1
|
Stanimirova RD, Danov KD, Georgiev MT, Petkov JT. Colloid, interface, and foam properties of water-soluble polyglycerol esters solutions. J Colloid Interface Sci 2025; 677:250-263. [PMID: 39094486 DOI: 10.1016/j.jcis.2024.07.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
HYPOTHESIS Polyglycerol esters of fatty acids are generated via the esterification of a polydisperse mixture of polyglycerol with naturally derived fatty acids. The polymerization process of polyglycerol results in the production of various oligomers, ranging from di-, tri-, and higher-order forms, which contribute to the complexity of final products. The combination of complementary experimental techniques and adequate theoretical interpretations can reveal the wide variety of their physicochemical properties. EXPERIMENTS The colloid and interface properties of polyglyceryl mono-laurate, mono-stearate, mono-oleate, and a mixture of mono-caprylate and mono-caprate esters solutions were characterized by measurements of the electrolytic conductivity, static and dynamic surface tension, aggregate and micelle sizes and distributions, thin liquid film stability and stratification, and solubility in aqueous and in oil phases. The formation, stability, and bubble size distribution of foams generated from polyglycerol esters aqueous solutions were systematically investigated. FINDINGS The low concentrations of double-tail molecules and fatty acids in polyglycerol esters affect considerably their micellar, aggregation, and vesicle formations in aqueous solutions. The theoretical data interpretation of polyglycerol esters isotherms and thin liquid films data provide information on the adsorption energies, excluded areas per molecule, interaction parameters of molecules at interfaces, surface electrostatic potential, and the size of micelles. Polyglyceryl mono-oleate exhibits spontaneous emulsification properties. Short chain length polyglycerol esters have excellent foaming ability but relatively low foam stability. The optimal weight fractions of the short-chain polyglyceryl esters and polyglyceryl mono-stearate mixtures with respect to good foaminess and foam stability upon Ostwald ripening are obtained. The reported physicochemical characterization of the water-soluble polyglycerol esters could be of interest to increase the range of their applicability in practice.
Collapse
Affiliation(s)
- Rumyana D Stanimirova
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria.
| | - Krassimir D Danov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Mihail T Georgiev
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Jordan T Petkov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria; Arxada, Hexagon Tower, Crumpsall Vale, Blackley, Greater Manchester, M9 8GQ, UK; Biological Physics, School of Physics and Astronomy, The University of Manchester, Schuster Building, Oxford Road, M13 9PL, UK
| |
Collapse
|
2
|
Caukwell J, Assenza S, Hassan KA, Neilan BA, Clulow AJ, Salvati Manni L, Fong WK. Lipidic drug delivery systems are responsive to the human microbiome. J Colloid Interface Sci 2025; 677:293-302. [PMID: 39146817 DOI: 10.1016/j.jcis.2024.07.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
In vitro and in vivo tests for therapeutic agents are typically conducted in sterile environments, but many target areas for drug delivery are home to thousands of microbial species. Here, we examine the behaviour of lipidic nanomaterials after exposure to representative strains of four bacterial species found in the gastrointestinal tract and skin. Small angle X-ray scattering measurements show that the nanostructure of monoolein cubic and inverse hexagonal phases are transformed, respectively, into inverse hexagonal and inverse micellar cubic phases upon exposure to a strain of live Staphylococcus aureus often present on skin and mucosa. Further investigation demonstrates that enzymatic hydrolysis and cell membrane lipid transfer are both likely responsible for this effect. The structural responses to S. aureus are rapid and significantly reduce the rate of drug release from monoolein-based nanomaterials. These findings are the first to demonstrate how a key species in the live human microbiome can trigger changes in the structure and drug release properties of lipidic nanomaterials. The effect appears to be strain specific, varies from patient to patient and body region to body region, and is anticipated to affect the bioapplication of monoglyceride-based formulations.
Collapse
Affiliation(s)
- Jonathan Caukwell
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia; Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Livia Salvati Manni
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia; School of Chemistry and University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| | - Wye-Khay Fong
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia.
| |
Collapse
|
3
|
Tae H, Park S, Choe Y, Yang C, Cho NJ. Exploring the Interfacial Dynamics of Unilamellar and Multilamellar Cationic Liposomes on SiO 2 and Their Interactions with Membrane-Active Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39267337 DOI: 10.1021/acs.langmuir.4c02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Understanding the interplay between lipid assemblies and solid supports is crucial for advancing model membrane systems and biomedical applications. This study investigates the interfacial behaviors of unilamellar and multilamellar cationic liposomes on silicon dioxide and their interactions with a membrane-active AH peptide. Using QCM-D monitoring, unilamellar liposomes were found to rapidly form SLBs through one-step adsorption kinetics, whereas multilamellar liposomes exhibited slower adsorption. Further addition of liposomes caused fusogenic interactions with SLBs, where multilamellar liposomes formed more rigid lipid membranes. Upon AH peptide exposure, unilamellar-based lipid membranes showed higher susceptibility to structural transformations, achieving complete SLB formation, while multilamellar-based lipid membranes displayed reduced sensitivity and retained residual viscoelastic components, indicative of incomplete SLB formation. These findings underscore the significant influence of liposome lamellarity on their interfacial dynamics and peptide interactions, crucial for designing effective lipid-based delivery and sensing systems.
Collapse
Affiliation(s)
- Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Younghwan Choe
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Chungmo Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
4
|
Nath AG, Dubey P, Kumar A, Vaiphei KK, Rosenholm JM, Bansal KK, Gulbake A. Recent Advances in the Use of Cubosomes as Drug Carriers with Special Emphasis on Topical Applications. J Lipids 2024; 2024:2683466. [PMID: 39022452 PMCID: PMC11254465 DOI: 10.1155/2024/2683466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/24/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Topical drug delivery employing drug nanocarriers has shown prominent results in treating topical ailments, especially those confined to the skin and eyes. Conventional topical formulations persist with drug and disease-related challenges during treatment. Various nanotechnology-driven approaches have been adopted to mitigate the issues associated with conventional formulations. Among these, cubosomes have shown potential applications owing to their liquid crystalline structure, which aids in bioadhesion, retention, sustained release, and loading hydrophilic and hydrophobic moieties. The phase transition behavior of glyceryl monooleate, the concentration of stabilizers, and critical packing parameters are crucial parameters that affect the formation of cubosomes. Microfluidics-based approaches constitute a recent advance in technologies for generating stable cubosomes. This review covers the recent topical applications of cubosomes for treating skin (psoriasis, skin cancer, cutaneous candidiasis, acne, and alopecia) and eye (fungal keratitis, glaucoma, conjunctivitis, and uveitis) diseases. The article summarizes the manufacturing and biological challenges (skin and ocular barriers) that must be considered and encountered for successful clinical outcomes. The patented products are successful examples of technological advancements within cosmeceuticals that support various topical applications with cubosomes in the pharmaceutical field.
Collapse
Affiliation(s)
- A. Gowri Nath
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Prashant Dubey
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Ankaj Kumar
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Klaudi K. Vaiphei
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi University, Turku 20520, Finland
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi University, Turku 20520, Finland
| | - Arvind Gulbake
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| |
Collapse
|
5
|
Torabi M, Nazaruk E, Bilewicz R. Alignment of lyotropic liquid crystals using magnetic nanoparticles improves ionic transport through built-in peptide ion channels. J Colloid Interface Sci 2024; 674:982-992. [PMID: 38964002 DOI: 10.1016/j.jcis.2024.06.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
HYPOTHESIS We hypothesize that simultaneous incorporation of ion channel peptides (in this case, potassium channel as a model) and hydrophobic magnetite Fe3O4 nanoparticles (hFe3O4NPs) within lipidic hexagonal mesophases, and aligning them using an external magnetic field can significantly enhance ion transport through lipid membranes. EXPERIMENTS In this study, we successfully characterized the incorporation of gramicidin membrane ion channels and hFe3O4NPs in the lipidic hexagonal structure using SAXS and cryo-TEM methods. Additionally, we thoroughly investigated the conductive characteristics of freestanding films of lipidic hexagonal mesophases, both with and without gramicidin potassium channels, utilizing a range of electrochemical techniques, including impedance spectroscopy, normal pulse voltammetry, and chronoamperometry. FINDINGS Our research reveals a state-of-the-art breakthrough in enhancing ion transport in lyotropic liquid crystals as matrices for integral proteins and peptides. We demonstrate the remarkable efficacy of membranes composed of hexagonal lipid mesophases embedded with K+ transporting peptides. This enhancement is achieved through doping with hFe3O4NPs and exposure to a magnetic field. We investigate the intricate interplay between the conductive properties of the lipidic hexagonal structure, hFe3O4NPs, gramicidin incorporation, and the influence of Ca2+ on K+ channels. Furthermore, our study unveils a new direction in ion channel studies and biomimetic membrane investigations, presenting a versatile model for biomimetic membranes with unprecedented ion transport capabilities under an appropriately oriented magnetic field. These findings hold promise for advancing membrane technology and various biotechnological and biomedical applications of membrane proteins.
