen Reduction Reaction. ChemElectroChem 2016. [DOI: 10.1002/celc.201600247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lian Ying Zhang
- Institute for Clean Energy & Advanced Materials; Southwest University; Chongqing 400715 P. R. China
- College of Horticulture and Landscape Architecture; Southwest University; Chongqing 400715 P. R. China
- Institute of Materials Science and Devices; Suzhou University of Science and Technology; Suzhou 215011 P. R. China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems; Ministry of Education of China; Chongqing University; Chongqing 400044 P. R. China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture; Southwest University; Chongqing 400715 P. R. China
| | - Ze Liu
- Institute for Clean Energy & Advanced Materials; Southwest University; Chongqing 400715 P. R. China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials; Southwest University; Chongqing 400715 P. R. China
- Institute of Materials Science and Devices; Suzhou University of Science and Technology; Suzhou 215011 P. R. China
| |
Collapse
|