Collapse
Affiliation(s)
- Mostafa Torabi
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland.
| |
Collapse
|
6
|
Nakamura N, Ohta S. Precise control methods of the physicochemical properties of nanoparticles for personalized medicine. Curr Opin Biotechnol 2024; 87:103108. [PMID: 38513338 DOI: 10.1016/j.copbio.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/23/2024]
Abstract
Biomedical applications of nanoparticles (NPs) have attracted much attention. With the advancement of personalized medicine, researchers are now proposing the concept that the design of NPs needs to be optimized according to the individual patient. To realize this concept, an important question is how precisely we can tailor the physicochemical properties of NPs, such as size, shape, and surface chemistry, using current technology. This review discusses recent advances and challenges in the precise control of the size, shape, and surface chemistry of NPs. While control methods have advanced significantly over the past 20 years, the size, shape, and surface chemistry of currently available NPs vary by type, requiring careful selection based on the targeted disease, organ, and patient.
Collapse
Affiliation(s)
- Noriko Nakamura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
7
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
8
|
M E Gaafar P, Farid RM, Hazzah HA, AbouKilila HY, Helmy MW, Abdallah OY. Magnetic Lipid-Based hybrid nanosystems: A combined stimuli- responsive nanocarriers for enriched chemotherapeutic potential of L-carnosine in induced breast Ehrlich ascites tumor model. Int J Pharm 2024; 655:124000. [PMID: 38493840 DOI: 10.1016/j.ijpharm.2024.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Magnetic Lipid-Based Hybrid Nanosystems (M-LCNPs) is a novel nanoplatform that can respond to magnetic stimulus and are designed for delivering L-carnosine (CN), a challenging dipeptide employed in the treatment of breast cancer. CN exhibits considerable water solubility and undergoes in-vivo degradation, hence restricting its application. Consequently, it is anticipated that the developed M-LCNPs will enhance the effectiveness of CN. To ensure the physical stability of MNPs, they were initially coated with a mixture of oleic acid and oleylamine before being included in pegylated liquid crystalline nanoparticles (PLCNPs). The proposed M-LCNPs exhibited promising in-vitro characteristics, notably a small particle size (143.5 nm ± 1.25) and a high zeta potential (-39.5 mV ± 1.54), together with superparamagnetic behavior. The in-vitro release profile exhibited a prolonged release pattern. The IC50 values of M-LCNPs were 1.57 and 1.59 times lower than these of the CN solution after 24 and 48 hours, respectively. Female BALB/C female mice with an induced breast cancer (Ehrlich Ascites tumor [EAT] model) were used to study the influence of an external magnetic field on the chemotherapeutic activity and toxicity of CN loaded in the developed M-LCNPs. Stimuli-responsive M-LCNPs exhibited no apparent systemic toxicity in addition to enhanced chemotherapeutic efficacy compared to nontargeted M-LCNPs and CN solution, as evidenced by a reduction of % tumor growth (11.7%), VEGF levels (22.95 pg/g tissue), and cyclin D1 levels (27.61 ng/g tissue), and an increase in caspase-3 level (28.9 ng/g tissue). Ultimately, the developed stimuli-responsive CN loaded M-LCNPs presented a promising nanoplatform for breast cancer therapy.
Collapse
Affiliation(s)
- Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - HussamElDin Y AbouKilila
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Singh S, Sachan K, Verma S, Singh N, Singh PK. Cubosomes: An Emerging and Promising Drug Delivery System for Enhancing Cancer Therapy. Curr Pharm Biotechnol 2024; 25:757-771. [PMID: 37929730 DOI: 10.2174/0113892010257937231025065352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 11/07/2023]
Abstract
Cancer and other diseases can be treated with cubosomes, which are lyotropic nonlamellar liquid crystalline nanoparticles (LCNs). These cubosomes can potentially be a highly versatile carrier with theranostic efficacy, as they can be ingested, applied topically, or injected intravenously. Recent years have seen substantial progress in the synthesis, characterization, regulation of drug release patterns, and target selectivity of loaded anticancer bioactive compounds. However, its use in clinical settings has been slow and necessitates additional proof. Recent progress and roadblocks in using cubosomes as a nanotechnological intervention against various cancers are highlighted. In the last few decades, advances in biomedical nanotechnology have allowed for the development of "smart" drug delivery devices that can adapt to external stimuli. By improving therapeutic targeting efficacy and lowering the negative effects of payloads, these well-defined nanoplatforms can potentially promote patient compliance in response to specific stimuli. Liposomes and niosomes, two other well-known vesicular systems, share a lipid basis with cubosomes. Possible applications include a novel medication delivery system for hydrophilic, lipophilic, and amphiphilic drugs. We evaluate the literature on cubosomes, emphasizing their potential use in tumor-targeted drug delivery applications and critiquing existing explanations for cubosome self-assembly, composition, and production. As cubosome dispersion has bioadhesive and compatible features, numerous drug delivery applications, including oral, ocular, and transdermal, are also discussed in this review.
Collapse
Affiliation(s)
- Smita Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, India
| | - Kapil Sachan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Suryakant Verma
- School of Pharmacy, Bharat Institute of Technology, Meerut, India
| | - Nidhi Singh
- Sunder Deep Pharmacy College, Dasna, Ghaziabad, India
| | - Pranjal Kumar Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, India
| |
Collapse
|
10
|
Wu Y, Angelov B, Deng Y, Fujino T, Hossain MS, Drechsler M, Angelova A. Sustained CREB phosphorylation by lipid-peptide liquid crystalline nanoassemblies. Commun Chem 2023; 6:241. [PMID: 37932487 PMCID: PMC10628290 DOI: 10.1038/s42004-023-01043-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Cyclic-AMP-response element-binding protein (CREB) is a leucine zipper class transcription factor that is activated through phosphorylation. Ample CREB phosphorylation is required for neurotrophin expression, which is of key importance for preventing and regenerating neurological disorders, including the sequelae of long COVID syndrome. Here we created lipid-peptide nanoassemblies with different liquid crystalline structural organizations (cubosomes, hexosomes, and vesicles) as innovative nanomedicine delivery systems of bioactive PUFA-plasmalogens (vinyl ether phospholipids with polyunsaturated fatty acid chains) and a neurotrophic pituitary adenylate cyclase-activating polypeptide (PACAP). Considering that plasmalogen deficiency is a potentially causative factor for neurodegeneration, we examined the impact of nanoassemblies type and incubation time in an in vitro Parkinson's disease (PD) model as critical parameters for the induction of CREB phosphorylation. The determined kinetic changes in CREB, AKT, and ERK-protein phosphorylation reveal that non-lamellar PUFA-plasmalogen-loaded liquid crystalline lipid nanoparticles significantly prolong CREB activation in the neurodegeneration model, an effect unattainable with free drugs, and this effect can be further enhanced by the cell-penetrating peptide PACAP. Understanding the sustained CREB activation response to neurotrophic nanoassemblies might lead to more efficient use of nanomedicines in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400, Orsay, France
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, CZ-25241, Dolni Brezany, Czech Republic.
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1, Jinlian Road, Longwan District, Wenzhou, Zhejiang, 325001, China
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-cho, Kasuya-gun, Fukuoka, 811-2501, Japan
| | - Md Shamim Hossain
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-cho, Kasuya-gun, Fukuoka, 811-2501, Japan
| | - Markus Drechsler
- Keylab "Electron and Optical Microscopy", Bavarian Polymerinstitute (BPI), University of Bayreuth, Universitätsstrasse 30, D-95440, Bayreuth, Germany
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400, Orsay, France.
| |
Collapse
|
11
|
Balestri A, Gibot L, Amenitisch H, Cervelli L, Montis C, Lonetti B, Berti D. PNIPAM-stabilized cubosomes as fusogenic delivery nanovectors for anticancer applications. Colloids Surf B Biointerfaces 2023; 231:113532. [PMID: 37722254 DOI: 10.1016/j.colsurfb.2023.113532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023]
Abstract
In recent years, lipid cubic nanoparticles have emerged as promising nanocarriers for drug delivery, due to the several advantages they exhibit with respect to other lipid systems. Here, we report on lipid cubic nanoparticles stabilized by PNIPAM-based amphiphilic block copolymers, specifically, poly(N, N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a new class of drug delivery systems (DDS). In vitro studies on the internalization efficiency of the DDS towards two types of human cancer cells (colon HCT-116 and bladder T24 cells), carried out employing a set of sensitive techniques (confocal laser scanning microscopy (CLSM), flow cytometry, scanning electron microscopy (SEM), fluorescence spectroscopy), highlight a prominent role of PDMA-b-PNIPAM stabilizer in enhancing the uptake of cubosomes, compared to the standard Pluronic F127-based formulations. The drug delivery potential of cubosomes, tested by encapsulating a chemotherapeutic drug, camptothecin (CPT), and conducting cytotoxicity studies against 2D plated cells and 3D spheroids, confirm that PDMA-b-PNIPAM-stabilized cubosomes improve the efficacy of treatment with CPT. The origin of this effect lies in the higher lipophilicity of the stabilizer, as we confirm by studying the interaction between the cubosomes and biomimetic membranes of lipid vesicles with Small Angle X-Ray Scattering (SAXS) and CLSM experiments. These results corroborate our fundamental understanding of the interaction between cubosomes and cells, and on the role of polymer to formulate lipid cubic nanoparticles as DDS.
Collapse
Affiliation(s)
- Arianna Balestri
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, Toulouse 31062, France
| | - Heinz Amenitisch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Lorenzo Cervelli
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy.
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, Toulouse 31062, France.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Salvati Manni L, Davies C, Wood K, Assenza S, Atkin R, Warr GG. Unusual phosphatidylcholine lipid phase behavior in the ionic liquid ethylammonium nitrate. J Colloid Interface Sci 2023; 643:276-281. [PMID: 37068361 DOI: 10.1016/j.jcis.2023.03.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 05/12/2023]
Abstract
HYPOTHESIS The forces that govern lipid self-assembly ionic liquids are similar to water, but their different balance can result in unexpected behaviour. EXPERIMENTS The self-assembly behaviour and phase equilibria of two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in the most common protic ionic liquid, ethylammonium nitrate (EAN) have been investigated as function of composition and temperature by small- and wide-angle X-ray scattering (SAXS/WAXS) and small-angle neutron scattering (SANS). FINDINGS Both lipids form unusual self-assembly structures and show complex and unexpected phase behaviour unlike that seen in water; DSPC undergoes a gel Lβ to crystalline Lc phase transition on warming, while POPC forms worm-like micelles L1 upon dilution. This surprising phase behaviour is attributed to the large size of the EAN ions that solvate the lipid headgroup compared to water changing amphiphile packing. Weaker H-bonding between EAN and lipid headgroups also contributes. These results provide new insight for the design of lipid based nanostructured materials in ionic liquids with atypical properties.
Collapse
Affiliation(s)
- Livia Salvati Manni
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Caitlin Davies
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain; Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Palma AS, Casadei BR, Lotierzo MC, de Castro RD, Barbosa LRS. A short review on the applicability and use of cubosomes as nanocarriers. Biophys Rev 2023; 15:553-567. [PMID: 37681099 PMCID: PMC10480096 DOI: 10.1007/s12551-023-01089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 09/09/2023] Open
Abstract
Abstract Cubosomes are nanostructured lipid-based particles that have gained significant attention in the field of drug delivery and nanomedicine. These unique structures consist of a three-dimensional cubic lattice formed by the self-assembly of lipid molecules. The lipids used to construct cubosomes are typically nonionic surfactants, such as monoolein, which possess both hydrophilic and hydrophobic regions, allowing them to form stable, water-dispersible nanoparticles. One of the key advantages of cubosomes is their ability to encapsulate and deliver hydrophobic as well as hydrophilic drugs. The hydrophobic regions of the lipid bilayers provide an ideal environment for incorporating lipophilic drugs, while the hydrophilic regions can encapsulate water-soluble drugs. This versatility makes cubosomes suitable for delivering a wide range of therapeutic agents, including small molecules, proteins, peptides, and nucleic acids. The unique structure of cubosomes also offers stability and controlled release benefits. The lipid bilayers provide a protective barrier, shielding the encapsulated drugs from degradation and improving their stability. Moreover, the cubic lattice arrangement enables the modulation of drug release kinetics by varying the lipid composition and surface modifications. This allows for the development of sustained or triggered drug release systems, enhancing therapeutic efficacy and reducing side effects. Furthermore, cubosomes can be easily modified with targeting ligands or surface modifications to achieve site-specific drug delivery, enhancing therapeutic selectivity and reducing off-target effects. In conclusion, cubosomes offer a versatile and promising platform for the delivery of therapeutic agents. In this manuscript, we will highlight some of these applications. Graphical abstract
Collapse
Affiliation(s)
- Amanda Santos Palma
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| | - Bruna Renata Casadei
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
| | - Mayra Cristina Lotierzo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, USP, São Paulo, SP 05508-000 Brazil
| | - Raphael Dias de Castro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, USP, São Paulo, SP 05508-000 Brazil
| | - Leandro Ramos Souza Barbosa
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| |
Collapse
|
14
|
Wang M, Yang B, Yu T, Yu X, Rizwan M, Yuan X, Nie X, Zhou X. Research progress in the preparation of mesophase pitch from fluid catalytic cracking slurry. RSC Adv 2023; 13:18676-18689. [PMID: 37346963 PMCID: PMC10281006 DOI: 10.1039/d3ra01726e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
For the preparation of high-performance pitch-based carbon fibers and other carbon materials, mesophase pitch serves as a high-quality precursor. Since FCC (Fluid Catalytic Cracking) oil slurry is abundant in aromatic hydrocarbons and saturated hydrocarbons (about 95% in total), it has become an ideal choice for developing new carbon material products. This paper details the research progress of preparing mesophase asphalt with FCC oil slurry as a raw material from perspectives including the preparation method of synthesizing mesophase asphalt from FCC oil slurry, the impact factors of the formation process of mesophase asphalt and the industrial application of mesophase asphalt.
Collapse
Affiliation(s)
- Mingzhi Wang
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Bei Yang
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Tao Yu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Xiaoyan Yu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Muhammad Rizwan
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Xulu Yuan
- Baowu Carbon Technology Co., Ltd. China
| | - Xinyao Nie
- Liaoning Qingyang Chemical Industry Corporation China
| | - Xiaolong Zhou
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| |
Collapse
|
15
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
16
|
Victorelli FD, Rodero CF, Lutz‐Bueno V, Chorilli M, Mezzenga R. Amyloid Fibrils Enhance the Topical Bio-Adhesivity of Liquid Crystalline Mesophase-Based Drug Formulations. Adv Healthc Mater 2023; 12:e2202720. [PMID: 36681654 PMCID: PMC11468793 DOI: 10.1002/adhm.202202720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Indexed: 01/23/2023]
Abstract
Despite their distinctive secondary structure based on cross β-strands, amyloid fibrils (AF) are stable fibrous protein aggregates with features similar to collagen, one of the main components of the extracellular matrix, and thus constitute a potential scaffold for enhancing cell adhesion for topical applications. Here, the contribution of AF to skin bio-adhesivity aiming toward topical treatments is investigated. Liquid crystalline mesophase (LCM) based on phytantriol is formulated, with the aqueous phase containing either water or a solution of 4 wt% amyloid fibrils. Then resveratrol is added as a model anti-inflammatory molecule. The developed LCM presents a double gyroid Ia3d mesophase. The incorporation of AF into the LCM increases its bio-adhesive properties. In vitro release and ex vivo permeation and retention confirm the controlled release property of the system, and that resveratrol is retained in epidermis and dermis, but is also permeated through the skin. All formulations are biocompatible with L929 cells. The in vivo assay confirms that systems with AF lead to a higher anti-inflammatory effect of resveratrol. These results confirm the hypothesis that the incorporation of AF in the LCM increases the bio-adhesiveness and efficiency of the system for topical treatment, and consequently, the therapeutical action of the encapsulated drug.
Collapse
Affiliation(s)
| | - Camila Fernanda Rodero
- Department of Drugs and MedicineSchool of Pharmaceutical SciencesSão Paulo State UniversityAraraquaraSão Paulo14800‐903Brazil
| | | | - Marlus Chorilli
- Department of Drugs and MedicineSchool of Pharmaceutical SciencesSão Paulo State UniversityAraraquaraSão Paulo14800‐903Brazil
| | - Raffaele Mezzenga
- Department of Health Sciences & TechnologyETH ZurichZurich8092Switzerland
- Department of MaterialsETH ZurichZurich8093Switzerland
| |
Collapse
|
17
|
Debas M, Freire RVM, Salentinig S. Supramolecular design of CO 2-responsive lipid nanomaterials. J Colloid Interface Sci 2023; 637:513-521. [PMID: 36724665 DOI: 10.1016/j.jcis.2023.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
HYPOTHESIS Stimuli-responsive materials can innovate in various fields, including food and pharmaceutical sciences. Their response to a specific stimulus can be utilized to release loaded bioactive molecules or sense their presence. The biocompatibility and abundance of CO2 in the environment make it an exciting stimulus for such applications. We hypothesize the formation of CO2-responsive self-assemblies of oleyl-amidine in water. Their integration into glycerol-monooleate-based (GMO) dispersions is further thought to form CO2-switchable liquid crystalline nanoparticles. The switch from an non-charged acetamidine surfactant to its cationic amidinium form triggers curvature changes that ultimately induces phase transitions. EXPERIMENTS The CO2-switchable lipid (E)-N,N-dimethyl-N-((Z)-octadec-9-en1-yl)acetimidamide (OAm) is synthesized and formulated into emulsions and dispersed liquid crystals with GMO. The supramolecular structure and its response to CO2 are characterized using small angle X-ray scattering, dynamic light scattering, ζ-potential measurements and cryogenic transmission electron microscopy. FINDINGS Depending on the composition, OAm is discovered to self-assemble into a variety of CO2-responsive lyotropic liquid crystalline structures that can be dispersed in excess water. CO2-triggered colloidal transformations from unstructured OAm-in-water emulsions to direct micelles; dispersed inverse hexagonal phase to direct rod-like micelles, and sponge phase to vesicles are discovered. These structural changes are driven by the reaction of OAm's amidine headgroup with CO2. The results provide a fundamental understanding of CO2-triggered functional nanomaterials and may guide their future design into delivery platforms and biosensors.
Collapse
Affiliation(s)
- Meron Debas
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Rafael V M Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
18
|
He V, Cadarso VJ, Seibt S, Boyd BJ, Neild A. A novel droplet-based approach to study phase transformations in lyotropic liquid crystalline systems. J Colloid Interface Sci 2023; 641:459-469. [PMID: 36948101 DOI: 10.1016/j.jcis.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
HYPOTHESIS Lyotropic liquid crystals (LLC) and their phase transformations in response to stimuli have gathered much interest for controlled and 'on-demand' drug applications. Bulk methods of preparation impose limitations on studying the transformations, especially induced by compositional changes, such as enzymatic changes to lipid structure. Here we hypothesise that controlled microfluidic production and coalescence of dissimilar aqueous and lipid droplets emulsified in a third mutually immiscible liquid will provide a new approach to the spatio-temporal study of structure formation in lyotropic liquid crystalline materials. EXPERIMENTS Separate lipid and aqueous droplets, dispersed in a fluorocarbon oil were generated using a microfluidic format. The chip, prepared as a hybrid polydimethylsiloxane (PDMS) and glass microfluidic device, was constructed to enable in-situ acquisition of time-resolved synchrotron small angle X-ray scattering (SAXS) and crossed polarised light microscopy of the coalesced droplets to determine the structures present during aging. FINDINGS Janus-like droplets formed upon coalesce, with distinct lipid and aqueous portions with a gradient between the two sides of the merged droplet. SAXS and polarised light microscopy revealed a progression of mesophases as the lipid portion was hydrated by the aqueous portion via the diffusion limited interface which separated the portions. Thus demonstrating, on a droplet scale, a new approach for studying the phase transformation kinetics and identification of non-equilibrium phase in droplet-based lyotropic liquid systems.
Collapse
Affiliation(s)
- Vincent He
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Susanne Seibt
- SAXS/WAXS Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Rd, Clayton, VIC 3150, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
19
|
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023; 313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engineering and molecular imaging) and route of administration is examined. Further discussion of the main limitations and perspectives of lipidic LLCs in biomedical applications are also provided. STATEMENT OF SIGNIFICANCE: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
Collapse
Affiliation(s)
- Guillermo Blanco-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Sun X, Tan A, Boyd BJ. Magnetically‐activated lipid nanocarriers in biomedical applications: A review of current status and perspective. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1863. [PMID: 36428234 DOI: 10.1002/wnan.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Xiaohan Sun
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
| | - Angel Tan
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- Department of Pharmacy University of Copenhagen Copenhagen Denmark
| |
Collapse
|
21
|
Mistry S, Fuhrmann PL, de Vries A, Karshafian R, Rousseau D. Structure-rheology relationship in monoolein liquid crystals. J Colloid Interface Sci 2022; 630:878-887. [DOI: 10.1016/j.jcis.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
22
|
Thermo-responsive lipophilic NIPAM-based block copolymers as stabilizers for lipid-based cubic nanoparticles. Colloids Surf B Biointerfaces 2022; 220:112884. [DOI: 10.1016/j.colsurfb.2022.112884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022]
|
23
|
Umar H, Wahab HA, Gazzali AM, Tahir H, Ahmad W. Cubosomes: Design, Development, and Tumor-Targeted Drug Delivery Applications. Polymers (Basel) 2022; 14:polym14153118. [PMID: 35956633 PMCID: PMC9371202 DOI: 10.3390/polym14153118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Because of the extraordinary advancements in biomedical nanotechnology over the last few decades, traditional drug delivery systems have been transformed into smart drug delivery systems that respond to stimuli. These well-defined nanoplatforms can boost therapeutic targeting efficacy while reducing the side effects/toxicities of payloads, which are crucial variables for enhancing patient compliance by responding to specific internal or external triggers. Cubosomes are lipid-based nano systems that are analogous to well-known vesicular systems, such as lipo- and niosomes. They could be used as part of a unique drug delivery system that includes hydro-, lipo-, and amphiphilic drug molecules. In this review, we critically analyze the relevant literature on cubosomesregarding theories of cubosomeself-assembly, composition, and manufacturing methods, with an emphasis on tumor-targeted drug delivery applications. Due to the bioadhesive and -compatible nature of cubosome dispersion, this review also focuses on a variety of drug delivery applications, including oral, ophthalmic and transdermal.
Collapse
Affiliation(s)
- Hassaan Umar
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden 11800, Malaysia; (H.U.); (A.M.G.)
| | - Habibah A. Wahab
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden 11800, Malaysia; (H.U.); (A.M.G.)
- Correspondence: (H.A.W.); (W.A.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden 11800, Malaysia; (H.U.); (A.M.G.)
| | - Hafsa Tahir
- Department of Nutrition Sciences, University of Management and Technology, Punjab 54770, Pakistan;
| | - Waqas Ahmad
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden 11800, Malaysia; (H.U.); (A.M.G.)
- Correspondence: (H.A.W.); (W.A.)
| |
Collapse
|
24
|
Mertz N, Bock F, Østergaard J, Yaghmur A, Weng Larsen S. Investigation of diclofenac release and dynamic structural behavior of non-lamellar liquid crystal formulations during in situ formation by UV-Vis imaging and SAXS. Int J Pharm 2022; 623:121880. [PMID: 35661744 DOI: 10.1016/j.ijpharm.2022.121880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
In situ formation of high viscous inverse lyotropic non-lamellar liquid crystalline phases is a promising approach for sustained drug delivery in the joint. The in situ forming process on exposure of two diclofenac-loaded preformulations to aqueous media was characterized with respect to depot size and shape, initial release and structural transitions using UV-Vis imaging and spatially and time-resolved synchrotron small-angle X-ray scattering (SAXS). The preformulations consisted of 10 % (w/w) ethanol, 10 % (w/w) water and a binary lipid mixture of glycerol monooleate (GMO):1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) or GMO:medium chain triglycerides (MCT). Upon injection of preformulations into an employed injection-cell containing excess of bio-relevant medium, rapid generation of liquid crystalline depots was observed. UV-Vis images and constructed 2D SAXS maps of the injection-cell showed depots with different shapes and sizes, and features with high nanostructural heterogeneity. More extensive swelling of the GMO:DOPG-based preformulation was observed compared to the GMO:MCT-based preformulation. The UV image analysis found that a higher amount of diclofenac was released in the image area after 20 h from the GMO:MCT-depot compared to the GMO:DOPG-depot. The injection-cell setup employing UV-Vis imaging and synchrotron SAXS constitutes an attractive approach for evaluating the in situ forming processes of liquid crystalline depots.
Collapse
Affiliation(s)
- Nina Mertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Frederik Bock
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Susan Weng Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Shan X, Luo L, Yu Z, You J. Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 2022; 348:1-21. [PMID: 35636617 DOI: 10.1016/j.jconrel.2022.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Owing to the rapid and significant progress in advanced materials and life sciences, nanotechnology is increasingly gaining in popularity. Among numerous bio-mimicking carriers, inverse lyotropic liquid crystals are known for their unique properties. These carriers make accommodation of molecules with varied characteristics achievable due to their complicated topologies. Besides, versatile symmetries of inverse LCNPs (lyotropic crystalline nanoparticles) and their aggregating bulk phases allow them to be applied in a wide range of fields including drug delivery, food, cosmetics, material sciences etc. In this review, in-depth summary, discussion and outlook for inverse lyotropic liquid crystals are provided.
Collapse
Affiliation(s)
- Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhixin Yu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
26
|
Elzenaty O, Luciani P, Aleandri S. A lipidic mesophase with tunable release properties for the local delivery of macromolecules: the apoferritin nanocage, a case study. J Mater Chem B 2022; 10:3876-3885. [PMID: 35470843 DOI: 10.1039/d2tb00403h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid mesophases are able to incorporate and release a plethora of molecules, spanning from hydrophobic drugs to small hydrophilic proteins and therefore they have been widely used as drug delivery systems. However, their 3-5 nm water channels do not allow the release of large hydrophilic molecules such as monoclonal antibodies and therapeutic proteins. To overcome this major geometrical constraint, we designed a gel by mixing monoacylglycerol lipids, generally recognized as safe for human and/or animal use by FDA, and phospholipids, to obtain a material with swollen water channels suitable to host and further release macromolecules. Apoferritin, a 12 nm nanocage protein with intrinsic tumor-targeting properties able to incorporate several molecules, was selected here as the hydrophilic model protein to be embedded in the biocompatible gel. When immersed completely in the release media, mesophases with a swollen water channel of 22 nm, composed of monoolein and doped with 5 mole% of DOPS and 10 mole% of Chol allowed us to achieve a protein release of 60%, which is 120 times higher with respect to that obtained by employing non swollen-LMPs composed only of monoolein. Thus, the formulation can be administered locally to the rectal or vaginal mucosa, reducing the drawbacks often associated with the parenteral administration of bio-therapeutics. This approach would pave the way for the local application of other biomacromolecules (including human ferritin, monoclonal antibodies and antibody drug-conjugates) in those diseases easily reachable by a local application such as rectal or vaginal cancer.
Collapse
Affiliation(s)
- Oumar Elzenaty
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Urquhart MC, Ercole F, Clulow AJ, Davis TP, Whittaker MR, Boyd BJ, Quinn JF. Thiol-responsive lyotropic liquid crystals exhibit triggered phase re-arrangement and hydrogen sulfide (H 2S) release. J Colloid Interface Sci 2022; 613:218-223. [PMID: 35033767 DOI: 10.1016/j.jcis.2021.12.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Hydrogen sulfide (H2S) is an important signalling molecule with potential pharmaceutical applications. In pursuit of a suitable delivery system for H2S, herein we apply an amphiphilic trisulfide to concomitantly alter the mesophase behaviour of dispersed lipid particles and enable triggered H2S release. Amperometric release studies indicate the trisulfide acts as a sustained H2S donor, with inclusion into the mesophase attenuating release vs neat dispersed trisulfide. Taken together the results highlight the potential for including trisulfide-based additives in stimuli-responsive drug delivery vehicles.
Collapse
Affiliation(s)
- Matthew C Urquhart
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Francesca Ercole
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; BioSAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Department of Chemical Engineering, Faculty of Engineering, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
28
|
Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals (Basel) 2022; 15:ph15040429. [PMID: 35455426 PMCID: PMC9028109 DOI: 10.3390/ph15040429] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Lyotropic liquid crystals result from the self-assembly process of amphiphilic molecules, such as lipids, into water, being organized in different mesophases. The non-lamellar formed mesophases, such as bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes), attract great scientific interest in the field of pharmaceutical nanotechnology. In the present review, an overview of the engineering and characterization of non-lamellar lyotropic liquid crystalline nanosystems (LLCN) is provided, focusing on their advantages as drug delivery nanocarriers and innovative vaccine platforms. It is described that non-lamellar LLCN can be utilized as drug delivery nanosystems, as well as for protein, peptide, and nucleic acid delivery. They exhibit major advantages, including stimuli-responsive properties for the “on demand” drug release delivery and the ability for controlled release by manipulating their internal conformation properties and their administration by different routes. Moreover, non-lamellar LLCN exhibit unique adjuvant properties to activate the immune system, being ideal for the development of novel vaccines. This review outlines the recent advances in lipid-based liquid crystalline technology and highlights the unique features of such systems, with a hopeful scope to contribute to the rational design of future nanosystems.
Collapse
|
29
|
Miszta P, Nazaruk E, Nieciecka D, Możajew M, Krysiński P, Bilewicz R, Filipek S. The EcCLC antiporter embedded in lipidic liquid crystalline films - molecular dynamics simulations and electrochemical methods. Phys Chem Chem Phys 2022; 24:3066-3077. [PMID: 35040466 DOI: 10.1039/d1cp03992j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipidic-liquid crystalline nanostructures (lipidic cubic phases), which are biomimetic and stable in an excess of water, were used as a convenient environment to investigate the transport properties of the membrane antiporter E. coli CLC-1 (EcCLC). The chloride ion transfer by EcCLC was studied by all-atom molecular dynamics simulations combined with electrochemical methods at pH 7 and pH 5. The cubic phase film was used as the membrane between the chloride donor and receiving compartments and it was placed on the glassy carbon electrode and immersed in the chloride solution. Structural characterization of lipidic mesoscopic systems with and without the incorporation of EcCLC was performed using small-angle X-ray scattering. The EcCLC transported chloride ions more efficiently at more acidic pH, and the resistance of the film decreased at lower pH. 4,4-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) employed as an inhibitor of the protein was shown to decrease the transport efficiency upon hydrolysis to DADS at both pH 7 and pH 5. The molecular dynamics simulations, performed for the first time in lipidic cubic phases for EcCLC, allowed studying the collective movements of chloride ions which can help in elucidating the mechanism of transporting the ions by the EcCLC antiporter. The protein modified lipidic cubic phase film is a convenient and simple system for screening potential inhibitors of integral membrane proteins, as demonstrated by the example of the EcCLC antiporter. The use of lipidic cubic phases may also be important for the further development of new electrochemical sensors for membrane proteins and enzyme electrodes.
Collapse
Affiliation(s)
- Przemysław Miszta
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Dorota Nieciecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Mariusz Możajew
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Paweł Krysiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Renata Bilewicz
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Sławomir Filipek
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
30
|
Abourehab MA, Ansari MJ, Singh A, Hassan A, Abdelgawad MA, Shrivastav P, Abualsoud BM, Amaral LS, Pramanik S. Cubosomes as an emerging platform for drug delivery: a state-of-the-art review. J Mater Chem B 2022; 10:2781-2819. [DOI: 10.1039/d2tb00031h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid-based drug delivery nanoparticles, including non-lamellar type, mesophasic nanostructured materials of lyotropic liquid crystals (LLCs), have been a topic of interest for researchers for their applications in encapsulation of drugs...
Collapse
|
31
|
Javanbakht S, Pooresmaeil M, Namazi H, Heydari A. Facile synthesis of Zn-based metal-organic framework in the presence of carboxymethyl cellulose: A safe carrier for ibuprofen. Int J Biol Macromol 2021; 191:531-539. [PMID: 34571120 DOI: 10.1016/j.ijbiomac.2021.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022]
Abstract
Fabrication of porous materials with a high surface area affords a great interest to achieve a system with a prolonged drug release manner. In this context, the subject of this work is to describe a novel green one-pot synthesis route for the growth of metal-organic framework (MOF) from zinc metal (Zn) and 1, 4-benzene dicarboxylic acid (BDC) in the vicinity of the carboxymethyl cellulose (CMC), which homogeneously confined in the biopolymeric chains. The synthesized Zn (BDC)@CMC was characterized and confirmed using different analyses. N2 adsorption/desorption isotherms determined the mean diameter of pore size of about 2.3993 nm. Ibuprofen (IBU) as a model drug was highly loaded to the Zn(BDC)@CMC by immersing in the drug solution; 50.95%. The in vitro IBU release study indicated that the Zn(BDC)@CMC has more attractive performances than pristine Zn(BDC). The IBU release occurred via the Fickian mechanism. Isotherm studies showed that the IBU adsorption on obeys from Langmuir isotherm; R2 0.9623. The MTT results revealed the HEK 293A cell viability of higher than 90% for Zn(BDC)@CMC that confirms its cytocompatibility. Overall, obtained results confirm the functionality of CMC biopolymer for in situ growth of MOF in the presence of it due to having the reactive nature.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Research Laboratory of Dendrimers and Nano Biopolymers, Faculty of Chemistry, University of Tabriz, P. O. Box 51666, Tabriz, Iran
| | - Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nano Biopolymers, Faculty of Chemistry, University of Tabriz, P. O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nano Biopolymers, Faculty of Chemistry, University of Tabriz, P. O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran.
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
32
|
Xu Z, Seddon JM, Beales PA, Rappolt M, Tyler AII. Breaking Isolation to Form New Networks: pH-Triggered Changes in Connectivity inside Lipid Nanoparticles. J Am Chem Soc 2021; 143:16556-16565. [PMID: 34591464 DOI: 10.1021/jacs.1c06244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is a growing demand to develop smart nanomaterials that are structure-responsive as they have the potential to offer enhanced dose, temporal and spatial control of compounds and chemical processes. The naturally occurring pH gradients found throughout the body make pH an attractive stimulus for guiding the response of a nanocarrier to specific locations or (sub)cellular compartments in the body. Here we have engineered highly sensitive lyotropic liquid crystalline nanoparticles that reversibly respond to changes in pH by altering the connectivity within their structure at physiological temperatures. At pH 7.4, the nanoparticles have an internal structure consisting of discontinuous inverse micellar "aqueous pockets" based on space group Fd3m. When the pH is ≤6, the nanoparticles change from a compartmentalized to an accessible porous internal structure based on a 2D inverse hexagonal phase (plane group p6mm). We validate the internal symmetry of the nanoparticles using small-angle X-ray scattering and cryogenic transmission electron microscopy. The high-resolution electron microscopy images obtained have allowed us for the first time to directly visualize the internal structure of the Fd3m nanoparticles and resolve the two different-sized inverse micelles that make up the structural motif within the Fd3m unit cell, which upon structural analysis reveal excellent agreement with theoretical geometrical models.
Collapse
Affiliation(s)
- Zexi Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John M Seddon
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arwen I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
33
|
Mathews PD, Mertins O, Angelov B, Angelova A. Cubosomal lipid nanoassemblies with pH-sensitive shells created by biopolymer complexes: A synchrotron SAXS study. J Colloid Interface Sci 2021; 607:440-450. [PMID: 34509118 DOI: 10.1016/j.jcis.2021.08.187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
We report a strategy for sustainable development of pH-responsive cubic liquid crystalline nanoparticles (cubosomes), in which the structure-defining lyotropic nonlamellar lipid and the eventually encapsulated guest molecules can be protected by pH-sensitive polyelectrolyte shells with mucoadhesive properties. Bulk non-lamellar phases as well as pH-responsive polyelectrolyte-modified nanocarriers were formed by spontaneous assembly of the nonlamellar lipid monoolein and two biopolymers tailored in nanocomplexes with pH-dependent net charge. The mesophase particles involved positively charged N-arginine-modified chitosan (CHarg) and negatively charged alginate (ALG) chains assembled at different biopolymer concentrations and charge ratios into a series of pH-responsive complexes. The roles of Pluronic F127 as a dispersing agent and a stabilizer of the nanoscale dispersions were examined. Synchrotron small-angle X-ray scattering (SAXS) investigations were performed at several N-arginine-modified chitosan/alginate ratios (CHarg/ALG with 10, 15 and 20 wt% ALG relative to CHarg) and varying pH values mimicking the pH conditions of the gastrointestinal route. The structural parameters characterizing the inner cubic liquid crystalline organizations of the nanocarriers were determined as well as the particle sizes and stability on storage. The surface charge variations, influencing the measured zeta-potentials, evidenced the inclusion of the CHarg/ALG biopolymer complexes into the lipid nanoassemblies. The polyelectrolyte shells rendered the hybrid cubosome nanocarriers pH-sensitive and influenced the swelling of their lipid-phase core as revealed by the acquired SAXS patterns. The pH-responsiveness and the mucoadhesive features of the cubosomal lipid/polyelectrolyte nanocomplexes may be of interest for in vivo drug delivery applications.
Collapse
Affiliation(s)
- Patrick D Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil; Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, F-92296 Châtenay-Malabry, France.
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic
| | - Angelina Angelova
- Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, F-92296 Châtenay-Malabry, France.
| |
Collapse
|
34
|
Zatloukalová M, Jedinák L, Riman D, Franková J, Novák D, Cytryniak A, Nazaruk E, Bilewicz R, Vrba J, Papoušková B, Kabeláč M, Vacek J. Cubosomal lipid formulation of nitroalkene fatty acids: Preparation, stability and biological effects. Redox Biol 2021; 46:102097. [PMID: 34418599 PMCID: PMC8385161 DOI: 10.1016/j.redox.2021.102097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Lipid nitroalkenes – nitro-fatty acids (NO2–FAs) are formed in vivo via the interaction of reactive nitrogen species with unsaturated fatty acids. The resulting electrophilic NO2–FAs play an important role in redox homeostasis and cellular stress response. This study investigated the physicochemical properties and reactivity of two NO2–FAs: 9/10-nitrooleic acid (1) and its newly prepared 1-monoacyl ester, (E)-2,3-hydroxypropyl 9/10-nitrooctadec-9-enoate (2), both synthesized by a direct radical nitration approach. Compounds 1 and 2 were investigated in an aqueous medium and after incorporation into lipid nanoparticles prepared from 1-monoolein, cubosomes 1@CUB and 2@CUB. Using an electrochemical analysis and LC-MS, free 1 and 2 were found to be unstable under acidic conditions, and their degradation occurred in an aqueous environment within a few minutes or hours. This degradation was associated with the production of the NO radical, as confirmed by fluorescence assay. In contrast, preparations 1@CUB and 2@CUB exhibited a significant increase in the stability of the loaded 1 and 2 up to several days to weeks. In addition to experimental data, density functional theory-based calculation results on the electronic structure and structural variability (open and closed configuration) of 1 and 2 were obtained. Finally, experiments with a human HaCaT keratinocyte cell line demonstrated the ability of 1@CUB and 2@CUB to penetrate through the cytoplasmic membrane and modulate cellular pathways, which was exemplified by the Keap1 protein level monitoring. Free 1 and 2 and the cubosomes prepared from them showed cytotoxic effect on HaCaT cells with IC50 values ranging from 1 to 8 μM after 24 h. The further development of cubosomal preparations with embedded electrophilic NO2–FAs may not only contribute to the field of fundamental research, but also to their application using an optimized lipid delivery vehicle. Nitro-fatty acids (NO2–FAs) are bioactive electrophiles and new drug candidates. The study focused on endogenous NO2-oleic acid and its glycerol ester. Cubosomes are lipid nanoparticles stabilizing the incorporated NO2–FAs. Applicability of NO2-FA-loaded cubosomes was tested on human HaCaT keratinocytes.
Collapse
Affiliation(s)
- Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Lukáš Jedinák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Daniel Riman
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Jana Franková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - David Novák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Adrianna Cytryniak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Barbora Papoušková
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Martin Kabeláč
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Kralovopolská 135, Brno, 612 65, Czech Republic.
| |
Collapse
|
35
|
Bor G, Salentinig S, Şahin E, Nur Ödevci B, Roursgaard M, Liccardo L, Hamerlik P, Moghimi SM, Yaghmur A. Cell medium-dependent dynamic modulation of size and structural transformations of binary phospholipid/ω-3 fatty acid liquid crystalline nano-self-assemblies: Implications in interpretation of cell uptake studies. J Colloid Interface Sci 2021; 606:464-479. [PMID: 34399363 DOI: 10.1016/j.jcis.2021.07.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Lyotropic non-lamellar liquid crystalline (LLC) nanoparticles, with their tunable structural features and capability of loading a wide range of drugs and reporter probes, are emerging as versatile injectable nanopharmaceuticals. Secondary emulsifiers, such as Pluronic block copolymers, are commonly used for colloidal stabilization of LLC nanoparticles, but their inclusion often compromises the biological safety (e.g., poor hemocompatibility and enhanced cytotoxicity) of the formulation. Here, we introduce a library of colloidally stable, structurally tunable, and pH-responsive lamellar and non-lamellar liquid crystalline nanoparticles from binary mixtures of a phospholipid (phosphatidylglycerol) and three types of omega-3 fatty acids (ω-3 PUFAs), prepared in the absence of a secondary emulsifier and organic solvents. We study formulation size distribution, morphological heterogeneity, and the arrangement of their internal self-assembled architectures by nanoparticle tracking analysis, synchrotron small-angle X-ray scattering, and cryo-transmission electron microscopy. The results show the influence of type and concentration of ω-3 PUFAs in nanoparticle structural transitions spanning from a lamellar (Lα) phase to inverse discontinuous (micellar) cubic Fd3m and hexagonal phase (H2) phases, respectively. We further report on cell-culture medium-dependent dynamic fluctuations in nanoparticle size, number and morphology, and simultaneously monitor uptake kinetics in two human cell lines. We discuss the role of these multiparametric biophysical transformations on nanoparticle-cell interaction kinetics and internalization mechanisms. Collectively, our findings contribute to the understanding of fundamental steps that are imperative for improved engineering of LLC nanoparticles with necessary attributes for pharmaceutical development.
Collapse
Affiliation(s)
- Gizem Bor
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Evrim Şahin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Begüm Nur Ödevci
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Letizia Liccardo
- Department of Molecular Science and Nanosystems, Ca' Foscari Università di Venezia, Via Torino 155, Venezia Mestre, Italy
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
36
|
Rizvi A, Mulvey JT, Carpenter BP, Talosig R, Patterson JP. A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chem Rev 2021; 121:14232-14280. [PMID: 34329552 DOI: 10.1021/acs.chemrev.1c00189] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
37
|
Babi J, Zhu L, Lin A, Uva A, El‐Haddad H, Peloewetse A, Tran H. Self‐assembled free‐floating
nanomaterials from
sequence‐defined
polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jon Babi
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Linglan Zhu
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Angela Lin
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Azalea Uva
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Hana El‐Haddad
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Atang Peloewetse
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Helen Tran
- Department of Chemistry University of Toronto Toronto Ontario Canada
- Department of Chemical Engineering University of Toronto Toronto Ontario Canada
| |
Collapse
|
38
|
Reduction of enzymatic degradation of insulin via encapsulation in a lipidic bicontinuous cubic phase. J Colloid Interface Sci 2021; 592:135-144. [PMID: 33647562 DOI: 10.1016/j.jcis.2021.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
Oral delivery of the protein drug insulin is not currently possible due to rapid degradation of the secondary structure in low pH conditions in the stomach and under the influence of digestive enzymes in the gastrointestinal tract. Effective oral delivery of insulin and other protein- or peptide-based drugs will, therefore, require encapsulation in a material or nanoparticle. Herein we investigate the ability of the lipid bicontinuous cubic phase formed by two lipids, monoolein (MO) and phytantriol (PT), to protect encapsulated insulin from degradation by the enzyme chymotrypsin, typically found in the small intestine. High encapsulation efficiency (>80%) was achieved in both lipid cubic phases with retention of the underlying cubic nanostructure. Release of insulin from the cubic matrix was shown to be diffusion-controlled; the release rate was dependent on the cubic nanostructure and consistent with measured diffusion coefficients for encapsulated insulin. Encapsulation was shown to significantly retard enzymatic degradation relative to that in water, with the protective effect lasting up to 2 h, exemplifying the potential of these materials to protect the encapsulated protein payload during oral delivery.
Collapse
|
39
|
Zhai J, Fan B, Thang SH, Drummond CJ. Novel Amphiphilic Block Copolymers for the Formation of Stimuli-Responsive Non-Lamellar Lipid Nanoparticles. Molecules 2021; 26:3648. [PMID: 34203820 PMCID: PMC8232580 DOI: 10.3390/molecules26123648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
Non-lamellar lyotropic liquid crystalline (LLC) lipid nanoparticles contain internal multidimensional nanostructures such as the inverse bicontinuous cubic and the inverse hexagonal mesophases, which can respond to external stimuli and have the potential of controlling drug release. To date, the internal LLC mesophase responsiveness of these lipid nanoparticles is largely achieved by adding ionizable small molecules to the parent lipid such as monoolein (MO), the mixture of which is then dispersed into nanoparticle suspensions by commercially available poly(ethylene oxide)-poly(propylene oxide) block copolymers. In this study, the Reversible Addition-Fragmentation chain Transfer (RAFT) technique was used to synthesize a series of novel amphiphilic block copolymers (ABCs) containing a hydrophilic poly(ethylene glycol) (PEG) block, a hydrophobic block and one or two responsive blocks, i.e., poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) and/or poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). High throughput small angle X-ray scattering studies demonstrated that the synthesized ABCs could simultaneously stabilize a range of LLC MO nanoparticles (vesicles, cubosomes, hexosomes, inverse micelles) and provide internal particle nanostructure responsiveness to changes of hydrogen peroxide (H2O2) concentrations, pH and temperature. It was found that the novel functional ABCs can substitute for the commercial polymer stabilizer and the ionizable additive in the formation of next generation non-lamellar lipid nanoparticles. These novel formulations have the potential to control drug release in the tumor microenvironment with endogenous H2O2 and acidic pH conditions.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (B.F.); (S.H.T.)
| | - San H. Thang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (B.F.); (S.H.T.)
| | - Calum J. Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
40
|
Ghaed-Sharaf T, Ghatee MH. Synergistic aggregation of the ibuprofenate anion and a a double-strand imidazolium cation into vesicles for drug delivery: a simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Chen J, Wang H, Mei L, Wang B, Huang Y, Quan G, Lu C, Peng T, Pan X, Wu C. A pirfenidone loaded spray dressing based on lyotropic liquid crystals for deep partial thickness burn treatment: healing promotion and scar prophylaxis. J Mater Chem B 2021; 8:2573-2588. [PMID: 32147675 DOI: 10.1039/c9tb02929j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A deep partial thickness (DPT) burn injury refers to burn damage involving the epidermis and major dermis, whose prognosis depends greatly on wound management. Lack of effective management can lead to an elongated healing process and aggravated scar formation, which can severely disturb patients, both physically and mentally. A dressing with good water absorption and moderate mechanical properties is crucial for healing promotion, and the prevention of scar formation is highly desirable. In this project, a hyaluronic acid combined lyotropic liquid crystal based spray dressing (HLCSD) loaded with the anti-fibrotic drug pirfenidone (PFD) has been designed. HLCSD is expected to achieve the goals of both wound healing promotion and scar prophylaxis. Its water absorption capacity, mechanical properties, drug release behavior and phase transition are fully evaluated. HLCSD possesses low viscosity for spray administration and high levels of water absorption for exudate absorption. An in situ gel composed of self-assembled lattice nanostructures provides excellent mechanical protection to promote the healing process and steady PFD release to exert a scar prophylaxis effect. The benefit of HLCSD on the wound healing rate is verified in vivo. In the DPT burn wound model we established, HLCSD also exhibits excellent healing promotion effects, and PFD-loaded HLCSD shows scar prophylaxis effects and displays an ideal prognosis, with skin as smooth as healthy skin. The healing promotion of HLCSD is considered to be related to the alleviation of inflammation, with an obviously shortened inflammation phase, with contributions from water management, mechanical protection and anti-inflammation by HLCSD. The scar prophylaxis of PFD-loaded HLCSD is proven to be related to the regulation of collagen synthesis and degradation, involving key cytokines like TGF-β and MMP-1. Taken together, the PFD-loaded HLCSD with healing promotion and scar prophylaxis offers significant promise as a spray dressing for DPT burn injuries.
Collapse
Affiliation(s)
- Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
| | - Liling Mei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
| | - Bei Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
| | - Ying Huang
- School of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
| | - Guilan Quan
- School of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
| | - Chao Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
| | - Tingting Peng
- School of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China. and School of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
42
|
Liu J, Cheng R, Heimann K, Wang Z, Wang J, Liu F. Temperature-sensitive lyotropic liquid crystals as systems for transdermal drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Gontsarik M, Yaghmur A, Salentinig S. Dispersed liquid crystals as pH-adjustable antimicrobial peptide nanocarriers. J Colloid Interface Sci 2021; 583:672-682. [DOI: 10.1016/j.jcis.2020.09.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
|
44
|
Rajesh S, Zhai J, Drummond CJ, Tran N. Synthetic ionizable aminolipids induce a pH dependent inverse hexagonal to bicontinuous cubic lyotropic liquid crystalline phase transition in monoolein nanoparticles. J Colloid Interface Sci 2020; 589:85-95. [PMID: 33450463 DOI: 10.1016/j.jcis.2020.12.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/28/2023]
Abstract
A prospective class of materials for drug delivery is lyotropic liquid crystalline (LLC) nanoparticles, such as cubosomes and hexosomes. Efforts are being made to generate a pH dependent system, which exhibits slow release hexosomes (H2) at physiological pH and relatively fast release cubosomes (Q2) at acidic disease sites such as in various cancers and bacterial infection (pH ~ 5.5-6.5). Herein, we report the synthesis of nine ionizable aminolipids, which were doped into monoolein (MO) lipid nanoparticles. Using high throughput formulation and synchrotron small angle X-ray scattering (SAXS), the effects of aminolipid structure and concentration on the mesophase of MO nanoparticles at various pHs were determined. As the pH changed from neutral to acidic, mesophases, could be formed in an order L2 (inverse micelles) → H2 → Q2. Specifically, systems with heterocyclic oleates exhibited the H2 to Q2 transition at pH 5.5-6.5. Furthermore, the phase transition pH could be fine-tuned by incorporating two aminolipids into the nanoparticles. Nanoparticles with a pH dependent phase transition as described in this study may be useful as drug delivery carriers for the treatment of cancers and certain bacterial infection.
Collapse
Affiliation(s)
- Sarigama Rajesh
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
45
|
Endter LJ, Risselada HJ. Where are those lipid nano rings? J Colloid Interface Sci 2020; 587:789-796. [PMID: 33246654 DOI: 10.1016/j.jcis.2020.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/28/2022]
Abstract
Highly curved toroidal micelles with diameters as small as 100 nm have been successfully constructed by self-assembly of amphiphilic block copolymers. These structures may have potential applications in gene or drug delivery. Experimental observations suggest that toroidal micelles likely originate from spherical or disc-like micelles which are tricked into forming toroidal micelles upon external stimuli ('smart' materials). Since self-assembly of polymeric and lipid surfactants is guided by the same physical principles, we hypothesize that 'smart' lipid surfactants can be equivalently tricked into forming highly curved toroidal micelles that are tenfold smaller (≃10 nm diameter). Paradoxically, these 'nano rings' have never been observed. Using coarse-grained molecular dynamics (MD) simulations in conjunction with a state-of-the-art free energy calculation method (a string method), we illustrate how a thermo-responsive lipid surfactant is able to form toroidal micelles. These micelles originate from disc-like micelles that are spontaneously perforated upon heat shocking, thereby supporting a longstanding hypothesis on the possible origin of polymeric toroidal micelle phases observed in experiments. We illustrate that kinetically stable 'nano rings' are substantially shorter lived than their tenfold larger polymeric analogs. The estimated life-time (milliseconds) is in fact similar to the characteristic breaking time of the corresponding worm-like micelle. Finally, we resolve the characteristic finger print which 'nano rings' leave in time-resolved X-ray spectra and illustrate how the uptake of small DNA fragments may enhance their stability. Despite a shared kinetics of self-assembly, length scale dependent differences in the life-time of surfactant phases can occur when phases are kinetically rather than thermodynamically stable. This results in the apparent absence or presence of toroidal micelle phases on different length scales. Our theoretical work precisely illustrates that the universality of surfactants nevertheless remains conserved even at different length scales.
Collapse
Affiliation(s)
- Laura Josefine Endter
- Georg-August University Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany
| | - Herre Jelger Risselada
- Georg-August University Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany; Leiden University, Leiden Institute of Chemistry (LIC), 2311 Leiden, Netherlands.
| |
Collapse
|
46
|
Abdel-Bar HM, Khater SE, Ghorab DM, Al-mahallawi AM. Hexosomes as Efficient Platforms for Possible Fluoxetine Hydrochloride Repurposing with Improved Cytotoxicity against HepG2 Cells. ACS OMEGA 2020; 5:26697-26709. [PMID: 33110996 PMCID: PMC7581272 DOI: 10.1021/acsomega.0c03569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/24/2020] [Indexed: 05/15/2023]
Abstract
The aim of this study was to investigate the feasibility of hexosomes (HEXs) as competent platforms for fluoxetine hydrochloride (FH) repurposing against HepG2 hepatocellular carcinoma. Different FH-loaded HEX formulations were prepared and optimized by the hot emulsification method. The HEX features such as particle size, ζ potential, and drug entrapment efficiency (EE%) can be tailored by tuning HEX components and fabrication conditions. The composition of the optimized FH hexosome (OFH-HEX) was composed of 3.1, 1.4, 0.5, 0.2, and 94.8% for glyceryl monooleate, oleic acid, pluronic F127, FH, and deionized water, respectively. The anionic OFH-HEX with a particle size of 145.5 ± 2.5 nm and drug EE% of 45.4 ± 1.2% was able to prolong the in vitro FH release, where only 19.5 ± 2.3% released in phosphate-buffered saline (PBS) pH 7.4 after 24 h. Contrarily, HEX rapidly released FH in acetate buffer pH 5.5 and achieved a 90.5 ± 4.7% release after 24 h. The obtained HEX showed an improved cellular internalization in a time-dependent manner and enhanced the cytotoxicity (2-fold higher than FH solution). The current study suggests the potential of FH-HEX as a possible anticancer agent against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hend Mohamed Abdel-Bar
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, 32958 Sadat City, Egypt
| | - Shaymaa Elsayed Khater
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, 32958 Sadat City, Egypt
| | - Dalia Mahmoud Ghorab
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Abdulaziz Mohsen Al-mahallawi
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
- Department
of Pharmaceutics, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 12451 Giza, Egypt
- . Tel: +201008226524
| |
Collapse
|
47
|
da Silva JB, Dos Santos RS, da Silva MB, Braga G, Cook MT, Bruschi ML. Interaction between mucoadhesive cellulose derivatives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111643. [PMID: 33321681 DOI: 10.1016/j.msec.2020.111643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023]
Abstract
Systems composed of bioadhesive and thermoresponsive polymers can combine in situ gelation with bio/mucoadhesion, enhancing retention of topically applied drugs. The effect of bioadhesive sodium carboxymethylcellulose (NaCMC) and hydroxypropyl methylcellulose cellulose (HPMC) on the properties of thermoresponsive Pluronic® F127 (F127) was explored, including micellization and the mucoadhesion. A computational analysis between these polymers and their molecular interactions were also studied, rationalising the design of improved binary polymeric systems for pharmaceutical and biomedical applications. The morphological characterization of polymeric systems was conducted by SEM. DSC analysis was used to investigate the crystallization and micellization enthalpy of F127 and the mixed systems. Micelle size measurements and TEM micrographs allowed for investigation into the interference of cellulose derivatives on F127 micellization. Both cellulose derivatives reduced the critical micellar concentration and enthalpy of micellization of F127, altering hydrodynamic diameters of the aggregates. Mucoadhesion performance was useful to select the best systems for mucosal application. The systems composed of 17.5% (w/w) F127 and 3% (w/w) HPMC or 1% (w/w) NaCMC are promising as topical drug delivery systems, mainly on mucosal surfaces. They were biocompatible when tested against Artemia salina, and also able to release a model of hydrophilic drug in a controlled manner.
Collapse
Affiliation(s)
- Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Rafaela Said Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | | | - Gustavo Braga
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | - Michael Thomas Cook
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
48
|
A structurally diverse library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (mPEG)-lipids showing variable complement activation properties. J Colloid Interface Sci 2020; 582:906-917. [PMID: 32919118 DOI: 10.1016/j.jcis.2020.08.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Pluronic F127-stabilized non-lamellar liquid crystalline aqueous nanodispersions are promising injectable platforms for drug and contrast agent delivery. These nanodispersions, however, trigger complement activation in the human blood, where the extent of complement activation and opsonization processes may compromise their biological performance and safety. Here, we introduce a broad family of nanodispersions from glycerol monooleate (GMO) and oleic acid (OA) in different weight ratios, and stabilized with a plethora of nonionic methoxypoly(ethylene glycol) (mPEG)-lipids of different PEG chain length and variable lipid moiety (monounsaturated or saturated diglycerides or D-α-tocopheryl succinate). Through an integrated biophysical approach involving dynamic light scattering, synchrotron small-angle scattering, and cryo-transmission electron microscopy, we examine the impact of nonionic mPEG-lipid stabilization on size, internal self-assembled architecture, and gross morphological characteristics of nanodispersions. The results show how the nonionic mPEG-lipid type and concentration, and dependent on GMO/OA weight ratio, can variably modulate the internal architectures of nanoparticles. Assessment of complement profiling from selected nanodispersions with diverse structural heterogeneity further suggests a variable modulatory role for the lipid type of the nonionic mPEG-lipid in the extent of complement activation, which span from no activation to moderate to high levels. We comment on plausible mechanisms driving the observed complement activation variability and discuss the potential utility of these nanodispersions for future development of injectable nanopharmaceuticals.
Collapse
|
49
|
Salvati Manni L, Fong WK, Mezzenga R. Lipid-based mesophases as matrices for nanoscale reactions. NANOSCALE HORIZONS 2020; 5:914-927. [PMID: 32322863 DOI: 10.1039/d0nh00079e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipidic mesophases are versatile bioorganic materials that have been effectively employed as nanoscale matrices for membrane protein crystallization, drug delivery and as food emulsifiers over the last 30 years. In this review, the focus is upon studies that have employed non-lamellar lipid mesophases as matrices for organic, inorganic and enzymatic reactions. The ability of lipidic mesophases to incorporate hydrophilic, amphiphilic and hydrophobic molecules, together with the high interfacial area of the lipidic cubic and inverse hexagonal phases has been exploited in heterogeneous catalysis as well as for enzyme immobilization. The unique nanostructure of these mesophases is the driving force behind their ability to act as templates for synthesis, resulting in the creation of highly ordered polymeric and inorganic materials with complex geometries.
Collapse
Affiliation(s)
- Livia Salvati Manni
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
50
|
Chountoulesi M, Perinelli DR, Pippa N, Chrysostomou V, Forys A, Otulakowski L, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Physicochemical, morphological and thermal evaluation of lyotropic lipidic liquid crystalline nanoparticles: The effect of stimuli-responsive polymeric stabilizer. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|